331 lines
7.9 KiB
TeX
331 lines
7.9 KiB
TeX
\UseRawInputEncoding
|
|
%\documentclass[hyperref={pdfpagelabels=false}]{beamer}
|
|
\documentclass[hyperref={pdfpagelabels=false},aspectratio=169]{beamer}
|
|
% Die Hyperref Option hyperref={pdfpagelabels=false} verhindert die Warnung:
|
|
% Package hyperref Warning: Option `pdfpagelabels' is turned off
|
|
% (hyperref) because \thepage is undefined.
|
|
% Hyperref stopped early
|
|
%
|
|
|
|
\usepackage{lmodern}
|
|
% Das Paket lmodern erspart die folgenden Warnungen:
|
|
% LaTeX Font Warning: Font shape `OT1/cmss/m/n' in size <4> not available
|
|
% (Font) size <5> substituted on input line 22.
|
|
% LaTeX Font Warning: Size substitutions with differences
|
|
% (Font) up to 1.0pt have occurred.
|
|
%
|
|
|
|
% Wenn \titel{\ldots} \author{\ldots} erst nach \begin{document} kommen,
|
|
% kommt folgende Warnung:
|
|
% Package hyperref Warning: Option `pdfauthor' has already been used,
|
|
% (hyperref) ...
|
|
% Daher steht es hier vor \begin{document}
|
|
|
|
\title[u-Opt]{Unsupervised Optimisation - Paper Structure}
|
|
\author{Simon Kluettermann}
|
|
\date{\today}
|
|
|
|
|
|
\institute{ls9 tu Dortmund}
|
|
|
|
|
|
% Dadurch wird verhindert, dass die Navigationsleiste angezeigt wird.
|
|
\setbeamertemplate{navigation symbols}{}
|
|
|
|
% zusaetzlich ist das usepackage{beamerthemeshadow} eingebunden
|
|
\usepackage{beamerthemeshadow}
|
|
|
|
\hypersetup{pdfstartview={Fit}} % fits the presentation to the window when first displayed
|
|
|
|
\usepackage{appendixnumberbeamer}
|
|
\usepackage{listings}
|
|
|
|
|
|
\usetheme{CambridgeUS}
|
|
\usepackage{ngerman}
|
|
\usecolortheme{dolphin}
|
|
|
|
|
|
% \beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2$\Rightarrow${15}}
|
|
% sorgt dafuer das die Elemente die erst noch (zukuenftig) kommen
|
|
% nur schwach angedeutet erscheinen
|
|
%\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2$\Rightarrow${15}}%here disabled
|
|
% klappt auch bei Tabellen, wenn teTeX verwendet wird\ldots
|
|
\renewcommand{\figurename}{}
|
|
|
|
\setbeamertemplate{footline}
|
|
{
|
|
\leavevmode%
|
|
\hbox{%
|
|
\begin{beamercolorbox}[wd=.4\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}%
|
|
\usebeamerfont{author in head/foot}\insertshorttitle
|
|
\end{beamercolorbox}%
|
|
\begin{beamercolorbox}[wd=.25\paperwidth,ht=2.25ex,dp=1ex,center]{title in head/foot}%
|
|
\usebeamerfont{title in head/foot}\insertsection
|
|
\end{beamercolorbox}%
|
|
\begin{beamercolorbox}[wd=.3499\paperwidth,ht=2.25ex,dp=1ex,right]{date in head/foot}%
|
|
\usebeamerfont{date in head/foot}\insertshortdate{}\hspace*{2em}
|
|
\hyperlink{toc}{\insertframenumber{} / \inserttotalframenumber\hspace*{2ex}}
|
|
\end{beamercolorbox}}%
|
|
\vskip0pt%
|
|
}
|
|
|
|
\usepackage[absolute,overlay]{textpos}
|
|
\usepackage{graphicx}
|
|
|
|
\newcommand{\source}[1]{\begin{textblock*}{9cm}(0.1cm,8.9cm)
|
|
\begin{beamercolorbox}[ht=0.5cm,left]{framesource}
|
|
\usebeamerfont{framesource}\usebeamercolor[fg!66]{framesource} Source: {#1}
|
|
\end{beamercolorbox}
|
|
\end{textblock*}}
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
%from file ../uopt/data/000.txt
|
|
\begin{frame}[label=]
|
|
\frametitle{}
|
|
\begin{titlepage}
|
|
|
|
\centering
|
|
{\huge\bfseries \par}
|
|
\vspace{2cm}
|
|
{\LARGE\itshape Simon Kluettermann\par}
|
|
\vspace{1.5cm}
|
|
{\scshape\Large Master Thesis in Physics\par}
|
|
\vspace{0.2cm}
|
|
{\Large submitted to the \par}
|
|
\vspace{0.2cm}
|
|
{\scshape\Large Faculty of Mathematics Computer Science and Natural Sciences \par}
|
|
\vspace{0.2cm}
|
|
{\Large \par}
|
|
\vspace{0.2cm}
|
|
{\scshape\Large RWTH Aachen University}
|
|
\vspace{1cm}
|
|
|
|
\vfill
|
|
{\scshape\Large Department of Physics\par}
|
|
\vspace{0.2cm}
|
|
{\scshape\Large Insitute for theoretical Particle Physics and Cosmology\par}
|
|
\vspace{0.2cm}
|
|
{ \Large\par}
|
|
\vspace{0.2cm}
|
|
{\Large First Referee: Prof. Dr. Michael Kraemer \par}
|
|
{\Large Second Referee: Prof. Dr. Felix Kahlhoefer}
|
|
|
|
\vfill
|
|
|
|
% Bottom of the page
|
|
{\large November 2020 \par}
|
|
\end{titlepage}
|
|
\pagenumbering{roman}
|
|
\thispagestyle{empty}
|
|
\null
|
|
\newpage
|
|
\setcounter{page}{1}
|
|
\pagenumbering{arabic}
|
|
\end{frame}
|
|
|
|
|
|
%from file ../uopt/data/001Task.txt
|
|
\begin{frame}[label=Task]
|
|
\frametitle{Task}
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[height=0.9\textheight]{../prep/01Task/table.jpg}
|
|
\label{fig:prep01Tasktablejpg}
|
|
\end{figure}
|
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
%from file ../uopt/data/002Intro.txt
|
|
\begin{frame}[label=Intro]
|
|
\frametitle{Intro}
|
|
\begin{itemize}
|
|
|
|
\item Motivation
|
|
|
|
\begin{itemize}
|
|
|
|
\item AD is super important...
|
|
|
|
\item good AD = complicated models $\Rightarrow$ Many Parameters
|
|
|
|
\item Evaluation dependent on very few datapoints$\Rightarrow$Optimization impossible
|
|
|
|
|
|
\end{itemize}
|
|
\item Open Challenges
|
|
|
|
\begin{itemize}
|
|
|
|
\item Evaluate without testing data
|
|
|
|
\item Formalisation of existing ideas
|
|
|
|
\item Numerical assessment of them
|
|
|
|
|
|
\end{itemize}
|
|
\item Contribution
|
|
|
|
\begin{itemize}
|
|
|
|
\item Suggest new methods for AE
|
|
|
|
\item Compare methods on many datasets
|
|
|
|
\item Seperate into parameter and hyperparameter optimisation
|
|
|
|
|
|
\end{itemize}
|
|
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
|
|
%from file ../uopt/data/003RW.txt
|
|
\begin{frame}[label=RW]
|
|
\frametitle{RW}
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[height=0.9\textheight]{../prep/04RW/graph.png}
|
|
\label{fig:prep04RWgraphpng}
|
|
\end{figure}
|
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
%from file ../uopt/data/004RW.txt
|
|
\begin{frame}[label=RW]
|
|
\frametitle{RW}
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[height=0.9\textheight]{../prep/05RW/graph.png}
|
|
\label{fig:prep05RWgraphpng}
|
|
\end{figure}
|
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
%from file ../uopt/data/005But....txt
|
|
\begin{frame}[label=But...]
|
|
\frametitle{But...}
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[height=0.9\textheight]{../prep/06But.../graph.png}
|
|
\label{fig:prep06Butgraphpng}
|
|
\end{figure}
|
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
%from file ../uopt/data/006Problem Statement.txt
|
|
\begin{frame}[label=Problem Statement]
|
|
\frametitle{Problem Statement}
|
|
\begin{itemize}
|
|
|
|
\item Given $N$ Anomaly detection methods $M_i = TrainModel(X_{train})$, find $f(M_i)$ so that Score $S_i = f(M_i)$ can be used to find an above average AD method $M_{argmax(S)}$.
|
|
|
|
\item Let $TrainMany(X_{train},C)=TrainModel(X_{train})_{argmax(f(M_0...M_C))}$. We assume the distribution of $TrainMany$ to be gaussian and describe it through $\mu_C$ and $\sigma_C$. We consider a function $f(M)$ to be helpful, if $\Delta = \frac{sqrt(N) \cdot (\mu_C-\mu_1)}{sqrt(\sigma_C^2+\sigma_1^2)} > 3$ for some number of models tested $N$.
|
|
|
|
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
|
|
%from file ../uopt/data/007Impossible.txt
|
|
\begin{frame}[label=Impossible]
|
|
\frametitle{Impossible}
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[height=0.9\textheight]{../prep/08Impossible/impos.pdf}
|
|
\label{fig:prep08Impossibleimpospdf}
|
|
\end{figure}
|
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
%from file ../uopt/data/008Blob.txt
|
|
\begin{frame}[label=Blob]
|
|
\frametitle{Blob}
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[height=0.9\textheight]{../prep/09Blob/blob_cardio.png}
|
|
\label{fig:prep09Blobblob_cardiopng}
|
|
\end{figure}
|
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
%from file ../uopt/data/009Blob.txt
|
|
\begin{frame}[label=Blob]
|
|
\frametitle{Blob}
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[height=0.9\textheight]{../prep/10Blob/blob_page-blocks.png}
|
|
\label{fig:prep10Blobblob_page-blockspng}
|
|
\end{figure}
|
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
%from file ../uopt/data/010One Dataset.txt
|
|
\begin{frame}[label=One Dataset]
|
|
\frametitle{One Dataset}
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[height=0.9\textheight]{../prep/12One Dataset/histone_page-blocks.pdf}
|
|
\label{fig:prep12One Datasethistone_page-blockspdf}
|
|
\end{figure}
|
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
%from file ../uopt/data/011Many Datasets.txt
|
|
\begin{frame}[label=Many Datasets]
|
|
\frametitle{Many Datasets}
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[height=0.9\textheight]{../prep/13Many Datasets/z_robu.pdf}
|
|
\label{fig:prep13Many Datasetsz_robupdf}
|
|
\end{figure}
|
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
%from file ../uopt/data/012Afterwards.txt
|
|
\begin{frame}[label=Afterwards]
|
|
\frametitle{Afterwards}
|
|
\begin{itemize}
|
|
|
|
\item Afterwards:
|
|
|
|
\item Table: Fraction of positive impro, Average impro
|
|
|
|
\item Correlation between optimizers
|
|
|
|
\item Hyperparam: Same table
|
|
|
|
\item Improvement by hyperparameter (latent dim is different from batch size)
|
|
|
|
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
|
|
|
|
\end{document}
|