initial push
|
@ -0,0 +1,5 @@
|
||||||
|
<frame >
|
||||||
|
|
||||||
|
<titlepage>
|
||||||
|
|
||||||
|
</frame>
|
|
@ -0,0 +1,3 @@
|
||||||
|
<frame title="Task">
|
||||||
|
<i f="../prep/01Task/table.jpg"></i>
|
||||||
|
</frame>
|
|
@ -0,0 +1,22 @@
|
||||||
|
<frame title="Intro">
|
||||||
|
<list>
|
||||||
|
<e>Motivation</e>
|
||||||
|
<l2st>
|
||||||
|
<e>AD is super important...</e>
|
||||||
|
<e>good AD = complicated models -> Many Parameters</e>
|
||||||
|
<e>Evaluation dependent on very few datapoints->Optimization impossible</e>
|
||||||
|
</l2st>
|
||||||
|
<e>Open Challenges</e>
|
||||||
|
<l2st>
|
||||||
|
<e>Evaluate without testing data</e>
|
||||||
|
<e>Formalisation of existing ideas</e>
|
||||||
|
<e>Numerical assessment of them</e>
|
||||||
|
</l2st>
|
||||||
|
<e>Contribution</e>
|
||||||
|
<l2st>
|
||||||
|
<e>Suggest new methods for AE</e>
|
||||||
|
<e>Compare methods on many datasets</e>
|
||||||
|
<e>Seperate into parameter and hyperparameter optimisation</e>
|
||||||
|
</l2st>
|
||||||
|
</list>
|
||||||
|
</frame>
|
|
@ -0,0 +1,3 @@
|
||||||
|
<frame title="RW">
|
||||||
|
<i f="../prep/04RW/graph.png"></i>
|
||||||
|
</frame>
|
|
@ -0,0 +1,3 @@
|
||||||
|
<frame title="RW">
|
||||||
|
<i f="../prep/05RW/graph.png"></i>
|
||||||
|
</frame>
|
|
@ -0,0 +1,3 @@
|
||||||
|
<frame title="But...">
|
||||||
|
<i f="../prep/06But.../graph.png"></i>
|
||||||
|
</frame>
|
|
@ -0,0 +1,6 @@
|
||||||
|
<frame title="Problem Statement">
|
||||||
|
<list>
|
||||||
|
<e>Given $N$ Anomaly detection methods $M_i = TrainModel(X_{train})$, find $f(M_i)$ so that Score $S_i = f(M_i)$ can be used to find an above average AD method $M_{argmax(S)}$.</e>
|
||||||
|
<e>Let $TrainMany(X_{train},C)=TrainModel(X_{train})_{argmax(f(M_0...M_C))}$. We assume the distribution of $TrainMany$ to be gaussian and describe it through $\mu_C$ and $\sigma_C$. We consider a function $f(M)$ to be helpful, if $\Delta = \frac{sqrt(N) \cdot (\mu_C-\mu_1)}{sqrt(\sigma_C^2+\sigma_1^2)} > 3$ for some number of models tested $N$.</e>
|
||||||
|
</list>
|
||||||
|
</frame>
|
|
@ -0,0 +1,12 @@
|
||||||
|
<plt>
|
||||||
|
|
||||||
|
<name Current experiment status>
|
||||||
|
<title Unsupervised Optimisation - Paper Structure>
|
||||||
|
<stitle u-Opt>
|
||||||
|
|
||||||
|
<institute ls9 tu Dortmund>
|
||||||
|
|
||||||
|
<theme CambridgeUS>
|
||||||
|
<colo dolphin>
|
||||||
|
|
||||||
|
</plt>
|
After Width: | Height: | Size: 113 KiB |
After Width: | Height: | Size: 12 KiB |
After Width: | Height: | Size: 14 KiB |
After Width: | Height: | Size: 59 KiB |
After Width: | Height: | Size: 99 KiB |
|
@ -0,0 +1,3 @@
|
||||||
|
pdflatex main.tex
|
||||||
|
pdflatex main.tex
|
||||||
|
|
|
@ -0,0 +1,3 @@
|
||||||
|
pdflatex main.tex
|
||||||
|
pdflatex main.tex
|
||||||
|
|
|
@ -0,0 +1,38 @@
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"typ": "img",
|
||||||
|
"files": [
|
||||||
|
"../prep/01Task/table.jpg"
|
||||||
|
],
|
||||||
|
"label": "prep01Tasktablejpg",
|
||||||
|
"caption": "",
|
||||||
|
"where": "../uopt/data/001Task.txt"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"typ": "img",
|
||||||
|
"files": [
|
||||||
|
"../prep/04RW/graph.png"
|
||||||
|
],
|
||||||
|
"label": "prep04RWgraphpng",
|
||||||
|
"caption": "",
|
||||||
|
"where": "../uopt/data/003RW.txt"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"typ": "img",
|
||||||
|
"files": [
|
||||||
|
"../prep/05RW/graph.png"
|
||||||
|
],
|
||||||
|
"label": "prep05RWgraphpng",
|
||||||
|
"caption": "",
|
||||||
|
"where": "../uopt/data/004RW.txt"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"typ": "img",
|
||||||
|
"files": [
|
||||||
|
"../prep/06But.../graph.png"
|
||||||
|
],
|
||||||
|
"label": "prep06Butgraphpng",
|
||||||
|
"caption": "",
|
||||||
|
"where": "../uopt/data/005But....txt"
|
||||||
|
}
|
||||||
|
]
|
|
@ -0,0 +1,70 @@
|
||||||
|
\relax
|
||||||
|
\providecommand\hyper@newdestlabel[2]{}
|
||||||
|
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
||||||
|
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
||||||
|
\global\let\oldcontentsline\contentsline
|
||||||
|
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
|
||||||
|
\global\let\oldnewlabel\newlabel
|
||||||
|
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
||||||
|
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
||||||
|
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
||||||
|
\let\contentsline\oldcontentsline
|
||||||
|
\let\newlabel\oldnewlabel
|
||||||
|
\fi}
|
||||||
|
\fi}
|
||||||
|
\global\let\hyper@last\relax
|
||||||
|
\gdef\HyperFirstAtBeginDocument#1{#1}
|
||||||
|
\providecommand\HyField@AuxAddToFields[1]{}
|
||||||
|
\providecommand\HyField@AuxAddToCoFields[2]{}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {1}{1}}}
|
||||||
|
\newlabel{Task<1>}{{2}{2}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Task<1>}{2}}
|
||||||
|
\newlabel{Task}{{2}{2}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Task}{2}}
|
||||||
|
\newlabel{fig:prep01Tasktablejpg}{{2}{2}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {fig:prep01Tasktablejpg}{2}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {2}{2}}}
|
||||||
|
\newlabel{Intro<1>}{{3}{3}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Intro<1>}{3}}
|
||||||
|
\newlabel{Intro}{{3}{3}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Intro}{3}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{3}{3/3}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {3}{3}}}
|
||||||
|
\newlabel{RW<1>}{{4}{4}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {RW<1>}{4}}
|
||||||
|
\newlabel{RW}{{4}{4}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {RW}{4}}
|
||||||
|
\newlabel{fig:prep04RWgraphpng}{{4}{4}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {fig:prep04RWgraphpng}{4}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{4}{4/4}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {4}{4}}}
|
||||||
|
\newlabel{RW<1>}{{5}{5}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {RW<1>}{5}}
|
||||||
|
\newlabel{RW}{{5}{5}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {RW}{5}}
|
||||||
|
\newlabel{fig:prep05RWgraphpng}{{5}{5}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {fig:prep05RWgraphpng}{5}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{5}{5/5}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {5}{5}}}
|
||||||
|
\newlabel{But...<1>}{{6}{6}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {But...<1>}{6}}
|
||||||
|
\newlabel{But...}{{6}{6}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {But...}{6}}
|
||||||
|
\newlabel{fig:prep06Butgraphpng}{{6}{6}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {fig:prep06Butgraphpng}{6}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{6}{6/6}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {6}{6}}}
|
||||||
|
\newlabel{Problem Statement<1>}{{7}{7}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Problem Statement<1>}{7}}
|
||||||
|
\newlabel{Problem Statement}{{7}{7}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Problem Statement}{7}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{7}{7/7}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {7}{7}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@partpages {1}{7}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@subsectionpages {1}{7}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@sectionpages {1}{7}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@documentpages {7}}}
|
||||||
|
\@writefile{nav}{\headcommand {\gdef \inserttotalframenumber {7}}}
|
||||||
|
\gdef \@abspage@last{7}
|
|
@ -0,0 +1,19 @@
|
||||||
|
\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {1}{1}}
|
||||||
|
\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {2}{2}}
|
||||||
|
\headcommand {\slideentry {0}{0}{3}{3/3}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {3}{3}}
|
||||||
|
\headcommand {\slideentry {0}{0}{4}{4/4}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {4}{4}}
|
||||||
|
\headcommand {\slideentry {0}{0}{5}{5/5}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {5}{5}}
|
||||||
|
\headcommand {\slideentry {0}{0}{6}{6/6}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {6}{6}}
|
||||||
|
\headcommand {\slideentry {0}{0}{7}{7/7}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {7}{7}}
|
||||||
|
\headcommand {\beamer@partpages {1}{7}}
|
||||||
|
\headcommand {\beamer@subsectionpages {1}{7}}
|
||||||
|
\headcommand {\beamer@sectionpages {1}{7}}
|
||||||
|
\headcommand {\beamer@documentpages {7}}
|
||||||
|
\headcommand {\gdef \inserttotalframenumber {7}}
|
|
@ -0,0 +1,16 @@
|
||||||
|
\beamer@slide {Task<1>}{2}
|
||||||
|
\beamer@slide {Task}{2}
|
||||||
|
\beamer@slide {fig:prep01Tasktablejpg}{2}
|
||||||
|
\beamer@slide {Intro<1>}{3}
|
||||||
|
\beamer@slide {Intro}{3}
|
||||||
|
\beamer@slide {RW<1>}{4}
|
||||||
|
\beamer@slide {RW}{4}
|
||||||
|
\beamer@slide {fig:prep04RWgraphpng}{4}
|
||||||
|
\beamer@slide {RW<1>}{5}
|
||||||
|
\beamer@slide {RW}{5}
|
||||||
|
\beamer@slide {fig:prep05RWgraphpng}{5}
|
||||||
|
\beamer@slide {But...<1>}{6}
|
||||||
|
\beamer@slide {But...}{6}
|
||||||
|
\beamer@slide {fig:prep06Butgraphpng}{6}
|
||||||
|
\beamer@slide {Problem Statement<1>}{7}
|
||||||
|
\beamer@slide {Problem Statement}{7}
|
|
@ -0,0 +1,245 @@
|
||||||
|
\UseRawInputEncoding
|
||||||
|
%\documentclass[hyperref={pdfpagelabels=false}]{beamer}
|
||||||
|
\documentclass[hyperref={pdfpagelabels=false},aspectratio=169]{beamer}
|
||||||
|
% Die Hyperref Option hyperref={pdfpagelabels=false} verhindert die Warnung:
|
||||||
|
% Package hyperref Warning: Option `pdfpagelabels' is turned off
|
||||||
|
% (hyperref) because \thepage is undefined.
|
||||||
|
% Hyperref stopped early
|
||||||
|
%
|
||||||
|
|
||||||
|
\usepackage{lmodern}
|
||||||
|
% Das Paket lmodern erspart die folgenden Warnungen:
|
||||||
|
% LaTeX Font Warning: Font shape `OT1/cmss/m/n' in size <4> not available
|
||||||
|
% (Font) size <5> substituted on input line 22.
|
||||||
|
% LaTeX Font Warning: Size substitutions with differences
|
||||||
|
% (Font) up to 1.0pt have occurred.
|
||||||
|
%
|
||||||
|
|
||||||
|
% Wenn \titel{\ldots} \author{\ldots} erst nach \begin{document} kommen,
|
||||||
|
% kommt folgende Warnung:
|
||||||
|
% Package hyperref Warning: Option `pdfauthor' has already been used,
|
||||||
|
% (hyperref) ...
|
||||||
|
% Daher steht es hier vor \begin{document}
|
||||||
|
|
||||||
|
\title[u-Opt]{Unsupervised Optimisation - Paper Structure}
|
||||||
|
\author{Simon Kluettermann}
|
||||||
|
\date{\today}
|
||||||
|
|
||||||
|
|
||||||
|
\institute{ls9 tu Dortmund}
|
||||||
|
|
||||||
|
|
||||||
|
% Dadurch wird verhindert, dass die Navigationsleiste angezeigt wird.
|
||||||
|
\setbeamertemplate{navigation symbols}{}
|
||||||
|
|
||||||
|
% zusaetzlich ist das usepackage{beamerthemeshadow} eingebunden
|
||||||
|
\usepackage{beamerthemeshadow}
|
||||||
|
|
||||||
|
\hypersetup{pdfstartview={Fit}} % fits the presentation to the window when first displayed
|
||||||
|
|
||||||
|
\usepackage{appendixnumberbeamer}
|
||||||
|
\usepackage{listings}
|
||||||
|
|
||||||
|
|
||||||
|
\usetheme{CambridgeUS}
|
||||||
|
\usepackage{ngerman}
|
||||||
|
\usecolortheme{dolphin}
|
||||||
|
|
||||||
|
|
||||||
|
% \beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2$\Rightarrow${15}}
|
||||||
|
% sorgt dafuer das die Elemente die erst noch (zukuenftig) kommen
|
||||||
|
% nur schwach angedeutet erscheinen
|
||||||
|
%\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2$\Rightarrow${15}}%here disabled
|
||||||
|
% klappt auch bei Tabellen, wenn teTeX verwendet wird\ldots
|
||||||
|
\renewcommand{\figurename}{}
|
||||||
|
|
||||||
|
\setbeamertemplate{footline}
|
||||||
|
{
|
||||||
|
\leavevmode%
|
||||||
|
\hbox{%
|
||||||
|
\begin{beamercolorbox}[wd=.4\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}%
|
||||||
|
\usebeamerfont{author in head/foot}\insertshorttitle
|
||||||
|
\end{beamercolorbox}%
|
||||||
|
\begin{beamercolorbox}[wd=.25\paperwidth,ht=2.25ex,dp=1ex,center]{title in head/foot}%
|
||||||
|
\usebeamerfont{title in head/foot}\insertsection
|
||||||
|
\end{beamercolorbox}%
|
||||||
|
\begin{beamercolorbox}[wd=.3499\paperwidth,ht=2.25ex,dp=1ex,right]{date in head/foot}%
|
||||||
|
\usebeamerfont{date in head/foot}\insertshortdate{}\hspace*{2em}
|
||||||
|
\hyperlink{toc}{\insertframenumber{} / \inserttotalframenumber\hspace*{2ex}}
|
||||||
|
\end{beamercolorbox}}%
|
||||||
|
\vskip0pt%
|
||||||
|
}
|
||||||
|
|
||||||
|
\usepackage[absolute,overlay]{textpos}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
|
||||||
|
\newcommand{\source}[1]{\begin{textblock*}{9cm}(0.1cm,8.9cm)
|
||||||
|
\begin{beamercolorbox}[ht=0.5cm,left]{framesource}
|
||||||
|
\usebeamerfont{framesource}\usebeamercolor[fg!66]{framesource} Source: {#1}
|
||||||
|
\end{beamercolorbox}
|
||||||
|
\end{textblock*}}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../uopt/data/000.txt
|
||||||
|
\begin{frame}[label=]
|
||||||
|
\frametitle{}
|
||||||
|
\begin{titlepage}
|
||||||
|
|
||||||
|
\centering
|
||||||
|
{\huge\bfseries \par}
|
||||||
|
\vspace{2cm}
|
||||||
|
{\LARGE\itshape Simon Kluettermann\par}
|
||||||
|
\vspace{1.5cm}
|
||||||
|
{\scshape\Large Master Thesis in Physics\par}
|
||||||
|
\vspace{0.2cm}
|
||||||
|
{\Large submitted to the \par}
|
||||||
|
\vspace{0.2cm}
|
||||||
|
{\scshape\Large Faculty of Mathematics Computer Science and Natural Sciences \par}
|
||||||
|
\vspace{0.2cm}
|
||||||
|
{\Large \par}
|
||||||
|
\vspace{0.2cm}
|
||||||
|
{\scshape\Large RWTH Aachen University}
|
||||||
|
\vspace{1cm}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
{\scshape\Large Department of Physics\par}
|
||||||
|
\vspace{0.2cm}
|
||||||
|
{\scshape\Large Insitute for theoretical Particle Physics and Cosmology\par}
|
||||||
|
\vspace{0.2cm}
|
||||||
|
{ \Large\par}
|
||||||
|
\vspace{0.2cm}
|
||||||
|
{\Large First Referee: Prof. Dr. Michael Kraemer \par}
|
||||||
|
{\Large Second Referee: Prof. Dr. Felix Kahlhoefer}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
% Bottom of the page
|
||||||
|
{\large November 2020 \par}
|
||||||
|
\end{titlepage}
|
||||||
|
\pagenumbering{roman}
|
||||||
|
\thispagestyle{empty}
|
||||||
|
\null
|
||||||
|
\newpage
|
||||||
|
\setcounter{page}{1}
|
||||||
|
\pagenumbering{arabic}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../uopt/data/001Task.txt
|
||||||
|
\begin{frame}[label=Task]
|
||||||
|
\frametitle{Task}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[height=0.9\textheight]{../prep/01Task/table.jpg}
|
||||||
|
\label{fig:prep01Tasktablejpg}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../uopt/data/002Intro.txt
|
||||||
|
\begin{frame}[label=Intro]
|
||||||
|
\frametitle{Intro}
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item Motivation
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item AD is super important...
|
||||||
|
|
||||||
|
\item good AD = complicated models $\Rightarrow$ Many Parameters
|
||||||
|
|
||||||
|
\item Evaluation dependent on very few datapoints$\Rightarrow$Optimization impossible
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\item Open Challenges
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item Evaluate without testing data
|
||||||
|
|
||||||
|
\item Formalisation of existing ideas
|
||||||
|
|
||||||
|
\item Numerical assessment of them
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\item Contribution
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item Suggest new methods for AE
|
||||||
|
|
||||||
|
\item Compare methods on many datasets
|
||||||
|
|
||||||
|
\item Seperate into parameter and hyperparameter optimisation
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../uopt/data/003RW.txt
|
||||||
|
\begin{frame}[label=RW]
|
||||||
|
\frametitle{RW}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[height=0.9\textheight]{../prep/04RW/graph.png}
|
||||||
|
\label{fig:prep04RWgraphpng}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../uopt/data/004RW.txt
|
||||||
|
\begin{frame}[label=RW]
|
||||||
|
\frametitle{RW}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[height=0.9\textheight]{../prep/05RW/graph.png}
|
||||||
|
\label{fig:prep05RWgraphpng}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../uopt/data/005But....txt
|
||||||
|
\begin{frame}[label=But...]
|
||||||
|
\frametitle{But...}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[height=0.9\textheight]{../prep/06But.../graph.png}
|
||||||
|
\label{fig:prep06Butgraphpng}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../uopt/data/006Problem Statement.txt
|
||||||
|
\begin{frame}[label=Problem Statement]
|
||||||
|
\frametitle{Problem Statement}
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item Given $N$ Anomaly detection methods $M_i = TrainModel(X_{train})$, find $f(M_i)$ so that Score $S_i = f(M_i)$ can be used to find an above average AD method $M_{argmax(S)}$.
|
||||||
|
|
||||||
|
\item Let $TrainMany(X_{train},C)=TrainModel(X_{train})_{argmax(f(M_0...M_C))}$. We assume the distribution of $TrainMany$ to be gaussian and describe it through $\mu_C$ and $\sigma_C$. We consider a function $f(M)$ to be helpful, if $\Delta = \frac{sqrt(N) \cdot (\mu_C-\mu_1)}{sqrt(\sigma_C^2+\sigma_1^2)} > 3$ for some number of models tested $N$.
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\end{document}
|
|
@ -0,0 +1 @@
|
||||||
|
<titlepage>
|
After Width: | Height: | Size: 230 KiB |
|
@ -0,0 +1,18 @@
|
||||||
|
Motivation
|
||||||
|
<l2st>
|
||||||
|
AD is super important...
|
||||||
|
good AD = complicated models -> Many Parameters
|
||||||
|
Evaluation dependent on very few datapoints->Optimization impossible
|
||||||
|
</l2st>
|
||||||
|
Open Challenges
|
||||||
|
<l2st>
|
||||||
|
Evaluate without testing data
|
||||||
|
Formalisation of existing ideas
|
||||||
|
Numerical assessment of them
|
||||||
|
</l2st>
|
||||||
|
Contribution
|
||||||
|
<l2st>
|
||||||
|
Suggest new methods for AE
|
||||||
|
Compare methods on many datasets
|
||||||
|
Seperate into parameter and hyperparameter optimisation
|
||||||
|
</l2st>
|
After Width: | Height: | Size: 94 KiB |
After Width: | Height: | Size: 28 KiB |
After Width: | Height: | Size: 79 KiB |
|
@ -0,0 +1,5 @@
|
||||||
|
Given $N$ Anomaly detection methods $M_i = TrainModel(X_{train})$, find $f(M_i)$ so that Score $S_i = f(M_i)$ can be used to find an above average AD method $M_{argmax(S)}$.
|
||||||
|
|
||||||
|
Let $TrainMany(X_{train},C)=TrainModel(X_{train})_{argmax(f(M_0...M_C))}$. We assume the distribution of $TrainMany$ to be gaussian and describe it through $\mu_C$ and $\sigma_C$. We consider a function $f(M)$ to be helpful, if $\Delta = \frac{sqrt(N) \cdot (\mu_C-\mu_1)}{sqrt(\sigma_C^2+\sigma_1^2)} > 3$ for some number of models tested $N$.
|
||||||
|
|
||||||
|
|
After Width: | Height: | Size: 20 KiB |
After Width: | Height: | Size: 989 KiB |
After Width: | Height: | Size: 265 KiB |