21 lines
423 B
Python
21 lines
423 B
Python
import numpy as np
|
|
|
|
def data(n=1000):
|
|
"""
|
|
Generate 2d gaussian data. Few points but every model should have slightly different data.
|
|
Then use a big dataset as comparison algo. Basically subsampling instead of feature bagging.
|
|
"""
|
|
return np.random.normal(1.0,0.5,(n,2))
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
x=data()
|
|
|
|
from plt import plt
|
|
|
|
plt.plot(x[:,0],x[:,1],'.')
|
|
plt.how()
|
|
#print(x,y,z)
|
|
|