78 lines
850 B
Python
78 lines
850 B
Python
|
import tensorflow as tf
|
||
|
from tensorflow import keras
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
|
||
|
|
||
|
from data import data
|
||
|
|
||
|
fns=[f"runs/{zw}" for zw in os.listdir("runs")]
|
||
|
|
||
|
|
||
|
fs=[np.load(fn) for fn in fns if os.path.isfile(fn)]
|
||
|
|
||
|
x=fs[0]["x"]
|
||
|
ds=[f["d"] for f in fs]
|
||
|
ps=[f["p"][:,0] for f in fs]
|
||
|
|
||
|
|
||
|
ds=np.array(ds)
|
||
|
ps=np.array(ps)
|
||
|
|
||
|
d=np.sqrt(np.mean(np.square(ds),axis=0))
|
||
|
|
||
|
np.savez_compressed("merged",x=x,ds=ds,ps=ps,d=d)
|
||
|
|
||
|
|
||
|
print(np.corrcoef(ps))
|
||
|
|
||
|
|
||
|
|
||
|
sx=[(xx,dd) for xx,dd in zip(x,d)]
|
||
|
sx.sort(key=lambda x:x[1])
|
||
|
|
||
|
sx=[xx for xx,dd in sx]
|
||
|
sx=np.array(sx)
|
||
|
|
||
|
from plt import plt
|
||
|
|
||
|
|
||
|
col1=[1.0,0.0,0.0]
|
||
|
col2=[0.0,1.0,0.0]
|
||
|
|
||
|
col1,col2=np.array(col1),np.array(col2)
|
||
|
|
||
|
ln=len(sx)
|
||
|
|
||
|
cols=[col1*(i/ln)+col2*(1-i/ln) for i in range(ln)]
|
||
|
|
||
|
|
||
|
|
||
|
plt.scatter(sx[:,0],sx[:,1],c=cols)
|
||
|
|
||
|
plt.savefig(f"imgs/recombine.png")
|
||
|
|
||
|
#plt.plot(sx[:,0],sx[:,1],'.')
|
||
|
|
||
|
plt.how()
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|