586 lines
15 KiB
TeX
586 lines
15 KiB
TeX
|
\UseRawInputEncoding
|
||
|
%\documentclass[hyperref={pdfpagelabels=false}]{beamer}
|
||
|
\documentclass[hyperref={pdfpagelabels=false},aspectratio=169]{beamer}
|
||
|
% Die Hyperref Option hyperref={pdfpagelabels=false} verhindert die Warnung:
|
||
|
% Package hyperref Warning: Option `pdfpagelabels' is turned off
|
||
|
% (hyperref) because \thepage is undefined.
|
||
|
% Hyperref stopped early
|
||
|
%
|
||
|
|
||
|
\usepackage{lmodern}
|
||
|
% Das Paket lmodern erspart die folgenden Warnungen:
|
||
|
% LaTeX Font Warning: Font shape `OT1/cmss/m/n' in size <4> not available
|
||
|
% (Font) size <5> substituted on input line 22.
|
||
|
% LaTeX Font Warning: Size substitutions with differences
|
||
|
% (Font) up to 1.0pt have occurred.
|
||
|
%
|
||
|
|
||
|
% Wenn \titel{\ldots} \author{\ldots} erst nach \begin{document} kommen,
|
||
|
% kommt folgende Warnung:
|
||
|
% Package hyperref Warning: Option `pdfauthor' has already been used,
|
||
|
% (hyperref) ...
|
||
|
% Daher steht es hier vor \begin{document}
|
||
|
|
||
|
\title[Thesis Simon]{Open Thesis Topics}
|
||
|
\author{Simon.Kluettermann@cs.tu-dortmund.de}
|
||
|
\date{\today}
|
||
|
|
||
|
|
||
|
\institute{ls9 tu Dortmund}
|
||
|
|
||
|
|
||
|
% Dadurch wird verhindert, dass die Navigationsleiste angezeigt wird.
|
||
|
\setbeamertemplate{navigation symbols}{}
|
||
|
|
||
|
% zusaetzlich ist das usepackage{beamerthemeshadow} eingebunden
|
||
|
\usepackage{beamerthemeshadow}
|
||
|
|
||
|
\hypersetup{pdfstartview={Fit}} % fits the presentation to the window when first displayed
|
||
|
|
||
|
\usepackage{appendixnumberbeamer}
|
||
|
\usepackage{listings}
|
||
|
|
||
|
|
||
|
\usetheme{CambridgeUS}
|
||
|
\usepackage{ngerman}
|
||
|
\usecolortheme{dolphin}
|
||
|
|
||
|
|
||
|
% \beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2$\Rightarrow${15}}
|
||
|
% sorgt dafuer das die Elemente die erst noch (zukuenftig) kommen
|
||
|
% nur schwach angedeutet erscheinen
|
||
|
%\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2$\Rightarrow${15}}%here disabled
|
||
|
% klappt auch bei Tabellen, wenn teTeX verwendet wird\ldots
|
||
|
\renewcommand{\figurename}{}
|
||
|
|
||
|
\setbeamertemplate{footline}
|
||
|
{
|
||
|
\leavevmode%
|
||
|
\hbox{%
|
||
|
\begin{beamercolorbox}[wd=.4\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}%
|
||
|
\usebeamerfont{author in head/foot}\insertshorttitle
|
||
|
\end{beamercolorbox}%
|
||
|
\begin{beamercolorbox}[wd=.25\paperwidth,ht=2.25ex,dp=1ex,center]{title in head/foot}%
|
||
|
\usebeamerfont{title in head/foot}\insertsection
|
||
|
\end{beamercolorbox}%
|
||
|
\begin{beamercolorbox}[wd=.3499\paperwidth,ht=2.25ex,dp=1ex,right]{date in head/foot}%
|
||
|
\usebeamerfont{date in head/foot}\insertshortdate{}\hspace*{2em}
|
||
|
\hyperlink{toc}{\insertframenumber{} / \inserttotalframenumber\hspace*{2ex}}
|
||
|
\end{beamercolorbox}}%
|
||
|
\vskip0pt%
|
||
|
}
|
||
|
|
||
|
\usepackage[absolute,overlay]{textpos}
|
||
|
\usepackage{graphicx}
|
||
|
|
||
|
\newcommand{\source}[1]{\begin{textblock*}{9cm}(0.1cm,8.9cm)
|
||
|
\begin{beamercolorbox}[ht=0.5cm,left]{framesource}
|
||
|
\usebeamerfont{framesource}\usebeamercolor[fg!66]{framesource} Source: {#1}
|
||
|
\end{beamercolorbox}
|
||
|
\end{textblock*}}
|
||
|
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/000.txt
|
||
|
\begin{frame}[label=]
|
||
|
\frametitle{}
|
||
|
\begin{titlepage}
|
||
|
|
||
|
\centering
|
||
|
{\huge\bfseries \par}
|
||
|
\vspace{2cm}
|
||
|
{\LARGE\itshape Simon Kluettermann\par}
|
||
|
\vspace{1.5cm}
|
||
|
{\scshape\Large Master Thesis in Physics\par}
|
||
|
\vspace{0.2cm}
|
||
|
{\Large submitted to the \par}
|
||
|
\vspace{0.2cm}
|
||
|
{\scshape\Large Faculty of Mathematics Computer Science and Natural Sciences \par}
|
||
|
\vspace{0.2cm}
|
||
|
{\Large \par}
|
||
|
\vspace{0.2cm}
|
||
|
{\scshape\Large RWTH Aachen University}
|
||
|
\vspace{1cm}
|
||
|
|
||
|
\vfill
|
||
|
{\scshape\Large Department of Physics\par}
|
||
|
\vspace{0.2cm}
|
||
|
{\scshape\Large Insitute for theoretical Particle Physics and Cosmology\par}
|
||
|
\vspace{0.2cm}
|
||
|
{ \Large\par}
|
||
|
\vspace{0.2cm}
|
||
|
{\Large First Referee: Prof. Dr. Michael Kraemer \par}
|
||
|
{\Large Second Referee: Prof. Dr. Felix Kahlhoefer}
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
% Bottom of the page
|
||
|
{\large November 2020 \par}
|
||
|
\end{titlepage}
|
||
|
\pagenumbering{roman}
|
||
|
\thispagestyle{empty}
|
||
|
\null
|
||
|
\newpage
|
||
|
\setcounter{page}{1}
|
||
|
\pagenumbering{arabic}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/001Thesis@ls9.txt
|
||
|
\begin{frame}[label=Thesis@ls9]
|
||
|
\frametitle{Thesis@ls9}
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item First: Find a topic and a supervisor
|
||
|
|
||
|
\item Work one month on this, to make sure
|
||
|
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item you still like your topic
|
||
|
|
||
|
\item and you are sure you can handle the topic
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\item then short presentation in front of our chair (15min, relaxed)
|
||
|
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item get some feedback/suggestions
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\item afterwards register the thesis
|
||
|
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item (different for CS/DS students)
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\item Problem: We are not able to supervise more than 2 students at the same time (CS faculty rules)
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/002Today.txt
|
||
|
\begin{frame}[label=Today]
|
||
|
\frametitle{Today}
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item First: A short summary of each Topic
|
||
|
|
||
|
\item Then time for questions/Talk with your supervisor about each topic that sounds interesting
|
||
|
|
||
|
\item Your own topics are always welcome;)
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/003Anomaly Detection.txt
|
||
|
\begin{frame}[label=Anomaly Detection]
|
||
|
\frametitle{Anomaly Detection}
|
||
|
\begin{columns}[c] % align columns
|
||
|
\begin{column}{0.48\textwidth}%.48
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Im working on Anomaly Detection
|
||
|
|
||
|
\item That means characterising an often very complex distributions, to find events that dont match the expected distribution
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{column}%
|
||
|
\hfill%
|
||
|
\begin{column}{0.48\textwidth}%.48
|
||
|
\begin{figure}[H]
|
||
|
\centering
|
||
|
\includegraphics[width=0.9\textwidth]{../prep/03Anomaly_Detection/circle.pdf}
|
||
|
\label{fig:prep03Anomaly_Detectioncirclepdf}
|
||
|
\end{figure}
|
||
|
|
||
|
|
||
|
\end{column}%
|
||
|
\hfill%
|
||
|
\end{columns}
|
||
|
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/004knn.txt
|
||
|
\begin{frame}[label=knn]
|
||
|
\frametitle{knn}
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item kNN algorithm can also be used for AD
|
||
|
|
||
|
\item if the k closest point is further away, a sample is considered more anomalous
|
||
|
|
||
|
\item $r=\frac{k}{2N\cdot pdf}$
|
||
|
|
||
|
\item Powerful method, as it can model the pdf directly
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/005Better knn.txt
|
||
|
\begin{frame}[label=Better knn]
|
||
|
\frametitle{Better knn}
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item The model (mostly) ignores every known sample except one
|
||
|
|
||
|
\item So there are extensions
|
||
|
|
||
|
\item $avg=\frac{1}{N} \sum_i knn_i(x)$
|
||
|
|
||
|
\item $wavg=\frac{1}{N} \sum_i \frac{knn_i(x)}{i}$
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/006Comparison.txt
|
||
|
\begin{frame}[label=Comparison]
|
||
|
%\frametitle{Comparison}
|
||
|
|
||
|
|
||
|
\begin{tabular}{llllll}
|
||
|
\hline
|
||
|
Dataset & wavg & avg & 1 & 3 & 5 \\
|
||
|
\hline
|
||
|
$vertebral$ & $\textbf{0.4506}$ & $\textbf{0.4506}$ & $\textbf{0.4667}$ & $\textbf{0.4667}$ & $\textbf{0.45}$ \\
|
||
|
... & & & & & \\
|
||
|
$thyroid$ & $\textbf{0.9138}$ & $\textbf{0.9151}$ & $\textbf{0.8763}$ & $\textbf{0.9086}$ & $\textbf{0.914}$ \\
|
||
|
$Iris\_setosa$ & $\textbf{0.9333}$ & $\textbf{0.9333}$ & $\textbf{0.9333}$ & $\textbf{0.9}$ & $\textbf{0.9}$ \\
|
||
|
$breastw$ & $\textbf{0.9361}$ & $\textbf{0.9361}$ & $\textbf{0.9211}$ & $\textbf{0.9248}$ & $\textbf{0.9286}$ \\
|
||
|
$wine$ & $\textbf{0.95}$ & $\textbf{0.95}$ & $\textbf{0.9}$ & $\textbf{0.95}$ & $\textbf{0.95}$ \\
|
||
|
$pendigits$ & $\textbf{0.9487}$ & $\textbf{0.9487}$ & $\textbf{0.9391}$ & $\textbf{0.9295}$ & $\textbf{0.9359}$ \\
|
||
|
$segment$ & $\textbf{0.9747}$ & $\textbf{0.9747}$ & $\textbf{0.9495}$ & $\textbf{0.9545}$ & $\textbf{0.9394}$ \\
|
||
|
$banknote-authentication$ & $\textbf{0.9777}$ & $\textbf{0.9776}$ & $\textbf{0.9408}$ & $\textbf{0.943}$ & $\textbf{0.9583}$ \\
|
||
|
$vowels$ & $\textbf{0.9998}$ & $\textbf{0.9972}$ & $\textbf{0.99}$ & $\textbf{0.92}$ & $\textbf{0.93}$ \\
|
||
|
$Ecoli$ & $\textbf{1.0}$ & $\textbf{1.0}$ & $\textbf{0.9}$ & $\textbf{1.0}$ & $\textbf{1.0}$ \\
|
||
|
$$ & $$ & $$ & $$ & $$ & $$ \\
|
||
|
$Average$ & $\textbf{0.7528} $ & $\textbf{0.7520} $ & $0.7325 $ & $0.7229 $ & $0.7157 $ \\
|
||
|
\hline
|
||
|
\end{tabular}
|
||
|
|
||
|
|
||
|
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/007What to do?.txt
|
||
|
\begin{frame}[label=What to do?]
|
||
|
\frametitle{What to do?}
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Evaluation as anomaly detector is complicated
|
||
|
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Requires known anomalies
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\item $\Rightarrow$So evaluate as density estimator
|
||
|
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Does not require anomalies
|
||
|
|
||
|
\item Allows generating infinite amounts of training data
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/008What to do?.txt
|
||
|
\begin{frame}[label=What to do?]
|
||
|
\frametitle{What to do?}
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Collect Extensions of the oc-knn algorithm
|
||
|
|
||
|
\item Define some distance measure to a known pdf
|
||
|
|
||
|
\item Generate random datapoints following the pdf
|
||
|
|
||
|
\item Evaluate which algorithm finds the pdf the best
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/009Requirements.txt
|
||
|
\begin{frame}[label=Requirements]
|
||
|
\frametitle{Requirements}
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Knowledge of python ( sum([i for i in range(5) if i\%2]) )
|
||
|
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Ideally incl numpy
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\item Basic university level Math (you could argue that $r_k \propto \frac{k}{pdf}$)
|
||
|
|
||
|
\item Ideally some experience working on a ssh server
|
||
|
|
||
|
\item $\Rightarrow$Good as a Bachelor Thesis
|
||
|
|
||
|
\item For a Master Thesis, I would extend this a bit (Could you also find $k$?)
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/010Normalising Flows.txt
|
||
|
\begin{frame}[label=Normalising Flows]
|
||
|
\frametitle{Normalising Flows}
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Deep Learning Method, in which the output is normalised
|
||
|
|
||
|
\item $\int f(x) dx=1 \; \forall f(x)$
|
||
|
|
||
|
\item Can be used to estimate probability density functions
|
||
|
|
||
|
\item $\Rightarrow$Thus useful for AD
|
||
|
|
||
|
\item $\int f(h(x)) \|\frac{\delta x}{\delta h}\| dh=1 \; \forall h(x)$
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/011Graph Normalising Flows.txt
|
||
|
\begin{frame}[label=Graph Normalising Flows]
|
||
|
\frametitle{Graph Normalising Flows}
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item How to apply this to graphs?
|
||
|
|
||
|
\item One Paper (Liu 2019) uses two NN:
|
||
|
|
||
|
\item Autoencoder graph$\Rightarrow$vector
|
||
|
|
||
|
\item NF on vector data
|
||
|
|
||
|
\item which is fine, but also not really graph specific
|
||
|
|
||
|
\item No interaction between encoding and transformation
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/012Graph Normalising Flows.txt
|
||
|
\begin{frame}[label=Graph Normalising Flows]
|
||
|
\frametitle{Graph Normalising Flows}
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item So why not do this directly?
|
||
|
|
||
|
\item $\Rightarrow$Requires differentiating a graph
|
||
|
|
||
|
\item Why not use only one Network?
|
||
|
|
||
|
\item Graph$\Rightarrow$Vector$\Rightarrow$pdf
|
||
|
|
||
|
\item $\Rightarrow$Finds trivial solution, as $<pdf> \propto \frac{1}{\sigma_{Vector}}$
|
||
|
|
||
|
\item So regularise the standart deviation of the vector space!
|
||
|
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Interplay between encoding and NF
|
||
|
|
||
|
\item Could also be useful for highdim data
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/013Requirements.txt
|
||
|
\begin{frame}[label=Requirements]
|
||
|
\frametitle{Requirements}
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Proficient in python ( [i for i in range(1,N) if not [j for j in range(2,i) if not i\%j]] )
|
||
|
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Ideally incl numpy, tensorflow, keras
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\item Some deep learning experience
|
||
|
|
||
|
\item University level math (google Cholesky Decomposition. Why is this useful for NF?)
|
||
|
|
||
|
\item Ideally some experience working on a ssh server
|
||
|
|
||
|
\item A bit more challenging$\Rightarrow$Better as a Master thesis
|
||
|
|
||
|
\item (Still we would start very slowly of course)
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/014Old Thesis Sina.txt
|
||
|
\begin{frame}[label=Old Thesis Sina]
|
||
|
\frametitle{Sina}
|
||
|
\begin{columns}[c] % align columns
|
||
|
\begin{column}{0.48\textwidth}%.48
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Isolation Forest: Different Anomaly Detection Algorithm
|
||
|
|
||
|
\item Problem: Isolation Forests dont work on categorical data
|
||
|
|
||
|
\item $\Rightarrow$Extend them to categorical data
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{column}%
|
||
|
\hfill%
|
||
|
\begin{column}{0.48\textwidth}%.48
|
||
|
\begin{figure}[H]
|
||
|
\centering
|
||
|
\includegraphics[width=0.9\textwidth]{../prep/20Old_Thesis_Sina/Bildschirmfoto vom 2022-09-26 16-22-30.png}
|
||
|
\label{fig:prep20Old_Thesis_SinaBildschirmfoto vom 2022-09-26 16-22-30png}
|
||
|
\end{figure}
|
||
|
|
||
|
|
||
|
\end{column}%
|
||
|
\hfill%
|
||
|
\end{columns}
|
||
|
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/015Old Thesis Britta.txt
|
||
|
\begin{frame}[label=Old Thesis Britta]
|
||
|
\frametitle{Britta}
|
||
|
\begin{columns}[c] % align columns
|
||
|
\begin{column}{0.58\textwidth}%.48
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Reidentification: Find known objects in new images
|
||
|
|
||
|
\item Task: Find if two images of pallet blocks are of the same pallet block
|
||
|
|
||
|
\item Use AD to represent the pallet blocks
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{column}%
|
||
|
\hfill%
|
||
|
\begin{column}{0.38\textwidth}%.48
|
||
|
\begin{figure}[H]
|
||
|
\centering
|
||
|
\includegraphics[width=0.9\textwidth]{../prep/21Old_Thesis_Britta/Bildschirmfoto vom 2022-09-26 16-23-26.png}
|
||
|
\label{fig:prep21Old_Thesis_BrittaBildschirmfoto vom 2022-09-26 16-23-26png}
|
||
|
\end{figure}
|
||
|
|
||
|
|
||
|
\end{column}%
|
||
|
\hfill%
|
||
|
\end{columns}
|
||
|
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/016Old Thesis Hsin Ping.txt
|
||
|
\begin{frame}[label=Old Thesis Hsin Ping]
|
||
|
\frametitle{Hsin Ping}
|
||
|
\begin{columns}[c] % align columns
|
||
|
\begin{column}{0.48\textwidth}%.48
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Ensemble: Combination of multiple models
|
||
|
|
||
|
\item Task: Explain the prediction of a model using the ensemble structure
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{column}%
|
||
|
\hfill%
|
||
|
\begin{column}{0.48\textwidth}%.48
|
||
|
\begin{figure}[H]
|
||
|
\centering
|
||
|
\includegraphics[width=0.9\textwidth]{../prep/22Old_Thesis_Hsin_Ping/Bildschirmfoto vom 2022-09-26 16-24-14.png}
|
||
|
\label{fig:prep22Old_Thesis_Hsin_PingBildschirmfoto vom 2022-09-26 16-24-14png}
|
||
|
\end{figure}
|
||
|
|
||
|
|
||
|
\end{column}%
|
||
|
\hfill%
|
||
|
\end{columns}
|
||
|
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
%from file ../knn1//data/017Old Thesis Nikitha.txt
|
||
|
\begin{frame}[label=Old Thesis Nikitha]
|
||
|
\frametitle{Nikitha}
|
||
|
\begin{columns}[c] % align columns
|
||
|
\begin{column}{0.48\textwidth}%.48
|
||
|
\begin{itemize}
|
||
|
|
||
|
\item Task: Explore a new kind of ensemble
|
||
|
|
||
|
\item Instead of many uncorrelated models, let the models interact during training
|
||
|
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{column}%
|
||
|
\hfill%
|
||
|
\begin{column}{0.48\textwidth}%.48
|
||
|
\begin{figure}[H]
|
||
|
\centering
|
||
|
\includegraphics[width=0.9\textwidth]{../prep/23Old_Thesis_Nikitha/Bildschirmfoto vom 2022-09-26 16-25-06.png}
|
||
|
\label{fig:prep23Old_Thesis_NikithaBildschirmfoto vom 2022-09-26 16-25-06png}
|
||
|
\end{figure}
|
||
|
|
||
|
|
||
|
\end{column}%
|
||
|
\hfill%
|
||
|
\end{columns}
|
||
|
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}
|
||
|
Questions?
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
|
||
|
\end{document}
|