17 lines
673 B
Plaintext
17 lines
673 B
Plaintext
|
<frame title="Intro to Deep Learning">
|
||
|
<list>
|
||
|
<e>The idea is always the same:</e>
|
||
|
<l2st>
|
||
|
<e>Define complicated model to learn (often millions of parameters)</e>
|
||
|
<e>Define loss function that this model should minimize (example: $\sum_i (y_i-f(x_i))^2$)</e>
|
||
|
<e>Find parameters that minimize the loss (->Backpropagation)</e>
|
||
|
</l2st>
|
||
|
<e>Usually Neural Networks:</e>
|
||
|
<l2st>
|
||
|
<e>$f(x)=f_n(x)=activation(A_n\cdot f_{n-1}(x)+b_n)$</e>
|
||
|
<e>$f_0(x)=x$</e>
|
||
|
</l2st>
|
||
|
<e>Powerful, as you can show that when there are 3 Layers+ (and infinitely sized matrices), you can approximate any function</e>
|
||
|
<e>->So a model becomes a loss function</e>
|
||
|
</list>
|
||
|
</frame>
|