case2/out/main.tex

498 lines
11 KiB
TeX

\UseRawInputEncoding
%\documentclass[hyperref={pdfpagelabels=false}]{beamer}
\documentclass[hyperref={pdfpagelabels=false},aspectratio=169]{beamer}
% Die Hyperref Option hyperref={pdfpagelabels=false} verhindert die Warnung:
% Package hyperref Warning: Option `pdfpagelabels' is turned off
% (hyperref) because \thepage is undefined.
% Hyperref stopped early
%
\usepackage{lmodern}
% Das Paket lmodern erspart die folgenden Warnungen:
% LaTeX Font Warning: Font shape `OT1/cmss/m/n' in size <4> not available
% (Font) size <5> substituted on input line 22.
% LaTeX Font Warning: Size substitutions with differences
% (Font) up to 1.0pt have occurred.
%
% Wenn \titel{\ldots} \author{\ldots} erst nach \begin{document} kommen,
% kommt folgende Warnung:
% Package hyperref Warning: Option `pdfauthor' has already been used,
% (hyperref) ...
% Daher steht es hier vor \begin{document}
\title[Anomaly Detection and AutoML]{Anomaly Detection and AutoML}
\author{Simon Kluettermann}
\date{\today}
\institute{ls9 tu Dortmund}
% Dadurch wird verhindert, dass die Navigationsleiste angezeigt wird.
\setbeamertemplate{navigation symbols}{}
% zusaetzlich ist das usepackage{beamerthemeshadow} eingebunden
\usepackage{beamerthemeshadow}
\hypersetup{pdfstartview={Fit}} % fits the presentation to the window when first displayed
\usepackage{appendixnumberbeamer}
\usepackage{listings}
\usetheme{CambridgeUS}
\usepackage{ngerman}
\usecolortheme{dolphin}
% \beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2$\Rightarrow${15}}
% sorgt dafuer das die Elemente die erst noch (zukuenftig) kommen
% nur schwach angedeutet erscheinen
%\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2$\Rightarrow${15}}%here disabled
% klappt auch bei Tabellen, wenn teTeX verwendet wird\ldots
\renewcommand{\figurename}{}
\setbeamertemplate{footline}
{
\leavevmode%
\hbox{%
\begin{beamercolorbox}[wd=.4\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}%
\usebeamerfont{author in head/foot}\insertshorttitle
\end{beamercolorbox}%
\begin{beamercolorbox}[wd=.25\paperwidth,ht=2.25ex,dp=1ex,center]{title in head/foot}%
\usebeamerfont{title in head/foot}\insertsection
\end{beamercolorbox}%
\begin{beamercolorbox}[wd=.3499\paperwidth,ht=2.25ex,dp=1ex,right]{date in head/foot}%
\usebeamerfont{date in head/foot}\insertshortdate{}\hspace*{2em}
\hyperlink{toc}{\insertframenumber{} / \inserttotalframenumber\hspace*{2ex}}
\end{beamercolorbox}}%
\vskip0pt%
}
\usepackage[absolute,overlay]{textpos}
\usepackage{graphicx}
\newcommand{\source}[1]{\begin{textblock*}{9cm}(0.1cm,8.9cm)
\begin{beamercolorbox}[ht=0.5cm,left]{framesource}
\usebeamerfont{framesource}\usebeamercolor[fg!66]{framesource} Source: {#1}
\end{beamercolorbox}
\end{textblock*}}
\begin{document}
%from file ../case2/data/000.txt
\begin{frame}[label=]
\frametitle{}
\begin{titlepage}
\centering
{\huge\bfseries \par}
\vspace{2cm}
{\LARGE\itshape Simon Kluettermann\par}
\vspace{1.5cm}
{\scshape\Large Master Thesis in Physics\par}
\vspace{0.2cm}
{\Large submitted to the \par}
\vspace{0.2cm}
{\scshape\Large Faculty of Mathematics Computer Science and Natural Sciences \par}
\vspace{0.2cm}
{\Large \par}
\vspace{0.2cm}
{\scshape\Large RWTH Aachen University}
\vspace{1cm}
\vfill
{\scshape\Large Department of Physics\par}
\vspace{0.2cm}
{\scshape\Large Insitute for theoretical Particle Physics and Cosmology\par}
\vspace{0.2cm}
{ \Large\par}
\vspace{0.2cm}
{\Large First Referee: Prof. Dr. Michael Kraemer \par}
{\Large Second Referee: Prof. Dr. Felix Kahlhoefer}
\vfill
% Bottom of the page
{\large November 2020 \par}
\end{titlepage}
\pagenumbering{roman}
\thispagestyle{empty}
\null
\newpage
\setcounter{page}{1}
\pagenumbering{arabic}
\end{frame}
%from file ../case2/data/001Anomaly Detection.txt
\begin{frame}[label=Anomaly Detection]
\frametitle{Anomaly Detection}
\begin{itemize}
\item Find strange (unexpected) samples.
\item $\Rightarrow$If a traffic light is constantly yellow, probably something broke
\item But this could happen in a lot of different ways
\item $\Rightarrow$Most likely the traffic light is just off. But it could also fluctuate quickly or start smoking
\item How to cover all possible anomalies?
\item $\Rightarrow$Unsupervised Machine Learning
\end{itemize}
\end{frame}
%from file ../case2/data/002Unsupervised Machine Learning.txt
\begin{frame}[label=Unsupervised Machine Learning]
\frametitle{Unsupervised Machine Learning}
\begin{itemize}
\item Normal machine learning: Input - Label
\item Here: Only Input.
\item $\Rightarrow$Instead of classifying different types, try to understand your given dataset
\item Deviations from this understanding are anomalies
\begin{itemize}
\item x: training samples
\item tx: test samples
\item ty: test labels (is a certain sample an anomaly or not)
\end{itemize}
\item Useful: \emph{peak /global/cardio.npz}
\end{itemize}
\end{frame}
%from file ../case2/data/003kNN.txt
\begin{frame}[label=kNN]
\frametitle{kNN}
\begin{columns}[c] % align columns
\begin{column}{0.48\textwidth}%.48
\begin{itemize}
\item How to do this? Here one algorithm: kNN
\item Goal: Generate an anomaly score (high value$\Rightarrow$highly anomalous)
\item Here: The anomaly score is the distance to the kth closest samples
\end{itemize}
\end{column}%
\hfill%
\begin{column}{0.48\textwidth}%.48
\begin{figure}[H]
\centering
\includegraphics[width=0.9\textwidth]{..//prep/03kNN/yanghuang 08.png}
\label{fig:prep03kNNyanghuang 08png}
\caption{[Yang, Huang 08]}
\end{figure}
\end{column}%
\hfill%
\end{columns}
\end{frame}
%from file ../case2/data/004kNN.txt
\begin{frame}[label=kNN]
\frametitle{kNN}
\begin{columns}[c] % align columns
\begin{column}{0.48\textwidth}%.48
\begin{itemize}
\item How to do this? Here one algorithm: kNN
\item Goal: Generate an anomaly score (high value$\Rightarrow$highly anomalous)
\item Here: The anomaly score is the distance to the kth closest samples
\end{itemize}
\end{column}%
\hfill%
\begin{column}{0.48\textwidth}%.48
\begin{figure}[H]
\centering
\includegraphics[width=0.9\textwidth]{..//prep/04kNN/dist0.pdf}
\label{fig:prep04kNNdist0pdf}
\end{figure}
\end{column}%
\hfill%
\end{columns}
\end{frame}
%from file ../case2/data/005.txt
\begin{frame}[label=]
\frametitle{}
\begin{figure}[H]
\centering
\includegraphics[width=0.8\textwidth]{..//prep/05/dist0.pdf}
\label{fig:prep05dist0pdf}
\end{figure}
\end{frame}
%from file ../case2/data/006AUC Score.txt
\begin{frame}[label=AUC Score]
\frametitle{AUC Score}
\begin{columns}[c] % align columns
\begin{column}{0.47619047619047616\textwidth}%.48
\begin{figure}[H]
\centering
\includegraphics[width=0.9\textwidth]{..//prep/06AUC_Score/02confusion.png}
\label{fig:prep06AUC_Score02confusionpng}
\end{figure}
\end{column}%
\hfill%
\begin{column}{0.47619047619047616\textwidth}%.48
\begin{figure}[H]
\centering
\includegraphics[width=0.9\textwidth]{..//prep/06AUC_Score/01dist0.pdf}
\label{fig:prep06AUC_Score01dist0pdf}
\end{figure}
\end{column}%
\hfill%
\end{columns}
\end{frame}
%from file ../case2/data/007AUC Score.txt
\begin{frame}[label=AUC Score]
\frametitle{AUC Score}
\begin{columns}[c] % align columns
\begin{column}{0.48\textwidth}%.48
\begin{itemize}
\item Iterate every threshold
\item Plot fpr vs tpr
\item False Positive Rate
\begin{itemize}
\item $\frac{FP}{FP+TN}$
\end{itemize}
\item True Positive Rate
\begin{itemize}
\item $\frac{TP}{TP+FN}$
\end{itemize}
\item ROC-AUC: Integral of this curve!
\end{itemize}
\end{column}%
\hfill%
\begin{column}{0.48\textwidth}%.48
\begin{figure}[H]
\centering
\includegraphics[width=0.8\textwidth]{..//prep/07AUC_Score/roc.pdf}
\label{fig:prep07AUC_Scorerocpdf}
\end{figure}
\end{column}%
\hfill%
\end{columns}
\end{frame}
%from file ../case2/data/008AUC Score.txt
\begin{frame}[label=AUC Score]
\frametitle{AUC Score}
\begin{itemize}
\item calculcate with \emph{sklearn.metrics.roc\_auc\_score}
\item Higher AUC score$\Rightarrow$better
\item $AUC=1.0$$\Rightarrow$Perfect seperation
\item $AUC=0.5$$\Rightarrow$Random model
\item $AUC=0.0$$\Rightarrow$Inverse seperation (every anomaly is normal, and every normal sample is anomalous)
\end{itemize}
\end{frame}
%from file ../case2/data/009AUC Scores.txt
\begin{frame}[label=AUC Scores]
\frametitle{AUC Scores}
\begin{figure}[H]
\centering
\includegraphics[width=0.9\textwidth]{..//prep/09AUC_Scores/students.png}
\label{fig:prep09AUC_Scoresstudentspng}
\end{figure}
\end{frame}
%from file ../case2/data/010AutoML.txt
\begin{frame}[label=AutoML]
\frametitle{AutoML}
\begin{itemize}
\item But: We can beat this!
\item How? Hyperparameter
\begin{itemize}
\item Every algorithm has hyperparameter that control how it works
\item For example: k in kNN (number of close points considered)
\end{itemize}
\item Lets take the worst algorithm (kNN: $0.927$) and try to improve it
\end{itemize}
\end{frame}
%from file ../case2/data/011Optimize.txt
\begin{frame}[label=Optimize]
\frametitle{Optimize}
\begin{figure}[H]
\centering
\includegraphics[width=0.9\textwidth]{..//prep/11Optimize/baseline.png}
\label{fig:prep11Optimizebaselinepng}
\end{figure}
\end{frame}
%from file ../case2/data/012Optimize.txt
\begin{frame}[label=Optimize]
\frametitle{Optimize}
\begin{figure}[H]
\centering
\includegraphics[width=0.7\textwidth]{..//prep/12Optimize/optimize.png}
\label{fig:prep12Optimizeoptimizepng}
\end{figure}
\end{frame}
%from file ../case2/data/013flaml.txt
\begin{frame}[label=flaml]
\frametitle{flaml}
\begin{columns}[c] % align columns
\begin{column}{0.48\textwidth}%.48
\begin{itemize}
\item \emph{source folder/bin/activate}
\item \emph{pip install flaml}
\end{itemize}
\end{column}%
\hfill%
\begin{column}{0.48\textwidth}%.48
\begin{figure}[H]
\centering
\includegraphics[width=0.9\textwidth]{..//prep/15flaml/forflaml.png}
\label{fig:prep15flamlforflamlpng}
\end{figure}
\end{column}%
\hfill%
\end{columns}
\end{frame}
%from file ../case2/data/014flaml.txt
\begin{frame}[label=flaml]
\frametitle{flaml}
\begin{figure}[H]
\centering
\includegraphics[width=0.9\textwidth]{..//prep/16flaml/flaml.png}
\label{fig:prep16flamlflamlpng}
\end{figure}
\end{frame}
%from file ../case2/data/015.txt
\begin{frame}[label=]
\frametitle{}
\begin{figure}[H]
\centering
\includegraphics[width=0.7\textwidth]{..//prep/17/hist.pdf}
\label{fig:prep17histpdf}
\end{figure}
\end{frame}
%from file ../case2/data/016Your Turn.txt
\begin{frame}[label=Your Turn]
\frametitle{Your Turn}
\begin{itemize}
\item Remember your last algorithm
\item Find its hyperparameters (Tip: pyod website)
\item Optimize your algorithm and give me a new AUC!
\item Bonus Question: Is there a problem with what we are doing?
\end{itemize}
\end{frame}
\end{document}