initial push
|
@ -0,0 +1,5 @@
|
|||
<frame >
|
||||
|
||||
<titlepage>
|
||||
|
||||
</frame>
|
|
@ -0,0 +1,10 @@
|
|||
<frame title="Anomaly Detection">
|
||||
<list>
|
||||
<e>Find strange (unexpected) samples.</e>
|
||||
<e>->If a traffic light is constantly yellow, probably something broke</e>
|
||||
<e>But this could happen in a lot of different ways</e>
|
||||
<e>->Most likely the traffic light is just off. But it could also fluctuate quickly or start smoking</e>
|
||||
<e>How to cover all possible anomalies?</e>
|
||||
<e>->Unsupervised Machine Learning</e>
|
||||
</list>
|
||||
</frame>
|
|
@ -0,0 +1,14 @@
|
|||
<frame title="Unsupervised Machine Learning">
|
||||
<list>
|
||||
<e>Normal machine learning: Input - Label</e>
|
||||
<e>Here: Only Input.</e>
|
||||
<e>->Instead of classifying different types, try to understand your given dataset</e>
|
||||
<e>Deviations from this understanding are anomalies</e>
|
||||
<l2st>
|
||||
<e>x: training samples</e>
|
||||
<e>tx: test samples</e>
|
||||
<e>ty: test labels (is a certain sample an anomaly or not)</e>
|
||||
</l2st>
|
||||
<e>Useful: \emph{peak /global/cardio.npz}</e>
|
||||
</list>
|
||||
</frame>
|
|
@ -0,0 +1,14 @@
|
|||
<frame title="kNN">
|
||||
<split>
|
||||
<que>
|
||||
<list>
|
||||
<e>How to do this? Here one algorithm: kNN</e>
|
||||
<e>Goal: Generate an anomaly score (high value->highly anomalous)</e>
|
||||
<e>Here: The anomaly score is the distance to the kth closest samples</e>
|
||||
</list>
|
||||
</que>
|
||||
<que>
|
||||
<i f="..//prep/03kNN/yanghuang 08.png" wmode="True"></i>
|
||||
</que>
|
||||
</split>
|
||||
</frame>
|
|
@ -0,0 +1,14 @@
|
|||
<frame title="kNN">
|
||||
<split>
|
||||
<que>
|
||||
<list>
|
||||
<e>How to do this? Here one algorithm: kNN</e>
|
||||
<e>Goal: Generate an anomaly score (high value->highly anomalous)</e>
|
||||
<e>Here: The anomaly score is the distance to the kth closest samples</e>
|
||||
</list>
|
||||
</que>
|
||||
<que>
|
||||
<i f="..//prep/04kNN/dist0.pdf" wmode="True"></i>
|
||||
</que>
|
||||
</split>
|
||||
</frame>
|
|
@ -0,0 +1,3 @@
|
|||
<frame >
|
||||
<i f="..//prep/05/dist0.pdf" wmode="True"></i>
|
||||
</frame>
|
|
@ -0,0 +1,6 @@
|
|||
<frame title="AUC Score">
|
||||
<split>
|
||||
<que w="0.47619047619047616"><i f="..//prep/06AUC_Score/02confusion.png" wmode="True"></i></que>
|
||||
<que w="0.47619047619047616"><i f="..//prep/06AUC_Score/01dist0.pdf" wmode="True"></i></que>
|
||||
</split>
|
||||
</frame>
|
|
@ -0,0 +1,22 @@
|
|||
<frame title="AUC Score">
|
||||
<split>
|
||||
<que>
|
||||
<list>
|
||||
<e>Iterate every threshold</e>
|
||||
<e>Plot fpr vs tpr</e>
|
||||
<e>False Positive Rate</e>
|
||||
<l2st>
|
||||
<e>$\frac{FP}{FP+TN}$</e>
|
||||
</l2st>
|
||||
<e>True Positive Rate</e>
|
||||
<l2st>
|
||||
<e>$\frac{TP}{TP+FN}$</e>
|
||||
</l2st>
|
||||
<e>ROC-AUC: Integral of this curve!</e>
|
||||
</list>
|
||||
</que>
|
||||
<que>
|
||||
<i f="..//prep/07AUC_Score/roc.pdf" wmode="True"></i>
|
||||
</que>
|
||||
</split>
|
||||
</frame>
|
|
@ -0,0 +1,9 @@
|
|||
<frame title="AUC Score">
|
||||
<list>
|
||||
<e>calculcate with \emph{sklearn.metrics.roc\_auc\_score}</e>
|
||||
<e>Higher AUC score->better</e>
|
||||
<e>$AUC=1.0$->Perfect seperation</e>
|
||||
<e>$AUC=0.5$->Random model</e>
|
||||
<e>$AUC=0.0$->Inverse seperation (every anomaly is normal, and every normal sample is anomalous)</e>
|
||||
</list>
|
||||
</frame>
|
|
@ -0,0 +1,3 @@
|
|||
<frame title="AUC Scores">
|
||||
<i f="..//prep/09AUC_Scores/students.png" wmode="True"></i>
|
||||
</frame>
|
|
@ -0,0 +1,11 @@
|
|||
<frame title="AutoML">
|
||||
<list>
|
||||
<e>But: We can beat this!</e>
|
||||
<e>How? Hyperparameter</e>
|
||||
<l2st>
|
||||
<e>Every algorithm has hyperparameter that control how it works</e>
|
||||
<e>For example: k in kNN (number of close points considered)</e>
|
||||
</l2st>
|
||||
<e>Lets take the worst algorithm (kNN: $0.927$) and try to improve it</e>
|
||||
</list>
|
||||
</frame>
|
|
@ -0,0 +1,3 @@
|
|||
<frame title="Optimize">
|
||||
<i f="..//prep/11Optimize/baseline.png" wmode="True"></i>
|
||||
</frame>
|
|
@ -0,0 +1,3 @@
|
|||
<frame title="Optimize">
|
||||
<i f="..//prep/12Optimize/optimize.png" wmode="True"></i>
|
||||
</frame>
|
|
@ -0,0 +1,13 @@
|
|||
<frame title="flaml">
|
||||
<split>
|
||||
<que>
|
||||
<list>
|
||||
<e>\emph{source folder/bin/activate}</e>
|
||||
<e>\emph{pip install flaml}</e>
|
||||
</list>
|
||||
</que>
|
||||
<que>
|
||||
<i f="..//prep/15flaml/forflaml.png" wmode="True"></i>
|
||||
</que>
|
||||
</split>
|
||||
</frame>
|
|
@ -0,0 +1,3 @@
|
|||
<frame title="flaml">
|
||||
<i f="..//prep/16flaml/flaml.png" wmode="True"></i>
|
||||
</frame>
|
|
@ -0,0 +1,3 @@
|
|||
<frame >
|
||||
<i f="..//prep/17/hist.pdf" wmode="True"></i>
|
||||
</frame>
|
|
@ -0,0 +1,8 @@
|
|||
<frame title="Your Turn">
|
||||
<list>
|
||||
<e>Remember your last algorithm</e>
|
||||
<e>Find its hyperparameters (Tip: pyod website)</e>
|
||||
<e>Optimize your algorithm and give me a new AUC!</e>
|
||||
<e>Bonus Question: Is there a problem with what we are doing?</e>
|
||||
</list>
|
||||
</frame>
|
|
@ -0,0 +1,12 @@
|
|||
<plt>
|
||||
|
||||
<name Current experiment status>
|
||||
<title Anomaly Detection and AutoML>
|
||||
<stitle Anomaly Detection and AutoML>
|
||||
|
||||
<institute ls9 tu Dortmund>
|
||||
|
||||
<theme CambridgeUS>
|
||||
<colo dolphin>
|
||||
|
||||
</plt>
|
|
@ -0,0 +1,6 @@
|
|||
Two distributions
|
||||
<l2st>
|
||||
One known (=normal)
|
||||
One unknown (=anomalies)
|
||||
</l2st>
|
||||
Seperate them
|
|
@ -0,0 +1,7 @@
|
|||
Two distributions
|
||||
<l2st>
|
||||
One known (=normal)
|
||||
One unknown (=anomalies)
|
||||
</l2st>
|
||||
Seperate them
|
||||
Problem: few anomalies
|
|
@ -0,0 +1,8 @@
|
|||
Anomalies are rare, so often only a few datapoints known (e.g. Machine Failure in an Aircraft)
|
||||
In practice, anomalies might appear that are not known during testing
|
||||
->So train the model only on normal samples
|
||||
Unsupervised Machine Learning
|
||||
<l2st>
|
||||
What can we say without knowing anomalies?
|
||||
''Understand you dataset''
|
||||
</l2st>
|
|
@ -0,0 +1,8 @@
|
|||
Anomalies are rare, so often only a few datapoints known (e.g. Machine Failure in an Aircraft)
|
||||
In practice, anomalies might appear that are not known during testing
|
||||
->So train the model only on normal samples
|
||||
Unsupervised Machine Learning
|
||||
<l2st>
|
||||
What can we say without knowing anomalies?
|
||||
''Understand you dataset''
|
||||
</l2st>
|
After Width: | Height: | Size: 648 KiB |
|
@ -0,0 +1,6 @@
|
|||
Seems easy? Now do this
|
||||
<l2st>
|
||||
in thousands of dimensions
|
||||
with complicated distributions
|
||||
and overlap between anomalies and normal points
|
||||
</l2st>
|
After Width: | Height: | Size: 47 KiB |
|
@ -0,0 +1,3 @@
|
|||
Most machine learning requires Hyperparameter Optimisation
|
||||
(Find model parameters that result in the best results)
|
||||
->AutoML: Do this automatically as fast as possible
|
|
@ -0,0 +1,9 @@
|
|||
So lets combine both (Auto Anomaly Detection)
|
||||
->Problem
|
||||
<l2st>
|
||||
AutoMl requires Evaluation (loss, accuracy, AUC) to optimize
|
||||
AD can only be evaluated with regards to the anomalies
|
||||
->no longer unsupervised
|
||||
</l2st>
|
||||
So most Anomaly Detection is ''unoptimized''
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
So how to solve this?
|
||||
One option: Think of some function to evaluate only the normal points
|
||||
->A bit hard to do in a case study
|
|
@ -0,0 +1,5 @@
|
|||
So how to solve this?
|
||||
One option: ''Just find the best solution directly''
|
||||
->Zero Shot AutoML
|
||||
Find best practices for hyperparameters
|
||||
Requires optimisation for each model seperately -> matches the case study structure quite well!
|
|
@ -0,0 +1,12 @@
|
|||
Basics of Scientific Computing
|
||||
Basics of AD
|
||||
Basics of AutoML
|
||||
Build groups for each algorithm
|
||||
<l2st>
|
||||
Choose a set of Hyperparameters
|
||||
Find ''best practice`s'' for them
|
||||
Maybe consider more complicated Transformations (Preprocessing, Ensemble)
|
||||
</l2st>
|
||||
Compare between groups (best algorithm for current situation)
|
||||
Evaluate on new datasets
|
||||
Write a report/Present your work
|
After Width: | Height: | Size: 80 KiB |
|
@ -0,0 +1,7 @@
|
|||
Requirements:
|
||||
<l2st>
|
||||
MD Req 1->MD Req 8
|
||||
Basic Python/Math Knowledge
|
||||
Motivation to learn something new;)
|
||||
</l2st>
|
||||
Registration till Saturday, by Email to Simon.Kluettermann@cs.tu-dortmund.de
|
|
@ -0,0 +1,3 @@
|
|||
pdflatex main.tex
|
||||
pdflatex main.tex
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
pdflatex main.tex
|
||||
pdflatex main.tex
|
||||
|
|
@ -0,0 +1,110 @@
|
|||
[
|
||||
{
|
||||
"typ": "img",
|
||||
"files": [
|
||||
"..//prep/03kNN/yanghuang 08.png"
|
||||
],
|
||||
"label": "prep03kNNyanghuang 08png",
|
||||
"caption": "",
|
||||
"where": "../case2/data/003kNN.txt"
|
||||
},
|
||||
{
|
||||
"typ": "img",
|
||||
"files": [
|
||||
"..//prep/04kNN/dist0.pdf"
|
||||
],
|
||||
"label": "prep04kNNdist0pdf",
|
||||
"caption": "",
|
||||
"where": "../case2/data/004kNN.txt"
|
||||
},
|
||||
{
|
||||
"typ": "img",
|
||||
"files": [
|
||||
"..//prep/05/dist0.pdf"
|
||||
],
|
||||
"label": "prep05dist0pdf",
|
||||
"caption": "",
|
||||
"where": "../case2/data/005.txt"
|
||||
},
|
||||
{
|
||||
"typ": "img",
|
||||
"files": [
|
||||
"..//prep/06AUC_Score/02confusion.png"
|
||||
],
|
||||
"label": "prep06AUC_Score02confusionpng",
|
||||
"caption": "",
|
||||
"where": "../case2/data/006AUC Score.txt"
|
||||
},
|
||||
{
|
||||
"typ": "img",
|
||||
"files": [
|
||||
"..//prep/06AUC_Score/01dist0.pdf"
|
||||
],
|
||||
"label": "prep06AUC_Score01dist0pdf",
|
||||
"caption": "",
|
||||
"where": "../case2/data/006AUC Score.txt"
|
||||
},
|
||||
{
|
||||
"typ": "img",
|
||||
"files": [
|
||||
"..//prep/07AUC_Score/roc.pdf"
|
||||
],
|
||||
"label": "prep07AUC_Scorerocpdf",
|
||||
"caption": "",
|
||||
"where": "../case2/data/007AUC Score.txt"
|
||||
},
|
||||
{
|
||||
"typ": "img",
|
||||
"files": [
|
||||
"..//prep/09AUC_Scores/students.png"
|
||||
],
|
||||
"label": "prep09AUC_Scoresstudentspng",
|
||||
"caption": "",
|
||||
"where": "../case2/data/009AUC Scores.txt"
|
||||
},
|
||||
{
|
||||
"typ": "img",
|
||||
"files": [
|
||||
"..//prep/11Optimize/baseline.png"
|
||||
],
|
||||
"label": "prep11Optimizebaselinepng",
|
||||
"caption": "",
|
||||
"where": "../case2/data/011Optimize.txt"
|
||||
},
|
||||
{
|
||||
"typ": "img",
|
||||
"files": [
|
||||
"..//prep/12Optimize/optimize.png"
|
||||
],
|
||||
"label": "prep12Optimizeoptimizepng",
|
||||
"caption": "",
|
||||
"where": "../case2/data/012Optimize.txt"
|
||||
},
|
||||
{
|
||||
"typ": "img",
|
||||
"files": [
|
||||
"..//prep/15flaml/forflaml.png"
|
||||
],
|
||||
"label": "prep15flamlforflamlpng",
|
||||
"caption": "",
|
||||
"where": "../case2/data/013flaml.txt"
|
||||
},
|
||||
{
|
||||
"typ": "img",
|
||||
"files": [
|
||||
"..//prep/16flaml/flaml.png"
|
||||
],
|
||||
"label": "prep16flamlflamlpng",
|
||||
"caption": "",
|
||||
"where": "../case2/data/014flaml.txt"
|
||||
},
|
||||
{
|
||||
"typ": "img",
|
||||
"files": [
|
||||
"..//prep/17/hist.pdf"
|
||||
],
|
||||
"label": "prep17histpdf",
|
||||
"caption": "",
|
||||
"where": "../case2/data/015.txt"
|
||||
}
|
||||
]
|
|
@ -0,0 +1,138 @@
|
|||
\relax
|
||||
\providecommand\hyper@newdestlabel[2]{}
|
||||
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
||||
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
||||
\global\let\oldcontentsline\contentsline
|
||||
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
|
||||
\global\let\oldnewlabel\newlabel
|
||||
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
||||
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
||||
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
||||
\let\contentsline\oldcontentsline
|
||||
\let\newlabel\oldnewlabel
|
||||
\fi}
|
||||
\fi}
|
||||
\global\let\hyper@last\relax
|
||||
\gdef\HyperFirstAtBeginDocument#1{#1}
|
||||
\providecommand\HyField@AuxAddToFields[1]{}
|
||||
\providecommand\HyField@AuxAddToCoFields[2]{}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {1}{1}}}
|
||||
\newlabel{Anomaly Detection<1>}{{2}{2}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {Anomaly Detection<1>}{2}}
|
||||
\newlabel{Anomaly Detection}{{2}{2}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {Anomaly Detection}{2}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {2}{2}}}
|
||||
\newlabel{Unsupervised Machine Learning<1>}{{3}{3}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {Unsupervised Machine Learning<1>}{3}}
|
||||
\newlabel{Unsupervised Machine Learning}{{3}{3}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {Unsupervised Machine Learning}{3}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{3}{3/3}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {3}{3}}}
|
||||
\newlabel{kNN<1>}{{4}{4}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {kNN<1>}{4}}
|
||||
\newlabel{kNN}{{4}{4}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {kNN}{4}}
|
||||
\newlabel{fig:prep03kNNyanghuang 08png}{{4}{4}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {fig:prep03kNNyanghuang 08png}{4}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{4}{4/4}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {4}{4}}}
|
||||
\newlabel{kNN<1>}{{5}{5}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {kNN<1>}{5}}
|
||||
\newlabel{kNN}{{5}{5}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {kNN}{5}}
|
||||
\newlabel{fig:prep04kNNdist0pdf}{{5}{5}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {fig:prep04kNNdist0pdf}{5}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{5}{5/5}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {5}{5}}}
|
||||
\newlabel{fig:prep05dist0pdf}{{6}{6}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {fig:prep05dist0pdf}{6}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{6}{6/6}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {6}{6}}}
|
||||
\newlabel{AUC Score<1>}{{7}{7}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {AUC Score<1>}{7}}
|
||||
\newlabel{AUC Score}{{7}{7}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {AUC Score}{7}}
|
||||
\newlabel{fig:prep06AUC_Score02confusionpng}{{7}{7}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {fig:prep06AUC_Score02confusionpng}{7}}
|
||||
\newlabel{fig:prep06AUC_Score01dist0pdf}{{7}{7}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {fig:prep06AUC_Score01dist0pdf}{7}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{7}{7/7}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {7}{7}}}
|
||||
\newlabel{AUC Score<1>}{{8}{8}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {AUC Score<1>}{8}}
|
||||
\newlabel{AUC Score}{{8}{8}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {AUC Score}{8}}
|
||||
\newlabel{fig:prep07AUC_Scorerocpdf}{{8}{8}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {fig:prep07AUC_Scorerocpdf}{8}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{8}{8/8}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {8}{8}}}
|
||||
\newlabel{AUC Score<1>}{{9}{9}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {AUC Score<1>}{9}}
|
||||
\newlabel{AUC Score}{{9}{9}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {AUC Score}{9}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{9}{9/9}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {9}{9}}}
|
||||
\newlabel{AUC Scores<1>}{{10}{10}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {AUC Scores<1>}{10}}
|
||||
\newlabel{AUC Scores}{{10}{10}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {AUC Scores}{10}}
|
||||
\newlabel{fig:prep09AUC_Scoresstudentspng}{{10}{10}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {fig:prep09AUC_Scoresstudentspng}{10}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{10}{10/10}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {10}{10}}}
|
||||
\newlabel{AutoML<1>}{{11}{11}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {AutoML<1>}{11}}
|
||||
\newlabel{AutoML}{{11}{11}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {AutoML}{11}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{11}{11/11}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {11}{11}}}
|
||||
\newlabel{Optimize<1>}{{12}{12}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {Optimize<1>}{12}}
|
||||
\newlabel{Optimize}{{12}{12}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {Optimize}{12}}
|
||||
\newlabel{fig:prep11Optimizebaselinepng}{{12}{12}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {fig:prep11Optimizebaselinepng}{12}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{12}{12/12}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {12}{12}}}
|
||||
\newlabel{Optimize<1>}{{13}{13}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {Optimize<1>}{13}}
|
||||
\newlabel{Optimize}{{13}{13}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {Optimize}{13}}
|
||||
\newlabel{fig:prep12Optimizeoptimizepng}{{13}{13}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {fig:prep12Optimizeoptimizepng}{13}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{13}{13/13}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {13}{13}}}
|
||||
\newlabel{flaml<1>}{{14}{14}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {flaml<1>}{14}}
|
||||
\newlabel{flaml}{{14}{14}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {flaml}{14}}
|
||||
\newlabel{fig:prep15flamlforflamlpng}{{14}{14}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {fig:prep15flamlforflamlpng}{14}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{14}{14/14}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {14}{14}}}
|
||||
\newlabel{flaml<1>}{{15}{15}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {flaml<1>}{15}}
|
||||
\newlabel{flaml}{{15}{15}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {flaml}{15}}
|
||||
\newlabel{fig:prep16flamlflamlpng}{{15}{15}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {fig:prep16flamlflamlpng}{15}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{15}{15/15}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {15}{15}}}
|
||||
\newlabel{fig:prep17histpdf}{{16}{16}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {fig:prep17histpdf}{16}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{16}{16/16}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {16}{16}}}
|
||||
\newlabel{Your Turn<1>}{{17}{17}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {Your Turn<1>}{17}}
|
||||
\newlabel{Your Turn}{{17}{17}{}{Doc-Start}{}}
|
||||
\@writefile{snm}{\beamer@slide {Your Turn}{17}}
|
||||
\@writefile{nav}{\headcommand {\slideentry {0}{0}{17}{17/17}{}{0}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@framepages {17}{17}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@partpages {1}{17}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@subsectionpages {1}{17}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@sectionpages {1}{17}}}
|
||||
\@writefile{nav}{\headcommand {\beamer@documentpages {17}}}
|
||||
\@writefile{nav}{\headcommand {\gdef \inserttotalframenumber {17}}}
|
||||
\gdef \@abspage@last{17}
|
|
@ -0,0 +1,39 @@
|
|||
\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}
|
||||
\headcommand {\beamer@framepages {1}{1}}
|
||||
\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}
|
||||
\headcommand {\beamer@framepages {2}{2}}
|
||||
\headcommand {\slideentry {0}{0}{3}{3/3}{}{0}}
|
||||
\headcommand {\beamer@framepages {3}{3}}
|
||||
\headcommand {\slideentry {0}{0}{4}{4/4}{}{0}}
|
||||
\headcommand {\beamer@framepages {4}{4}}
|
||||
\headcommand {\slideentry {0}{0}{5}{5/5}{}{0}}
|
||||
\headcommand {\beamer@framepages {5}{5}}
|
||||
\headcommand {\slideentry {0}{0}{6}{6/6}{}{0}}
|
||||
\headcommand {\beamer@framepages {6}{6}}
|
||||
\headcommand {\slideentry {0}{0}{7}{7/7}{}{0}}
|
||||
\headcommand {\beamer@framepages {7}{7}}
|
||||
\headcommand {\slideentry {0}{0}{8}{8/8}{}{0}}
|
||||
\headcommand {\beamer@framepages {8}{8}}
|
||||
\headcommand {\slideentry {0}{0}{9}{9/9}{}{0}}
|
||||
\headcommand {\beamer@framepages {9}{9}}
|
||||
\headcommand {\slideentry {0}{0}{10}{10/10}{}{0}}
|
||||
\headcommand {\beamer@framepages {10}{10}}
|
||||
\headcommand {\slideentry {0}{0}{11}{11/11}{}{0}}
|
||||
\headcommand {\beamer@framepages {11}{11}}
|
||||
\headcommand {\slideentry {0}{0}{12}{12/12}{}{0}}
|
||||
\headcommand {\beamer@framepages {12}{12}}
|
||||
\headcommand {\slideentry {0}{0}{13}{13/13}{}{0}}
|
||||
\headcommand {\beamer@framepages {13}{13}}
|
||||
\headcommand {\slideentry {0}{0}{14}{14/14}{}{0}}
|
||||
\headcommand {\beamer@framepages {14}{14}}
|
||||
\headcommand {\slideentry {0}{0}{15}{15/15}{}{0}}
|
||||
\headcommand {\beamer@framepages {15}{15}}
|
||||
\headcommand {\slideentry {0}{0}{16}{16/16}{}{0}}
|
||||
\headcommand {\beamer@framepages {16}{16}}
|
||||
\headcommand {\slideentry {0}{0}{17}{17/17}{}{0}}
|
||||
\headcommand {\beamer@framepages {17}{17}}
|
||||
\headcommand {\beamer@partpages {1}{17}}
|
||||
\headcommand {\beamer@subsectionpages {1}{17}}
|
||||
\headcommand {\beamer@sectionpages {1}{17}}
|
||||
\headcommand {\beamer@documentpages {17}}
|
||||
\headcommand {\gdef \inserttotalframenumber {17}}
|
|
@ -0,0 +1,40 @@
|
|||
\beamer@slide {Anomaly Detection<1>}{2}
|
||||
\beamer@slide {Anomaly Detection}{2}
|
||||
\beamer@slide {Unsupervised Machine Learning<1>}{3}
|
||||
\beamer@slide {Unsupervised Machine Learning}{3}
|
||||
\beamer@slide {kNN<1>}{4}
|
||||
\beamer@slide {kNN}{4}
|
||||
\beamer@slide {fig:prep03kNNyanghuang 08png}{4}
|
||||
\beamer@slide {kNN<1>}{5}
|
||||
\beamer@slide {kNN}{5}
|
||||
\beamer@slide {fig:prep04kNNdist0pdf}{5}
|
||||
\beamer@slide {fig:prep05dist0pdf}{6}
|
||||
\beamer@slide {AUC Score<1>}{7}
|
||||
\beamer@slide {AUC Score}{7}
|
||||
\beamer@slide {fig:prep06AUC_Score02confusionpng}{7}
|
||||
\beamer@slide {fig:prep06AUC_Score01dist0pdf}{7}
|
||||
\beamer@slide {AUC Score<1>}{8}
|
||||
\beamer@slide {AUC Score}{8}
|
||||
\beamer@slide {fig:prep07AUC_Scorerocpdf}{8}
|
||||
\beamer@slide {AUC Score<1>}{9}
|
||||
\beamer@slide {AUC Score}{9}
|
||||
\beamer@slide {AUC Scores<1>}{10}
|
||||
\beamer@slide {AUC Scores}{10}
|
||||
\beamer@slide {fig:prep09AUC_Scoresstudentspng}{10}
|
||||
\beamer@slide {AutoML<1>}{11}
|
||||
\beamer@slide {AutoML}{11}
|
||||
\beamer@slide {Optimize<1>}{12}
|
||||
\beamer@slide {Optimize}{12}
|
||||
\beamer@slide {fig:prep11Optimizebaselinepng}{12}
|
||||
\beamer@slide {Optimize<1>}{13}
|
||||
\beamer@slide {Optimize}{13}
|
||||
\beamer@slide {fig:prep12Optimizeoptimizepng}{13}
|
||||
\beamer@slide {flaml<1>}{14}
|
||||
\beamer@slide {flaml}{14}
|
||||
\beamer@slide {fig:prep15flamlforflamlpng}{14}
|
||||
\beamer@slide {flaml<1>}{15}
|
||||
\beamer@slide {flaml}{15}
|
||||
\beamer@slide {fig:prep16flamlflamlpng}{15}
|
||||
\beamer@slide {fig:prep17histpdf}{16}
|
||||
\beamer@slide {Your Turn<1>}{17}
|
||||
\beamer@slide {Your Turn}{17}
|
|
@ -0,0 +1,497 @@
|
|||
\UseRawInputEncoding
|
||||
%\documentclass[hyperref={pdfpagelabels=false}]{beamer}
|
||||
\documentclass[hyperref={pdfpagelabels=false},aspectratio=169]{beamer}
|
||||
% Die Hyperref Option hyperref={pdfpagelabels=false} verhindert die Warnung:
|
||||
% Package hyperref Warning: Option `pdfpagelabels' is turned off
|
||||
% (hyperref) because \thepage is undefined.
|
||||
% Hyperref stopped early
|
||||
%
|
||||
|
||||
\usepackage{lmodern}
|
||||
% Das Paket lmodern erspart die folgenden Warnungen:
|
||||
% LaTeX Font Warning: Font shape `OT1/cmss/m/n' in size <4> not available
|
||||
% (Font) size <5> substituted on input line 22.
|
||||
% LaTeX Font Warning: Size substitutions with differences
|
||||
% (Font) up to 1.0pt have occurred.
|
||||
%
|
||||
|
||||
% Wenn \titel{\ldots} \author{\ldots} erst nach \begin{document} kommen,
|
||||
% kommt folgende Warnung:
|
||||
% Package hyperref Warning: Option `pdfauthor' has already been used,
|
||||
% (hyperref) ...
|
||||
% Daher steht es hier vor \begin{document}
|
||||
|
||||
\title[Anomaly Detection and AutoML]{Anomaly Detection and AutoML}
|
||||
\author{Simon Kluettermann}
|
||||
\date{\today}
|
||||
|
||||
|
||||
\institute{ls9 tu Dortmund}
|
||||
|
||||
|
||||
% Dadurch wird verhindert, dass die Navigationsleiste angezeigt wird.
|
||||
\setbeamertemplate{navigation symbols}{}
|
||||
|
||||
% zusaetzlich ist das usepackage{beamerthemeshadow} eingebunden
|
||||
\usepackage{beamerthemeshadow}
|
||||
|
||||
\hypersetup{pdfstartview={Fit}} % fits the presentation to the window when first displayed
|
||||
|
||||
\usepackage{appendixnumberbeamer}
|
||||
\usepackage{listings}
|
||||
|
||||
|
||||
\usetheme{CambridgeUS}
|
||||
\usepackage{ngerman}
|
||||
\usecolortheme{dolphin}
|
||||
|
||||
|
||||
% \beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2$\Rightarrow${15}}
|
||||
% sorgt dafuer das die Elemente die erst noch (zukuenftig) kommen
|
||||
% nur schwach angedeutet erscheinen
|
||||
%\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2$\Rightarrow${15}}%here disabled
|
||||
% klappt auch bei Tabellen, wenn teTeX verwendet wird\ldots
|
||||
\renewcommand{\figurename}{}
|
||||
|
||||
\setbeamertemplate{footline}
|
||||
{
|
||||
\leavevmode%
|
||||
\hbox{%
|
||||
\begin{beamercolorbox}[wd=.4\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}%
|
||||
\usebeamerfont{author in head/foot}\insertshorttitle
|
||||
\end{beamercolorbox}%
|
||||
\begin{beamercolorbox}[wd=.25\paperwidth,ht=2.25ex,dp=1ex,center]{title in head/foot}%
|
||||
\usebeamerfont{title in head/foot}\insertsection
|
||||
\end{beamercolorbox}%
|
||||
\begin{beamercolorbox}[wd=.3499\paperwidth,ht=2.25ex,dp=1ex,right]{date in head/foot}%
|
||||
\usebeamerfont{date in head/foot}\insertshortdate{}\hspace*{2em}
|
||||
\hyperlink{toc}{\insertframenumber{} / \inserttotalframenumber\hspace*{2ex}}
|
||||
\end{beamercolorbox}}%
|
||||
\vskip0pt%
|
||||
}
|
||||
|
||||
\usepackage[absolute,overlay]{textpos}
|
||||
\usepackage{graphicx}
|
||||
|
||||
\newcommand{\source}[1]{\begin{textblock*}{9cm}(0.1cm,8.9cm)
|
||||
\begin{beamercolorbox}[ht=0.5cm,left]{framesource}
|
||||
\usebeamerfont{framesource}\usebeamercolor[fg!66]{framesource} Source: {#1}
|
||||
\end{beamercolorbox}
|
||||
\end{textblock*}}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
||||
|
||||
%from file ../case2/data/000.txt
|
||||
\begin{frame}[label=]
|
||||
\frametitle{}
|
||||
\begin{titlepage}
|
||||
|
||||
\centering
|
||||
{\huge\bfseries \par}
|
||||
\vspace{2cm}
|
||||
{\LARGE\itshape Simon Kluettermann\par}
|
||||
\vspace{1.5cm}
|
||||
{\scshape\Large Master Thesis in Physics\par}
|
||||
\vspace{0.2cm}
|
||||
{\Large submitted to the \par}
|
||||
\vspace{0.2cm}
|
||||
{\scshape\Large Faculty of Mathematics Computer Science and Natural Sciences \par}
|
||||
\vspace{0.2cm}
|
||||
{\Large \par}
|
||||
\vspace{0.2cm}
|
||||
{\scshape\Large RWTH Aachen University}
|
||||
\vspace{1cm}
|
||||
|
||||
\vfill
|
||||
{\scshape\Large Department of Physics\par}
|
||||
\vspace{0.2cm}
|
||||
{\scshape\Large Insitute for theoretical Particle Physics and Cosmology\par}
|
||||
\vspace{0.2cm}
|
||||
{ \Large\par}
|
||||
\vspace{0.2cm}
|
||||
{\Large First Referee: Prof. Dr. Michael Kraemer \par}
|
||||
{\Large Second Referee: Prof. Dr. Felix Kahlhoefer}
|
||||
|
||||
\vfill
|
||||
|
||||
% Bottom of the page
|
||||
{\large November 2020 \par}
|
||||
\end{titlepage}
|
||||
\pagenumbering{roman}
|
||||
\thispagestyle{empty}
|
||||
\null
|
||||
\newpage
|
||||
\setcounter{page}{1}
|
||||
\pagenumbering{arabic}
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/001Anomaly Detection.txt
|
||||
\begin{frame}[label=Anomaly Detection]
|
||||
\frametitle{Anomaly Detection}
|
||||
\begin{itemize}
|
||||
|
||||
\item Find strange (unexpected) samples.
|
||||
|
||||
\item $\Rightarrow$If a traffic light is constantly yellow, probably something broke
|
||||
|
||||
\item But this could happen in a lot of different ways
|
||||
|
||||
\item $\Rightarrow$Most likely the traffic light is just off. But it could also fluctuate quickly or start smoking
|
||||
|
||||
\item How to cover all possible anomalies?
|
||||
|
||||
\item $\Rightarrow$Unsupervised Machine Learning
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/002Unsupervised Machine Learning.txt
|
||||
\begin{frame}[label=Unsupervised Machine Learning]
|
||||
\frametitle{Unsupervised Machine Learning}
|
||||
\begin{itemize}
|
||||
|
||||
\item Normal machine learning: Input - Label
|
||||
|
||||
\item Here: Only Input.
|
||||
|
||||
\item $\Rightarrow$Instead of classifying different types, try to understand your given dataset
|
||||
|
||||
\item Deviations from this understanding are anomalies
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
\item x: training samples
|
||||
|
||||
\item tx: test samples
|
||||
|
||||
\item ty: test labels (is a certain sample an anomaly or not)
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\item Useful: \emph{peak /global/cardio.npz}
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/003kNN.txt
|
||||
\begin{frame}[label=kNN]
|
||||
\frametitle{kNN}
|
||||
\begin{columns}[c] % align columns
|
||||
\begin{column}{0.48\textwidth}%.48
|
||||
\begin{itemize}
|
||||
|
||||
\item How to do this? Here one algorithm: kNN
|
||||
|
||||
\item Goal: Generate an anomaly score (high value$\Rightarrow$highly anomalous)
|
||||
|
||||
\item Here: The anomaly score is the distance to the kth closest samples
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\end{column}%
|
||||
\hfill%
|
||||
\begin{column}{0.48\textwidth}%.48
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{..//prep/03kNN/yanghuang 08.png}
|
||||
\label{fig:prep03kNNyanghuang 08png}
|
||||
\caption{[Yang, Huang 08]}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{column}%
|
||||
\hfill%
|
||||
\end{columns}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/004kNN.txt
|
||||
\begin{frame}[label=kNN]
|
||||
\frametitle{kNN}
|
||||
\begin{columns}[c] % align columns
|
||||
\begin{column}{0.48\textwidth}%.48
|
||||
\begin{itemize}
|
||||
|
||||
\item How to do this? Here one algorithm: kNN
|
||||
|
||||
\item Goal: Generate an anomaly score (high value$\Rightarrow$highly anomalous)
|
||||
|
||||
\item Here: The anomaly score is the distance to the kth closest samples
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\end{column}%
|
||||
\hfill%
|
||||
\begin{column}{0.48\textwidth}%.48
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{..//prep/04kNN/dist0.pdf}
|
||||
\label{fig:prep04kNNdist0pdf}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{column}%
|
||||
\hfill%
|
||||
\end{columns}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/005.txt
|
||||
\begin{frame}[label=]
|
||||
\frametitle{}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{..//prep/05/dist0.pdf}
|
||||
\label{fig:prep05dist0pdf}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/006AUC Score.txt
|
||||
\begin{frame}[label=AUC Score]
|
||||
\frametitle{AUC Score}
|
||||
\begin{columns}[c] % align columns
|
||||
\begin{column}{0.47619047619047616\textwidth}%.48
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{..//prep/06AUC_Score/02confusion.png}
|
||||
\label{fig:prep06AUC_Score02confusionpng}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{column}%
|
||||
\hfill%
|
||||
\begin{column}{0.47619047619047616\textwidth}%.48
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{..//prep/06AUC_Score/01dist0.pdf}
|
||||
\label{fig:prep06AUC_Score01dist0pdf}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{column}%
|
||||
\hfill%
|
||||
\end{columns}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/007AUC Score.txt
|
||||
\begin{frame}[label=AUC Score]
|
||||
\frametitle{AUC Score}
|
||||
\begin{columns}[c] % align columns
|
||||
\begin{column}{0.48\textwidth}%.48
|
||||
\begin{itemize}
|
||||
|
||||
\item Iterate every threshold
|
||||
|
||||
\item Plot fpr vs tpr
|
||||
|
||||
\item False Positive Rate
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
\item $\frac{FP}{FP+TN}$
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\item True Positive Rate
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
\item $\frac{TP}{TP+FN}$
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\item ROC-AUC: Integral of this curve!
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\end{column}%
|
||||
\hfill%
|
||||
\begin{column}{0.48\textwidth}%.48
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{..//prep/07AUC_Score/roc.pdf}
|
||||
\label{fig:prep07AUC_Scorerocpdf}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{column}%
|
||||
\hfill%
|
||||
\end{columns}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/008AUC Score.txt
|
||||
\begin{frame}[label=AUC Score]
|
||||
\frametitle{AUC Score}
|
||||
\begin{itemize}
|
||||
|
||||
\item calculcate with \emph{sklearn.metrics.roc\_auc\_score}
|
||||
|
||||
\item Higher AUC score$\Rightarrow$better
|
||||
|
||||
\item $AUC=1.0$$\Rightarrow$Perfect seperation
|
||||
|
||||
\item $AUC=0.5$$\Rightarrow$Random model
|
||||
|
||||
\item $AUC=0.0$$\Rightarrow$Inverse seperation (every anomaly is normal, and every normal sample is anomalous)
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/009AUC Scores.txt
|
||||
\begin{frame}[label=AUC Scores]
|
||||
\frametitle{AUC Scores}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{..//prep/09AUC_Scores/students.png}
|
||||
\label{fig:prep09AUC_Scoresstudentspng}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/010AutoML.txt
|
||||
\begin{frame}[label=AutoML]
|
||||
\frametitle{AutoML}
|
||||
\begin{itemize}
|
||||
|
||||
\item But: We can beat this!
|
||||
|
||||
\item How? Hyperparameter
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
\item Every algorithm has hyperparameter that control how it works
|
||||
|
||||
\item For example: k in kNN (number of close points considered)
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\item Lets take the worst algorithm (kNN: $0.927$) and try to improve it
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/011Optimize.txt
|
||||
\begin{frame}[label=Optimize]
|
||||
\frametitle{Optimize}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{..//prep/11Optimize/baseline.png}
|
||||
\label{fig:prep11Optimizebaselinepng}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/012Optimize.txt
|
||||
\begin{frame}[label=Optimize]
|
||||
\frametitle{Optimize}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{..//prep/12Optimize/optimize.png}
|
||||
\label{fig:prep12Optimizeoptimizepng}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/013flaml.txt
|
||||
\begin{frame}[label=flaml]
|
||||
\frametitle{flaml}
|
||||
\begin{columns}[c] % align columns
|
||||
\begin{column}{0.48\textwidth}%.48
|
||||
\begin{itemize}
|
||||
|
||||
\item \emph{source folder/bin/activate}
|
||||
|
||||
\item \emph{pip install flaml}
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\end{column}%
|
||||
\hfill%
|
||||
\begin{column}{0.48\textwidth}%.48
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{..//prep/15flaml/forflaml.png}
|
||||
\label{fig:prep15flamlforflamlpng}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{column}%
|
||||
\hfill%
|
||||
\end{columns}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/014flaml.txt
|
||||
\begin{frame}[label=flaml]
|
||||
\frametitle{flaml}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{..//prep/16flaml/flaml.png}
|
||||
\label{fig:prep16flamlflamlpng}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/015.txt
|
||||
\begin{frame}[label=]
|
||||
\frametitle{}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{..//prep/17/hist.pdf}
|
||||
\label{fig:prep17histpdf}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
%from file ../case2/data/016Your Turn.txt
|
||||
\begin{frame}[label=Your Turn]
|
||||
\frametitle{Your Turn}
|
||||
\begin{itemize}
|
||||
|
||||
\item Remember your last algorithm
|
||||
|
||||
\item Find its hyperparameters (Tip: pyod website)
|
||||
|
||||
\item Optimize your algorithm and give me a new AUC!
|
||||
|
||||
\item Bonus Question: Is there a problem with what we are doing?
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\end{document}
|
|
@ -0,0 +1 @@
|
|||
<titlepage>
|
|
@ -0,0 +1,6 @@
|
|||
Find strange (unexpected) samples.
|
||||
->If a traffic light is constantly yellow, probably something broke
|
||||
But this could happen in a lot of different ways
|
||||
->Most likely the traffic light is just off. But it could also fluctuate quickly or start smoking
|
||||
How to cover all possible anomalies?
|
||||
->Unsupervised Machine Learning
|
|
@ -0,0 +1,10 @@
|
|||
Normal machine learning: Input - Label
|
||||
Here: Only Input.
|
||||
->Instead of classifying different types, try to understand your given dataset
|
||||
Deviations from this understanding are anomalies
|
||||
<l2st>
|
||||
x: training samples
|
||||
tx: test samples
|
||||
ty: test labels (is a certain sample an anomaly or not)
|
||||
</l2st>
|
||||
Useful: \emph{peak /global/cardio.npz}
|
|
@ -0,0 +1,3 @@
|
|||
How to do this? Here one algorithm: kNN
|
||||
Goal: Generate an anomaly score (high value->highly anomalous)
|
||||
Here: The anomaly score is the distance to the kth closest samples
|
After Width: | Height: | Size: 20 KiB |
|
@ -0,0 +1,3 @@
|
|||
How to do this? Here one algorithm: kNN
|
||||
Goal: Generate an anomaly score (high value->highly anomalous)
|
||||
Here: The anomaly score is the distance to the kth closest samples
|
After Width: | Height: | Size: 28 KiB |
|
@ -0,0 +1,13 @@
|
|||
Iterate every threshold
|
||||
Plot fpr vs tpr
|
||||
False Positive Rate
|
||||
<l2st>
|
||||
$\frac{FP}{FP+TN}$
|
||||
</l2st>
|
||||
True Positive Rate
|
||||
<l2st>
|
||||
$\frac{TP}{TP+FN}$
|
||||
</l2st>
|
||||
ROC-AUC: Integral of this curve!
|
||||
|
||||
|
|
@ -0,0 +1,5 @@
|
|||
calculcate with \emph{sklearn.metrics.roc\_auc\_score}
|
||||
Higher AUC score->better
|
||||
$AUC=1.0$->Perfect seperation
|
||||
$AUC=0.5$->Random model
|
||||
$AUC=0.0$->Inverse seperation (every anomaly is normal, and every normal sample is anomalous)
|
After Width: | Height: | Size: 78 KiB |
|
@ -0,0 +1,7 @@
|
|||
But: We can beat this!
|
||||
How? Hyperparameter
|
||||
<l2st>
|
||||
Every algorithm has hyperparameter that control how it works
|
||||
For example: k in kNN (number of close points considered)
|
||||
</l2st>
|
||||
Lets take the worst algorithm (kNN: $0.927$) and try to improve it
|
After Width: | Height: | Size: 33 KiB |
After Width: | Height: | Size: 56 KiB |
After Width: | Height: | Size: 18 KiB |
|
@ -0,0 +1,2 @@
|
|||
\emph{source folder/bin/activate}
|
||||
\emph{pip install flaml}
|
After Width: | Height: | Size: 26 KiB |
|
@ -0,0 +1,4 @@
|
|||
Remember your last algorithm
|
||||
Find its hyperparameters (Tip: pyod website)
|
||||
Optimize your algorithm and give me a new AUC!
|
||||
Bonus Question: Is there a problem with what we are doing?
|
After Width: | Height: | Size: 20 KiB |
After Width: | Height: | Size: 989 KiB |
After Width: | Height: | Size: 265 KiB |