initial push
This commit is contained in:
		
						commit
						c12b11a92a
					
				
							
								
								
									
										5
									
								
								data/000.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								data/000.txt
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,5 @@ | ||||
| <frame > | ||||
|          | ||||
|         <titlepage> | ||||
|          | ||||
|         </frame> | ||||
							
								
								
									
										17
									
								
								data/001Anomaly Detection.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										17
									
								
								data/001Anomaly Detection.txt
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,17 @@ | ||||
| <frame title="Anomaly Detection"> | ||||
|     <split> | ||||
|     <que> | ||||
|     <list> | ||||
|     <e>Two distributions</e> | ||||
| <l2st> | ||||
| <e>One known (=normal)</e> | ||||
| <e>One unknown (=anomalies)</e> | ||||
| </l2st> | ||||
| <e>Seperate them</e> | ||||
|     </list> | ||||
|     </que> | ||||
|     <que> | ||||
|     <i f="..//prep/01Anomaly_Detection/anomalies.pdf" wmode="True"></i> | ||||
|     </que> | ||||
|     </split> | ||||
|     </frame> | ||||
							
								
								
									
										18
									
								
								data/002Anomaly Detection.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										18
									
								
								data/002Anomaly Detection.txt
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,18 @@ | ||||
| <frame title="Anomaly Detection"> | ||||
|     <split> | ||||
|     <que> | ||||
|     <list> | ||||
|     <e>Two distributions</e> | ||||
| <l2st> | ||||
| <e>One known (=normal)</e> | ||||
| <e>One unknown (=anomalies)</e> | ||||
| </l2st> | ||||
| <e>Seperate them</e> | ||||
| <e>Problem: few anomalies</e> | ||||
|     </list> | ||||
|     </que> | ||||
|     <que> | ||||
|     <i f="..//prep/02Anomaly_Detection/difference.pdf" wmode="True"></i> | ||||
|     </que> | ||||
|     </split> | ||||
|     </frame> | ||||
							
								
								
									
										19
									
								
								data/003Anomaly Detection.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								data/003Anomaly Detection.txt
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,19 @@ | ||||
| <frame title="Anomaly Detection"> | ||||
|     <split> | ||||
|     <que> | ||||
|     <list> | ||||
|     <e>Anomalies are rare, so often only a few datapoints known (e.g. Machine Failure in an Aircraft)</e> | ||||
| <e>In practice, anomalies might appear that are not known during testing</e> | ||||
| <e>->So train the model only on normal samples</e> | ||||
| <e>Unsupervised Machine Learning</e> | ||||
| <l2st> | ||||
| <e>What can we say without knowing anomalies?</e> | ||||
| <e>''Understand you dataset''</e> | ||||
| </l2st> | ||||
|     </list> | ||||
|     </que> | ||||
|     <que> | ||||
|     <i f="..//prep/03Anomaly_Detection/usup.pdf" wmode="True"></i> | ||||
|     </que> | ||||
|     </split> | ||||
|     </frame> | ||||
							
								
								
									
										19
									
								
								data/004Anomaly Detection.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								data/004Anomaly Detection.txt
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,19 @@ | ||||
| <frame title="Anomaly Detection"> | ||||
|     <split> | ||||
|     <que> | ||||
|     <list> | ||||
|     <e>Anomalies are rare, so often only a few datapoints known (e.g. Machine Failure in an Aircraft)</e> | ||||
| <e>In practice, anomalies might appear that are not known during testing</e> | ||||
| <e>->So train the model only on normal samples</e> | ||||
| <e>Unsupervised Machine Learning</e> | ||||
| <l2st> | ||||
| <e>What can we say without knowing anomalies?</e> | ||||
| <e>''Understand you dataset''</e> | ||||
| </l2st> | ||||
|     </list> | ||||
|     </que> | ||||
|     <que> | ||||
|     <i f="..//prep/04Anomaly_Detection/circle.pdf" wmode="True"></i> | ||||
|     </que> | ||||
|     </split> | ||||
|     </frame> | ||||
							
								
								
									
										17
									
								
								data/005Anomaly Detection.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										17
									
								
								data/005Anomaly Detection.txt
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,17 @@ | ||||
| <frame title="Anomaly Detection"> | ||||
|     <split> | ||||
|     <que> | ||||
|     <list> | ||||
|     <e>Seems easy? Now do this</e> | ||||
| <l2st> | ||||
| <e>in thousands of dimensions</e> | ||||
| <e>with complicated distributions</e> | ||||
| <e>and overlap between anomalies and normal points</e> | ||||
| </l2st> | ||||
|     </list> | ||||
|     </que> | ||||
|     <que> | ||||
|     <i f="..//prep/05Anomaly_Detection/anomaly_detection.png" wmode="True"></i> | ||||
|     </que> | ||||
|     </split> | ||||
|     </frame> | ||||
							
								
								
									
										14
									
								
								data/006AutoML.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										14
									
								
								data/006AutoML.txt
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,14 @@ | ||||
| <frame title="AutoML"> | ||||
|     <split> | ||||
|     <que> | ||||
|     <list> | ||||
|     <e>Most machine learning requires Hyperparameter Optimisation</e> | ||||
| <e>(Find model parameters that result in the best results)</e> | ||||
| <e>->AutoML: Do this automatically as fast as possible</e> | ||||
|     </list> | ||||
|     </que> | ||||
|     <que> | ||||
|     <i f="..//prep/06AutoML/Download.png" wmode="True"></i> | ||||
|     </que> | ||||
|     </split> | ||||
|     </frame> | ||||
							
								
								
									
										12
									
								
								data/007AutoAD.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12
									
								
								data/007AutoAD.txt
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,12 @@ | ||||
| <frame title="AutoAD"> | ||||
|         <list> | ||||
|         <e>So lets combine both (Auto Anomaly Detection)</e> | ||||
| <e>->Problem</e> | ||||
| <l2st> | ||||
| <e>AutoMl requires Evaluation (loss, accuracy, AUC) to optimize</e> | ||||
| <e>AD can only be evaluated with regards to the anomalies</e> | ||||
| <e>->no longer unsupervised</e> | ||||
| </l2st> | ||||
| <e>So most Anomaly Detection is ''unoptimized''</e> | ||||
|         </list> | ||||
|         </frame> | ||||
							
								
								
									
										14
									
								
								data/008Solution 1 Metrics.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										14
									
								
								data/008Solution 1 Metrics.txt
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,14 @@ | ||||
| <frame title="Solution 1 Metrics"> | ||||
|     <split> | ||||
|     <que> | ||||
|     <list> | ||||
|     <e>So how to solve this?</e> | ||||
| <e>One option: Think of some function to evaluate only the normal points</e> | ||||
| <e>->A bit hard to do in a case study</e> | ||||
|     </list> | ||||
|     </que> | ||||
|     <que> | ||||
|     <i f="..//prep/08Solution_1_Metrics/circle2.pdf" wmode="True"></i> | ||||
|     </que> | ||||
|     </split> | ||||
|     </frame> | ||||
							
								
								
									
										9
									
								
								data/009Solution 2 OneShot Learning.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								data/009Solution 2 OneShot Learning.txt
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,9 @@ | ||||
| <frame title="Solution 2 OneShot Learning"> | ||||
|         <list> | ||||
|         <e>So how to solve this?</e> | ||||
| <e>One option: ''Just find the best solution directly''</e> | ||||
| <e>->Zero Shot AutoML</e> | ||||
| <e>Find best practices for hyperparameters</e> | ||||
| <e>Requires optimisation for each model seperately -> matches the case study structure quite well!</e> | ||||
|         </list> | ||||
|         </frame> | ||||
							
								
								
									
										23
									
								
								data/010Course.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								data/010Course.txt
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,23 @@ | ||||
| <frame title="Course"> | ||||
|     <split> | ||||
|     <que> | ||||
|     <list> | ||||
|     <e>Basics of Scientific Computing</e> | ||||
| <e>Basics of AD</e> | ||||
| <e>Basics of AutoML</e> | ||||
| <e>Build groups for each algorithm</e> | ||||
| <l2st> | ||||
| <e>Choose a set of Hyperparameters</e> | ||||
| <e>Find ''best practice`s'' for them</e> | ||||
| <e>Maybe consider more complicated Transformations (Preprocessing, Ensemble)</e> | ||||
| </l2st> | ||||
| <e>Compare between groups (best algorithm for current situation)</e> | ||||
| <e>Evaluate on new datasets</e> | ||||
| <e>Write a report/Present your work</e> | ||||
|     </list> | ||||
|     </que> | ||||
|     <que> | ||||
|     <i f="..//prep/09Course/table.png" wmode="True"></i> | ||||
|     </que> | ||||
|     </split> | ||||
|     </frame> | ||||
							
								
								
									
										10
									
								
								data/011Questions.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										10
									
								
								data/011Questions.txt
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,10 @@ | ||||
| <frame title="Questions"> | ||||
|         <list> | ||||
|         <e>Requirements:</e> | ||||
| <l2st> | ||||
| <e>MD Req 1->MD Req 8</e> | ||||
| <e>Basic Python/Math Knowledge</e> | ||||
| <e>Motivation to learn something new;)</e> | ||||
| </l2st> | ||||
|         </list> | ||||
|         </frame> | ||||
							
								
								
									
										12
									
								
								general.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12
									
								
								general.txt
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,12 @@ | ||||
| <plt> | ||||
| 
 | ||||
| <name Current experiment status> | ||||
| <title Case Study - AutoML for Robust Anomaly Detection> | ||||
| <stitle AutoML4Rad> | ||||
| 
 | ||||
| <institute ls9 tu Dortmund> | ||||
| 
 | ||||
| <theme CambridgeUS> | ||||
| <colo dolphin> | ||||
| 
 | ||||
| </plt> | ||||
							
								
								
									
										1
									
								
								imgs
									
									
									
									
									
										Submodule
									
								
							
							
								
								
								
								
								
								
									
									
								
							
						
						
									
										1
									
								
								imgs
									
									
									
									
									
										Submodule
									
								
							| @ -0,0 +1 @@ | ||||
| Subproject commit 62ffd6ae589d7983791feea9d44d7658534d54a0 | ||||
							
								
								
									
										3
									
								
								out/compile.bat
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										3
									
								
								out/compile.bat
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,3 @@ | ||||
| pdflatex main.tex | ||||
| pdflatex main.tex | ||||
| 
 | ||||
							
								
								
									
										3
									
								
								out/compile.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										3
									
								
								out/compile.sh
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,3 @@ | ||||
| pdflatex main.tex | ||||
| pdflatex main.tex | ||||
| 
 | ||||
							
								
								
									
										74
									
								
								out/label.json
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								out/label.json
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,74 @@ | ||||
| [ | ||||
|   { | ||||
|     "typ": "img", | ||||
|     "files": [ | ||||
|       "..//prep/01Anomaly_Detection/anomalies.pdf" | ||||
|     ], | ||||
|     "label": "prep01Anomaly_Detectionanomaliespdf", | ||||
|     "caption": "", | ||||
|     "where": "../case1/data/001Anomaly Detection.txt" | ||||
|   }, | ||||
|   { | ||||
|     "typ": "img", | ||||
|     "files": [ | ||||
|       "..//prep/02Anomaly_Detection/difference.pdf" | ||||
|     ], | ||||
|     "label": "prep02Anomaly_Detectiondifferencepdf", | ||||
|     "caption": "", | ||||
|     "where": "../case1/data/002Anomaly Detection.txt" | ||||
|   }, | ||||
|   { | ||||
|     "typ": "img", | ||||
|     "files": [ | ||||
|       "..//prep/03Anomaly_Detection/usup.pdf" | ||||
|     ], | ||||
|     "label": "prep03Anomaly_Detectionusuppdf", | ||||
|     "caption": "", | ||||
|     "where": "../case1/data/003Anomaly Detection.txt" | ||||
|   }, | ||||
|   { | ||||
|     "typ": "img", | ||||
|     "files": [ | ||||
|       "..//prep/04Anomaly_Detection/circle.pdf" | ||||
|     ], | ||||
|     "label": "prep04Anomaly_Detectioncirclepdf", | ||||
|     "caption": "", | ||||
|     "where": "../case1/data/004Anomaly Detection.txt" | ||||
|   }, | ||||
|   { | ||||
|     "typ": "img", | ||||
|     "files": [ | ||||
|       "..//prep/05Anomaly_Detection/anomaly_detection.png" | ||||
|     ], | ||||
|     "label": "prep05Anomaly_Detectionanomaly_detectionpng", | ||||
|     "caption": "", | ||||
|     "where": "../case1/data/005Anomaly Detection.txt" | ||||
|   }, | ||||
|   { | ||||
|     "typ": "img", | ||||
|     "files": [ | ||||
|       "..//prep/06AutoML/Download.png" | ||||
|     ], | ||||
|     "label": "prep06AutoMLDownloadpng", | ||||
|     "caption": "", | ||||
|     "where": "../case1/data/006AutoML.txt" | ||||
|   }, | ||||
|   { | ||||
|     "typ": "img", | ||||
|     "files": [ | ||||
|       "..//prep/08Solution_1_Metrics/circle2.pdf" | ||||
|     ], | ||||
|     "label": "prep08Solution_1_Metricscircle2pdf", | ||||
|     "caption": "", | ||||
|     "where": "../case1/data/008Solution 1 Metrics.txt" | ||||
|   }, | ||||
|   { | ||||
|     "typ": "img", | ||||
|     "files": [ | ||||
|       "..//prep/09Course/table.png" | ||||
|     ], | ||||
|     "label": "prep09Coursetablepng", | ||||
|     "caption": "", | ||||
|     "where": "../case1/data/010Course.txt" | ||||
|   } | ||||
| ] | ||||
							
								
								
									
										108
									
								
								out/main.aux
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										108
									
								
								out/main.aux
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,108 @@ | ||||
| \relax  | ||||
| \providecommand\hyper@newdestlabel[2]{} | ||||
| \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} | ||||
| \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined | ||||
| \global\let\oldcontentsline\contentsline | ||||
| \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} | ||||
| \global\let\oldnewlabel\newlabel | ||||
| \gdef\newlabel#1#2{\newlabelxx{#1}#2} | ||||
| \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} | ||||
| \AtEndDocument{\ifx\hyper@anchor\@undefined | ||||
| \let\contentsline\oldcontentsline | ||||
| \let\newlabel\oldnewlabel | ||||
| \fi} | ||||
| \fi} | ||||
| \global\let\hyper@last\relax  | ||||
| \gdef\HyperFirstAtBeginDocument#1{#1} | ||||
| \providecommand\HyField@AuxAddToFields[1]{} | ||||
| \providecommand\HyField@AuxAddToCoFields[2]{} | ||||
| \@writefile{nav}{\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@framepages {1}{1}}} | ||||
| \newlabel{Anomaly Detection<1>}{{2}{2}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Anomaly Detection<1>}{2}} | ||||
| \newlabel{Anomaly Detection}{{2}{2}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Anomaly Detection}{2}} | ||||
| \newlabel{fig:prep01Anomaly_Detectionanomaliespdf}{{2}{2}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {fig:prep01Anomaly_Detectionanomaliespdf}{2}} | ||||
| \@writefile{nav}{\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@framepages {2}{2}}} | ||||
| \newlabel{Anomaly Detection<1>}{{3}{3}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Anomaly Detection<1>}{3}} | ||||
| \newlabel{Anomaly Detection}{{3}{3}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Anomaly Detection}{3}} | ||||
| \newlabel{fig:prep02Anomaly_Detectiondifferencepdf}{{3}{3}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {fig:prep02Anomaly_Detectiondifferencepdf}{3}} | ||||
| \@writefile{nav}{\headcommand {\slideentry {0}{0}{3}{3/3}{}{0}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@framepages {3}{3}}} | ||||
| \newlabel{Anomaly Detection<1>}{{4}{4}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Anomaly Detection<1>}{4}} | ||||
| \newlabel{Anomaly Detection}{{4}{4}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Anomaly Detection}{4}} | ||||
| \newlabel{fig:prep03Anomaly_Detectionusuppdf}{{4}{4}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {fig:prep03Anomaly_Detectionusuppdf}{4}} | ||||
| \@writefile{nav}{\headcommand {\slideentry {0}{0}{4}{4/4}{}{0}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@framepages {4}{4}}} | ||||
| \newlabel{Anomaly Detection<1>}{{5}{5}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Anomaly Detection<1>}{5}} | ||||
| \newlabel{Anomaly Detection}{{5}{5}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Anomaly Detection}{5}} | ||||
| \newlabel{fig:prep04Anomaly_Detectioncirclepdf}{{5}{5}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {fig:prep04Anomaly_Detectioncirclepdf}{5}} | ||||
| \@writefile{nav}{\headcommand {\slideentry {0}{0}{5}{5/5}{}{0}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@framepages {5}{5}}} | ||||
| \newlabel{Anomaly Detection<1>}{{6}{6}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Anomaly Detection<1>}{6}} | ||||
| \newlabel{Anomaly Detection}{{6}{6}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Anomaly Detection}{6}} | ||||
| \newlabel{fig:prep05Anomaly_Detectionanomaly_detectionpng}{{6}{6}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {fig:prep05Anomaly_Detectionanomaly_detectionpng}{6}} | ||||
| \@writefile{nav}{\headcommand {\slideentry {0}{0}{6}{6/6}{}{0}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@framepages {6}{6}}} | ||||
| \newlabel{AutoML<1>}{{7}{7}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {AutoML<1>}{7}} | ||||
| \newlabel{AutoML}{{7}{7}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {AutoML}{7}} | ||||
| \newlabel{fig:prep06AutoMLDownloadpng}{{7}{7}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {fig:prep06AutoMLDownloadpng}{7}} | ||||
| \@writefile{nav}{\headcommand {\slideentry {0}{0}{7}{7/7}{}{0}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@framepages {7}{7}}} | ||||
| \newlabel{AutoAD<1>}{{8}{8}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {AutoAD<1>}{8}} | ||||
| \newlabel{AutoAD}{{8}{8}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {AutoAD}{8}} | ||||
| \@writefile{nav}{\headcommand {\slideentry {0}{0}{8}{8/8}{}{0}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@framepages {8}{8}}} | ||||
| \newlabel{Solution 1 Metrics<1>}{{9}{9}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Solution 1 Metrics<1>}{9}} | ||||
| \newlabel{Solution 1 Metrics}{{9}{9}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Solution 1 Metrics}{9}} | ||||
| \newlabel{fig:prep08Solution_1_Metricscircle2pdf}{{9}{9}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {fig:prep08Solution_1_Metricscircle2pdf}{9}} | ||||
| \@writefile{nav}{\headcommand {\slideentry {0}{0}{9}{9/9}{}{0}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@framepages {9}{9}}} | ||||
| \newlabel{Solution 2 OneShot Learning<1>}{{10}{10}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Solution 2 OneShot Learning<1>}{10}} | ||||
| \newlabel{Solution 2 OneShot Learning}{{10}{10}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Solution 2 OneShot Learning}{10}} | ||||
| \@writefile{nav}{\headcommand {\slideentry {0}{0}{10}{10/10}{}{0}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@framepages {10}{10}}} | ||||
| \newlabel{Course<1>}{{11}{11}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Course<1>}{11}} | ||||
| \newlabel{Course}{{11}{11}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Course}{11}} | ||||
| \newlabel{fig:prep09Coursetablepng}{{11}{11}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {fig:prep09Coursetablepng}{11}} | ||||
| \@writefile{nav}{\headcommand {\slideentry {0}{0}{11}{11/11}{}{0}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@framepages {11}{11}}} | ||||
| \newlabel{Questions<1>}{{12}{12}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Questions<1>}{12}} | ||||
| \newlabel{Questions}{{12}{12}{}{Doc-Start}{}} | ||||
| \@writefile{snm}{\beamer@slide {Questions}{12}} | ||||
| \@writefile{nav}{\headcommand {\slideentry {0}{0}{12}{12/12}{}{0}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@framepages {12}{12}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@partpages {1}{12}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@subsectionpages {1}{12}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@sectionpages {1}{12}}} | ||||
| \@writefile{nav}{\headcommand {\beamer@documentpages {12}}} | ||||
| \@writefile{nav}{\headcommand {\gdef \inserttotalframenumber {12}}} | ||||
| \gdef \@abspage@last{12} | ||||
							
								
								
									
										1203
									
								
								out/main.log
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1203
									
								
								out/main.log
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										29
									
								
								out/main.nav
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										29
									
								
								out/main.nav
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,29 @@ | ||||
| \headcommand {\slideentry {0}{0}{1}{1/1}{}{0}} | ||||
| \headcommand {\beamer@framepages {1}{1}} | ||||
| \headcommand {\slideentry {0}{0}{2}{2/2}{}{0}} | ||||
| \headcommand {\beamer@framepages {2}{2}} | ||||
| \headcommand {\slideentry {0}{0}{3}{3/3}{}{0}} | ||||
| \headcommand {\beamer@framepages {3}{3}} | ||||
| \headcommand {\slideentry {0}{0}{4}{4/4}{}{0}} | ||||
| \headcommand {\beamer@framepages {4}{4}} | ||||
| \headcommand {\slideentry {0}{0}{5}{5/5}{}{0}} | ||||
| \headcommand {\beamer@framepages {5}{5}} | ||||
| \headcommand {\slideentry {0}{0}{6}{6/6}{}{0}} | ||||
| \headcommand {\beamer@framepages {6}{6}} | ||||
| \headcommand {\slideentry {0}{0}{7}{7/7}{}{0}} | ||||
| \headcommand {\beamer@framepages {7}{7}} | ||||
| \headcommand {\slideentry {0}{0}{8}{8/8}{}{0}} | ||||
| \headcommand {\beamer@framepages {8}{8}} | ||||
| \headcommand {\slideentry {0}{0}{9}{9/9}{}{0}} | ||||
| \headcommand {\beamer@framepages {9}{9}} | ||||
| \headcommand {\slideentry {0}{0}{10}{10/10}{}{0}} | ||||
| \headcommand {\beamer@framepages {10}{10}} | ||||
| \headcommand {\slideentry {0}{0}{11}{11/11}{}{0}} | ||||
| \headcommand {\beamer@framepages {11}{11}} | ||||
| \headcommand {\slideentry {0}{0}{12}{12/12}{}{0}} | ||||
| \headcommand {\beamer@framepages {12}{12}} | ||||
| \headcommand {\beamer@partpages {1}{12}} | ||||
| \headcommand {\beamer@subsectionpages {1}{12}} | ||||
| \headcommand {\beamer@sectionpages {1}{12}} | ||||
| \headcommand {\beamer@documentpages {12}} | ||||
| \headcommand {\gdef \inserttotalframenumber {12}} | ||||
							
								
								
									
										0
									
								
								out/main.out
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								out/main.out
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										
											BIN
										
									
								
								out/main.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								out/main.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										30
									
								
								out/main.snm
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										30
									
								
								out/main.snm
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,30 @@ | ||||
| \beamer@slide {Anomaly Detection<1>}{2} | ||||
| \beamer@slide {Anomaly Detection}{2} | ||||
| \beamer@slide {fig:prep01Anomaly_Detectionanomaliespdf}{2} | ||||
| \beamer@slide {Anomaly Detection<1>}{3} | ||||
| \beamer@slide {Anomaly Detection}{3} | ||||
| \beamer@slide {fig:prep02Anomaly_Detectiondifferencepdf}{3} | ||||
| \beamer@slide {Anomaly Detection<1>}{4} | ||||
| \beamer@slide {Anomaly Detection}{4} | ||||
| \beamer@slide {fig:prep03Anomaly_Detectionusuppdf}{4} | ||||
| \beamer@slide {Anomaly Detection<1>}{5} | ||||
| \beamer@slide {Anomaly Detection}{5} | ||||
| \beamer@slide {fig:prep04Anomaly_Detectioncirclepdf}{5} | ||||
| \beamer@slide {Anomaly Detection<1>}{6} | ||||
| \beamer@slide {Anomaly Detection}{6} | ||||
| \beamer@slide {fig:prep05Anomaly_Detectionanomaly_detectionpng}{6} | ||||
| \beamer@slide {AutoML<1>}{7} | ||||
| \beamer@slide {AutoML}{7} | ||||
| \beamer@slide {fig:prep06AutoMLDownloadpng}{7} | ||||
| \beamer@slide {AutoAD<1>}{8} | ||||
| \beamer@slide {AutoAD}{8} | ||||
| \beamer@slide {Solution 1 Metrics<1>}{9} | ||||
| \beamer@slide {Solution 1 Metrics}{9} | ||||
| \beamer@slide {fig:prep08Solution_1_Metricscircle2pdf}{9} | ||||
| \beamer@slide {Solution 2 OneShot Learning<1>}{10} | ||||
| \beamer@slide {Solution 2 OneShot Learning}{10} | ||||
| \beamer@slide {Course<1>}{11} | ||||
| \beamer@slide {Course}{11} | ||||
| \beamer@slide {fig:prep09Coursetablepng}{11} | ||||
| \beamer@slide {Questions<1>}{12} | ||||
| \beamer@slide {Questions}{12} | ||||
							
								
								
									
										515
									
								
								out/main.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										515
									
								
								out/main.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,515 @@ | ||||
| \UseRawInputEncoding | ||||
| %\documentclass[hyperref={pdfpagelabels=false}]{beamer} | ||||
| \documentclass[hyperref={pdfpagelabels=false},aspectratio=169]{beamer} | ||||
| % Die Hyperref Option hyperref={pdfpagelabels=false} verhindert die Warnung: | ||||
| % Package hyperref Warning: Option `pdfpagelabels' is turned off | ||||
| % (hyperref)                because \thepage is undefined.  | ||||
| % Hyperref stopped early  | ||||
| % | ||||
| 
 | ||||
| \usepackage{lmodern} | ||||
| % Das Paket lmodern erspart die folgenden Warnungen: | ||||
| % LaTeX Font Warning: Font shape `OT1/cmss/m/n' in size <4> not available | ||||
| % (Font)              size <5> substituted on input line 22. | ||||
| % LaTeX Font Warning: Size substitutions with differences | ||||
| % (Font)              up to 1.0pt have occurred. | ||||
| % | ||||
| 
 | ||||
| % Wenn \titel{\ldots} \author{\ldots} erst nach \begin{document} kommen, | ||||
| % kommt folgende Warnung: | ||||
| % Package hyperref Warning: Option `pdfauthor' has already been used, | ||||
| % (hyperref) ...  | ||||
| % Daher steht es hier vor \begin{document} | ||||
| 
 | ||||
| \title[AutoML4Rad]{Case Study - AutoML for Robust Anomaly Detection}    | ||||
| \author{Simon Kluettermann}  | ||||
| \date{\today}  | ||||
| 
 | ||||
| 
 | ||||
|  \institute{ls9 tu Dortmund} | ||||
| 
 | ||||
| 
 | ||||
| % Dadurch wird verhindert, dass die Navigationsleiste angezeigt wird. | ||||
| \setbeamertemplate{navigation symbols}{} | ||||
| 
 | ||||
| % zusaetzlich ist das usepackage{beamerthemeshadow} eingebunden  | ||||
| \usepackage{beamerthemeshadow} | ||||
| 
 | ||||
| \hypersetup{pdfstartview={Fit}} % fits the presentation to the window when first displayed | ||||
| 
 | ||||
| \usepackage{appendixnumberbeamer} | ||||
| \usepackage{listings} | ||||
| 
 | ||||
| 
 | ||||
| \usetheme{CambridgeUS} | ||||
| \usepackage{ngerman} | ||||
| \usecolortheme{dolphin} | ||||
| 
 | ||||
| 
 | ||||
| %  \beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2$\Rightarrow${15}} | ||||
| %  sorgt dafuer das die Elemente die erst noch (zukuenftig) kommen  | ||||
| %  nur schwach angedeutet erscheinen  | ||||
| %\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2$\Rightarrow${15}}%here disabled | ||||
| % klappt auch bei Tabellen, wenn teTeX verwendet wird\ldots | ||||
| \renewcommand{\figurename}{} | ||||
| 
 | ||||
| \setbeamertemplate{footline} | ||||
| { | ||||
|   \leavevmode% | ||||
|   \hbox{% | ||||
|   \begin{beamercolorbox}[wd=.4\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}% | ||||
|     \usebeamerfont{author in head/foot}\insertshorttitle | ||||
|   \end{beamercolorbox}% | ||||
|   \begin{beamercolorbox}[wd=.25\paperwidth,ht=2.25ex,dp=1ex,center]{title in head/foot}% | ||||
|     \usebeamerfont{title in head/foot}\insertsection | ||||
|   \end{beamercolorbox}% | ||||
|   \begin{beamercolorbox}[wd=.3499\paperwidth,ht=2.25ex,dp=1ex,right]{date in head/foot}% | ||||
|     \usebeamerfont{date in head/foot}\insertshortdate{}\hspace*{2em} | ||||
|     \hyperlink{toc}{\insertframenumber{} / \inserttotalframenumber\hspace*{2ex}}  | ||||
|   \end{beamercolorbox}}% | ||||
|   \vskip0pt% | ||||
| } | ||||
| 
 | ||||
| \usepackage[absolute,overlay]{textpos} | ||||
| \usepackage{graphicx} | ||||
| 
 | ||||
| \newcommand{\source}[1]{\begin{textblock*}{9cm}(0.1cm,8.9cm) | ||||
|     \begin{beamercolorbox}[ht=0.5cm,left]{framesource} | ||||
|         \usebeamerfont{framesource}\usebeamercolor[fg!66]{framesource} Source: {#1} | ||||
|     \end{beamercolorbox} | ||||
| \end{textblock*}} | ||||
| 
 | ||||
| 
 | ||||
| \begin{document} | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| %from file ../case1/data/000.txt | ||||
| \begin{frame}[label=] | ||||
| \frametitle{} | ||||
| \begin{titlepage} | ||||
| 
 | ||||
| 	\centering | ||||
| 	{\huge\bfseries \par} | ||||
| 	\vspace{2cm} | ||||
| 	{\LARGE\itshape Simon Kluettermann\par} | ||||
| 	\vspace{1.5cm} | ||||
| 	{\scshape\Large Master Thesis in Physics\par} | ||||
| 	\vspace{0.2cm} | ||||
| 	{\Large submitted to the \par} | ||||
| 	\vspace{0.2cm} | ||||
| 	{\scshape\Large Faculty of Mathematics Computer Science and Natural Sciences \par} | ||||
| 	\vspace{0.2cm} | ||||
| 	{\Large \par} | ||||
| 	\vspace{0.2cm} | ||||
| 	{\scshape\Large RWTH Aachen University} | ||||
| 	\vspace{1cm} | ||||
| 	 | ||||
| 	\vfill | ||||
| 	{\scshape\Large Department of Physics\par} | ||||
| 	\vspace{0.2cm} | ||||
| 	{\scshape\Large Insitute for theoretical Particle Physics and Cosmology\par} | ||||
| 	\vspace{0.2cm} | ||||
| 	{ \Large\par} | ||||
| 	\vspace{0.2cm} | ||||
| 	{\Large First Referee: Prof. Dr. Michael Kraemer \par} | ||||
| 	{\Large Second Referee: Prof. Dr. Felix Kahlhoefer} | ||||
| 
 | ||||
| 	\vfill | ||||
| 
 | ||||
| % Bottom of the page | ||||
| 	{\large November 2020 \par} | ||||
| \end{titlepage} | ||||
| \pagenumbering{roman} | ||||
| \thispagestyle{empty} | ||||
| \null | ||||
| \newpage | ||||
| \setcounter{page}{1} | ||||
| \pagenumbering{arabic} | ||||
| \end{frame} | ||||
| 
 | ||||
| 
 | ||||
| %from file ../case1/data/001Anomaly Detection.txt | ||||
| \begin{frame}[label=Anomaly Detection] | ||||
| \frametitle{Anomaly Detection} | ||||
| \begin{columns}[c] % align columns | ||||
| \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item Two distributions | ||||
| 
 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item One known (=normal) | ||||
| 
 | ||||
|     \item One unknown (=anomalies) | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
|     \item Seperate them | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
| \end{column}% | ||||
| \hfill% | ||||
|     \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{figure}[H]  | ||||
|   \centering | ||||
| \includegraphics[width=0.9\textwidth]{..//prep/01Anomaly_Detection/anomalies.pdf} | ||||
| \label{fig:prep01Anomaly_Detectionanomaliespdf} | ||||
|   \end{figure} | ||||
| 
 | ||||
| 
 | ||||
| \end{column}% | ||||
| \hfill% | ||||
| \end{columns} | ||||
| 
 | ||||
| \end{frame} | ||||
| 
 | ||||
| 
 | ||||
| %from file ../case1/data/002Anomaly Detection.txt | ||||
| \begin{frame}[label=Anomaly Detection] | ||||
| \frametitle{Anomaly Detection} | ||||
| \begin{columns}[c] % align columns | ||||
| \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item Two distributions | ||||
| 
 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item One known (=normal) | ||||
| 
 | ||||
|     \item One unknown (=anomalies) | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
|     \item Seperate them | ||||
| 
 | ||||
|     \item Problem: few anomalies | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
| \end{column}% | ||||
| \hfill% | ||||
|     \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{figure}[H]  | ||||
|   \centering | ||||
| \includegraphics[width=0.9\textwidth]{..//prep/02Anomaly_Detection/difference.pdf} | ||||
| \label{fig:prep02Anomaly_Detectiondifferencepdf} | ||||
|   \end{figure} | ||||
| 
 | ||||
| 
 | ||||
| \end{column}% | ||||
| \hfill% | ||||
| \end{columns} | ||||
| 
 | ||||
| \end{frame} | ||||
| 
 | ||||
| 
 | ||||
| %from file ../case1/data/003Anomaly Detection.txt | ||||
| \begin{frame}[label=Anomaly Detection] | ||||
| \frametitle{Anomaly Detection} | ||||
| \begin{columns}[c] % align columns | ||||
| \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item Anomalies are rare, so often only a few datapoints known (e.g. Machine Failure in an Aircraft) | ||||
| 
 | ||||
|     \item In practice, anomalies might appear that are not known during testing | ||||
| 
 | ||||
|     \item $\Rightarrow$So train the model only on normal samples | ||||
| 
 | ||||
|     \item Unsupervised Machine Learning | ||||
| 
 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item What can we say without knowing anomalies? | ||||
| 
 | ||||
|     \item ''Understand you dataset'' | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
| 
 | ||||
| \end{itemize} | ||||
| \end{column}% | ||||
| \hfill% | ||||
|     \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{figure}[H]  | ||||
|   \centering | ||||
| \includegraphics[width=0.9\textwidth]{..//prep/03Anomaly_Detection/usup.pdf} | ||||
| \label{fig:prep03Anomaly_Detectionusuppdf} | ||||
|   \end{figure} | ||||
| 
 | ||||
| 
 | ||||
| \end{column}% | ||||
| \hfill% | ||||
| \end{columns} | ||||
| 
 | ||||
| \end{frame} | ||||
| 
 | ||||
| 
 | ||||
| %from file ../case1/data/004Anomaly Detection.txt | ||||
| \begin{frame}[label=Anomaly Detection] | ||||
| \frametitle{Anomaly Detection} | ||||
| \begin{columns}[c] % align columns | ||||
| \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item Anomalies are rare, so often only a few datapoints known (e.g. Machine Failure in an Aircraft) | ||||
| 
 | ||||
|     \item In practice, anomalies might appear that are not known during testing | ||||
| 
 | ||||
|     \item $\Rightarrow$So train the model only on normal samples | ||||
| 
 | ||||
|     \item Unsupervised Machine Learning | ||||
| 
 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item What can we say without knowing anomalies? | ||||
| 
 | ||||
|     \item ''Understand you dataset'' | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
| 
 | ||||
| \end{itemize} | ||||
| \end{column}% | ||||
| \hfill% | ||||
|     \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{figure}[H]  | ||||
|   \centering | ||||
| \includegraphics[width=0.9\textwidth]{..//prep/04Anomaly_Detection/circle.pdf} | ||||
| \label{fig:prep04Anomaly_Detectioncirclepdf} | ||||
|   \end{figure} | ||||
| 
 | ||||
| 
 | ||||
| \end{column}% | ||||
| \hfill% | ||||
| \end{columns} | ||||
| 
 | ||||
| \end{frame} | ||||
| 
 | ||||
| 
 | ||||
| %from file ../case1/data/005Anomaly Detection.txt | ||||
| \begin{frame}[label=Anomaly Detection] | ||||
| \frametitle{Anomaly Detection} | ||||
| \begin{columns}[c] % align columns | ||||
| \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item Seems easy? Now do this | ||||
| 
 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item in thousands of dimensions | ||||
| 
 | ||||
|     \item with complicated distributions | ||||
| 
 | ||||
|     \item and overlap between anomalies and normal points | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
| 
 | ||||
| \end{itemize} | ||||
| \end{column}% | ||||
| \hfill% | ||||
|     \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{figure}[H]  | ||||
|   \centering | ||||
| \includegraphics[width=0.9\textwidth]{..//prep/05Anomaly_Detection/anomaly_detection.png} | ||||
| \label{fig:prep05Anomaly_Detectionanomaly_detectionpng} | ||||
|   \end{figure} | ||||
| 
 | ||||
| 
 | ||||
| \end{column}% | ||||
| \hfill% | ||||
| \end{columns} | ||||
| 
 | ||||
| \end{frame} | ||||
| 
 | ||||
| 
 | ||||
| %from file ../case1/data/006AutoML.txt | ||||
| \begin{frame}[label=AutoML] | ||||
| \frametitle{AutoML} | ||||
| \begin{columns}[c] % align columns | ||||
| \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item Most machine learning requires Hyperparameter Optimisation | ||||
| 
 | ||||
|     \item (Find model parameters that result in the best results) | ||||
| 
 | ||||
|     \item $\Rightarrow$AutoML: Do this automatically as fast as possible | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
| \end{column}% | ||||
| \hfill% | ||||
|     \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{figure}[H]  | ||||
|   \centering | ||||
| \includegraphics[width=0.9\textwidth]{..//prep/06AutoML/Download.png} | ||||
| \label{fig:prep06AutoMLDownloadpng} | ||||
|   \end{figure} | ||||
| 
 | ||||
| 
 | ||||
| \end{column}% | ||||
| \hfill% | ||||
| \end{columns} | ||||
| 
 | ||||
| \end{frame} | ||||
| 
 | ||||
| 
 | ||||
| %from file ../case1/data/007AutoAD.txt | ||||
| \begin{frame}[label=AutoAD] | ||||
| \frametitle{AutoAD} | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item So lets combine both (Auto Anomaly Detection) | ||||
| 
 | ||||
|     \item $\Rightarrow$Problem | ||||
| 
 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item AutoMl requires Evaluation (loss, accuracy, AUC) to optimize | ||||
| 
 | ||||
|     \item AD can only be evaluated with regards to the anomalies | ||||
| 
 | ||||
|     \item $\Rightarrow$no longer unsupervised | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
|     \item So most Anomaly Detection is ''unoptimized'' | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
| \end{frame} | ||||
| 
 | ||||
| 
 | ||||
| %from file ../case1/data/008Solution 1 Metrics.txt | ||||
| \begin{frame}[label=Solution 1 Metrics] | ||||
| \frametitle{Solution 1 Metrics} | ||||
| \begin{columns}[c] % align columns | ||||
| \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item So how to solve this? | ||||
| 
 | ||||
|     \item One option: Think of some function to evaluate only the normal points | ||||
| 
 | ||||
|     \item $\Rightarrow$A bit hard to do in a case study | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
| \end{column}% | ||||
| \hfill% | ||||
|     \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{figure}[H]  | ||||
|   \centering | ||||
| \includegraphics[width=0.9\textwidth]{..//prep/08Solution_1_Metrics/circle2.pdf} | ||||
| \label{fig:prep08Solution_1_Metricscircle2pdf} | ||||
|   \end{figure} | ||||
| 
 | ||||
| 
 | ||||
| \end{column}% | ||||
| \hfill% | ||||
| \end{columns} | ||||
| 
 | ||||
| \end{frame} | ||||
| 
 | ||||
| 
 | ||||
| %from file ../case1/data/009Solution 2 OneShot Learning.txt | ||||
| \begin{frame}[label=Solution 2 OneShot Learning] | ||||
| \frametitle{Solution 2 OneShot Learning} | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item So how to solve this? | ||||
| 
 | ||||
|     \item One option: ''Just find the best solution directly'' | ||||
| 
 | ||||
|     \item $\Rightarrow$Zero Shot AutoML | ||||
| 
 | ||||
|     \item Find best practices for hyperparameters | ||||
| 
 | ||||
|     \item Requires optimisation for each model seperately $\Rightarrow$ matches the case study structure quite well! | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
| \end{frame} | ||||
| 
 | ||||
| 
 | ||||
| %from file ../case1/data/010Course.txt | ||||
| \begin{frame}[label=Course] | ||||
| \frametitle{Course} | ||||
| \begin{columns}[c] % align columns | ||||
| \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item Basics of Scientific Computing | ||||
| 
 | ||||
|     \item Basics of AD | ||||
| 
 | ||||
|     \item Basics of AutoML | ||||
| 
 | ||||
|     \item Build groups for each algorithm | ||||
| 
 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item Choose a set of Hyperparameters | ||||
| 
 | ||||
|     \item Find ''best practice`s'' for them | ||||
| 
 | ||||
|     \item Maybe consider more complicated Transformations (Preprocessing, Ensemble) | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
|     \item Compare between groups (best algorithm for current situation) | ||||
| 
 | ||||
|     \item Evaluate on new datasets | ||||
| 
 | ||||
|     \item Write a report/Present your work | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
| \end{column}% | ||||
| \hfill% | ||||
|     \begin{column}{0.48\textwidth}%.48 | ||||
| \begin{figure}[H]  | ||||
|   \centering | ||||
| \includegraphics[width=0.9\textwidth]{..//prep/09Course/table.png} | ||||
| \label{fig:prep09Coursetablepng} | ||||
|   \end{figure} | ||||
| 
 | ||||
| 
 | ||||
| \end{column}% | ||||
| \hfill% | ||||
| \end{columns} | ||||
| 
 | ||||
| \end{frame} | ||||
| 
 | ||||
| 
 | ||||
| %from file ../case1/data/011Questions.txt | ||||
| \begin{frame}[label=Questions] | ||||
| \frametitle{Questions} | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item Requirements: | ||||
| 
 | ||||
| \begin{itemize} | ||||
| 
 | ||||
|     \item MD Req 1$\Rightarrow$MD Req 8 | ||||
| 
 | ||||
|     \item Basic Python/Math Knowledge | ||||
| 
 | ||||
|     \item Motivation to learn something new;) | ||||
| 
 | ||||
| 
 | ||||
| \end{itemize} | ||||
| 
 | ||||
| \end{itemize} | ||||
| \end{frame} | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| \end{document} | ||||
							
								
								
									
										0
									
								
								out/main.toc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								out/main.toc
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										0
									
								
								prep/000/nonl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								prep/000/nonl
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										1
									
								
								prep/000/q
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								prep/000/q
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1 @@ | ||||
| <titlepage> | ||||
							
								
								
									
										
											BIN
										
									
								
								prep/01Anomaly_Detection/anomalies.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								prep/01Anomaly_Detection/anomalies.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										6
									
								
								prep/01Anomaly_Detection/q
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								prep/01Anomaly_Detection/q
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,6 @@ | ||||
| Two distributions | ||||
| <l2st> | ||||
| One known (=normal) | ||||
| One unknown (=anomalies) | ||||
| </l2st> | ||||
| Seperate them | ||||
							
								
								
									
										
											BIN
										
									
								
								prep/02Anomaly_Detection/difference.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								prep/02Anomaly_Detection/difference.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										7
									
								
								prep/02Anomaly_Detection/q
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										7
									
								
								prep/02Anomaly_Detection/q
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,7 @@ | ||||
| Two distributions | ||||
| <l2st> | ||||
| One known (=normal) | ||||
| One unknown (=anomalies) | ||||
| </l2st> | ||||
| Seperate them | ||||
| Problem: few anomalies | ||||
							
								
								
									
										8
									
								
								prep/03Anomaly_Detection/q
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										8
									
								
								prep/03Anomaly_Detection/q
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,8 @@ | ||||
| Anomalies are rare, so often only a few datapoints known (e.g. Machine Failure in an Aircraft) | ||||
| In practice, anomalies might appear that are not known during testing | ||||
| ->So train the model only on normal samples | ||||
| Unsupervised Machine Learning | ||||
| <l2st> | ||||
| What can we say without knowing anomalies? | ||||
| ''Understand you dataset'' | ||||
| </l2st> | ||||
							
								
								
									
										
											BIN
										
									
								
								prep/03Anomaly_Detection/usup.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								prep/03Anomaly_Detection/usup.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								prep/04Anomaly_Detection/circle.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								prep/04Anomaly_Detection/circle.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										8
									
								
								prep/04Anomaly_Detection/q
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										8
									
								
								prep/04Anomaly_Detection/q
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,8 @@ | ||||
| Anomalies are rare, so often only a few datapoints known (e.g. Machine Failure in an Aircraft) | ||||
| In practice, anomalies might appear that are not known during testing | ||||
| ->So train the model only on normal samples | ||||
| Unsupervised Machine Learning | ||||
| <l2st> | ||||
| What can we say without knowing anomalies? | ||||
| ''Understand you dataset'' | ||||
| </l2st> | ||||
							
								
								
									
										
											BIN
										
									
								
								prep/05Anomaly_Detection/anomaly_detection.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								prep/05Anomaly_Detection/anomaly_detection.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 648 KiB | 
							
								
								
									
										6
									
								
								prep/05Anomaly_Detection/q
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								prep/05Anomaly_Detection/q
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,6 @@ | ||||
| Seems easy? Now do this | ||||
| <l2st> | ||||
| in thousands of dimensions | ||||
| with complicated distributions | ||||
| and overlap between anomalies and normal points | ||||
| </l2st> | ||||
							
								
								
									
										
											BIN
										
									
								
								prep/06AutoML/Download.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								prep/06AutoML/Download.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 47 KiB | 
							
								
								
									
										3
									
								
								prep/06AutoML/q
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										3
									
								
								prep/06AutoML/q
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,3 @@ | ||||
| Most machine learning requires Hyperparameter Optimisation | ||||
| (Find model parameters that result in the best results) | ||||
| ->AutoML: Do this automatically as fast as possible | ||||
							
								
								
									
										9
									
								
								prep/07AutoAD/q
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								prep/07AutoAD/q
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,9 @@ | ||||
| So lets combine both (Auto Anomaly Detection) | ||||
| ->Problem | ||||
| <l2st> | ||||
| AutoMl requires Evaluation (loss, accuracy, AUC) to optimize | ||||
| AD can only be evaluated with regards to the anomalies | ||||
| ->no longer unsupervised | ||||
| </l2st> | ||||
| So most Anomaly Detection is ''unoptimized'' | ||||
| 
 | ||||
							
								
								
									
										
											BIN
										
									
								
								prep/08Solution_1_Metrics/circle2.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								prep/08Solution_1_Metrics/circle2.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										3
									
								
								prep/08Solution_1_Metrics/q
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										3
									
								
								prep/08Solution_1_Metrics/q
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,3 @@ | ||||
| So how to solve this? | ||||
| One option: Think of some function to evaluate only the normal points | ||||
| ->A bit hard to do in a case study | ||||
							
								
								
									
										5
									
								
								prep/08Solution_2_OneShot_Learning/q
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								prep/08Solution_2_OneShot_Learning/q
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,5 @@ | ||||
| So how to solve this? | ||||
| One option: ''Just find the best solution directly'' | ||||
| ->Zero Shot AutoML | ||||
| Find best practices for hyperparameters | ||||
| Requires optimisation for each model seperately -> matches the case study structure quite well! | ||||
							
								
								
									
										12
									
								
								prep/09Course/q
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12
									
								
								prep/09Course/q
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,12 @@ | ||||
| Basics of Scientific Computing | ||||
| Basics of AD | ||||
| Basics of AutoML | ||||
| Build groups for each algorithm | ||||
| <l2st> | ||||
| Choose a set of Hyperparameters | ||||
| Find ''best practice`s'' for them | ||||
| Maybe consider more complicated Transformations (Preprocessing, Ensemble) | ||||
| </l2st> | ||||
| Compare between groups (best algorithm for current situation) | ||||
| Evaluate on new datasets | ||||
| Write a report/Present your work | ||||
							
								
								
									
										
											BIN
										
									
								
								prep/09Course/table.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								prep/09Course/table.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 80 KiB | 
							
								
								
									
										6
									
								
								prep/10Questions/q
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								prep/10Questions/q
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,6 @@ | ||||
| Requirements: | ||||
| <l2st> | ||||
| MD Req 1->MD Req 8 | ||||
| Basic Python/Math Knowledge | ||||
| Motivation to learn something new;) | ||||
| </l2st> | ||||
							
								
								
									
										
											BIN
										
									
								
								touse/Ethereum-Price-Prediction.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								touse/Ethereum-Price-Prediction.webp
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 20 KiB | 
							
								
								
									
										
											BIN
										
									
								
								touse/TIM220328_Buterin.Cover_.FINAL2_.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								touse/TIM220328_Buterin.Cover_.FINAL2_.jpg
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 989 KiB | 
							
								
								
									
										
											BIN
										
									
								
								touse/TIM220328_Buterin.Cover_.FINAL2_.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								touse/TIM220328_Buterin.Cover_.FINAL2_.webp
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 265 KiB | 
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Simon Klüttermann
						Simon Klüttermann