initial push
This commit is contained in:
commit
c12b11a92a
|
@ -0,0 +1,5 @@
|
||||||
|
<frame >
|
||||||
|
|
||||||
|
<titlepage>
|
||||||
|
|
||||||
|
</frame>
|
|
@ -0,0 +1,17 @@
|
||||||
|
<frame title="Anomaly Detection">
|
||||||
|
<split>
|
||||||
|
<que>
|
||||||
|
<list>
|
||||||
|
<e>Two distributions</e>
|
||||||
|
<l2st>
|
||||||
|
<e>One known (=normal)</e>
|
||||||
|
<e>One unknown (=anomalies)</e>
|
||||||
|
</l2st>
|
||||||
|
<e>Seperate them</e>
|
||||||
|
</list>
|
||||||
|
</que>
|
||||||
|
<que>
|
||||||
|
<i f="..//prep/01Anomaly_Detection/anomalies.pdf" wmode="True"></i>
|
||||||
|
</que>
|
||||||
|
</split>
|
||||||
|
</frame>
|
|
@ -0,0 +1,18 @@
|
||||||
|
<frame title="Anomaly Detection">
|
||||||
|
<split>
|
||||||
|
<que>
|
||||||
|
<list>
|
||||||
|
<e>Two distributions</e>
|
||||||
|
<l2st>
|
||||||
|
<e>One known (=normal)</e>
|
||||||
|
<e>One unknown (=anomalies)</e>
|
||||||
|
</l2st>
|
||||||
|
<e>Seperate them</e>
|
||||||
|
<e>Problem: few anomalies</e>
|
||||||
|
</list>
|
||||||
|
</que>
|
||||||
|
<que>
|
||||||
|
<i f="..//prep/02Anomaly_Detection/difference.pdf" wmode="True"></i>
|
||||||
|
</que>
|
||||||
|
</split>
|
||||||
|
</frame>
|
|
@ -0,0 +1,19 @@
|
||||||
|
<frame title="Anomaly Detection">
|
||||||
|
<split>
|
||||||
|
<que>
|
||||||
|
<list>
|
||||||
|
<e>Anomalies are rare, so often only a few datapoints known (e.g. Machine Failure in an Aircraft)</e>
|
||||||
|
<e>In practice, anomalies might appear that are not known during testing</e>
|
||||||
|
<e>->So train the model only on normal samples</e>
|
||||||
|
<e>Unsupervised Machine Learning</e>
|
||||||
|
<l2st>
|
||||||
|
<e>What can we say without knowing anomalies?</e>
|
||||||
|
<e>''Understand you dataset''</e>
|
||||||
|
</l2st>
|
||||||
|
</list>
|
||||||
|
</que>
|
||||||
|
<que>
|
||||||
|
<i f="..//prep/03Anomaly_Detection/usup.pdf" wmode="True"></i>
|
||||||
|
</que>
|
||||||
|
</split>
|
||||||
|
</frame>
|
|
@ -0,0 +1,19 @@
|
||||||
|
<frame title="Anomaly Detection">
|
||||||
|
<split>
|
||||||
|
<que>
|
||||||
|
<list>
|
||||||
|
<e>Anomalies are rare, so often only a few datapoints known (e.g. Machine Failure in an Aircraft)</e>
|
||||||
|
<e>In practice, anomalies might appear that are not known during testing</e>
|
||||||
|
<e>->So train the model only on normal samples</e>
|
||||||
|
<e>Unsupervised Machine Learning</e>
|
||||||
|
<l2st>
|
||||||
|
<e>What can we say without knowing anomalies?</e>
|
||||||
|
<e>''Understand you dataset''</e>
|
||||||
|
</l2st>
|
||||||
|
</list>
|
||||||
|
</que>
|
||||||
|
<que>
|
||||||
|
<i f="..//prep/04Anomaly_Detection/circle.pdf" wmode="True"></i>
|
||||||
|
</que>
|
||||||
|
</split>
|
||||||
|
</frame>
|
|
@ -0,0 +1,17 @@
|
||||||
|
<frame title="Anomaly Detection">
|
||||||
|
<split>
|
||||||
|
<que>
|
||||||
|
<list>
|
||||||
|
<e>Seems easy? Now do this</e>
|
||||||
|
<l2st>
|
||||||
|
<e>in thousands of dimensions</e>
|
||||||
|
<e>with complicated distributions</e>
|
||||||
|
<e>and overlap between anomalies and normal points</e>
|
||||||
|
</l2st>
|
||||||
|
</list>
|
||||||
|
</que>
|
||||||
|
<que>
|
||||||
|
<i f="..//prep/05Anomaly_Detection/anomaly_detection.png" wmode="True"></i>
|
||||||
|
</que>
|
||||||
|
</split>
|
||||||
|
</frame>
|
|
@ -0,0 +1,14 @@
|
||||||
|
<frame title="AutoML">
|
||||||
|
<split>
|
||||||
|
<que>
|
||||||
|
<list>
|
||||||
|
<e>Most machine learning requires Hyperparameter Optimisation</e>
|
||||||
|
<e>(Find model parameters that result in the best results)</e>
|
||||||
|
<e>->AutoML: Do this automatically as fast as possible</e>
|
||||||
|
</list>
|
||||||
|
</que>
|
||||||
|
<que>
|
||||||
|
<i f="..//prep/06AutoML/Download.png" wmode="True"></i>
|
||||||
|
</que>
|
||||||
|
</split>
|
||||||
|
</frame>
|
|
@ -0,0 +1,12 @@
|
||||||
|
<frame title="AutoAD">
|
||||||
|
<list>
|
||||||
|
<e>So lets combine both (Auto Anomaly Detection)</e>
|
||||||
|
<e>->Problem</e>
|
||||||
|
<l2st>
|
||||||
|
<e>AutoMl requires Evaluation (loss, accuracy, AUC) to optimize</e>
|
||||||
|
<e>AD can only be evaluated with regards to the anomalies</e>
|
||||||
|
<e>->no longer unsupervised</e>
|
||||||
|
</l2st>
|
||||||
|
<e>So most Anomaly Detection is ''unoptimized''</e>
|
||||||
|
</list>
|
||||||
|
</frame>
|
|
@ -0,0 +1,14 @@
|
||||||
|
<frame title="Solution 1 Metrics">
|
||||||
|
<split>
|
||||||
|
<que>
|
||||||
|
<list>
|
||||||
|
<e>So how to solve this?</e>
|
||||||
|
<e>One option: Think of some function to evaluate only the normal points</e>
|
||||||
|
<e>->A bit hard to do in a case study</e>
|
||||||
|
</list>
|
||||||
|
</que>
|
||||||
|
<que>
|
||||||
|
<i f="..//prep/08Solution_1_Metrics/circle2.pdf" wmode="True"></i>
|
||||||
|
</que>
|
||||||
|
</split>
|
||||||
|
</frame>
|
|
@ -0,0 +1,9 @@
|
||||||
|
<frame title="Solution 2 OneShot Learning">
|
||||||
|
<list>
|
||||||
|
<e>So how to solve this?</e>
|
||||||
|
<e>One option: ''Just find the best solution directly''</e>
|
||||||
|
<e>->Zero Shot AutoML</e>
|
||||||
|
<e>Find best practices for hyperparameters</e>
|
||||||
|
<e>Requires optimisation for each model seperately -> matches the case study structure quite well!</e>
|
||||||
|
</list>
|
||||||
|
</frame>
|
|
@ -0,0 +1,23 @@
|
||||||
|
<frame title="Course">
|
||||||
|
<split>
|
||||||
|
<que>
|
||||||
|
<list>
|
||||||
|
<e>Basics of Scientific Computing</e>
|
||||||
|
<e>Basics of AD</e>
|
||||||
|
<e>Basics of AutoML</e>
|
||||||
|
<e>Build groups for each algorithm</e>
|
||||||
|
<l2st>
|
||||||
|
<e>Choose a set of Hyperparameters</e>
|
||||||
|
<e>Find ''best practice`s'' for them</e>
|
||||||
|
<e>Maybe consider more complicated Transformations (Preprocessing, Ensemble)</e>
|
||||||
|
</l2st>
|
||||||
|
<e>Compare between groups (best algorithm for current situation)</e>
|
||||||
|
<e>Evaluate on new datasets</e>
|
||||||
|
<e>Write a report/Present your work</e>
|
||||||
|
</list>
|
||||||
|
</que>
|
||||||
|
<que>
|
||||||
|
<i f="..//prep/09Course/table.png" wmode="True"></i>
|
||||||
|
</que>
|
||||||
|
</split>
|
||||||
|
</frame>
|
|
@ -0,0 +1,10 @@
|
||||||
|
<frame title="Questions">
|
||||||
|
<list>
|
||||||
|
<e>Requirements:</e>
|
||||||
|
<l2st>
|
||||||
|
<e>MD Req 1->MD Req 8</e>
|
||||||
|
<e>Basic Python/Math Knowledge</e>
|
||||||
|
<e>Motivation to learn something new;)</e>
|
||||||
|
</l2st>
|
||||||
|
</list>
|
||||||
|
</frame>
|
|
@ -0,0 +1,12 @@
|
||||||
|
<plt>
|
||||||
|
|
||||||
|
<name Current experiment status>
|
||||||
|
<title Case Study - AutoML for Robust Anomaly Detection>
|
||||||
|
<stitle AutoML4Rad>
|
||||||
|
|
||||||
|
<institute ls9 tu Dortmund>
|
||||||
|
|
||||||
|
<theme CambridgeUS>
|
||||||
|
<colo dolphin>
|
||||||
|
|
||||||
|
</plt>
|
|
@ -0,0 +1 @@
|
||||||
|
Subproject commit 62ffd6ae589d7983791feea9d44d7658534d54a0
|
|
@ -0,0 +1,3 @@
|
||||||
|
pdflatex main.tex
|
||||||
|
pdflatex main.tex
|
||||||
|
|
|
@ -0,0 +1,3 @@
|
||||||
|
pdflatex main.tex
|
||||||
|
pdflatex main.tex
|
||||||
|
|
|
@ -0,0 +1,74 @@
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"typ": "img",
|
||||||
|
"files": [
|
||||||
|
"..//prep/01Anomaly_Detection/anomalies.pdf"
|
||||||
|
],
|
||||||
|
"label": "prep01Anomaly_Detectionanomaliespdf",
|
||||||
|
"caption": "",
|
||||||
|
"where": "../case1/data/001Anomaly Detection.txt"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"typ": "img",
|
||||||
|
"files": [
|
||||||
|
"..//prep/02Anomaly_Detection/difference.pdf"
|
||||||
|
],
|
||||||
|
"label": "prep02Anomaly_Detectiondifferencepdf",
|
||||||
|
"caption": "",
|
||||||
|
"where": "../case1/data/002Anomaly Detection.txt"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"typ": "img",
|
||||||
|
"files": [
|
||||||
|
"..//prep/03Anomaly_Detection/usup.pdf"
|
||||||
|
],
|
||||||
|
"label": "prep03Anomaly_Detectionusuppdf",
|
||||||
|
"caption": "",
|
||||||
|
"where": "../case1/data/003Anomaly Detection.txt"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"typ": "img",
|
||||||
|
"files": [
|
||||||
|
"..//prep/04Anomaly_Detection/circle.pdf"
|
||||||
|
],
|
||||||
|
"label": "prep04Anomaly_Detectioncirclepdf",
|
||||||
|
"caption": "",
|
||||||
|
"where": "../case1/data/004Anomaly Detection.txt"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"typ": "img",
|
||||||
|
"files": [
|
||||||
|
"..//prep/05Anomaly_Detection/anomaly_detection.png"
|
||||||
|
],
|
||||||
|
"label": "prep05Anomaly_Detectionanomaly_detectionpng",
|
||||||
|
"caption": "",
|
||||||
|
"where": "../case1/data/005Anomaly Detection.txt"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"typ": "img",
|
||||||
|
"files": [
|
||||||
|
"..//prep/06AutoML/Download.png"
|
||||||
|
],
|
||||||
|
"label": "prep06AutoMLDownloadpng",
|
||||||
|
"caption": "",
|
||||||
|
"where": "../case1/data/006AutoML.txt"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"typ": "img",
|
||||||
|
"files": [
|
||||||
|
"..//prep/08Solution_1_Metrics/circle2.pdf"
|
||||||
|
],
|
||||||
|
"label": "prep08Solution_1_Metricscircle2pdf",
|
||||||
|
"caption": "",
|
||||||
|
"where": "../case1/data/008Solution 1 Metrics.txt"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"typ": "img",
|
||||||
|
"files": [
|
||||||
|
"..//prep/09Course/table.png"
|
||||||
|
],
|
||||||
|
"label": "prep09Coursetablepng",
|
||||||
|
"caption": "",
|
||||||
|
"where": "../case1/data/010Course.txt"
|
||||||
|
}
|
||||||
|
]
|
|
@ -0,0 +1,108 @@
|
||||||
|
\relax
|
||||||
|
\providecommand\hyper@newdestlabel[2]{}
|
||||||
|
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
||||||
|
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
||||||
|
\global\let\oldcontentsline\contentsline
|
||||||
|
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
|
||||||
|
\global\let\oldnewlabel\newlabel
|
||||||
|
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
||||||
|
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
||||||
|
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
||||||
|
\let\contentsline\oldcontentsline
|
||||||
|
\let\newlabel\oldnewlabel
|
||||||
|
\fi}
|
||||||
|
\fi}
|
||||||
|
\global\let\hyper@last\relax
|
||||||
|
\gdef\HyperFirstAtBeginDocument#1{#1}
|
||||||
|
\providecommand\HyField@AuxAddToFields[1]{}
|
||||||
|
\providecommand\HyField@AuxAddToCoFields[2]{}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {1}{1}}}
|
||||||
|
\newlabel{Anomaly Detection<1>}{{2}{2}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Anomaly Detection<1>}{2}}
|
||||||
|
\newlabel{Anomaly Detection}{{2}{2}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Anomaly Detection}{2}}
|
||||||
|
\newlabel{fig:prep01Anomaly_Detectionanomaliespdf}{{2}{2}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {fig:prep01Anomaly_Detectionanomaliespdf}{2}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {2}{2}}}
|
||||||
|
\newlabel{Anomaly Detection<1>}{{3}{3}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Anomaly Detection<1>}{3}}
|
||||||
|
\newlabel{Anomaly Detection}{{3}{3}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Anomaly Detection}{3}}
|
||||||
|
\newlabel{fig:prep02Anomaly_Detectiondifferencepdf}{{3}{3}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {fig:prep02Anomaly_Detectiondifferencepdf}{3}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{3}{3/3}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {3}{3}}}
|
||||||
|
\newlabel{Anomaly Detection<1>}{{4}{4}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Anomaly Detection<1>}{4}}
|
||||||
|
\newlabel{Anomaly Detection}{{4}{4}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Anomaly Detection}{4}}
|
||||||
|
\newlabel{fig:prep03Anomaly_Detectionusuppdf}{{4}{4}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {fig:prep03Anomaly_Detectionusuppdf}{4}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{4}{4/4}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {4}{4}}}
|
||||||
|
\newlabel{Anomaly Detection<1>}{{5}{5}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Anomaly Detection<1>}{5}}
|
||||||
|
\newlabel{Anomaly Detection}{{5}{5}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Anomaly Detection}{5}}
|
||||||
|
\newlabel{fig:prep04Anomaly_Detectioncirclepdf}{{5}{5}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {fig:prep04Anomaly_Detectioncirclepdf}{5}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{5}{5/5}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {5}{5}}}
|
||||||
|
\newlabel{Anomaly Detection<1>}{{6}{6}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Anomaly Detection<1>}{6}}
|
||||||
|
\newlabel{Anomaly Detection}{{6}{6}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Anomaly Detection}{6}}
|
||||||
|
\newlabel{fig:prep05Anomaly_Detectionanomaly_detectionpng}{{6}{6}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {fig:prep05Anomaly_Detectionanomaly_detectionpng}{6}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{6}{6/6}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {6}{6}}}
|
||||||
|
\newlabel{AutoML<1>}{{7}{7}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {AutoML<1>}{7}}
|
||||||
|
\newlabel{AutoML}{{7}{7}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {AutoML}{7}}
|
||||||
|
\newlabel{fig:prep06AutoMLDownloadpng}{{7}{7}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {fig:prep06AutoMLDownloadpng}{7}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{7}{7/7}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {7}{7}}}
|
||||||
|
\newlabel{AutoAD<1>}{{8}{8}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {AutoAD<1>}{8}}
|
||||||
|
\newlabel{AutoAD}{{8}{8}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {AutoAD}{8}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{8}{8/8}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {8}{8}}}
|
||||||
|
\newlabel{Solution 1 Metrics<1>}{{9}{9}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Solution 1 Metrics<1>}{9}}
|
||||||
|
\newlabel{Solution 1 Metrics}{{9}{9}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Solution 1 Metrics}{9}}
|
||||||
|
\newlabel{fig:prep08Solution_1_Metricscircle2pdf}{{9}{9}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {fig:prep08Solution_1_Metricscircle2pdf}{9}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{9}{9/9}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {9}{9}}}
|
||||||
|
\newlabel{Solution 2 OneShot Learning<1>}{{10}{10}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Solution 2 OneShot Learning<1>}{10}}
|
||||||
|
\newlabel{Solution 2 OneShot Learning}{{10}{10}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Solution 2 OneShot Learning}{10}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{10}{10/10}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {10}{10}}}
|
||||||
|
\newlabel{Course<1>}{{11}{11}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Course<1>}{11}}
|
||||||
|
\newlabel{Course}{{11}{11}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Course}{11}}
|
||||||
|
\newlabel{fig:prep09Coursetablepng}{{11}{11}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {fig:prep09Coursetablepng}{11}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{11}{11/11}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {11}{11}}}
|
||||||
|
\newlabel{Questions<1>}{{12}{12}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Questions<1>}{12}}
|
||||||
|
\newlabel{Questions}{{12}{12}{}{Doc-Start}{}}
|
||||||
|
\@writefile{snm}{\beamer@slide {Questions}{12}}
|
||||||
|
\@writefile{nav}{\headcommand {\slideentry {0}{0}{12}{12/12}{}{0}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@framepages {12}{12}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@partpages {1}{12}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@subsectionpages {1}{12}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@sectionpages {1}{12}}}
|
||||||
|
\@writefile{nav}{\headcommand {\beamer@documentpages {12}}}
|
||||||
|
\@writefile{nav}{\headcommand {\gdef \inserttotalframenumber {12}}}
|
||||||
|
\gdef \@abspage@last{12}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,29 @@
|
||||||
|
\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {1}{1}}
|
||||||
|
\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {2}{2}}
|
||||||
|
\headcommand {\slideentry {0}{0}{3}{3/3}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {3}{3}}
|
||||||
|
\headcommand {\slideentry {0}{0}{4}{4/4}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {4}{4}}
|
||||||
|
\headcommand {\slideentry {0}{0}{5}{5/5}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {5}{5}}
|
||||||
|
\headcommand {\slideentry {0}{0}{6}{6/6}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {6}{6}}
|
||||||
|
\headcommand {\slideentry {0}{0}{7}{7/7}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {7}{7}}
|
||||||
|
\headcommand {\slideentry {0}{0}{8}{8/8}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {8}{8}}
|
||||||
|
\headcommand {\slideentry {0}{0}{9}{9/9}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {9}{9}}
|
||||||
|
\headcommand {\slideentry {0}{0}{10}{10/10}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {10}{10}}
|
||||||
|
\headcommand {\slideentry {0}{0}{11}{11/11}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {11}{11}}
|
||||||
|
\headcommand {\slideentry {0}{0}{12}{12/12}{}{0}}
|
||||||
|
\headcommand {\beamer@framepages {12}{12}}
|
||||||
|
\headcommand {\beamer@partpages {1}{12}}
|
||||||
|
\headcommand {\beamer@subsectionpages {1}{12}}
|
||||||
|
\headcommand {\beamer@sectionpages {1}{12}}
|
||||||
|
\headcommand {\beamer@documentpages {12}}
|
||||||
|
\headcommand {\gdef \inserttotalframenumber {12}}
|
Binary file not shown.
|
@ -0,0 +1,30 @@
|
||||||
|
\beamer@slide {Anomaly Detection<1>}{2}
|
||||||
|
\beamer@slide {Anomaly Detection}{2}
|
||||||
|
\beamer@slide {fig:prep01Anomaly_Detectionanomaliespdf}{2}
|
||||||
|
\beamer@slide {Anomaly Detection<1>}{3}
|
||||||
|
\beamer@slide {Anomaly Detection}{3}
|
||||||
|
\beamer@slide {fig:prep02Anomaly_Detectiondifferencepdf}{3}
|
||||||
|
\beamer@slide {Anomaly Detection<1>}{4}
|
||||||
|
\beamer@slide {Anomaly Detection}{4}
|
||||||
|
\beamer@slide {fig:prep03Anomaly_Detectionusuppdf}{4}
|
||||||
|
\beamer@slide {Anomaly Detection<1>}{5}
|
||||||
|
\beamer@slide {Anomaly Detection}{5}
|
||||||
|
\beamer@slide {fig:prep04Anomaly_Detectioncirclepdf}{5}
|
||||||
|
\beamer@slide {Anomaly Detection<1>}{6}
|
||||||
|
\beamer@slide {Anomaly Detection}{6}
|
||||||
|
\beamer@slide {fig:prep05Anomaly_Detectionanomaly_detectionpng}{6}
|
||||||
|
\beamer@slide {AutoML<1>}{7}
|
||||||
|
\beamer@slide {AutoML}{7}
|
||||||
|
\beamer@slide {fig:prep06AutoMLDownloadpng}{7}
|
||||||
|
\beamer@slide {AutoAD<1>}{8}
|
||||||
|
\beamer@slide {AutoAD}{8}
|
||||||
|
\beamer@slide {Solution 1 Metrics<1>}{9}
|
||||||
|
\beamer@slide {Solution 1 Metrics}{9}
|
||||||
|
\beamer@slide {fig:prep08Solution_1_Metricscircle2pdf}{9}
|
||||||
|
\beamer@slide {Solution 2 OneShot Learning<1>}{10}
|
||||||
|
\beamer@slide {Solution 2 OneShot Learning}{10}
|
||||||
|
\beamer@slide {Course<1>}{11}
|
||||||
|
\beamer@slide {Course}{11}
|
||||||
|
\beamer@slide {fig:prep09Coursetablepng}{11}
|
||||||
|
\beamer@slide {Questions<1>}{12}
|
||||||
|
\beamer@slide {Questions}{12}
|
|
@ -0,0 +1,515 @@
|
||||||
|
\UseRawInputEncoding
|
||||||
|
%\documentclass[hyperref={pdfpagelabels=false}]{beamer}
|
||||||
|
\documentclass[hyperref={pdfpagelabels=false},aspectratio=169]{beamer}
|
||||||
|
% Die Hyperref Option hyperref={pdfpagelabels=false} verhindert die Warnung:
|
||||||
|
% Package hyperref Warning: Option `pdfpagelabels' is turned off
|
||||||
|
% (hyperref) because \thepage is undefined.
|
||||||
|
% Hyperref stopped early
|
||||||
|
%
|
||||||
|
|
||||||
|
\usepackage{lmodern}
|
||||||
|
% Das Paket lmodern erspart die folgenden Warnungen:
|
||||||
|
% LaTeX Font Warning: Font shape `OT1/cmss/m/n' in size <4> not available
|
||||||
|
% (Font) size <5> substituted on input line 22.
|
||||||
|
% LaTeX Font Warning: Size substitutions with differences
|
||||||
|
% (Font) up to 1.0pt have occurred.
|
||||||
|
%
|
||||||
|
|
||||||
|
% Wenn \titel{\ldots} \author{\ldots} erst nach \begin{document} kommen,
|
||||||
|
% kommt folgende Warnung:
|
||||||
|
% Package hyperref Warning: Option `pdfauthor' has already been used,
|
||||||
|
% (hyperref) ...
|
||||||
|
% Daher steht es hier vor \begin{document}
|
||||||
|
|
||||||
|
\title[AutoML4Rad]{Case Study - AutoML for Robust Anomaly Detection}
|
||||||
|
\author{Simon Kluettermann}
|
||||||
|
\date{\today}
|
||||||
|
|
||||||
|
|
||||||
|
\institute{ls9 tu Dortmund}
|
||||||
|
|
||||||
|
|
||||||
|
% Dadurch wird verhindert, dass die Navigationsleiste angezeigt wird.
|
||||||
|
\setbeamertemplate{navigation symbols}{}
|
||||||
|
|
||||||
|
% zusaetzlich ist das usepackage{beamerthemeshadow} eingebunden
|
||||||
|
\usepackage{beamerthemeshadow}
|
||||||
|
|
||||||
|
\hypersetup{pdfstartview={Fit}} % fits the presentation to the window when first displayed
|
||||||
|
|
||||||
|
\usepackage{appendixnumberbeamer}
|
||||||
|
\usepackage{listings}
|
||||||
|
|
||||||
|
|
||||||
|
\usetheme{CambridgeUS}
|
||||||
|
\usepackage{ngerman}
|
||||||
|
\usecolortheme{dolphin}
|
||||||
|
|
||||||
|
|
||||||
|
% \beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2$\Rightarrow${15}}
|
||||||
|
% sorgt dafuer das die Elemente die erst noch (zukuenftig) kommen
|
||||||
|
% nur schwach angedeutet erscheinen
|
||||||
|
%\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2$\Rightarrow${15}}%here disabled
|
||||||
|
% klappt auch bei Tabellen, wenn teTeX verwendet wird\ldots
|
||||||
|
\renewcommand{\figurename}{}
|
||||||
|
|
||||||
|
\setbeamertemplate{footline}
|
||||||
|
{
|
||||||
|
\leavevmode%
|
||||||
|
\hbox{%
|
||||||
|
\begin{beamercolorbox}[wd=.4\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}%
|
||||||
|
\usebeamerfont{author in head/foot}\insertshorttitle
|
||||||
|
\end{beamercolorbox}%
|
||||||
|
\begin{beamercolorbox}[wd=.25\paperwidth,ht=2.25ex,dp=1ex,center]{title in head/foot}%
|
||||||
|
\usebeamerfont{title in head/foot}\insertsection
|
||||||
|
\end{beamercolorbox}%
|
||||||
|
\begin{beamercolorbox}[wd=.3499\paperwidth,ht=2.25ex,dp=1ex,right]{date in head/foot}%
|
||||||
|
\usebeamerfont{date in head/foot}\insertshortdate{}\hspace*{2em}
|
||||||
|
\hyperlink{toc}{\insertframenumber{} / \inserttotalframenumber\hspace*{2ex}}
|
||||||
|
\end{beamercolorbox}}%
|
||||||
|
\vskip0pt%
|
||||||
|
}
|
||||||
|
|
||||||
|
\usepackage[absolute,overlay]{textpos}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
|
||||||
|
\newcommand{\source}[1]{\begin{textblock*}{9cm}(0.1cm,8.9cm)
|
||||||
|
\begin{beamercolorbox}[ht=0.5cm,left]{framesource}
|
||||||
|
\usebeamerfont{framesource}\usebeamercolor[fg!66]{framesource} Source: {#1}
|
||||||
|
\end{beamercolorbox}
|
||||||
|
\end{textblock*}}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../case1/data/000.txt
|
||||||
|
\begin{frame}[label=]
|
||||||
|
\frametitle{}
|
||||||
|
\begin{titlepage}
|
||||||
|
|
||||||
|
\centering
|
||||||
|
{\huge\bfseries \par}
|
||||||
|
\vspace{2cm}
|
||||||
|
{\LARGE\itshape Simon Kluettermann\par}
|
||||||
|
\vspace{1.5cm}
|
||||||
|
{\scshape\Large Master Thesis in Physics\par}
|
||||||
|
\vspace{0.2cm}
|
||||||
|
{\Large submitted to the \par}
|
||||||
|
\vspace{0.2cm}
|
||||||
|
{\scshape\Large Faculty of Mathematics Computer Science and Natural Sciences \par}
|
||||||
|
\vspace{0.2cm}
|
||||||
|
{\Large \par}
|
||||||
|
\vspace{0.2cm}
|
||||||
|
{\scshape\Large RWTH Aachen University}
|
||||||
|
\vspace{1cm}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
{\scshape\Large Department of Physics\par}
|
||||||
|
\vspace{0.2cm}
|
||||||
|
{\scshape\Large Insitute for theoretical Particle Physics and Cosmology\par}
|
||||||
|
\vspace{0.2cm}
|
||||||
|
{ \Large\par}
|
||||||
|
\vspace{0.2cm}
|
||||||
|
{\Large First Referee: Prof. Dr. Michael Kraemer \par}
|
||||||
|
{\Large Second Referee: Prof. Dr. Felix Kahlhoefer}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
% Bottom of the page
|
||||||
|
{\large November 2020 \par}
|
||||||
|
\end{titlepage}
|
||||||
|
\pagenumbering{roman}
|
||||||
|
\thispagestyle{empty}
|
||||||
|
\null
|
||||||
|
\newpage
|
||||||
|
\setcounter{page}{1}
|
||||||
|
\pagenumbering{arabic}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../case1/data/001Anomaly Detection.txt
|
||||||
|
\begin{frame}[label=Anomaly Detection]
|
||||||
|
\frametitle{Anomaly Detection}
|
||||||
|
\begin{columns}[c] % align columns
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item Two distributions
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item One known (=normal)
|
||||||
|
|
||||||
|
\item One unknown (=anomalies)
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\item Seperate them
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.9\textwidth]{..//prep/01Anomaly_Detection/anomalies.pdf}
|
||||||
|
\label{fig:prep01Anomaly_Detectionanomaliespdf}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\end{columns}
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../case1/data/002Anomaly Detection.txt
|
||||||
|
\begin{frame}[label=Anomaly Detection]
|
||||||
|
\frametitle{Anomaly Detection}
|
||||||
|
\begin{columns}[c] % align columns
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item Two distributions
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item One known (=normal)
|
||||||
|
|
||||||
|
\item One unknown (=anomalies)
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\item Seperate them
|
||||||
|
|
||||||
|
\item Problem: few anomalies
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.9\textwidth]{..//prep/02Anomaly_Detection/difference.pdf}
|
||||||
|
\label{fig:prep02Anomaly_Detectiondifferencepdf}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\end{columns}
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../case1/data/003Anomaly Detection.txt
|
||||||
|
\begin{frame}[label=Anomaly Detection]
|
||||||
|
\frametitle{Anomaly Detection}
|
||||||
|
\begin{columns}[c] % align columns
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item Anomalies are rare, so often only a few datapoints known (e.g. Machine Failure in an Aircraft)
|
||||||
|
|
||||||
|
\item In practice, anomalies might appear that are not known during testing
|
||||||
|
|
||||||
|
\item $\Rightarrow$So train the model only on normal samples
|
||||||
|
|
||||||
|
\item Unsupervised Machine Learning
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item What can we say without knowing anomalies?
|
||||||
|
|
||||||
|
\item ''Understand you dataset''
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.9\textwidth]{..//prep/03Anomaly_Detection/usup.pdf}
|
||||||
|
\label{fig:prep03Anomaly_Detectionusuppdf}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\end{columns}
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../case1/data/004Anomaly Detection.txt
|
||||||
|
\begin{frame}[label=Anomaly Detection]
|
||||||
|
\frametitle{Anomaly Detection}
|
||||||
|
\begin{columns}[c] % align columns
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item Anomalies are rare, so often only a few datapoints known (e.g. Machine Failure in an Aircraft)
|
||||||
|
|
||||||
|
\item In practice, anomalies might appear that are not known during testing
|
||||||
|
|
||||||
|
\item $\Rightarrow$So train the model only on normal samples
|
||||||
|
|
||||||
|
\item Unsupervised Machine Learning
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item What can we say without knowing anomalies?
|
||||||
|
|
||||||
|
\item ''Understand you dataset''
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.9\textwidth]{..//prep/04Anomaly_Detection/circle.pdf}
|
||||||
|
\label{fig:prep04Anomaly_Detectioncirclepdf}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\end{columns}
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../case1/data/005Anomaly Detection.txt
|
||||||
|
\begin{frame}[label=Anomaly Detection]
|
||||||
|
\frametitle{Anomaly Detection}
|
||||||
|
\begin{columns}[c] % align columns
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item Seems easy? Now do this
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item in thousands of dimensions
|
||||||
|
|
||||||
|
\item with complicated distributions
|
||||||
|
|
||||||
|
\item and overlap between anomalies and normal points
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.9\textwidth]{..//prep/05Anomaly_Detection/anomaly_detection.png}
|
||||||
|
\label{fig:prep05Anomaly_Detectionanomaly_detectionpng}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\end{columns}
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../case1/data/006AutoML.txt
|
||||||
|
\begin{frame}[label=AutoML]
|
||||||
|
\frametitle{AutoML}
|
||||||
|
\begin{columns}[c] % align columns
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item Most machine learning requires Hyperparameter Optimisation
|
||||||
|
|
||||||
|
\item (Find model parameters that result in the best results)
|
||||||
|
|
||||||
|
\item $\Rightarrow$AutoML: Do this automatically as fast as possible
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.9\textwidth]{..//prep/06AutoML/Download.png}
|
||||||
|
\label{fig:prep06AutoMLDownloadpng}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\end{columns}
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../case1/data/007AutoAD.txt
|
||||||
|
\begin{frame}[label=AutoAD]
|
||||||
|
\frametitle{AutoAD}
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item So lets combine both (Auto Anomaly Detection)
|
||||||
|
|
||||||
|
\item $\Rightarrow$Problem
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item AutoMl requires Evaluation (loss, accuracy, AUC) to optimize
|
||||||
|
|
||||||
|
\item AD can only be evaluated with regards to the anomalies
|
||||||
|
|
||||||
|
\item $\Rightarrow$no longer unsupervised
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\item So most Anomaly Detection is ''unoptimized''
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../case1/data/008Solution 1 Metrics.txt
|
||||||
|
\begin{frame}[label=Solution 1 Metrics]
|
||||||
|
\frametitle{Solution 1 Metrics}
|
||||||
|
\begin{columns}[c] % align columns
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item So how to solve this?
|
||||||
|
|
||||||
|
\item One option: Think of some function to evaluate only the normal points
|
||||||
|
|
||||||
|
\item $\Rightarrow$A bit hard to do in a case study
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.9\textwidth]{..//prep/08Solution_1_Metrics/circle2.pdf}
|
||||||
|
\label{fig:prep08Solution_1_Metricscircle2pdf}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\end{columns}
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../case1/data/009Solution 2 OneShot Learning.txt
|
||||||
|
\begin{frame}[label=Solution 2 OneShot Learning]
|
||||||
|
\frametitle{Solution 2 OneShot Learning}
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item So how to solve this?
|
||||||
|
|
||||||
|
\item One option: ''Just find the best solution directly''
|
||||||
|
|
||||||
|
\item $\Rightarrow$Zero Shot AutoML
|
||||||
|
|
||||||
|
\item Find best practices for hyperparameters
|
||||||
|
|
||||||
|
\item Requires optimisation for each model seperately $\Rightarrow$ matches the case study structure quite well!
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../case1/data/010Course.txt
|
||||||
|
\begin{frame}[label=Course]
|
||||||
|
\frametitle{Course}
|
||||||
|
\begin{columns}[c] % align columns
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item Basics of Scientific Computing
|
||||||
|
|
||||||
|
\item Basics of AD
|
||||||
|
|
||||||
|
\item Basics of AutoML
|
||||||
|
|
||||||
|
\item Build groups for each algorithm
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item Choose a set of Hyperparameters
|
||||||
|
|
||||||
|
\item Find ''best practice`s'' for them
|
||||||
|
|
||||||
|
\item Maybe consider more complicated Transformations (Preprocessing, Ensemble)
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\item Compare between groups (best algorithm for current situation)
|
||||||
|
|
||||||
|
\item Evaluate on new datasets
|
||||||
|
|
||||||
|
\item Write a report/Present your work
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\begin{column}{0.48\textwidth}%.48
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.9\textwidth]{..//prep/09Course/table.png}
|
||||||
|
\label{fig:prep09Coursetablepng}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\end{column}%
|
||||||
|
\hfill%
|
||||||
|
\end{columns}
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
%from file ../case1/data/011Questions.txt
|
||||||
|
\begin{frame}[label=Questions]
|
||||||
|
\frametitle{Questions}
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item Requirements:
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item MD Req 1$\Rightarrow$MD Req 8
|
||||||
|
|
||||||
|
\item Basic Python/Math Knowledge
|
||||||
|
|
||||||
|
\item Motivation to learn something new;)
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\end{document}
|
|
@ -0,0 +1 @@
|
||||||
|
<titlepage>
|
Binary file not shown.
|
@ -0,0 +1,6 @@
|
||||||
|
Two distributions
|
||||||
|
<l2st>
|
||||||
|
One known (=normal)
|
||||||
|
One unknown (=anomalies)
|
||||||
|
</l2st>
|
||||||
|
Seperate them
|
Binary file not shown.
|
@ -0,0 +1,7 @@
|
||||||
|
Two distributions
|
||||||
|
<l2st>
|
||||||
|
One known (=normal)
|
||||||
|
One unknown (=anomalies)
|
||||||
|
</l2st>
|
||||||
|
Seperate them
|
||||||
|
Problem: few anomalies
|
|
@ -0,0 +1,8 @@
|
||||||
|
Anomalies are rare, so often only a few datapoints known (e.g. Machine Failure in an Aircraft)
|
||||||
|
In practice, anomalies might appear that are not known during testing
|
||||||
|
->So train the model only on normal samples
|
||||||
|
Unsupervised Machine Learning
|
||||||
|
<l2st>
|
||||||
|
What can we say without knowing anomalies?
|
||||||
|
''Understand you dataset''
|
||||||
|
</l2st>
|
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,8 @@
|
||||||
|
Anomalies are rare, so often only a few datapoints known (e.g. Machine Failure in an Aircraft)
|
||||||
|
In practice, anomalies might appear that are not known during testing
|
||||||
|
->So train the model only on normal samples
|
||||||
|
Unsupervised Machine Learning
|
||||||
|
<l2st>
|
||||||
|
What can we say without knowing anomalies?
|
||||||
|
''Understand you dataset''
|
||||||
|
</l2st>
|
Binary file not shown.
After Width: | Height: | Size: 648 KiB |
|
@ -0,0 +1,6 @@
|
||||||
|
Seems easy? Now do this
|
||||||
|
<l2st>
|
||||||
|
in thousands of dimensions
|
||||||
|
with complicated distributions
|
||||||
|
and overlap between anomalies and normal points
|
||||||
|
</l2st>
|
Binary file not shown.
After Width: | Height: | Size: 47 KiB |
|
@ -0,0 +1,3 @@
|
||||||
|
Most machine learning requires Hyperparameter Optimisation
|
||||||
|
(Find model parameters that result in the best results)
|
||||||
|
->AutoML: Do this automatically as fast as possible
|
|
@ -0,0 +1,9 @@
|
||||||
|
So lets combine both (Auto Anomaly Detection)
|
||||||
|
->Problem
|
||||||
|
<l2st>
|
||||||
|
AutoMl requires Evaluation (loss, accuracy, AUC) to optimize
|
||||||
|
AD can only be evaluated with regards to the anomalies
|
||||||
|
->no longer unsupervised
|
||||||
|
</l2st>
|
||||||
|
So most Anomaly Detection is ''unoptimized''
|
||||||
|
|
Binary file not shown.
|
@ -0,0 +1,3 @@
|
||||||
|
So how to solve this?
|
||||||
|
One option: Think of some function to evaluate only the normal points
|
||||||
|
->A bit hard to do in a case study
|
|
@ -0,0 +1,5 @@
|
||||||
|
So how to solve this?
|
||||||
|
One option: ''Just find the best solution directly''
|
||||||
|
->Zero Shot AutoML
|
||||||
|
Find best practices for hyperparameters
|
||||||
|
Requires optimisation for each model seperately -> matches the case study structure quite well!
|
|
@ -0,0 +1,12 @@
|
||||||
|
Basics of Scientific Computing
|
||||||
|
Basics of AD
|
||||||
|
Basics of AutoML
|
||||||
|
Build groups for each algorithm
|
||||||
|
<l2st>
|
||||||
|
Choose a set of Hyperparameters
|
||||||
|
Find ''best practice`s'' for them
|
||||||
|
Maybe consider more complicated Transformations (Preprocessing, Ensemble)
|
||||||
|
</l2st>
|
||||||
|
Compare between groups (best algorithm for current situation)
|
||||||
|
Evaluate on new datasets
|
||||||
|
Write a report/Present your work
|
Binary file not shown.
After Width: | Height: | Size: 80 KiB |
|
@ -0,0 +1,6 @@
|
||||||
|
Requirements:
|
||||||
|
<l2st>
|
||||||
|
MD Req 1->MD Req 8
|
||||||
|
Basic Python/Math Knowledge
|
||||||
|
Motivation to learn something new;)
|
||||||
|
</l2st>
|
Binary file not shown.
After Width: | Height: | Size: 20 KiB |
Binary file not shown.
After Width: | Height: | Size: 989 KiB |
Binary file not shown.
After Width: | Height: | Size: 265 KiB |
Loading…
Reference in New Issue