2021-09-14 20:17:38 +02:00
|
|
|
\begin{frame}
|
|
|
|
\frametitle{Topic 4: Density based Outlier Detection}
|
|
|
|
|
|
|
|
\Large \textbf{LOF: Identifying Density-Based Local Outliers} (Breunig et al, 2000)\\
|
|
|
|
\LARGE \textbf{Supervisor:} Daniel Wilmes (daniel.wilmes@cs.uni-dortmund.de)\\
|
|
|
|
|
2021-10-11 17:34:41 +02:00
|
|
|
%\begin{center}
|
|
|
|
%\includegraphics[height=3cm]{illustrations/daniel1.jpeg}
|
|
|
|
%\end{center}
|
|
|
|
|
|
|
|
\begin{columns}
|
|
|
|
\begin{column}{.675\textwidth}
|
|
|
|
\begin{center}
|
|
|
|
\includegraphics[height=3cm]{illustrations/daniel1.jpeg}
|
|
|
|
\end{center}
|
|
|
|
\end{column}
|
|
|
|
\begin{column}{.275\textwidth}
|
|
|
|
\begin{itemize}
|
|
|
|
\item Classical AD algorithm
|
|
|
|
\item Good for a less experienced student
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
\end{column}
|
|
|
|
\end{columns}
|
|
|
|
|
2021-09-14 20:17:38 +02:00
|
|
|
|
|
|
|
|
|
|
|
\end{frame}
|