RTSA-lab01-CacheAnalysis/include/AbstractState.h

193 lines
4.7 KiB
C++

#ifndef ABSSTATE_H
#define ABSSTATE_H
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <iostream>
#include <list>
#include <map>
#include <ostream>
#include <sstream>
#include <string>
#include <llvm/Support/raw_ostream.h>
#include "Address.h"
// Forward declarations
namespace cacheAnaPass {
class AbstractState;
} // namespace cacheAnaPass
class AbstractState {
public: // everything is public, because IDGAF
std::list<unsigned int> Successors;
std::list<unsigned int> Predecessors;
unsigned int Addr;
bool Computed = false;
// Only entries below this comment are needed for the exercise.
/**
* @brief Containing all Abstract Cache Tags.
* Key of the list has no Meaning.
*
*/
struct Entry {
std::list<unsigned int> Blocks;
};
/**
* @brief Cache Set, Key is the Age of the Entries.
*
*/
struct Set {
// uInt in this map is the Age.
std::map<unsigned int, Entry> Associativity;
};
/**
* @brief Cache Sets, key is the Set number [0-15], derived from Address.
*
*/
std::map<unsigned int, Set> Sets;
AbstractState(AbstractState const &Copy) {
for (auto S : Copy.Sets) {
unsigned int SetNr = S.first;
for (auto E : S.second.Associativity) {
unsigned int Age = E.first;
for (auto B : E.second.Blocks) {
Sets[SetNr].Associativity[Age].Blocks.push_back(B);
}
}
}
}
AbstractState() {}
AbstractState(unsigned int AddressIn) { Addr = AddressIn; }
AbstractState(Address Addr) {
Sets[Addr.Index].Associativity[0] = {{Addr.Tag}};
}
/**
* @brief Executes an Must LRU Join on the AbstractCacheState
*
* @param In, AbstractState that gets joined into the State.
*/
void mustJoin(AbstractState In) {
/**
* The exercise is to Fill this function with an LRU must Join.
* For this you need to use Sets. Associativity and Blocks.
*/
}
/**
* @brief Checks if Address Addr is in Cache
*
* @param Addr Address to check.
* @return true CacheState contains Address Addr
* @return false CacheState does not contain Address Addr
*/
bool isHit(Address Addr) {
for (auto E : Sets[Addr.Index].Associativity) {
for (auto B : E.second.Blocks) {
if (B == Addr.Tag)
return true;
}
}
return false;
}
/**
* @brief Updates the AbstractState with given Address
*
* @param Addr , Address
*/
void update(Address Addr) {
for (int I = 3; I > 0; I--) {
Sets[Addr.Index].Associativity[I] = Sets[Addr.Index].Associativity[I - 1];
}
Sets[Addr.Index].Associativity[0].Blocks = {Addr.Tag};
}
/**
* @brief Updates the AbstractState with given AbstractState
*
* @param UpdateState, State that gets merged into State with Age+1.
*/
void update(AbstractState UpdateState) {
for (auto S : UpdateState.Sets) {
unsigned int Index = S.first;
for (auto E : S.second.Associativity) {
unsigned int Age = E.first + 1;
// If updated age is greater 4 The Tag is no longer in Cache.
// Due to associativity of 4 per set.
if (Age >= 4)
break;
for (auto B : E.second.Blocks) {
Sets[Index].Associativity[Age].Blocks.push_back(B);
}
}
}
}
/**
* @brief Fills the AbstractState PreState and PreAddress.
*
* @param PreState, State that fills this state.
*
* @param PreAddr Address of PreState
*/
void fill(AbstractState PreState, Address PreAddr) {
for (auto S : PreState.Sets) {
unsigned int Index = S.first;
for (auto E : S.second.Associativity) {
unsigned int Age = E.first + 1;
// If updated age is greater 4 The Tag is no longer in Cache.
// Due to associativity of 4 per set.
if (Age >= 4)
break;
for (auto B : E.second.Blocks) {
Sets[Index].Associativity[Age].Blocks.push_back(B);
}
}
}
Sets[PreAddr.Index].Associativity[0].Blocks.push_back(PreAddr.Tag);
}
void dump() {
llvm::outs() << Addr << " {\n";
llvm::outs() << "Predecessors: ";
for (auto PreNr : Predecessors) {
llvm::outs() << PreNr << " ";
}
llvm::outs() << "\n";
llvm::outs() << "Successors: ";
for (auto SuccNr : Successors) {
llvm::outs() << SuccNr << " ";
}
llvm::outs() << "\n";
for (auto SetPair : Sets) {
llvm::outs() << "Set[" << SetPair.first << "]: \n";
for (auto EntryPair : SetPair.second.Associativity) {
llvm::outs() << " Age[" << EntryPair.first << "]: ";
for (auto Block : EntryPair.second.Blocks) {
llvm::outs() << Block << " ";
}
llvm::outs() << "\n";
}
}
llvm::outs() << "}\n";
}
}; // namespace
#endif // STATE_H