9066 lines
327 KiB
C++
9066 lines
327 KiB
C++
//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the X86 implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86InstrInfo.h"
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86InstrFoldTables.h"
|
|
#include "X86MachineFunctionInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/CodeGen/LivePhysRegs.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "x86-instr-info"
|
|
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#include "X86GenInstrInfo.inc"
|
|
|
|
static cl::opt<bool>
|
|
NoFusing("disable-spill-fusing",
|
|
cl::desc("Disable fusing of spill code into instructions"),
|
|
cl::Hidden);
|
|
static cl::opt<bool>
|
|
PrintFailedFusing("print-failed-fuse-candidates",
|
|
cl::desc("Print instructions that the allocator wants to"
|
|
" fuse, but the X86 backend currently can't"),
|
|
cl::Hidden);
|
|
static cl::opt<bool>
|
|
ReMatPICStubLoad("remat-pic-stub-load",
|
|
cl::desc("Re-materialize load from stub in PIC mode"),
|
|
cl::init(false), cl::Hidden);
|
|
static cl::opt<unsigned>
|
|
PartialRegUpdateClearance("partial-reg-update-clearance",
|
|
cl::desc("Clearance between two register writes "
|
|
"for inserting XOR to avoid partial "
|
|
"register update"),
|
|
cl::init(64), cl::Hidden);
|
|
static cl::opt<unsigned>
|
|
UndefRegClearance("undef-reg-clearance",
|
|
cl::desc("How many idle instructions we would like before "
|
|
"certain undef register reads"),
|
|
cl::init(128), cl::Hidden);
|
|
|
|
|
|
// Pin the vtable to this file.
|
|
void X86InstrInfo::anchor() {}
|
|
|
|
X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
|
|
: X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
|
|
: X86::ADJCALLSTACKDOWN32),
|
|
(STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
|
|
: X86::ADJCALLSTACKUP32),
|
|
X86::CATCHRET,
|
|
(STI.is64Bit() ? X86::RETQ : X86::RETL)),
|
|
Subtarget(STI), RI(STI.getTargetTriple()) {
|
|
}
|
|
|
|
bool
|
|
X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
|
|
Register &SrcReg, Register &DstReg,
|
|
unsigned &SubIdx) const {
|
|
switch (MI.getOpcode()) {
|
|
default: break;
|
|
case X86::MOVSX16rr8:
|
|
case X86::MOVZX16rr8:
|
|
case X86::MOVSX32rr8:
|
|
case X86::MOVZX32rr8:
|
|
case X86::MOVSX64rr8:
|
|
if (!Subtarget.is64Bit())
|
|
// It's not always legal to reference the low 8-bit of the larger
|
|
// register in 32-bit mode.
|
|
return false;
|
|
LLVM_FALLTHROUGH;
|
|
case X86::MOVSX32rr16:
|
|
case X86::MOVZX32rr16:
|
|
case X86::MOVSX64rr16:
|
|
case X86::MOVSX64rr32: {
|
|
if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
|
|
// Be conservative.
|
|
return false;
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
DstReg = MI.getOperand(0).getReg();
|
|
switch (MI.getOpcode()) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case X86::MOVSX16rr8:
|
|
case X86::MOVZX16rr8:
|
|
case X86::MOVSX32rr8:
|
|
case X86::MOVZX32rr8:
|
|
case X86::MOVSX64rr8:
|
|
SubIdx = X86::sub_8bit;
|
|
break;
|
|
case X86::MOVSX32rr16:
|
|
case X86::MOVZX32rr16:
|
|
case X86::MOVSX64rr16:
|
|
SubIdx = X86::sub_16bit;
|
|
break;
|
|
case X86::MOVSX64rr32:
|
|
SubIdx = X86::sub_32bit;
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
// By default, assume that the instruction is not data invariant.
|
|
return false;
|
|
|
|
// Some target-independent operations that trivially lower to data-invariant
|
|
// instructions.
|
|
case TargetOpcode::COPY:
|
|
case TargetOpcode::INSERT_SUBREG:
|
|
case TargetOpcode::SUBREG_TO_REG:
|
|
return true;
|
|
|
|
// On x86 it is believed that imul is constant time w.r.t. the loaded data.
|
|
// However, they set flags and are perhaps the most surprisingly constant
|
|
// time operations so we call them out here separately.
|
|
case X86::IMUL16rr:
|
|
case X86::IMUL16rri8:
|
|
case X86::IMUL16rri:
|
|
case X86::IMUL32rr:
|
|
case X86::IMUL32rri8:
|
|
case X86::IMUL32rri:
|
|
case X86::IMUL64rr:
|
|
case X86::IMUL64rri32:
|
|
case X86::IMUL64rri8:
|
|
|
|
// Bit scanning and counting instructions that are somewhat surprisingly
|
|
// constant time as they scan across bits and do other fairly complex
|
|
// operations like popcnt, but are believed to be constant time on x86.
|
|
// However, these set flags.
|
|
case X86::BSF16rr:
|
|
case X86::BSF32rr:
|
|
case X86::BSF64rr:
|
|
case X86::BSR16rr:
|
|
case X86::BSR32rr:
|
|
case X86::BSR64rr:
|
|
case X86::LZCNT16rr:
|
|
case X86::LZCNT32rr:
|
|
case X86::LZCNT64rr:
|
|
case X86::POPCNT16rr:
|
|
case X86::POPCNT32rr:
|
|
case X86::POPCNT64rr:
|
|
case X86::TZCNT16rr:
|
|
case X86::TZCNT32rr:
|
|
case X86::TZCNT64rr:
|
|
|
|
// Bit manipulation instructions are effectively combinations of basic
|
|
// arithmetic ops, and should still execute in constant time. These also
|
|
// set flags.
|
|
case X86::BLCFILL32rr:
|
|
case X86::BLCFILL64rr:
|
|
case X86::BLCI32rr:
|
|
case X86::BLCI64rr:
|
|
case X86::BLCIC32rr:
|
|
case X86::BLCIC64rr:
|
|
case X86::BLCMSK32rr:
|
|
case X86::BLCMSK64rr:
|
|
case X86::BLCS32rr:
|
|
case X86::BLCS64rr:
|
|
case X86::BLSFILL32rr:
|
|
case X86::BLSFILL64rr:
|
|
case X86::BLSI32rr:
|
|
case X86::BLSI64rr:
|
|
case X86::BLSIC32rr:
|
|
case X86::BLSIC64rr:
|
|
case X86::BLSMSK32rr:
|
|
case X86::BLSMSK64rr:
|
|
case X86::BLSR32rr:
|
|
case X86::BLSR64rr:
|
|
case X86::TZMSK32rr:
|
|
case X86::TZMSK64rr:
|
|
|
|
// Bit extracting and clearing instructions should execute in constant time,
|
|
// and set flags.
|
|
case X86::BEXTR32rr:
|
|
case X86::BEXTR64rr:
|
|
case X86::BEXTRI32ri:
|
|
case X86::BEXTRI64ri:
|
|
case X86::BZHI32rr:
|
|
case X86::BZHI64rr:
|
|
|
|
// Shift and rotate.
|
|
case X86::ROL8r1:
|
|
case X86::ROL16r1:
|
|
case X86::ROL32r1:
|
|
case X86::ROL64r1:
|
|
case X86::ROL8rCL:
|
|
case X86::ROL16rCL:
|
|
case X86::ROL32rCL:
|
|
case X86::ROL64rCL:
|
|
case X86::ROL8ri:
|
|
case X86::ROL16ri:
|
|
case X86::ROL32ri:
|
|
case X86::ROL64ri:
|
|
case X86::ROR8r1:
|
|
case X86::ROR16r1:
|
|
case X86::ROR32r1:
|
|
case X86::ROR64r1:
|
|
case X86::ROR8rCL:
|
|
case X86::ROR16rCL:
|
|
case X86::ROR32rCL:
|
|
case X86::ROR64rCL:
|
|
case X86::ROR8ri:
|
|
case X86::ROR16ri:
|
|
case X86::ROR32ri:
|
|
case X86::ROR64ri:
|
|
case X86::SAR8r1:
|
|
case X86::SAR16r1:
|
|
case X86::SAR32r1:
|
|
case X86::SAR64r1:
|
|
case X86::SAR8rCL:
|
|
case X86::SAR16rCL:
|
|
case X86::SAR32rCL:
|
|
case X86::SAR64rCL:
|
|
case X86::SAR8ri:
|
|
case X86::SAR16ri:
|
|
case X86::SAR32ri:
|
|
case X86::SAR64ri:
|
|
case X86::SHL8r1:
|
|
case X86::SHL16r1:
|
|
case X86::SHL32r1:
|
|
case X86::SHL64r1:
|
|
case X86::SHL8rCL:
|
|
case X86::SHL16rCL:
|
|
case X86::SHL32rCL:
|
|
case X86::SHL64rCL:
|
|
case X86::SHL8ri:
|
|
case X86::SHL16ri:
|
|
case X86::SHL32ri:
|
|
case X86::SHL64ri:
|
|
case X86::SHR8r1:
|
|
case X86::SHR16r1:
|
|
case X86::SHR32r1:
|
|
case X86::SHR64r1:
|
|
case X86::SHR8rCL:
|
|
case X86::SHR16rCL:
|
|
case X86::SHR32rCL:
|
|
case X86::SHR64rCL:
|
|
case X86::SHR8ri:
|
|
case X86::SHR16ri:
|
|
case X86::SHR32ri:
|
|
case X86::SHR64ri:
|
|
case X86::SHLD16rrCL:
|
|
case X86::SHLD32rrCL:
|
|
case X86::SHLD64rrCL:
|
|
case X86::SHLD16rri8:
|
|
case X86::SHLD32rri8:
|
|
case X86::SHLD64rri8:
|
|
case X86::SHRD16rrCL:
|
|
case X86::SHRD32rrCL:
|
|
case X86::SHRD64rrCL:
|
|
case X86::SHRD16rri8:
|
|
case X86::SHRD32rri8:
|
|
case X86::SHRD64rri8:
|
|
|
|
// Basic arithmetic is constant time on the input but does set flags.
|
|
case X86::ADC8rr:
|
|
case X86::ADC8ri:
|
|
case X86::ADC16rr:
|
|
case X86::ADC16ri:
|
|
case X86::ADC16ri8:
|
|
case X86::ADC32rr:
|
|
case X86::ADC32ri:
|
|
case X86::ADC32ri8:
|
|
case X86::ADC64rr:
|
|
case X86::ADC64ri8:
|
|
case X86::ADC64ri32:
|
|
case X86::ADD8rr:
|
|
case X86::ADD8ri:
|
|
case X86::ADD16rr:
|
|
case X86::ADD16ri:
|
|
case X86::ADD16ri8:
|
|
case X86::ADD32rr:
|
|
case X86::ADD32ri:
|
|
case X86::ADD32ri8:
|
|
case X86::ADD64rr:
|
|
case X86::ADD64ri8:
|
|
case X86::ADD64ri32:
|
|
case X86::AND8rr:
|
|
case X86::AND8ri:
|
|
case X86::AND16rr:
|
|
case X86::AND16ri:
|
|
case X86::AND16ri8:
|
|
case X86::AND32rr:
|
|
case X86::AND32ri:
|
|
case X86::AND32ri8:
|
|
case X86::AND64rr:
|
|
case X86::AND64ri8:
|
|
case X86::AND64ri32:
|
|
case X86::OR8rr:
|
|
case X86::OR8ri:
|
|
case X86::OR16rr:
|
|
case X86::OR16ri:
|
|
case X86::OR16ri8:
|
|
case X86::OR32rr:
|
|
case X86::OR32ri:
|
|
case X86::OR32ri8:
|
|
case X86::OR64rr:
|
|
case X86::OR64ri8:
|
|
case X86::OR64ri32:
|
|
case X86::SBB8rr:
|
|
case X86::SBB8ri:
|
|
case X86::SBB16rr:
|
|
case X86::SBB16ri:
|
|
case X86::SBB16ri8:
|
|
case X86::SBB32rr:
|
|
case X86::SBB32ri:
|
|
case X86::SBB32ri8:
|
|
case X86::SBB64rr:
|
|
case X86::SBB64ri8:
|
|
case X86::SBB64ri32:
|
|
case X86::SUB8rr:
|
|
case X86::SUB8ri:
|
|
case X86::SUB16rr:
|
|
case X86::SUB16ri:
|
|
case X86::SUB16ri8:
|
|
case X86::SUB32rr:
|
|
case X86::SUB32ri:
|
|
case X86::SUB32ri8:
|
|
case X86::SUB64rr:
|
|
case X86::SUB64ri8:
|
|
case X86::SUB64ri32:
|
|
case X86::XOR8rr:
|
|
case X86::XOR8ri:
|
|
case X86::XOR16rr:
|
|
case X86::XOR16ri:
|
|
case X86::XOR16ri8:
|
|
case X86::XOR32rr:
|
|
case X86::XOR32ri:
|
|
case X86::XOR32ri8:
|
|
case X86::XOR64rr:
|
|
case X86::XOR64ri8:
|
|
case X86::XOR64ri32:
|
|
// Arithmetic with just 32-bit and 64-bit variants and no immediates.
|
|
case X86::ADCX32rr:
|
|
case X86::ADCX64rr:
|
|
case X86::ADOX32rr:
|
|
case X86::ADOX64rr:
|
|
case X86::ANDN32rr:
|
|
case X86::ANDN64rr:
|
|
// Unary arithmetic operations.
|
|
case X86::DEC8r:
|
|
case X86::DEC16r:
|
|
case X86::DEC32r:
|
|
case X86::DEC64r:
|
|
case X86::INC8r:
|
|
case X86::INC16r:
|
|
case X86::INC32r:
|
|
case X86::INC64r:
|
|
case X86::NEG8r:
|
|
case X86::NEG16r:
|
|
case X86::NEG32r:
|
|
case X86::NEG64r:
|
|
|
|
// Unlike other arithmetic, NOT doesn't set EFLAGS.
|
|
case X86::NOT8r:
|
|
case X86::NOT16r:
|
|
case X86::NOT32r:
|
|
case X86::NOT64r:
|
|
|
|
// Various move instructions used to zero or sign extend things. Note that we
|
|
// intentionally don't support the _NOREX variants as we can't handle that
|
|
// register constraint anyways.
|
|
case X86::MOVSX16rr8:
|
|
case X86::MOVSX32rr8:
|
|
case X86::MOVSX32rr16:
|
|
case X86::MOVSX64rr8:
|
|
case X86::MOVSX64rr16:
|
|
case X86::MOVSX64rr32:
|
|
case X86::MOVZX16rr8:
|
|
case X86::MOVZX32rr8:
|
|
case X86::MOVZX32rr16:
|
|
case X86::MOVZX64rr8:
|
|
case X86::MOVZX64rr16:
|
|
case X86::MOV32rr:
|
|
|
|
// Arithmetic instructions that are both constant time and don't set flags.
|
|
case X86::RORX32ri:
|
|
case X86::RORX64ri:
|
|
case X86::SARX32rr:
|
|
case X86::SARX64rr:
|
|
case X86::SHLX32rr:
|
|
case X86::SHLX64rr:
|
|
case X86::SHRX32rr:
|
|
case X86::SHRX64rr:
|
|
|
|
// LEA doesn't actually access memory, and its arithmetic is constant time.
|
|
case X86::LEA16r:
|
|
case X86::LEA32r:
|
|
case X86::LEA64_32r:
|
|
case X86::LEA64r:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
// By default, assume that the load will immediately leak.
|
|
return false;
|
|
|
|
// On x86 it is believed that imul is constant time w.r.t. the loaded data.
|
|
// However, they set flags and are perhaps the most surprisingly constant
|
|
// time operations so we call them out here separately.
|
|
case X86::IMUL16rm:
|
|
case X86::IMUL16rmi8:
|
|
case X86::IMUL16rmi:
|
|
case X86::IMUL32rm:
|
|
case X86::IMUL32rmi8:
|
|
case X86::IMUL32rmi:
|
|
case X86::IMUL64rm:
|
|
case X86::IMUL64rmi32:
|
|
case X86::IMUL64rmi8:
|
|
|
|
// Bit scanning and counting instructions that are somewhat surprisingly
|
|
// constant time as they scan across bits and do other fairly complex
|
|
// operations like popcnt, but are believed to be constant time on x86.
|
|
// However, these set flags.
|
|
case X86::BSF16rm:
|
|
case X86::BSF32rm:
|
|
case X86::BSF64rm:
|
|
case X86::BSR16rm:
|
|
case X86::BSR32rm:
|
|
case X86::BSR64rm:
|
|
case X86::LZCNT16rm:
|
|
case X86::LZCNT32rm:
|
|
case X86::LZCNT64rm:
|
|
case X86::POPCNT16rm:
|
|
case X86::POPCNT32rm:
|
|
case X86::POPCNT64rm:
|
|
case X86::TZCNT16rm:
|
|
case X86::TZCNT32rm:
|
|
case X86::TZCNT64rm:
|
|
|
|
// Bit manipulation instructions are effectively combinations of basic
|
|
// arithmetic ops, and should still execute in constant time. These also
|
|
// set flags.
|
|
case X86::BLCFILL32rm:
|
|
case X86::BLCFILL64rm:
|
|
case X86::BLCI32rm:
|
|
case X86::BLCI64rm:
|
|
case X86::BLCIC32rm:
|
|
case X86::BLCIC64rm:
|
|
case X86::BLCMSK32rm:
|
|
case X86::BLCMSK64rm:
|
|
case X86::BLCS32rm:
|
|
case X86::BLCS64rm:
|
|
case X86::BLSFILL32rm:
|
|
case X86::BLSFILL64rm:
|
|
case X86::BLSI32rm:
|
|
case X86::BLSI64rm:
|
|
case X86::BLSIC32rm:
|
|
case X86::BLSIC64rm:
|
|
case X86::BLSMSK32rm:
|
|
case X86::BLSMSK64rm:
|
|
case X86::BLSR32rm:
|
|
case X86::BLSR64rm:
|
|
case X86::TZMSK32rm:
|
|
case X86::TZMSK64rm:
|
|
|
|
// Bit extracting and clearing instructions should execute in constant time,
|
|
// and set flags.
|
|
case X86::BEXTR32rm:
|
|
case X86::BEXTR64rm:
|
|
case X86::BEXTRI32mi:
|
|
case X86::BEXTRI64mi:
|
|
case X86::BZHI32rm:
|
|
case X86::BZHI64rm:
|
|
|
|
// Basic arithmetic is constant time on the input but does set flags.
|
|
case X86::ADC8rm:
|
|
case X86::ADC16rm:
|
|
case X86::ADC32rm:
|
|
case X86::ADC64rm:
|
|
case X86::ADCX32rm:
|
|
case X86::ADCX64rm:
|
|
case X86::ADD8rm:
|
|
case X86::ADD16rm:
|
|
case X86::ADD32rm:
|
|
case X86::ADD64rm:
|
|
case X86::ADOX32rm:
|
|
case X86::ADOX64rm:
|
|
case X86::AND8rm:
|
|
case X86::AND16rm:
|
|
case X86::AND32rm:
|
|
case X86::AND64rm:
|
|
case X86::ANDN32rm:
|
|
case X86::ANDN64rm:
|
|
case X86::OR8rm:
|
|
case X86::OR16rm:
|
|
case X86::OR32rm:
|
|
case X86::OR64rm:
|
|
case X86::SBB8rm:
|
|
case X86::SBB16rm:
|
|
case X86::SBB32rm:
|
|
case X86::SBB64rm:
|
|
case X86::SUB8rm:
|
|
case X86::SUB16rm:
|
|
case X86::SUB32rm:
|
|
case X86::SUB64rm:
|
|
case X86::XOR8rm:
|
|
case X86::XOR16rm:
|
|
case X86::XOR32rm:
|
|
case X86::XOR64rm:
|
|
|
|
// Integer multiply w/o affecting flags is still believed to be constant
|
|
// time on x86. Called out separately as this is among the most surprising
|
|
// instructions to exhibit that behavior.
|
|
case X86::MULX32rm:
|
|
case X86::MULX64rm:
|
|
|
|
// Arithmetic instructions that are both constant time and don't set flags.
|
|
case X86::RORX32mi:
|
|
case X86::RORX64mi:
|
|
case X86::SARX32rm:
|
|
case X86::SARX64rm:
|
|
case X86::SHLX32rm:
|
|
case X86::SHLX64rm:
|
|
case X86::SHRX32rm:
|
|
case X86::SHRX64rm:
|
|
|
|
// Conversions are believed to be constant time and don't set flags.
|
|
case X86::CVTTSD2SI64rm:
|
|
case X86::VCVTTSD2SI64rm:
|
|
case X86::VCVTTSD2SI64Zrm:
|
|
case X86::CVTTSD2SIrm:
|
|
case X86::VCVTTSD2SIrm:
|
|
case X86::VCVTTSD2SIZrm:
|
|
case X86::CVTTSS2SI64rm:
|
|
case X86::VCVTTSS2SI64rm:
|
|
case X86::VCVTTSS2SI64Zrm:
|
|
case X86::CVTTSS2SIrm:
|
|
case X86::VCVTTSS2SIrm:
|
|
case X86::VCVTTSS2SIZrm:
|
|
case X86::CVTSI2SDrm:
|
|
case X86::VCVTSI2SDrm:
|
|
case X86::VCVTSI2SDZrm:
|
|
case X86::CVTSI2SSrm:
|
|
case X86::VCVTSI2SSrm:
|
|
case X86::VCVTSI2SSZrm:
|
|
case X86::CVTSI642SDrm:
|
|
case X86::VCVTSI642SDrm:
|
|
case X86::VCVTSI642SDZrm:
|
|
case X86::CVTSI642SSrm:
|
|
case X86::VCVTSI642SSrm:
|
|
case X86::VCVTSI642SSZrm:
|
|
case X86::CVTSS2SDrm:
|
|
case X86::VCVTSS2SDrm:
|
|
case X86::VCVTSS2SDZrm:
|
|
case X86::CVTSD2SSrm:
|
|
case X86::VCVTSD2SSrm:
|
|
case X86::VCVTSD2SSZrm:
|
|
// AVX512 added unsigned integer conversions.
|
|
case X86::VCVTTSD2USI64Zrm:
|
|
case X86::VCVTTSD2USIZrm:
|
|
case X86::VCVTTSS2USI64Zrm:
|
|
case X86::VCVTTSS2USIZrm:
|
|
case X86::VCVTUSI2SDZrm:
|
|
case X86::VCVTUSI642SDZrm:
|
|
case X86::VCVTUSI2SSZrm:
|
|
case X86::VCVTUSI642SSZrm:
|
|
|
|
// Loads to register don't set flags.
|
|
case X86::MOV8rm:
|
|
case X86::MOV8rm_NOREX:
|
|
case X86::MOV16rm:
|
|
case X86::MOV32rm:
|
|
case X86::MOV64rm:
|
|
case X86::MOVSX16rm8:
|
|
case X86::MOVSX32rm16:
|
|
case X86::MOVSX32rm8:
|
|
case X86::MOVSX32rm8_NOREX:
|
|
case X86::MOVSX64rm16:
|
|
case X86::MOVSX64rm32:
|
|
case X86::MOVSX64rm8:
|
|
case X86::MOVZX16rm8:
|
|
case X86::MOVZX32rm16:
|
|
case X86::MOVZX32rm8:
|
|
case X86::MOVZX32rm8_NOREX:
|
|
case X86::MOVZX64rm16:
|
|
case X86::MOVZX64rm8:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
|
|
const MachineFunction *MF = MI.getParent()->getParent();
|
|
const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
|
|
|
|
if (isFrameInstr(MI)) {
|
|
int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
|
|
SPAdj -= getFrameAdjustment(MI);
|
|
if (!isFrameSetup(MI))
|
|
SPAdj = -SPAdj;
|
|
return SPAdj;
|
|
}
|
|
|
|
// To know whether a call adjusts the stack, we need information
|
|
// that is bound to the following ADJCALLSTACKUP pseudo.
|
|
// Look for the next ADJCALLSTACKUP that follows the call.
|
|
if (MI.isCall()) {
|
|
const MachineBasicBlock *MBB = MI.getParent();
|
|
auto I = ++MachineBasicBlock::const_iterator(MI);
|
|
for (auto E = MBB->end(); I != E; ++I) {
|
|
if (I->getOpcode() == getCallFrameDestroyOpcode() ||
|
|
I->isCall())
|
|
break;
|
|
}
|
|
|
|
// If we could not find a frame destroy opcode, then it has already
|
|
// been simplified, so we don't care.
|
|
if (I->getOpcode() != getCallFrameDestroyOpcode())
|
|
return 0;
|
|
|
|
return -(I->getOperand(1).getImm());
|
|
}
|
|
|
|
// Currently handle only PUSHes we can reasonably expect to see
|
|
// in call sequences
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return 0;
|
|
case X86::PUSH32i8:
|
|
case X86::PUSH32r:
|
|
case X86::PUSH32rmm:
|
|
case X86::PUSH32rmr:
|
|
case X86::PUSHi32:
|
|
return 4;
|
|
case X86::PUSH64i8:
|
|
case X86::PUSH64r:
|
|
case X86::PUSH64rmm:
|
|
case X86::PUSH64rmr:
|
|
case X86::PUSH64i32:
|
|
return 8;
|
|
}
|
|
}
|
|
|
|
/// Return true and the FrameIndex if the specified
|
|
/// operand and follow operands form a reference to the stack frame.
|
|
bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
|
|
int &FrameIndex) const {
|
|
if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
|
|
MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
|
|
MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
|
|
MI.getOperand(Op + X86::AddrDisp).isImm() &&
|
|
MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
|
|
MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
|
|
MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
|
|
FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
|
|
switch (Opcode) {
|
|
default:
|
|
return false;
|
|
case X86::MOV8rm:
|
|
case X86::KMOVBkm:
|
|
MemBytes = 1;
|
|
return true;
|
|
case X86::MOV16rm:
|
|
case X86::KMOVWkm:
|
|
MemBytes = 2;
|
|
return true;
|
|
case X86::MOV32rm:
|
|
case X86::MOVSSrm:
|
|
case X86::MOVSSrm_alt:
|
|
case X86::VMOVSSrm:
|
|
case X86::VMOVSSrm_alt:
|
|
case X86::VMOVSSZrm:
|
|
case X86::VMOVSSZrm_alt:
|
|
case X86::KMOVDkm:
|
|
MemBytes = 4;
|
|
return true;
|
|
case X86::MOV64rm:
|
|
case X86::LD_Fp64m:
|
|
case X86::MOVSDrm:
|
|
case X86::MOVSDrm_alt:
|
|
case X86::VMOVSDrm:
|
|
case X86::VMOVSDrm_alt:
|
|
case X86::VMOVSDZrm:
|
|
case X86::VMOVSDZrm_alt:
|
|
case X86::MMX_MOVD64rm:
|
|
case X86::MMX_MOVQ64rm:
|
|
case X86::KMOVQkm:
|
|
MemBytes = 8;
|
|
return true;
|
|
case X86::MOVAPSrm:
|
|
case X86::MOVUPSrm:
|
|
case X86::MOVAPDrm:
|
|
case X86::MOVUPDrm:
|
|
case X86::MOVDQArm:
|
|
case X86::MOVDQUrm:
|
|
case X86::VMOVAPSrm:
|
|
case X86::VMOVUPSrm:
|
|
case X86::VMOVAPDrm:
|
|
case X86::VMOVUPDrm:
|
|
case X86::VMOVDQArm:
|
|
case X86::VMOVDQUrm:
|
|
case X86::VMOVAPSZ128rm:
|
|
case X86::VMOVUPSZ128rm:
|
|
case X86::VMOVAPSZ128rm_NOVLX:
|
|
case X86::VMOVUPSZ128rm_NOVLX:
|
|
case X86::VMOVAPDZ128rm:
|
|
case X86::VMOVUPDZ128rm:
|
|
case X86::VMOVDQU8Z128rm:
|
|
case X86::VMOVDQU16Z128rm:
|
|
case X86::VMOVDQA32Z128rm:
|
|
case X86::VMOVDQU32Z128rm:
|
|
case X86::VMOVDQA64Z128rm:
|
|
case X86::VMOVDQU64Z128rm:
|
|
MemBytes = 16;
|
|
return true;
|
|
case X86::VMOVAPSYrm:
|
|
case X86::VMOVUPSYrm:
|
|
case X86::VMOVAPDYrm:
|
|
case X86::VMOVUPDYrm:
|
|
case X86::VMOVDQAYrm:
|
|
case X86::VMOVDQUYrm:
|
|
case X86::VMOVAPSZ256rm:
|
|
case X86::VMOVUPSZ256rm:
|
|
case X86::VMOVAPSZ256rm_NOVLX:
|
|
case X86::VMOVUPSZ256rm_NOVLX:
|
|
case X86::VMOVAPDZ256rm:
|
|
case X86::VMOVUPDZ256rm:
|
|
case X86::VMOVDQU8Z256rm:
|
|
case X86::VMOVDQU16Z256rm:
|
|
case X86::VMOVDQA32Z256rm:
|
|
case X86::VMOVDQU32Z256rm:
|
|
case X86::VMOVDQA64Z256rm:
|
|
case X86::VMOVDQU64Z256rm:
|
|
MemBytes = 32;
|
|
return true;
|
|
case X86::VMOVAPSZrm:
|
|
case X86::VMOVUPSZrm:
|
|
case X86::VMOVAPDZrm:
|
|
case X86::VMOVUPDZrm:
|
|
case X86::VMOVDQU8Zrm:
|
|
case X86::VMOVDQU16Zrm:
|
|
case X86::VMOVDQA32Zrm:
|
|
case X86::VMOVDQU32Zrm:
|
|
case X86::VMOVDQA64Zrm:
|
|
case X86::VMOVDQU64Zrm:
|
|
MemBytes = 64;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
|
|
switch (Opcode) {
|
|
default:
|
|
return false;
|
|
case X86::MOV8mr:
|
|
case X86::KMOVBmk:
|
|
MemBytes = 1;
|
|
return true;
|
|
case X86::MOV16mr:
|
|
case X86::KMOVWmk:
|
|
MemBytes = 2;
|
|
return true;
|
|
case X86::MOV32mr:
|
|
case X86::MOVSSmr:
|
|
case X86::VMOVSSmr:
|
|
case X86::VMOVSSZmr:
|
|
case X86::KMOVDmk:
|
|
MemBytes = 4;
|
|
return true;
|
|
case X86::MOV64mr:
|
|
case X86::ST_FpP64m:
|
|
case X86::MOVSDmr:
|
|
case X86::VMOVSDmr:
|
|
case X86::VMOVSDZmr:
|
|
case X86::MMX_MOVD64mr:
|
|
case X86::MMX_MOVQ64mr:
|
|
case X86::MMX_MOVNTQmr:
|
|
case X86::KMOVQmk:
|
|
MemBytes = 8;
|
|
return true;
|
|
case X86::MOVAPSmr:
|
|
case X86::MOVUPSmr:
|
|
case X86::MOVAPDmr:
|
|
case X86::MOVUPDmr:
|
|
case X86::MOVDQAmr:
|
|
case X86::MOVDQUmr:
|
|
case X86::VMOVAPSmr:
|
|
case X86::VMOVUPSmr:
|
|
case X86::VMOVAPDmr:
|
|
case X86::VMOVUPDmr:
|
|
case X86::VMOVDQAmr:
|
|
case X86::VMOVDQUmr:
|
|
case X86::VMOVUPSZ128mr:
|
|
case X86::VMOVAPSZ128mr:
|
|
case X86::VMOVUPSZ128mr_NOVLX:
|
|
case X86::VMOVAPSZ128mr_NOVLX:
|
|
case X86::VMOVUPDZ128mr:
|
|
case X86::VMOVAPDZ128mr:
|
|
case X86::VMOVDQA32Z128mr:
|
|
case X86::VMOVDQU32Z128mr:
|
|
case X86::VMOVDQA64Z128mr:
|
|
case X86::VMOVDQU64Z128mr:
|
|
case X86::VMOVDQU8Z128mr:
|
|
case X86::VMOVDQU16Z128mr:
|
|
MemBytes = 16;
|
|
return true;
|
|
case X86::VMOVUPSYmr:
|
|
case X86::VMOVAPSYmr:
|
|
case X86::VMOVUPDYmr:
|
|
case X86::VMOVAPDYmr:
|
|
case X86::VMOVDQUYmr:
|
|
case X86::VMOVDQAYmr:
|
|
case X86::VMOVUPSZ256mr:
|
|
case X86::VMOVAPSZ256mr:
|
|
case X86::VMOVUPSZ256mr_NOVLX:
|
|
case X86::VMOVAPSZ256mr_NOVLX:
|
|
case X86::VMOVUPDZ256mr:
|
|
case X86::VMOVAPDZ256mr:
|
|
case X86::VMOVDQU8Z256mr:
|
|
case X86::VMOVDQU16Z256mr:
|
|
case X86::VMOVDQA32Z256mr:
|
|
case X86::VMOVDQU32Z256mr:
|
|
case X86::VMOVDQA64Z256mr:
|
|
case X86::VMOVDQU64Z256mr:
|
|
MemBytes = 32;
|
|
return true;
|
|
case X86::VMOVUPSZmr:
|
|
case X86::VMOVAPSZmr:
|
|
case X86::VMOVUPDZmr:
|
|
case X86::VMOVAPDZmr:
|
|
case X86::VMOVDQU8Zmr:
|
|
case X86::VMOVDQU16Zmr:
|
|
case X86::VMOVDQA32Zmr:
|
|
case X86::VMOVDQU32Zmr:
|
|
case X86::VMOVDQA64Zmr:
|
|
case X86::VMOVDQU64Zmr:
|
|
MemBytes = 64;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
unsigned Dummy;
|
|
return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
|
|
}
|
|
|
|
unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex,
|
|
unsigned &MemBytes) const {
|
|
if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
|
|
if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
|
|
return MI.getOperand(0).getReg();
|
|
return 0;
|
|
}
|
|
|
|
unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
unsigned Dummy;
|
|
if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
|
|
unsigned Reg;
|
|
if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
|
|
return Reg;
|
|
// Check for post-frame index elimination operations
|
|
SmallVector<const MachineMemOperand *, 1> Accesses;
|
|
if (hasLoadFromStackSlot(MI, Accesses)) {
|
|
FrameIndex =
|
|
cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
|
|
->getFrameIndex();
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
unsigned Dummy;
|
|
return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
|
|
}
|
|
|
|
unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex,
|
|
unsigned &MemBytes) const {
|
|
if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
|
|
if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
|
|
isFrameOperand(MI, 0, FrameIndex))
|
|
return MI.getOperand(X86::AddrNumOperands).getReg();
|
|
return 0;
|
|
}
|
|
|
|
unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
unsigned Dummy;
|
|
if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
|
|
unsigned Reg;
|
|
if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
|
|
return Reg;
|
|
// Check for post-frame index elimination operations
|
|
SmallVector<const MachineMemOperand *, 1> Accesses;
|
|
if (hasStoreToStackSlot(MI, Accesses)) {
|
|
FrameIndex =
|
|
cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
|
|
->getFrameIndex();
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
|
|
static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
|
|
// Don't waste compile time scanning use-def chains of physregs.
|
|
if (!BaseReg.isVirtual())
|
|
return false;
|
|
bool isPICBase = false;
|
|
for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
|
|
E = MRI.def_instr_end(); I != E; ++I) {
|
|
MachineInstr *DefMI = &*I;
|
|
if (DefMI->getOpcode() != X86::MOVPC32r)
|
|
return false;
|
|
assert(!isPICBase && "More than one PIC base?");
|
|
isPICBase = true;
|
|
}
|
|
return isPICBase;
|
|
}
|
|
|
|
bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
|
|
AAResults *AA) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
// This function should only be called for opcodes with the ReMaterializable
|
|
// flag set.
|
|
llvm_unreachable("Unknown rematerializable operation!");
|
|
break;
|
|
|
|
case X86::LOAD_STACK_GUARD:
|
|
case X86::AVX1_SETALLONES:
|
|
case X86::AVX2_SETALLONES:
|
|
case X86::AVX512_128_SET0:
|
|
case X86::AVX512_256_SET0:
|
|
case X86::AVX512_512_SET0:
|
|
case X86::AVX512_512_SETALLONES:
|
|
case X86::AVX512_FsFLD0SD:
|
|
case X86::AVX512_FsFLD0SS:
|
|
case X86::AVX512_FsFLD0F128:
|
|
case X86::AVX_SET0:
|
|
case X86::FsFLD0SD:
|
|
case X86::FsFLD0SS:
|
|
case X86::FsFLD0F128:
|
|
case X86::KSET0D:
|
|
case X86::KSET0Q:
|
|
case X86::KSET0W:
|
|
case X86::KSET1D:
|
|
case X86::KSET1Q:
|
|
case X86::KSET1W:
|
|
case X86::MMX_SET0:
|
|
case X86::MOV32ImmSExti8:
|
|
case X86::MOV32r0:
|
|
case X86::MOV32r1:
|
|
case X86::MOV32r_1:
|
|
case X86::MOV32ri64:
|
|
case X86::MOV64ImmSExti8:
|
|
case X86::V_SET0:
|
|
case X86::V_SETALLONES:
|
|
case X86::MOV16ri:
|
|
case X86::MOV32ri:
|
|
case X86::MOV64ri:
|
|
case X86::MOV64ri32:
|
|
case X86::MOV8ri:
|
|
return true;
|
|
|
|
case X86::MOV8rm:
|
|
case X86::MOV8rm_NOREX:
|
|
case X86::MOV16rm:
|
|
case X86::MOV32rm:
|
|
case X86::MOV64rm:
|
|
case X86::MOVSSrm:
|
|
case X86::MOVSSrm_alt:
|
|
case X86::MOVSDrm:
|
|
case X86::MOVSDrm_alt:
|
|
case X86::MOVAPSrm:
|
|
case X86::MOVUPSrm:
|
|
case X86::MOVAPDrm:
|
|
case X86::MOVUPDrm:
|
|
case X86::MOVDQArm:
|
|
case X86::MOVDQUrm:
|
|
case X86::VMOVSSrm:
|
|
case X86::VMOVSSrm_alt:
|
|
case X86::VMOVSDrm:
|
|
case X86::VMOVSDrm_alt:
|
|
case X86::VMOVAPSrm:
|
|
case X86::VMOVUPSrm:
|
|
case X86::VMOVAPDrm:
|
|
case X86::VMOVUPDrm:
|
|
case X86::VMOVDQArm:
|
|
case X86::VMOVDQUrm:
|
|
case X86::VMOVAPSYrm:
|
|
case X86::VMOVUPSYrm:
|
|
case X86::VMOVAPDYrm:
|
|
case X86::VMOVUPDYrm:
|
|
case X86::VMOVDQAYrm:
|
|
case X86::VMOVDQUYrm:
|
|
case X86::MMX_MOVD64rm:
|
|
case X86::MMX_MOVQ64rm:
|
|
// AVX-512
|
|
case X86::VMOVSSZrm:
|
|
case X86::VMOVSSZrm_alt:
|
|
case X86::VMOVSDZrm:
|
|
case X86::VMOVSDZrm_alt:
|
|
case X86::VMOVAPDZ128rm:
|
|
case X86::VMOVAPDZ256rm:
|
|
case X86::VMOVAPDZrm:
|
|
case X86::VMOVAPSZ128rm:
|
|
case X86::VMOVAPSZ256rm:
|
|
case X86::VMOVAPSZ128rm_NOVLX:
|
|
case X86::VMOVAPSZ256rm_NOVLX:
|
|
case X86::VMOVAPSZrm:
|
|
case X86::VMOVDQA32Z128rm:
|
|
case X86::VMOVDQA32Z256rm:
|
|
case X86::VMOVDQA32Zrm:
|
|
case X86::VMOVDQA64Z128rm:
|
|
case X86::VMOVDQA64Z256rm:
|
|
case X86::VMOVDQA64Zrm:
|
|
case X86::VMOVDQU16Z128rm:
|
|
case X86::VMOVDQU16Z256rm:
|
|
case X86::VMOVDQU16Zrm:
|
|
case X86::VMOVDQU32Z128rm:
|
|
case X86::VMOVDQU32Z256rm:
|
|
case X86::VMOVDQU32Zrm:
|
|
case X86::VMOVDQU64Z128rm:
|
|
case X86::VMOVDQU64Z256rm:
|
|
case X86::VMOVDQU64Zrm:
|
|
case X86::VMOVDQU8Z128rm:
|
|
case X86::VMOVDQU8Z256rm:
|
|
case X86::VMOVDQU8Zrm:
|
|
case X86::VMOVUPDZ128rm:
|
|
case X86::VMOVUPDZ256rm:
|
|
case X86::VMOVUPDZrm:
|
|
case X86::VMOVUPSZ128rm:
|
|
case X86::VMOVUPSZ256rm:
|
|
case X86::VMOVUPSZ128rm_NOVLX:
|
|
case X86::VMOVUPSZ256rm_NOVLX:
|
|
case X86::VMOVUPSZrm: {
|
|
// Loads from constant pools are trivially rematerializable.
|
|
if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
|
|
MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
|
|
MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
|
|
MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
|
|
MI.isDereferenceableInvariantLoad(AA)) {
|
|
Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
|
|
if (BaseReg == 0 || BaseReg == X86::RIP)
|
|
return true;
|
|
// Allow re-materialization of PIC load.
|
|
if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
|
|
return false;
|
|
const MachineFunction &MF = *MI.getParent()->getParent();
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
return regIsPICBase(BaseReg, MRI);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case X86::LEA32r:
|
|
case X86::LEA64r: {
|
|
if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
|
|
MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
|
|
MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
|
|
!MI.getOperand(1 + X86::AddrDisp).isReg()) {
|
|
// lea fi#, lea GV, etc. are all rematerializable.
|
|
if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
|
|
return true;
|
|
Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
|
|
if (BaseReg == 0)
|
|
return true;
|
|
// Allow re-materialization of lea PICBase + x.
|
|
const MachineFunction &MF = *MI.getParent()->getParent();
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
return regIsPICBase(BaseReg, MRI);
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
Register DestReg, unsigned SubIdx,
|
|
const MachineInstr &Orig,
|
|
const TargetRegisterInfo &TRI) const {
|
|
bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
|
|
if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
|
|
MachineBasicBlock::LQR_Dead) {
|
|
// The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
|
|
// effects.
|
|
int Value;
|
|
switch (Orig.getOpcode()) {
|
|
case X86::MOV32r0: Value = 0; break;
|
|
case X86::MOV32r1: Value = 1; break;
|
|
case X86::MOV32r_1: Value = -1; break;
|
|
default:
|
|
llvm_unreachable("Unexpected instruction!");
|
|
}
|
|
|
|
const DebugLoc &DL = Orig.getDebugLoc();
|
|
BuildMI(MBB, I, DL, get(X86::MOV32ri))
|
|
.add(Orig.getOperand(0))
|
|
.addImm(Value);
|
|
} else {
|
|
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
|
|
MBB.insert(I, MI);
|
|
}
|
|
|
|
MachineInstr &NewMI = *std::prev(I);
|
|
NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
|
|
}
|
|
|
|
/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
|
|
bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (MO.isReg() && MO.isDef() &&
|
|
MO.getReg() == X86::EFLAGS && !MO.isDead()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check whether the shift count for a machine operand is non-zero.
|
|
inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
|
|
unsigned ShiftAmtOperandIdx) {
|
|
// The shift count is six bits with the REX.W prefix and five bits without.
|
|
unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
|
|
unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
|
|
return Imm & ShiftCountMask;
|
|
}
|
|
|
|
/// Check whether the given shift count is appropriate
|
|
/// can be represented by a LEA instruction.
|
|
inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
|
|
// Left shift instructions can be transformed into load-effective-address
|
|
// instructions if we can encode them appropriately.
|
|
// A LEA instruction utilizes a SIB byte to encode its scale factor.
|
|
// The SIB.scale field is two bits wide which means that we can encode any
|
|
// shift amount less than 4.
|
|
return ShAmt < 4 && ShAmt > 0;
|
|
}
|
|
|
|
bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
|
|
unsigned Opc, bool AllowSP, Register &NewSrc,
|
|
bool &isKill, MachineOperand &ImplicitOp,
|
|
LiveVariables *LV) const {
|
|
MachineFunction &MF = *MI.getParent()->getParent();
|
|
const TargetRegisterClass *RC;
|
|
if (AllowSP) {
|
|
RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
|
|
} else {
|
|
RC = Opc != X86::LEA32r ?
|
|
&X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
|
|
}
|
|
Register SrcReg = Src.getReg();
|
|
|
|
// For both LEA64 and LEA32 the register already has essentially the right
|
|
// type (32-bit or 64-bit) we may just need to forbid SP.
|
|
if (Opc != X86::LEA64_32r) {
|
|
NewSrc = SrcReg;
|
|
isKill = Src.isKill();
|
|
assert(!Src.isUndef() && "Undef op doesn't need optimization");
|
|
|
|
if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// This is for an LEA64_32r and incoming registers are 32-bit. One way or
|
|
// another we need to add 64-bit registers to the final MI.
|
|
if (SrcReg.isPhysical()) {
|
|
ImplicitOp = Src;
|
|
ImplicitOp.setImplicit();
|
|
|
|
NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
|
|
isKill = Src.isKill();
|
|
assert(!Src.isUndef() && "Undef op doesn't need optimization");
|
|
} else {
|
|
// Virtual register of the wrong class, we have to create a temporary 64-bit
|
|
// vreg to feed into the LEA.
|
|
NewSrc = MF.getRegInfo().createVirtualRegister(RC);
|
|
MachineInstr *Copy =
|
|
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
|
|
.addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
|
|
.add(Src);
|
|
|
|
// Which is obviously going to be dead after we're done with it.
|
|
isKill = true;
|
|
|
|
if (LV)
|
|
LV->replaceKillInstruction(SrcReg, MI, *Copy);
|
|
}
|
|
|
|
// We've set all the parameters without issue.
|
|
return true;
|
|
}
|
|
|
|
MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
|
|
unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
|
|
LiveVariables *LV, bool Is8BitOp) const {
|
|
// We handle 8-bit adds and various 16-bit opcodes in the switch below.
|
|
MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
|
|
assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
|
|
*RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
|
|
"Unexpected type for LEA transform");
|
|
|
|
// TODO: For a 32-bit target, we need to adjust the LEA variables with
|
|
// something like this:
|
|
// Opcode = X86::LEA32r;
|
|
// InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
|
|
// OutRegLEA =
|
|
// Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
|
|
// : RegInfo.createVirtualRegister(&X86::GR32RegClass);
|
|
if (!Subtarget.is64Bit())
|
|
return nullptr;
|
|
|
|
unsigned Opcode = X86::LEA64_32r;
|
|
Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
|
|
Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
|
|
|
|
// Build and insert into an implicit UNDEF value. This is OK because
|
|
// we will be shifting and then extracting the lower 8/16-bits.
|
|
// This has the potential to cause partial register stall. e.g.
|
|
// movw (%rbp,%rcx,2), %dx
|
|
// leal -65(%rdx), %esi
|
|
// But testing has shown this *does* help performance in 64-bit mode (at
|
|
// least on modern x86 machines).
|
|
MachineBasicBlock::iterator MBBI = MI.getIterator();
|
|
Register Dest = MI.getOperand(0).getReg();
|
|
Register Src = MI.getOperand(1).getReg();
|
|
bool IsDead = MI.getOperand(0).isDead();
|
|
bool IsKill = MI.getOperand(1).isKill();
|
|
unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
|
|
assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
|
|
BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
|
|
MachineInstr *InsMI =
|
|
BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
|
|
.addReg(InRegLEA, RegState::Define, SubReg)
|
|
.addReg(Src, getKillRegState(IsKill));
|
|
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
|
|
switch (MIOpc) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case X86::SHL8ri:
|
|
case X86::SHL16ri: {
|
|
unsigned ShAmt = MI.getOperand(2).getImm();
|
|
MIB.addReg(0).addImm(1ULL << ShAmt)
|
|
.addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
|
|
break;
|
|
}
|
|
case X86::INC8r:
|
|
case X86::INC16r:
|
|
addRegOffset(MIB, InRegLEA, true, 1);
|
|
break;
|
|
case X86::DEC8r:
|
|
case X86::DEC16r:
|
|
addRegOffset(MIB, InRegLEA, true, -1);
|
|
break;
|
|
case X86::ADD8ri:
|
|
case X86::ADD8ri_DB:
|
|
case X86::ADD16ri:
|
|
case X86::ADD16ri8:
|
|
case X86::ADD16ri_DB:
|
|
case X86::ADD16ri8_DB:
|
|
addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
|
|
break;
|
|
case X86::ADD8rr:
|
|
case X86::ADD8rr_DB:
|
|
case X86::ADD16rr:
|
|
case X86::ADD16rr_DB: {
|
|
Register Src2 = MI.getOperand(2).getReg();
|
|
bool IsKill2 = MI.getOperand(2).isKill();
|
|
assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
|
|
unsigned InRegLEA2 = 0;
|
|
MachineInstr *InsMI2 = nullptr;
|
|
if (Src == Src2) {
|
|
// ADD8rr/ADD16rr killed %reg1028, %reg1028
|
|
// just a single insert_subreg.
|
|
addRegReg(MIB, InRegLEA, true, InRegLEA, false);
|
|
} else {
|
|
if (Subtarget.is64Bit())
|
|
InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
|
|
else
|
|
InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
|
|
// Build and insert into an implicit UNDEF value. This is OK because
|
|
// we will be shifting and then extracting the lower 8/16-bits.
|
|
BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2);
|
|
InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
|
|
.addReg(InRegLEA2, RegState::Define, SubReg)
|
|
.addReg(Src2, getKillRegState(IsKill2));
|
|
addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
|
|
}
|
|
if (LV && IsKill2 && InsMI2)
|
|
LV->replaceKillInstruction(Src2, MI, *InsMI2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
MachineInstr *NewMI = MIB;
|
|
MachineInstr *ExtMI =
|
|
BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
|
|
.addReg(Dest, RegState::Define | getDeadRegState(IsDead))
|
|
.addReg(OutRegLEA, RegState::Kill, SubReg);
|
|
|
|
if (LV) {
|
|
// Update live variables.
|
|
LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
|
|
LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
|
|
if (IsKill)
|
|
LV->replaceKillInstruction(Src, MI, *InsMI);
|
|
if (IsDead)
|
|
LV->replaceKillInstruction(Dest, MI, *ExtMI);
|
|
}
|
|
|
|
return ExtMI;
|
|
}
|
|
|
|
/// This method must be implemented by targets that
|
|
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
|
|
/// may be able to convert a two-address instruction into a true
|
|
/// three-address instruction on demand. This allows the X86 target (for
|
|
/// example) to convert ADD and SHL instructions into LEA instructions if they
|
|
/// would require register copies due to two-addressness.
|
|
///
|
|
/// This method returns a null pointer if the transformation cannot be
|
|
/// performed, otherwise it returns the new instruction.
|
|
///
|
|
MachineInstr *
|
|
X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
|
|
MachineInstr &MI, LiveVariables *LV) const {
|
|
// The following opcodes also sets the condition code register(s). Only
|
|
// convert them to equivalent lea if the condition code register def's
|
|
// are dead!
|
|
if (hasLiveCondCodeDef(MI))
|
|
return nullptr;
|
|
|
|
MachineFunction &MF = *MI.getParent()->getParent();
|
|
// All instructions input are two-addr instructions. Get the known operands.
|
|
const MachineOperand &Dest = MI.getOperand(0);
|
|
const MachineOperand &Src = MI.getOperand(1);
|
|
|
|
// Ideally, operations with undef should be folded before we get here, but we
|
|
// can't guarantee it. Bail out because optimizing undefs is a waste of time.
|
|
// Without this, we have to forward undef state to new register operands to
|
|
// avoid machine verifier errors.
|
|
if (Src.isUndef())
|
|
return nullptr;
|
|
if (MI.getNumOperands() > 2)
|
|
if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
|
|
return nullptr;
|
|
|
|
MachineInstr *NewMI = nullptr;
|
|
bool Is64Bit = Subtarget.is64Bit();
|
|
|
|
bool Is8BitOp = false;
|
|
unsigned MIOpc = MI.getOpcode();
|
|
switch (MIOpc) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case X86::SHL64ri: {
|
|
assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
|
|
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
|
|
if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
|
|
|
|
// LEA can't handle RSP.
|
|
if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
|
|
Src.getReg(), &X86::GR64_NOSPRegClass))
|
|
return nullptr;
|
|
|
|
NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
|
|
.add(Dest)
|
|
.addReg(0)
|
|
.addImm(1ULL << ShAmt)
|
|
.add(Src)
|
|
.addImm(0)
|
|
.addReg(0);
|
|
break;
|
|
}
|
|
case X86::SHL32ri: {
|
|
assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
|
|
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
|
|
if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
|
|
|
|
unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
|
|
|
|
// LEA can't handle ESP.
|
|
bool isKill;
|
|
Register SrcReg;
|
|
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
|
|
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
|
|
SrcReg, isKill, ImplicitOp, LV))
|
|
return nullptr;
|
|
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MF, MI.getDebugLoc(), get(Opc))
|
|
.add(Dest)
|
|
.addReg(0)
|
|
.addImm(1ULL << ShAmt)
|
|
.addReg(SrcReg, getKillRegState(isKill))
|
|
.addImm(0)
|
|
.addReg(0);
|
|
if (ImplicitOp.getReg() != 0)
|
|
MIB.add(ImplicitOp);
|
|
NewMI = MIB;
|
|
|
|
break;
|
|
}
|
|
case X86::SHL8ri:
|
|
Is8BitOp = true;
|
|
LLVM_FALLTHROUGH;
|
|
case X86::SHL16ri: {
|
|
assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
|
|
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
|
|
if (!isTruncatedShiftCountForLEA(ShAmt))
|
|
return nullptr;
|
|
return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
|
|
}
|
|
case X86::INC64r:
|
|
case X86::INC32r: {
|
|
assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
|
|
unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
|
|
(Is64Bit ? X86::LEA64_32r : X86::LEA32r);
|
|
bool isKill;
|
|
Register SrcReg;
|
|
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
|
|
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
|
|
ImplicitOp, LV))
|
|
return nullptr;
|
|
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MF, MI.getDebugLoc(), get(Opc))
|
|
.add(Dest)
|
|
.addReg(SrcReg, getKillRegState(isKill));
|
|
if (ImplicitOp.getReg() != 0)
|
|
MIB.add(ImplicitOp);
|
|
|
|
NewMI = addOffset(MIB, 1);
|
|
break;
|
|
}
|
|
case X86::DEC64r:
|
|
case X86::DEC32r: {
|
|
assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
|
|
unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
|
|
: (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
|
|
|
|
bool isKill;
|
|
Register SrcReg;
|
|
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
|
|
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
|
|
ImplicitOp, LV))
|
|
return nullptr;
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
|
|
.add(Dest)
|
|
.addReg(SrcReg, getKillRegState(isKill));
|
|
if (ImplicitOp.getReg() != 0)
|
|
MIB.add(ImplicitOp);
|
|
|
|
NewMI = addOffset(MIB, -1);
|
|
|
|
break;
|
|
}
|
|
case X86::DEC8r:
|
|
case X86::INC8r:
|
|
Is8BitOp = true;
|
|
LLVM_FALLTHROUGH;
|
|
case X86::DEC16r:
|
|
case X86::INC16r:
|
|
return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
|
|
case X86::ADD64rr:
|
|
case X86::ADD64rr_DB:
|
|
case X86::ADD32rr:
|
|
case X86::ADD32rr_DB: {
|
|
assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
|
|
unsigned Opc;
|
|
if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
|
|
Opc = X86::LEA64r;
|
|
else
|
|
Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
|
|
|
|
bool isKill;
|
|
Register SrcReg;
|
|
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
|
|
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
|
|
SrcReg, isKill, ImplicitOp, LV))
|
|
return nullptr;
|
|
|
|
const MachineOperand &Src2 = MI.getOperand(2);
|
|
bool isKill2;
|
|
Register SrcReg2;
|
|
MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
|
|
if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
|
|
SrcReg2, isKill2, ImplicitOp2, LV))
|
|
return nullptr;
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
|
|
if (ImplicitOp.getReg() != 0)
|
|
MIB.add(ImplicitOp);
|
|
if (ImplicitOp2.getReg() != 0)
|
|
MIB.add(ImplicitOp2);
|
|
|
|
NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
|
|
if (LV && Src2.isKill())
|
|
LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
|
|
break;
|
|
}
|
|
case X86::ADD8rr:
|
|
case X86::ADD8rr_DB:
|
|
Is8BitOp = true;
|
|
LLVM_FALLTHROUGH;
|
|
case X86::ADD16rr:
|
|
case X86::ADD16rr_DB:
|
|
return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
|
|
case X86::ADD64ri32:
|
|
case X86::ADD64ri8:
|
|
case X86::ADD64ri32_DB:
|
|
case X86::ADD64ri8_DB:
|
|
assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
|
|
NewMI = addOffset(
|
|
BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
|
|
MI.getOperand(2));
|
|
break;
|
|
case X86::ADD32ri:
|
|
case X86::ADD32ri8:
|
|
case X86::ADD32ri_DB:
|
|
case X86::ADD32ri8_DB: {
|
|
assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
|
|
unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
|
|
|
|
bool isKill;
|
|
Register SrcReg;
|
|
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
|
|
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
|
|
SrcReg, isKill, ImplicitOp, LV))
|
|
return nullptr;
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
|
|
.add(Dest)
|
|
.addReg(SrcReg, getKillRegState(isKill));
|
|
if (ImplicitOp.getReg() != 0)
|
|
MIB.add(ImplicitOp);
|
|
|
|
NewMI = addOffset(MIB, MI.getOperand(2));
|
|
break;
|
|
}
|
|
case X86::ADD8ri:
|
|
case X86::ADD8ri_DB:
|
|
Is8BitOp = true;
|
|
LLVM_FALLTHROUGH;
|
|
case X86::ADD16ri:
|
|
case X86::ADD16ri8:
|
|
case X86::ADD16ri_DB:
|
|
case X86::ADD16ri8_DB:
|
|
return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
|
|
case X86::SUB8ri:
|
|
case X86::SUB16ri8:
|
|
case X86::SUB16ri:
|
|
/// FIXME: Support these similar to ADD8ri/ADD16ri*.
|
|
return nullptr;
|
|
case X86::SUB32ri8:
|
|
case X86::SUB32ri: {
|
|
if (!MI.getOperand(2).isImm())
|
|
return nullptr;
|
|
int64_t Imm = MI.getOperand(2).getImm();
|
|
if (!isInt<32>(-Imm))
|
|
return nullptr;
|
|
|
|
assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
|
|
unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
|
|
|
|
bool isKill;
|
|
Register SrcReg;
|
|
MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
|
|
if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
|
|
SrcReg, isKill, ImplicitOp, LV))
|
|
return nullptr;
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
|
|
.add(Dest)
|
|
.addReg(SrcReg, getKillRegState(isKill));
|
|
if (ImplicitOp.getReg() != 0)
|
|
MIB.add(ImplicitOp);
|
|
|
|
NewMI = addOffset(MIB, -Imm);
|
|
break;
|
|
}
|
|
|
|
case X86::SUB64ri8:
|
|
case X86::SUB64ri32: {
|
|
if (!MI.getOperand(2).isImm())
|
|
return nullptr;
|
|
int64_t Imm = MI.getOperand(2).getImm();
|
|
if (!isInt<32>(-Imm))
|
|
return nullptr;
|
|
|
|
assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
|
|
get(X86::LEA64r)).add(Dest).add(Src);
|
|
NewMI = addOffset(MIB, -Imm);
|
|
break;
|
|
}
|
|
|
|
case X86::VMOVDQU8Z128rmk:
|
|
case X86::VMOVDQU8Z256rmk:
|
|
case X86::VMOVDQU8Zrmk:
|
|
case X86::VMOVDQU16Z128rmk:
|
|
case X86::VMOVDQU16Z256rmk:
|
|
case X86::VMOVDQU16Zrmk:
|
|
case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
|
|
case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
|
|
case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk:
|
|
case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
|
|
case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
|
|
case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk:
|
|
case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk:
|
|
case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk:
|
|
case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk:
|
|
case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk:
|
|
case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk:
|
|
case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk:
|
|
case X86::VBROADCASTSDZ256rmk:
|
|
case X86::VBROADCASTSDZrmk:
|
|
case X86::VBROADCASTSSZ128rmk:
|
|
case X86::VBROADCASTSSZ256rmk:
|
|
case X86::VBROADCASTSSZrmk:
|
|
case X86::VPBROADCASTDZ128rmk:
|
|
case X86::VPBROADCASTDZ256rmk:
|
|
case X86::VPBROADCASTDZrmk:
|
|
case X86::VPBROADCASTQZ128rmk:
|
|
case X86::VPBROADCASTQZ256rmk:
|
|
case X86::VPBROADCASTQZrmk: {
|
|
unsigned Opc;
|
|
switch (MIOpc) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break;
|
|
case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break;
|
|
case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break;
|
|
case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
|
|
case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
|
|
case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break;
|
|
case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
|
|
case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
|
|
case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
|
|
case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
|
|
case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
|
|
case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
|
|
case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
|
|
case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
|
|
case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
|
|
case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
|
|
case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
|
|
case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
|
|
case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
|
|
case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
|
|
case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
|
|
case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
|
|
case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
|
|
case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
|
|
case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
|
|
case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
|
|
case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
|
|
case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
|
|
case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
|
|
case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
|
|
case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
|
|
case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break;
|
|
case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
|
|
case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
|
|
case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break;
|
|
case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
|
|
case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
|
|
case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break;
|
|
case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
|
|
case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
|
|
case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break;
|
|
}
|
|
|
|
NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
|
|
.add(Dest)
|
|
.add(MI.getOperand(2))
|
|
.add(Src)
|
|
.add(MI.getOperand(3))
|
|
.add(MI.getOperand(4))
|
|
.add(MI.getOperand(5))
|
|
.add(MI.getOperand(6))
|
|
.add(MI.getOperand(7));
|
|
break;
|
|
}
|
|
|
|
case X86::VMOVDQU8Z128rrk:
|
|
case X86::VMOVDQU8Z256rrk:
|
|
case X86::VMOVDQU8Zrrk:
|
|
case X86::VMOVDQU16Z128rrk:
|
|
case X86::VMOVDQU16Z256rrk:
|
|
case X86::VMOVDQU16Zrrk:
|
|
case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
|
|
case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
|
|
case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk:
|
|
case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
|
|
case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
|
|
case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk:
|
|
case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk:
|
|
case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk:
|
|
case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk:
|
|
case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk:
|
|
case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk:
|
|
case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: {
|
|
unsigned Opc;
|
|
switch (MIOpc) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break;
|
|
case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break;
|
|
case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break;
|
|
case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
|
|
case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
|
|
case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break;
|
|
case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
|
|
case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
|
|
case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
|
|
case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
|
|
case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
|
|
case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
|
|
case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
|
|
case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
|
|
case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
|
|
case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
|
|
case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
|
|
case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
|
|
case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
|
|
case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
|
|
case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
|
|
case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
|
|
case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
|
|
case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
|
|
case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
|
|
case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
|
|
case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
|
|
case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
|
|
case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
|
|
case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
|
|
}
|
|
|
|
NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
|
|
.add(Dest)
|
|
.add(MI.getOperand(2))
|
|
.add(Src)
|
|
.add(MI.getOperand(3));
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!NewMI) return nullptr;
|
|
|
|
if (LV) { // Update live variables
|
|
if (Src.isKill())
|
|
LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
|
|
if (Dest.isDead())
|
|
LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
|
|
}
|
|
|
|
MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
|
|
return NewMI;
|
|
}
|
|
|
|
/// This determines which of three possible cases of a three source commute
|
|
/// the source indexes correspond to taking into account any mask operands.
|
|
/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
|
|
/// possible.
|
|
/// Case 0 - Possible to commute the first and second operands.
|
|
/// Case 1 - Possible to commute the first and third operands.
|
|
/// Case 2 - Possible to commute the second and third operands.
|
|
static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
|
|
unsigned SrcOpIdx2) {
|
|
// Put the lowest index to SrcOpIdx1 to simplify the checks below.
|
|
if (SrcOpIdx1 > SrcOpIdx2)
|
|
std::swap(SrcOpIdx1, SrcOpIdx2);
|
|
|
|
unsigned Op1 = 1, Op2 = 2, Op3 = 3;
|
|
if (X86II::isKMasked(TSFlags)) {
|
|
Op2++;
|
|
Op3++;
|
|
}
|
|
|
|
if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
|
|
return 0;
|
|
if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
|
|
return 1;
|
|
if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
|
|
return 2;
|
|
llvm_unreachable("Unknown three src commute case.");
|
|
}
|
|
|
|
unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
|
|
const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
|
|
const X86InstrFMA3Group &FMA3Group) const {
|
|
|
|
unsigned Opc = MI.getOpcode();
|
|
|
|
// TODO: Commuting the 1st operand of FMA*_Int requires some additional
|
|
// analysis. The commute optimization is legal only if all users of FMA*_Int
|
|
// use only the lowest element of the FMA*_Int instruction. Such analysis are
|
|
// not implemented yet. So, just return 0 in that case.
|
|
// When such analysis are available this place will be the right place for
|
|
// calling it.
|
|
assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
|
|
"Intrinsic instructions can't commute operand 1");
|
|
|
|
// Determine which case this commute is or if it can't be done.
|
|
unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
|
|
SrcOpIdx2);
|
|
assert(Case < 3 && "Unexpected case number!");
|
|
|
|
// Define the FMA forms mapping array that helps to map input FMA form
|
|
// to output FMA form to preserve the operation semantics after
|
|
// commuting the operands.
|
|
const unsigned Form132Index = 0;
|
|
const unsigned Form213Index = 1;
|
|
const unsigned Form231Index = 2;
|
|
static const unsigned FormMapping[][3] = {
|
|
// 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
|
|
// FMA132 A, C, b; ==> FMA231 C, A, b;
|
|
// FMA213 B, A, c; ==> FMA213 A, B, c;
|
|
// FMA231 C, A, b; ==> FMA132 A, C, b;
|
|
{ Form231Index, Form213Index, Form132Index },
|
|
// 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
|
|
// FMA132 A, c, B; ==> FMA132 B, c, A;
|
|
// FMA213 B, a, C; ==> FMA231 C, a, B;
|
|
// FMA231 C, a, B; ==> FMA213 B, a, C;
|
|
{ Form132Index, Form231Index, Form213Index },
|
|
// 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
|
|
// FMA132 a, C, B; ==> FMA213 a, B, C;
|
|
// FMA213 b, A, C; ==> FMA132 b, C, A;
|
|
// FMA231 c, A, B; ==> FMA231 c, B, A;
|
|
{ Form213Index, Form132Index, Form231Index }
|
|
};
|
|
|
|
unsigned FMAForms[3];
|
|
FMAForms[0] = FMA3Group.get132Opcode();
|
|
FMAForms[1] = FMA3Group.get213Opcode();
|
|
FMAForms[2] = FMA3Group.get231Opcode();
|
|
unsigned FormIndex;
|
|
for (FormIndex = 0; FormIndex < 3; FormIndex++)
|
|
if (Opc == FMAForms[FormIndex])
|
|
break;
|
|
|
|
// Everything is ready, just adjust the FMA opcode and return it.
|
|
FormIndex = FormMapping[Case][FormIndex];
|
|
return FMAForms[FormIndex];
|
|
}
|
|
|
|
static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
|
|
unsigned SrcOpIdx2) {
|
|
// Determine which case this commute is or if it can't be done.
|
|
unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
|
|
SrcOpIdx2);
|
|
assert(Case < 3 && "Unexpected case value!");
|
|
|
|
// For each case we need to swap two pairs of bits in the final immediate.
|
|
static const uint8_t SwapMasks[3][4] = {
|
|
{ 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
|
|
{ 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
|
|
{ 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
|
|
};
|
|
|
|
uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
|
|
// Clear out the bits we are swapping.
|
|
uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
|
|
SwapMasks[Case][2] | SwapMasks[Case][3]);
|
|
// If the immediate had a bit of the pair set, then set the opposite bit.
|
|
if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
|
|
if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
|
|
if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
|
|
if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
|
|
MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
|
|
}
|
|
|
|
// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
|
|
// commuted.
|
|
static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
|
|
#define VPERM_CASES(Suffix) \
|
|
case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
|
|
case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
|
|
case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
|
|
case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
|
|
case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
|
|
case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
|
|
case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
|
|
case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
|
|
case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
|
|
case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
|
|
case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
|
|
case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
|
|
|
|
#define VPERM_CASES_BROADCAST(Suffix) \
|
|
VPERM_CASES(Suffix) \
|
|
case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
|
|
case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
|
|
case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
|
|
case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
|
|
case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
|
|
case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
|
|
|
|
switch (Opcode) {
|
|
default: return false;
|
|
VPERM_CASES(B)
|
|
VPERM_CASES_BROADCAST(D)
|
|
VPERM_CASES_BROADCAST(PD)
|
|
VPERM_CASES_BROADCAST(PS)
|
|
VPERM_CASES_BROADCAST(Q)
|
|
VPERM_CASES(W)
|
|
return true;
|
|
}
|
|
#undef VPERM_CASES_BROADCAST
|
|
#undef VPERM_CASES
|
|
}
|
|
|
|
// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
|
|
// from the I opcode to the T opcode and vice versa.
|
|
static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
|
|
#define VPERM_CASES(Orig, New) \
|
|
case X86::Orig##128rr: return X86::New##128rr; \
|
|
case X86::Orig##128rrkz: return X86::New##128rrkz; \
|
|
case X86::Orig##128rm: return X86::New##128rm; \
|
|
case X86::Orig##128rmkz: return X86::New##128rmkz; \
|
|
case X86::Orig##256rr: return X86::New##256rr; \
|
|
case X86::Orig##256rrkz: return X86::New##256rrkz; \
|
|
case X86::Orig##256rm: return X86::New##256rm; \
|
|
case X86::Orig##256rmkz: return X86::New##256rmkz; \
|
|
case X86::Orig##rr: return X86::New##rr; \
|
|
case X86::Orig##rrkz: return X86::New##rrkz; \
|
|
case X86::Orig##rm: return X86::New##rm; \
|
|
case X86::Orig##rmkz: return X86::New##rmkz;
|
|
|
|
#define VPERM_CASES_BROADCAST(Orig, New) \
|
|
VPERM_CASES(Orig, New) \
|
|
case X86::Orig##128rmb: return X86::New##128rmb; \
|
|
case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
|
|
case X86::Orig##256rmb: return X86::New##256rmb; \
|
|
case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
|
|
case X86::Orig##rmb: return X86::New##rmb; \
|
|
case X86::Orig##rmbkz: return X86::New##rmbkz;
|
|
|
|
switch (Opcode) {
|
|
VPERM_CASES(VPERMI2B, VPERMT2B)
|
|
VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
|
|
VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
|
|
VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
|
|
VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
|
|
VPERM_CASES(VPERMI2W, VPERMT2W)
|
|
VPERM_CASES(VPERMT2B, VPERMI2B)
|
|
VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
|
|
VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
|
|
VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
|
|
VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
|
|
VPERM_CASES(VPERMT2W, VPERMI2W)
|
|
}
|
|
|
|
llvm_unreachable("Unreachable!");
|
|
#undef VPERM_CASES_BROADCAST
|
|
#undef VPERM_CASES
|
|
}
|
|
|
|
MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
|
|
unsigned OpIdx1,
|
|
unsigned OpIdx2) const {
|
|
auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
|
|
if (NewMI)
|
|
return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
|
|
return MI;
|
|
};
|
|
|
|
switch (MI.getOpcode()) {
|
|
case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
|
|
case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
|
|
case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
|
|
case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
|
|
case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
|
|
case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
|
|
unsigned Opc;
|
|
unsigned Size;
|
|
switch (MI.getOpcode()) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
|
|
case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
|
|
case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
|
|
case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
|
|
case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
|
|
case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
|
|
}
|
|
unsigned Amt = MI.getOperand(3).getImm();
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.setDesc(get(Opc));
|
|
WorkingMI.getOperand(3).setImm(Size - Amt);
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case X86::PFSUBrr:
|
|
case X86::PFSUBRrr: {
|
|
// PFSUB x, y: x = x - y
|
|
// PFSUBR x, y: x = y - x
|
|
unsigned Opc =
|
|
(X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.setDesc(get(Opc));
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case X86::BLENDPDrri:
|
|
case X86::BLENDPSrri:
|
|
case X86::VBLENDPDrri:
|
|
case X86::VBLENDPSrri:
|
|
// If we're optimizing for size, try to use MOVSD/MOVSS.
|
|
if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
|
|
unsigned Mask, Opc;
|
|
switch (MI.getOpcode()) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break;
|
|
case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break;
|
|
case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
|
|
case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
|
|
}
|
|
if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.setDesc(get(Opc));
|
|
WorkingMI.RemoveOperand(3);
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
|
|
/*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
case X86::PBLENDWrri:
|
|
case X86::VBLENDPDYrri:
|
|
case X86::VBLENDPSYrri:
|
|
case X86::VPBLENDDrri:
|
|
case X86::VPBLENDWrri:
|
|
case X86::VPBLENDDYrri:
|
|
case X86::VPBLENDWYrri:{
|
|
int8_t Mask;
|
|
switch (MI.getOpcode()) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case X86::BLENDPDrri: Mask = (int8_t)0x03; break;
|
|
case X86::BLENDPSrri: Mask = (int8_t)0x0F; break;
|
|
case X86::PBLENDWrri: Mask = (int8_t)0xFF; break;
|
|
case X86::VBLENDPDrri: Mask = (int8_t)0x03; break;
|
|
case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break;
|
|
case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break;
|
|
case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break;
|
|
case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break;
|
|
case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break;
|
|
case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break;
|
|
case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break;
|
|
}
|
|
// Only the least significant bits of Imm are used.
|
|
// Using int8_t to ensure it will be sign extended to the int64_t that
|
|
// setImm takes in order to match isel behavior.
|
|
int8_t Imm = MI.getOperand(3).getImm() & Mask;
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.getOperand(3).setImm(Mask ^ Imm);
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case X86::INSERTPSrr:
|
|
case X86::VINSERTPSrr:
|
|
case X86::VINSERTPSZrr: {
|
|
unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
|
|
unsigned ZMask = Imm & 15;
|
|
unsigned DstIdx = (Imm >> 4) & 3;
|
|
unsigned SrcIdx = (Imm >> 6) & 3;
|
|
|
|
// We can commute insertps if we zero 2 of the elements, the insertion is
|
|
// "inline" and we don't override the insertion with a zero.
|
|
if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
|
|
countPopulation(ZMask) == 2) {
|
|
unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
|
|
assert(AltIdx < 4 && "Illegal insertion index");
|
|
unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
return nullptr;
|
|
}
|
|
case X86::MOVSDrr:
|
|
case X86::MOVSSrr:
|
|
case X86::VMOVSDrr:
|
|
case X86::VMOVSSrr:{
|
|
// On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
|
|
if (Subtarget.hasSSE41()) {
|
|
unsigned Mask, Opc;
|
|
switch (MI.getOpcode()) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break;
|
|
case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break;
|
|
case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
|
|
case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
|
|
}
|
|
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.setDesc(get(Opc));
|
|
WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
|
|
// Convert to SHUFPD.
|
|
assert(MI.getOpcode() == X86::MOVSDrr &&
|
|
"Can only commute MOVSDrr without SSE4.1");
|
|
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.setDesc(get(X86::SHUFPDrri));
|
|
WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case X86::SHUFPDrri: {
|
|
// Commute to MOVSD.
|
|
assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.setDesc(get(X86::MOVSDrr));
|
|
WorkingMI.RemoveOperand(3);
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case X86::PCLMULQDQrr:
|
|
case X86::VPCLMULQDQrr:
|
|
case X86::VPCLMULQDQYrr:
|
|
case X86::VPCLMULQDQZrr:
|
|
case X86::VPCLMULQDQZ128rr:
|
|
case X86::VPCLMULQDQZ256rr: {
|
|
// SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
|
|
// SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
|
|
unsigned Imm = MI.getOperand(3).getImm();
|
|
unsigned Src1Hi = Imm & 0x01;
|
|
unsigned Src2Hi = Imm & 0x10;
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri:
|
|
case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri:
|
|
case X86::VPCMPBZrri: case X86::VPCMPUBZrri:
|
|
case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri:
|
|
case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri:
|
|
case X86::VPCMPDZrri: case X86::VPCMPUDZrri:
|
|
case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri:
|
|
case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri:
|
|
case X86::VPCMPQZrri: case X86::VPCMPUQZrri:
|
|
case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri:
|
|
case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri:
|
|
case X86::VPCMPWZrri: case X86::VPCMPUWZrri:
|
|
case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
|
|
case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
|
|
case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik:
|
|
case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
|
|
case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
|
|
case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik:
|
|
case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
|
|
case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
|
|
case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik:
|
|
case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
|
|
case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
|
|
case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: {
|
|
// Flip comparison mode immediate (if necessary).
|
|
unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
|
|
Imm = X86::getSwappedVPCMPImm(Imm);
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case X86::VPCOMBri: case X86::VPCOMUBri:
|
|
case X86::VPCOMDri: case X86::VPCOMUDri:
|
|
case X86::VPCOMQri: case X86::VPCOMUQri:
|
|
case X86::VPCOMWri: case X86::VPCOMUWri: {
|
|
// Flip comparison mode immediate (if necessary).
|
|
unsigned Imm = MI.getOperand(3).getImm() & 0x7;
|
|
Imm = X86::getSwappedVPCOMImm(Imm);
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.getOperand(3).setImm(Imm);
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case X86::VCMPSDZrr:
|
|
case X86::VCMPSSZrr:
|
|
case X86::VCMPPDZrri:
|
|
case X86::VCMPPSZrri:
|
|
case X86::VCMPPDZ128rri:
|
|
case X86::VCMPPSZ128rri:
|
|
case X86::VCMPPDZ256rri:
|
|
case X86::VCMPPSZ256rri:
|
|
case X86::VCMPPDZrrik:
|
|
case X86::VCMPPSZrrik:
|
|
case X86::VCMPPDZ128rrik:
|
|
case X86::VCMPPSZ128rrik:
|
|
case X86::VCMPPDZ256rrik:
|
|
case X86::VCMPPSZ256rrik: {
|
|
unsigned Imm =
|
|
MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
|
|
Imm = X86::getSwappedVCMPImm(Imm);
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case X86::VPERM2F128rr:
|
|
case X86::VPERM2I128rr: {
|
|
// Flip permute source immediate.
|
|
// Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
|
|
// Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
|
|
int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case X86::MOVHLPSrr:
|
|
case X86::UNPCKHPDrr:
|
|
case X86::VMOVHLPSrr:
|
|
case X86::VUNPCKHPDrr:
|
|
case X86::VMOVHLPSZrr:
|
|
case X86::VUNPCKHPDZ128rr: {
|
|
assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
|
|
|
|
unsigned Opc = MI.getOpcode();
|
|
switch (Opc) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
|
|
case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
|
|
case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break;
|
|
case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break;
|
|
case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break;
|
|
case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break;
|
|
}
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.setDesc(get(Opc));
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: {
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
unsigned OpNo = MI.getDesc().getNumOperands() - 1;
|
|
X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
|
|
WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
|
|
case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
|
|
case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
|
|
case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
|
|
case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
|
|
case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
|
|
case X86::VPTERNLOGDZrrik:
|
|
case X86::VPTERNLOGDZ128rrik:
|
|
case X86::VPTERNLOGDZ256rrik:
|
|
case X86::VPTERNLOGQZrrik:
|
|
case X86::VPTERNLOGQZ128rrik:
|
|
case X86::VPTERNLOGQZ256rrik:
|
|
case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
|
|
case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
|
|
case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
|
|
case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
|
|
case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
|
|
case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
|
|
case X86::VPTERNLOGDZ128rmbi:
|
|
case X86::VPTERNLOGDZ256rmbi:
|
|
case X86::VPTERNLOGDZrmbi:
|
|
case X86::VPTERNLOGQZ128rmbi:
|
|
case X86::VPTERNLOGQZ256rmbi:
|
|
case X86::VPTERNLOGQZrmbi:
|
|
case X86::VPTERNLOGDZ128rmbikz:
|
|
case X86::VPTERNLOGDZ256rmbikz:
|
|
case X86::VPTERNLOGDZrmbikz:
|
|
case X86::VPTERNLOGQZ128rmbikz:
|
|
case X86::VPTERNLOGQZ256rmbikz:
|
|
case X86::VPTERNLOGQZrmbikz: {
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
default: {
|
|
if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
|
|
unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.setDesc(get(Opc));
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
|
|
const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
|
|
MI.getDesc().TSFlags);
|
|
if (FMA3Group) {
|
|
unsigned Opc =
|
|
getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.setDesc(get(Opc));
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
|
|
return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool
|
|
X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
|
|
unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2,
|
|
bool IsIntrinsic) const {
|
|
uint64_t TSFlags = MI.getDesc().TSFlags;
|
|
|
|
unsigned FirstCommutableVecOp = 1;
|
|
unsigned LastCommutableVecOp = 3;
|
|
unsigned KMaskOp = -1U;
|
|
if (X86II::isKMasked(TSFlags)) {
|
|
// For k-zero-masked operations it is Ok to commute the first vector
|
|
// operand. Unless this is an intrinsic instruction.
|
|
// For regular k-masked operations a conservative choice is done as the
|
|
// elements of the first vector operand, for which the corresponding bit
|
|
// in the k-mask operand is set to 0, are copied to the result of the
|
|
// instruction.
|
|
// TODO/FIXME: The commute still may be legal if it is known that the
|
|
// k-mask operand is set to either all ones or all zeroes.
|
|
// It is also Ok to commute the 1st operand if all users of MI use only
|
|
// the elements enabled by the k-mask operand. For example,
|
|
// v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
|
|
// : v1[i];
|
|
// VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
|
|
// // Ok, to commute v1 in FMADD213PSZrk.
|
|
|
|
// The k-mask operand has index = 2 for masked and zero-masked operations.
|
|
KMaskOp = 2;
|
|
|
|
// The operand with index = 1 is used as a source for those elements for
|
|
// which the corresponding bit in the k-mask is set to 0.
|
|
if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
|
|
FirstCommutableVecOp = 3;
|
|
|
|
LastCommutableVecOp++;
|
|
} else if (IsIntrinsic) {
|
|
// Commuting the first operand of an intrinsic instruction isn't possible
|
|
// unless we can prove that only the lowest element of the result is used.
|
|
FirstCommutableVecOp = 2;
|
|
}
|
|
|
|
if (isMem(MI, LastCommutableVecOp))
|
|
LastCommutableVecOp--;
|
|
|
|
// Only the first RegOpsNum operands are commutable.
|
|
// Also, the value 'CommuteAnyOperandIndex' is valid here as it means
|
|
// that the operand is not specified/fixed.
|
|
if (SrcOpIdx1 != CommuteAnyOperandIndex &&
|
|
(SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
|
|
SrcOpIdx1 == KMaskOp))
|
|
return false;
|
|
if (SrcOpIdx2 != CommuteAnyOperandIndex &&
|
|
(SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
|
|
SrcOpIdx2 == KMaskOp))
|
|
return false;
|
|
|
|
// Look for two different register operands assumed to be commutable
|
|
// regardless of the FMA opcode. The FMA opcode is adjusted later.
|
|
if (SrcOpIdx1 == CommuteAnyOperandIndex ||
|
|
SrcOpIdx2 == CommuteAnyOperandIndex) {
|
|
unsigned CommutableOpIdx2 = SrcOpIdx2;
|
|
|
|
// At least one of operands to be commuted is not specified and
|
|
// this method is free to choose appropriate commutable operands.
|
|
if (SrcOpIdx1 == SrcOpIdx2)
|
|
// Both of operands are not fixed. By default set one of commutable
|
|
// operands to the last register operand of the instruction.
|
|
CommutableOpIdx2 = LastCommutableVecOp;
|
|
else if (SrcOpIdx2 == CommuteAnyOperandIndex)
|
|
// Only one of operands is not fixed.
|
|
CommutableOpIdx2 = SrcOpIdx1;
|
|
|
|
// CommutableOpIdx2 is well defined now. Let's choose another commutable
|
|
// operand and assign its index to CommutableOpIdx1.
|
|
Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
|
|
|
|
unsigned CommutableOpIdx1;
|
|
for (CommutableOpIdx1 = LastCommutableVecOp;
|
|
CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
|
|
// Just ignore and skip the k-mask operand.
|
|
if (CommutableOpIdx1 == KMaskOp)
|
|
continue;
|
|
|
|
// The commuted operands must have different registers.
|
|
// Otherwise, the commute transformation does not change anything and
|
|
// is useless then.
|
|
if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
|
|
break;
|
|
}
|
|
|
|
// No appropriate commutable operands were found.
|
|
if (CommutableOpIdx1 < FirstCommutableVecOp)
|
|
return false;
|
|
|
|
// Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
|
|
// to return those values.
|
|
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
|
|
CommutableOpIdx1, CommutableOpIdx2))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
|
|
unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2) const {
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
if (!Desc.isCommutable())
|
|
return false;
|
|
|
|
switch (MI.getOpcode()) {
|
|
case X86::CMPSDrr:
|
|
case X86::CMPSSrr:
|
|
case X86::CMPPDrri:
|
|
case X86::CMPPSrri:
|
|
case X86::VCMPSDrr:
|
|
case X86::VCMPSSrr:
|
|
case X86::VCMPPDrri:
|
|
case X86::VCMPPSrri:
|
|
case X86::VCMPPDYrri:
|
|
case X86::VCMPPSYrri:
|
|
case X86::VCMPSDZrr:
|
|
case X86::VCMPSSZrr:
|
|
case X86::VCMPPDZrri:
|
|
case X86::VCMPPSZrri:
|
|
case X86::VCMPPDZ128rri:
|
|
case X86::VCMPPSZ128rri:
|
|
case X86::VCMPPDZ256rri:
|
|
case X86::VCMPPSZ256rri:
|
|
case X86::VCMPPDZrrik:
|
|
case X86::VCMPPSZrrik:
|
|
case X86::VCMPPDZ128rrik:
|
|
case X86::VCMPPSZ128rrik:
|
|
case X86::VCMPPDZ256rrik:
|
|
case X86::VCMPPSZ256rrik: {
|
|
unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
|
|
|
|
// Float comparison can be safely commuted for
|
|
// Ordered/Unordered/Equal/NotEqual tests
|
|
unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
|
|
switch (Imm) {
|
|
default:
|
|
// EVEX versions can be commuted.
|
|
if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
|
|
break;
|
|
return false;
|
|
case 0x00: // EQUAL
|
|
case 0x03: // UNORDERED
|
|
case 0x04: // NOT EQUAL
|
|
case 0x07: // ORDERED
|
|
break;
|
|
}
|
|
|
|
// The indices of the commutable operands are 1 and 2 (or 2 and 3
|
|
// when masked).
|
|
// Assign them to the returned operand indices here.
|
|
return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
|
|
2 + OpOffset);
|
|
}
|
|
case X86::MOVSSrr:
|
|
// X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
|
|
// form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
|
|
// AVX implies sse4.1.
|
|
if (Subtarget.hasSSE41())
|
|
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
|
|
return false;
|
|
case X86::SHUFPDrri:
|
|
// We can commute this to MOVSD.
|
|
if (MI.getOperand(3).getImm() == 0x02)
|
|
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
|
|
return false;
|
|
case X86::MOVHLPSrr:
|
|
case X86::UNPCKHPDrr:
|
|
case X86::VMOVHLPSrr:
|
|
case X86::VUNPCKHPDrr:
|
|
case X86::VMOVHLPSZrr:
|
|
case X86::VUNPCKHPDZ128rr:
|
|
if (Subtarget.hasSSE2())
|
|
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
|
|
return false;
|
|
case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
|
|
case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
|
|
case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
|
|
case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
|
|
case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
|
|
case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
|
|
case X86::VPTERNLOGDZrrik:
|
|
case X86::VPTERNLOGDZ128rrik:
|
|
case X86::VPTERNLOGDZ256rrik:
|
|
case X86::VPTERNLOGQZrrik:
|
|
case X86::VPTERNLOGQZ128rrik:
|
|
case X86::VPTERNLOGQZ256rrik:
|
|
case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
|
|
case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
|
|
case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
|
|
case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
|
|
case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
|
|
case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
|
|
case X86::VPTERNLOGDZ128rmbi:
|
|
case X86::VPTERNLOGDZ256rmbi:
|
|
case X86::VPTERNLOGDZrmbi:
|
|
case X86::VPTERNLOGQZ128rmbi:
|
|
case X86::VPTERNLOGQZ256rmbi:
|
|
case X86::VPTERNLOGQZrmbi:
|
|
case X86::VPTERNLOGDZ128rmbikz:
|
|
case X86::VPTERNLOGDZ256rmbikz:
|
|
case X86::VPTERNLOGDZrmbikz:
|
|
case X86::VPTERNLOGQZ128rmbikz:
|
|
case X86::VPTERNLOGQZ256rmbikz:
|
|
case X86::VPTERNLOGQZrmbikz:
|
|
return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
|
|
case X86::VPDPWSSDYrr:
|
|
case X86::VPDPWSSDrr:
|
|
case X86::VPDPWSSDSYrr:
|
|
case X86::VPDPWSSDSrr:
|
|
case X86::VPDPWSSDZ128r:
|
|
case X86::VPDPWSSDZ128rk:
|
|
case X86::VPDPWSSDZ128rkz:
|
|
case X86::VPDPWSSDZ256r:
|
|
case X86::VPDPWSSDZ256rk:
|
|
case X86::VPDPWSSDZ256rkz:
|
|
case X86::VPDPWSSDZr:
|
|
case X86::VPDPWSSDZrk:
|
|
case X86::VPDPWSSDZrkz:
|
|
case X86::VPDPWSSDSZ128r:
|
|
case X86::VPDPWSSDSZ128rk:
|
|
case X86::VPDPWSSDSZ128rkz:
|
|
case X86::VPDPWSSDSZ256r:
|
|
case X86::VPDPWSSDSZ256rk:
|
|
case X86::VPDPWSSDSZ256rkz:
|
|
case X86::VPDPWSSDSZr:
|
|
case X86::VPDPWSSDSZrk:
|
|
case X86::VPDPWSSDSZrkz:
|
|
case X86::VPMADD52HUQZ128r:
|
|
case X86::VPMADD52HUQZ128rk:
|
|
case X86::VPMADD52HUQZ128rkz:
|
|
case X86::VPMADD52HUQZ256r:
|
|
case X86::VPMADD52HUQZ256rk:
|
|
case X86::VPMADD52HUQZ256rkz:
|
|
case X86::VPMADD52HUQZr:
|
|
case X86::VPMADD52HUQZrk:
|
|
case X86::VPMADD52HUQZrkz:
|
|
case X86::VPMADD52LUQZ128r:
|
|
case X86::VPMADD52LUQZ128rk:
|
|
case X86::VPMADD52LUQZ128rkz:
|
|
case X86::VPMADD52LUQZ256r:
|
|
case X86::VPMADD52LUQZ256rk:
|
|
case X86::VPMADD52LUQZ256rkz:
|
|
case X86::VPMADD52LUQZr:
|
|
case X86::VPMADD52LUQZrk:
|
|
case X86::VPMADD52LUQZrkz: {
|
|
unsigned CommutableOpIdx1 = 2;
|
|
unsigned CommutableOpIdx2 = 3;
|
|
if (X86II::isKMasked(Desc.TSFlags)) {
|
|
// Skip the mask register.
|
|
++CommutableOpIdx1;
|
|
++CommutableOpIdx2;
|
|
}
|
|
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
|
|
CommutableOpIdx1, CommutableOpIdx2))
|
|
return false;
|
|
if (!MI.getOperand(SrcOpIdx1).isReg() ||
|
|
!MI.getOperand(SrcOpIdx2).isReg())
|
|
// No idea.
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
default:
|
|
const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
|
|
MI.getDesc().TSFlags);
|
|
if (FMA3Group)
|
|
return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
|
|
FMA3Group->isIntrinsic());
|
|
|
|
// Handled masked instructions since we need to skip over the mask input
|
|
// and the preserved input.
|
|
if (X86II::isKMasked(Desc.TSFlags)) {
|
|
// First assume that the first input is the mask operand and skip past it.
|
|
unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
|
|
unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
|
|
// Check if the first input is tied. If there isn't one then we only
|
|
// need to skip the mask operand which we did above.
|
|
if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
|
|
MCOI::TIED_TO) != -1)) {
|
|
// If this is zero masking instruction with a tied operand, we need to
|
|
// move the first index back to the first input since this must
|
|
// be a 3 input instruction and we want the first two non-mask inputs.
|
|
// Otherwise this is a 2 input instruction with a preserved input and
|
|
// mask, so we need to move the indices to skip one more input.
|
|
if (X86II::isKMergeMasked(Desc.TSFlags)) {
|
|
++CommutableOpIdx1;
|
|
++CommutableOpIdx2;
|
|
} else {
|
|
--CommutableOpIdx1;
|
|
}
|
|
}
|
|
|
|
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
|
|
CommutableOpIdx1, CommutableOpIdx2))
|
|
return false;
|
|
|
|
if (!MI.getOperand(SrcOpIdx1).isReg() ||
|
|
!MI.getOperand(SrcOpIdx2).isReg())
|
|
// No idea.
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default: return X86::COND_INVALID;
|
|
case X86::JCC_1:
|
|
return static_cast<X86::CondCode>(
|
|
MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
|
|
}
|
|
}
|
|
|
|
/// Return condition code of a SETCC opcode.
|
|
X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default: return X86::COND_INVALID;
|
|
case X86::SETCCr: case X86::SETCCm:
|
|
return static_cast<X86::CondCode>(
|
|
MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
|
|
}
|
|
}
|
|
|
|
/// Return condition code of a CMov opcode.
|
|
X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default: return X86::COND_INVALID;
|
|
case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
|
|
case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
|
|
return static_cast<X86::CondCode>(
|
|
MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
|
|
}
|
|
}
|
|
|
|
/// Return the inverse of the specified condition,
|
|
/// e.g. turning COND_E to COND_NE.
|
|
X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
|
|
switch (CC) {
|
|
default: llvm_unreachable("Illegal condition code!");
|
|
case X86::COND_E: return X86::COND_NE;
|
|
case X86::COND_NE: return X86::COND_E;
|
|
case X86::COND_L: return X86::COND_GE;
|
|
case X86::COND_LE: return X86::COND_G;
|
|
case X86::COND_G: return X86::COND_LE;
|
|
case X86::COND_GE: return X86::COND_L;
|
|
case X86::COND_B: return X86::COND_AE;
|
|
case X86::COND_BE: return X86::COND_A;
|
|
case X86::COND_A: return X86::COND_BE;
|
|
case X86::COND_AE: return X86::COND_B;
|
|
case X86::COND_S: return X86::COND_NS;
|
|
case X86::COND_NS: return X86::COND_S;
|
|
case X86::COND_P: return X86::COND_NP;
|
|
case X86::COND_NP: return X86::COND_P;
|
|
case X86::COND_O: return X86::COND_NO;
|
|
case X86::COND_NO: return X86::COND_O;
|
|
case X86::COND_NE_OR_P: return X86::COND_E_AND_NP;
|
|
case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
|
|
}
|
|
}
|
|
|
|
/// Assuming the flags are set by MI(a,b), return the condition code if we
|
|
/// modify the instructions such that flags are set by MI(b,a).
|
|
static X86::CondCode getSwappedCondition(X86::CondCode CC) {
|
|
switch (CC) {
|
|
default: return X86::COND_INVALID;
|
|
case X86::COND_E: return X86::COND_E;
|
|
case X86::COND_NE: return X86::COND_NE;
|
|
case X86::COND_L: return X86::COND_G;
|
|
case X86::COND_LE: return X86::COND_GE;
|
|
case X86::COND_G: return X86::COND_L;
|
|
case X86::COND_GE: return X86::COND_LE;
|
|
case X86::COND_B: return X86::COND_A;
|
|
case X86::COND_BE: return X86::COND_AE;
|
|
case X86::COND_A: return X86::COND_B;
|
|
case X86::COND_AE: return X86::COND_BE;
|
|
}
|
|
}
|
|
|
|
std::pair<X86::CondCode, bool>
|
|
X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
|
|
X86::CondCode CC = X86::COND_INVALID;
|
|
bool NeedSwap = false;
|
|
switch (Predicate) {
|
|
default: break;
|
|
// Floating-point Predicates
|
|
case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
|
|
case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH;
|
|
case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
|
|
case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH;
|
|
case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
|
|
case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH;
|
|
case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
|
|
case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH;
|
|
case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
|
|
case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
|
|
case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
|
|
case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
|
|
case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH;
|
|
case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
|
|
|
|
// Integer Predicates
|
|
case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
|
|
case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
|
|
case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
|
|
case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
|
|
case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
|
|
case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
|
|
case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
|
|
case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
|
|
case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
|
|
case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
|
|
}
|
|
|
|
return std::make_pair(CC, NeedSwap);
|
|
}
|
|
|
|
/// Return a setcc opcode based on whether it has memory operand.
|
|
unsigned X86::getSETOpc(bool HasMemoryOperand) {
|
|
return HasMemoryOperand ? X86::SETCCr : X86::SETCCm;
|
|
}
|
|
|
|
/// Return a cmov opcode for the given register size in bytes, and operand type.
|
|
unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
|
|
switch(RegBytes) {
|
|
default: llvm_unreachable("Illegal register size!");
|
|
case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
|
|
case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
|
|
case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
|
|
}
|
|
}
|
|
|
|
/// Get the VPCMP immediate for the given condition.
|
|
unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default: llvm_unreachable("Unexpected SETCC condition");
|
|
case ISD::SETNE: return 4;
|
|
case ISD::SETEQ: return 0;
|
|
case ISD::SETULT:
|
|
case ISD::SETLT: return 1;
|
|
case ISD::SETUGT:
|
|
case ISD::SETGT: return 6;
|
|
case ISD::SETUGE:
|
|
case ISD::SETGE: return 5;
|
|
case ISD::SETULE:
|
|
case ISD::SETLE: return 2;
|
|
}
|
|
}
|
|
|
|
/// Get the VPCMP immediate if the operands are swapped.
|
|
unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
|
|
switch (Imm) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case 0x01: Imm = 0x06; break; // LT -> NLE
|
|
case 0x02: Imm = 0x05; break; // LE -> NLT
|
|
case 0x05: Imm = 0x02; break; // NLT -> LE
|
|
case 0x06: Imm = 0x01; break; // NLE -> LT
|
|
case 0x00: // EQ
|
|
case 0x03: // FALSE
|
|
case 0x04: // NE
|
|
case 0x07: // TRUE
|
|
break;
|
|
}
|
|
|
|
return Imm;
|
|
}
|
|
|
|
/// Get the VPCOM immediate if the operands are swapped.
|
|
unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
|
|
switch (Imm) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case 0x00: Imm = 0x02; break; // LT -> GT
|
|
case 0x01: Imm = 0x03; break; // LE -> GE
|
|
case 0x02: Imm = 0x00; break; // GT -> LT
|
|
case 0x03: Imm = 0x01; break; // GE -> LE
|
|
case 0x04: // EQ
|
|
case 0x05: // NE
|
|
case 0x06: // FALSE
|
|
case 0x07: // TRUE
|
|
break;
|
|
}
|
|
|
|
return Imm;
|
|
}
|
|
|
|
/// Get the VCMP immediate if the operands are swapped.
|
|
unsigned X86::getSwappedVCMPImm(unsigned Imm) {
|
|
// Only need the lower 2 bits to distinquish.
|
|
switch (Imm & 0x3) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case 0x00: case 0x03:
|
|
// EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
|
|
break;
|
|
case 0x01: case 0x02:
|
|
// Need to toggle bits 3:0. Bit 4 stays the same.
|
|
Imm ^= 0xf;
|
|
break;
|
|
}
|
|
|
|
return Imm;
|
|
}
|
|
|
|
bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
|
|
switch (MI.getOpcode()) {
|
|
case X86::TCRETURNdi:
|
|
case X86::TCRETURNri:
|
|
case X86::TCRETURNmi:
|
|
case X86::TCRETURNdi64:
|
|
case X86::TCRETURNri64:
|
|
case X86::TCRETURNmi64:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool X86InstrInfo::canMakeTailCallConditional(
|
|
SmallVectorImpl<MachineOperand> &BranchCond,
|
|
const MachineInstr &TailCall) const {
|
|
if (TailCall.getOpcode() != X86::TCRETURNdi &&
|
|
TailCall.getOpcode() != X86::TCRETURNdi64) {
|
|
// Only direct calls can be done with a conditional branch.
|
|
return false;
|
|
}
|
|
|
|
const MachineFunction *MF = TailCall.getParent()->getParent();
|
|
if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
|
|
// Conditional tail calls confuse the Win64 unwinder.
|
|
return false;
|
|
}
|
|
|
|
assert(BranchCond.size() == 1);
|
|
if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
|
|
// Can't make a conditional tail call with this condition.
|
|
return false;
|
|
}
|
|
|
|
const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
|
|
if (X86FI->getTCReturnAddrDelta() != 0 ||
|
|
TailCall.getOperand(1).getImm() != 0) {
|
|
// A conditional tail call cannot do any stack adjustment.
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void X86InstrInfo::replaceBranchWithTailCall(
|
|
MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
|
|
const MachineInstr &TailCall) const {
|
|
assert(canMakeTailCallConditional(BranchCond, TailCall));
|
|
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
while (I != MBB.begin()) {
|
|
--I;
|
|
if (I->isDebugInstr())
|
|
continue;
|
|
if (!I->isBranch())
|
|
assert(0 && "Can't find the branch to replace!");
|
|
|
|
X86::CondCode CC = X86::getCondFromBranch(*I);
|
|
assert(BranchCond.size() == 1);
|
|
if (CC != BranchCond[0].getImm())
|
|
continue;
|
|
|
|
break;
|
|
}
|
|
|
|
unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
|
|
: X86::TCRETURNdi64cc;
|
|
|
|
auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
|
|
MIB->addOperand(TailCall.getOperand(0)); // Destination.
|
|
MIB.addImm(0); // Stack offset (not used).
|
|
MIB->addOperand(BranchCond[0]); // Condition.
|
|
MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
|
|
|
|
// Add implicit uses and defs of all live regs potentially clobbered by the
|
|
// call. This way they still appear live across the call.
|
|
LivePhysRegs LiveRegs(getRegisterInfo());
|
|
LiveRegs.addLiveOuts(MBB);
|
|
SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
|
|
LiveRegs.stepForward(*MIB, Clobbers);
|
|
for (const auto &C : Clobbers) {
|
|
MIB.addReg(C.first, RegState::Implicit);
|
|
MIB.addReg(C.first, RegState::Implicit | RegState::Define);
|
|
}
|
|
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
|
|
// not be a fallthrough MBB now due to layout changes). Return nullptr if the
|
|
// fallthrough MBB cannot be identified.
|
|
static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
|
|
MachineBasicBlock *TBB) {
|
|
// Look for non-EHPad successors other than TBB. If we find exactly one, it
|
|
// is the fallthrough MBB. If we find zero, then TBB is both the target MBB
|
|
// and fallthrough MBB. If we find more than one, we cannot identify the
|
|
// fallthrough MBB and should return nullptr.
|
|
MachineBasicBlock *FallthroughBB = nullptr;
|
|
for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
|
|
if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
|
|
continue;
|
|
// Return a nullptr if we found more than one fallthrough successor.
|
|
if (FallthroughBB && FallthroughBB != TBB)
|
|
return nullptr;
|
|
FallthroughBB = *SI;
|
|
}
|
|
return FallthroughBB;
|
|
}
|
|
|
|
bool X86InstrInfo::AnalyzeBranchImpl(
|
|
MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
|
|
|
|
// Start from the bottom of the block and work up, examining the
|
|
// terminator instructions.
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
MachineBasicBlock::iterator UnCondBrIter = MBB.end();
|
|
while (I != MBB.begin()) {
|
|
--I;
|
|
if (I->isDebugInstr())
|
|
continue;
|
|
|
|
// Working from the bottom, when we see a non-terminator instruction, we're
|
|
// done.
|
|
if (!isUnpredicatedTerminator(*I))
|
|
break;
|
|
|
|
// A terminator that isn't a branch can't easily be handled by this
|
|
// analysis.
|
|
if (!I->isBranch())
|
|
return true;
|
|
|
|
// Handle unconditional branches.
|
|
if (I->getOpcode() == X86::JMP_1) {
|
|
UnCondBrIter = I;
|
|
|
|
if (!AllowModify) {
|
|
TBB = I->getOperand(0).getMBB();
|
|
continue;
|
|
}
|
|
|
|
// If the block has any instructions after a JMP, delete them.
|
|
while (std::next(I) != MBB.end())
|
|
std::next(I)->eraseFromParent();
|
|
|
|
Cond.clear();
|
|
FBB = nullptr;
|
|
|
|
// Delete the JMP if it's equivalent to a fall-through.
|
|
if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
|
|
TBB = nullptr;
|
|
I->eraseFromParent();
|
|
I = MBB.end();
|
|
UnCondBrIter = MBB.end();
|
|
continue;
|
|
}
|
|
|
|
// TBB is used to indicate the unconditional destination.
|
|
TBB = I->getOperand(0).getMBB();
|
|
continue;
|
|
}
|
|
|
|
// Handle conditional branches.
|
|
X86::CondCode BranchCode = X86::getCondFromBranch(*I);
|
|
if (BranchCode == X86::COND_INVALID)
|
|
return true; // Can't handle indirect branch.
|
|
|
|
// In practice we should never have an undef eflags operand, if we do
|
|
// abort here as we are not prepared to preserve the flag.
|
|
if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
|
|
return true;
|
|
|
|
// Working from the bottom, handle the first conditional branch.
|
|
if (Cond.empty()) {
|
|
MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
|
|
if (AllowModify && UnCondBrIter != MBB.end() &&
|
|
MBB.isLayoutSuccessor(TargetBB)) {
|
|
// If we can modify the code and it ends in something like:
|
|
//
|
|
// jCC L1
|
|
// jmp L2
|
|
// L1:
|
|
// ...
|
|
// L2:
|
|
//
|
|
// Then we can change this to:
|
|
//
|
|
// jnCC L2
|
|
// L1:
|
|
// ...
|
|
// L2:
|
|
//
|
|
// Which is a bit more efficient.
|
|
// We conditionally jump to the fall-through block.
|
|
BranchCode = GetOppositeBranchCondition(BranchCode);
|
|
MachineBasicBlock::iterator OldInst = I;
|
|
|
|
BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
|
|
.addMBB(UnCondBrIter->getOperand(0).getMBB())
|
|
.addImm(BranchCode);
|
|
BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
|
|
.addMBB(TargetBB);
|
|
|
|
OldInst->eraseFromParent();
|
|
UnCondBrIter->eraseFromParent();
|
|
|
|
// Restart the analysis.
|
|
UnCondBrIter = MBB.end();
|
|
I = MBB.end();
|
|
continue;
|
|
}
|
|
|
|
FBB = TBB;
|
|
TBB = I->getOperand(0).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(BranchCode));
|
|
CondBranches.push_back(&*I);
|
|
continue;
|
|
}
|
|
|
|
// Handle subsequent conditional branches. Only handle the case where all
|
|
// conditional branches branch to the same destination and their condition
|
|
// opcodes fit one of the special multi-branch idioms.
|
|
assert(Cond.size() == 1);
|
|
assert(TBB);
|
|
|
|
// If the conditions are the same, we can leave them alone.
|
|
X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
|
|
auto NewTBB = I->getOperand(0).getMBB();
|
|
if (OldBranchCode == BranchCode && TBB == NewTBB)
|
|
continue;
|
|
|
|
// If they differ, see if they fit one of the known patterns. Theoretically,
|
|
// we could handle more patterns here, but we shouldn't expect to see them
|
|
// if instruction selection has done a reasonable job.
|
|
if (TBB == NewTBB &&
|
|
((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
|
|
(OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
|
|
BranchCode = X86::COND_NE_OR_P;
|
|
} else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
|
|
(OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
|
|
if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
|
|
return true;
|
|
|
|
// X86::COND_E_AND_NP usually has two different branch destinations.
|
|
//
|
|
// JP B1
|
|
// JE B2
|
|
// JMP B1
|
|
// B1:
|
|
// B2:
|
|
//
|
|
// Here this condition branches to B2 only if NP && E. It has another
|
|
// equivalent form:
|
|
//
|
|
// JNE B1
|
|
// JNP B2
|
|
// JMP B1
|
|
// B1:
|
|
// B2:
|
|
//
|
|
// Similarly it branches to B2 only if E && NP. That is why this condition
|
|
// is named with COND_E_AND_NP.
|
|
BranchCode = X86::COND_E_AND_NP;
|
|
} else
|
|
return true;
|
|
|
|
// Update the MachineOperand.
|
|
Cond[0].setImm(BranchCode);
|
|
CondBranches.push_back(&*I);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
SmallVector<MachineInstr *, 4> CondBranches;
|
|
return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
|
|
}
|
|
|
|
bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
|
|
MachineBranchPredicate &MBP,
|
|
bool AllowModify) const {
|
|
using namespace std::placeholders;
|
|
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
SmallVector<MachineInstr *, 4> CondBranches;
|
|
if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
|
|
AllowModify))
|
|
return true;
|
|
|
|
if (Cond.size() != 1)
|
|
return true;
|
|
|
|
assert(MBP.TrueDest && "expected!");
|
|
|
|
if (!MBP.FalseDest)
|
|
MBP.FalseDest = MBB.getNextNode();
|
|
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
|
|
MachineInstr *ConditionDef = nullptr;
|
|
bool SingleUseCondition = true;
|
|
|
|
for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
|
|
if (I->modifiesRegister(X86::EFLAGS, TRI)) {
|
|
ConditionDef = &*I;
|
|
break;
|
|
}
|
|
|
|
if (I->readsRegister(X86::EFLAGS, TRI))
|
|
SingleUseCondition = false;
|
|
}
|
|
|
|
if (!ConditionDef)
|
|
return true;
|
|
|
|
if (SingleUseCondition) {
|
|
for (auto *Succ : MBB.successors())
|
|
if (Succ->isLiveIn(X86::EFLAGS))
|
|
SingleUseCondition = false;
|
|
}
|
|
|
|
MBP.ConditionDef = ConditionDef;
|
|
MBP.SingleUseCondition = SingleUseCondition;
|
|
|
|
// Currently we only recognize the simple pattern:
|
|
//
|
|
// test %reg, %reg
|
|
// je %label
|
|
//
|
|
const unsigned TestOpcode =
|
|
Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
|
|
|
|
if (ConditionDef->getOpcode() == TestOpcode &&
|
|
ConditionDef->getNumOperands() == 3 &&
|
|
ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
|
|
(Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
|
|
MBP.LHS = ConditionDef->getOperand(0);
|
|
MBP.RHS = MachineOperand::CreateImm(0);
|
|
MBP.Predicate = Cond[0].getImm() == X86::COND_NE
|
|
? MachineBranchPredicate::PRED_NE
|
|
: MachineBranchPredicate::PRED_EQ;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
|
|
int *BytesRemoved) const {
|
|
assert(!BytesRemoved && "code size not handled");
|
|
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
unsigned Count = 0;
|
|
|
|
while (I != MBB.begin()) {
|
|
--I;
|
|
if (I->isDebugInstr())
|
|
continue;
|
|
if (I->getOpcode() != X86::JMP_1 &&
|
|
X86::getCondFromBranch(*I) == X86::COND_INVALID)
|
|
break;
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
I = MBB.end();
|
|
++Count;
|
|
}
|
|
|
|
return Count;
|
|
}
|
|
|
|
unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
ArrayRef<MachineOperand> Cond,
|
|
const DebugLoc &DL,
|
|
int *BytesAdded) const {
|
|
// Shouldn't be a fall through.
|
|
assert(TBB && "insertBranch must not be told to insert a fallthrough");
|
|
assert((Cond.size() == 1 || Cond.size() == 0) &&
|
|
"X86 branch conditions have one component!");
|
|
assert(!BytesAdded && "code size not handled");
|
|
|
|
if (Cond.empty()) {
|
|
// Unconditional branch?
|
|
assert(!FBB && "Unconditional branch with multiple successors!");
|
|
BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
|
|
return 1;
|
|
}
|
|
|
|
// If FBB is null, it is implied to be a fall-through block.
|
|
bool FallThru = FBB == nullptr;
|
|
|
|
// Conditional branch.
|
|
unsigned Count = 0;
|
|
X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
|
|
switch (CC) {
|
|
case X86::COND_NE_OR_P:
|
|
// Synthesize NE_OR_P with two branches.
|
|
BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
|
|
++Count;
|
|
BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
|
|
++Count;
|
|
break;
|
|
case X86::COND_E_AND_NP:
|
|
// Use the next block of MBB as FBB if it is null.
|
|
if (FBB == nullptr) {
|
|
FBB = getFallThroughMBB(&MBB, TBB);
|
|
assert(FBB && "MBB cannot be the last block in function when the false "
|
|
"body is a fall-through.");
|
|
}
|
|
// Synthesize COND_E_AND_NP with two branches.
|
|
BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
|
|
++Count;
|
|
BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
|
|
++Count;
|
|
break;
|
|
default: {
|
|
BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
|
|
++Count;
|
|
}
|
|
}
|
|
if (!FallThru) {
|
|
// Two-way Conditional branch. Insert the second branch.
|
|
BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
|
|
++Count;
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
|
|
ArrayRef<MachineOperand> Cond,
|
|
Register DstReg, Register TrueReg,
|
|
Register FalseReg, int &CondCycles,
|
|
int &TrueCycles, int &FalseCycles) const {
|
|
// Not all subtargets have cmov instructions.
|
|
if (!Subtarget.hasCMov())
|
|
return false;
|
|
if (Cond.size() != 1)
|
|
return false;
|
|
// We cannot do the composite conditions, at least not in SSA form.
|
|
if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
|
|
return false;
|
|
|
|
// Check register classes.
|
|
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterClass *RC =
|
|
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
|
|
if (!RC)
|
|
return false;
|
|
|
|
// We have cmov instructions for 16, 32, and 64 bit general purpose registers.
|
|
if (X86::GR16RegClass.hasSubClassEq(RC) ||
|
|
X86::GR32RegClass.hasSubClassEq(RC) ||
|
|
X86::GR64RegClass.hasSubClassEq(RC)) {
|
|
// This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
|
|
// Bridge. Probably Ivy Bridge as well.
|
|
CondCycles = 2;
|
|
TrueCycles = 2;
|
|
FalseCycles = 2;
|
|
return true;
|
|
}
|
|
|
|
// Can't do vectors.
|
|
return false;
|
|
}
|
|
|
|
void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL, Register DstReg,
|
|
ArrayRef<MachineOperand> Cond, Register TrueReg,
|
|
Register FalseReg) const {
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
|
|
const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
|
|
assert(Cond.size() == 1 && "Invalid Cond array");
|
|
unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
|
|
false /*HasMemoryOperand*/);
|
|
BuildMI(MBB, I, DL, get(Opc), DstReg)
|
|
.addReg(FalseReg)
|
|
.addReg(TrueReg)
|
|
.addImm(Cond[0].getImm());
|
|
}
|
|
|
|
/// Test if the given register is a physical h register.
|
|
static bool isHReg(unsigned Reg) {
|
|
return X86::GR8_ABCD_HRegClass.contains(Reg);
|
|
}
|
|
|
|
// Try and copy between VR128/VR64 and GR64 registers.
|
|
static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
|
|
const X86Subtarget &Subtarget) {
|
|
bool HasAVX = Subtarget.hasAVX();
|
|
bool HasAVX512 = Subtarget.hasAVX512();
|
|
|
|
// SrcReg(MaskReg) -> DestReg(GR64)
|
|
// SrcReg(MaskReg) -> DestReg(GR32)
|
|
|
|
// All KMASK RegClasses hold the same k registers, can be tested against anyone.
|
|
if (X86::VK16RegClass.contains(SrcReg)) {
|
|
if (X86::GR64RegClass.contains(DestReg)) {
|
|
assert(Subtarget.hasBWI());
|
|
return X86::KMOVQrk;
|
|
}
|
|
if (X86::GR32RegClass.contains(DestReg))
|
|
return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
|
|
}
|
|
|
|
// SrcReg(GR64) -> DestReg(MaskReg)
|
|
// SrcReg(GR32) -> DestReg(MaskReg)
|
|
|
|
// All KMASK RegClasses hold the same k registers, can be tested against anyone.
|
|
if (X86::VK16RegClass.contains(DestReg)) {
|
|
if (X86::GR64RegClass.contains(SrcReg)) {
|
|
assert(Subtarget.hasBWI());
|
|
return X86::KMOVQkr;
|
|
}
|
|
if (X86::GR32RegClass.contains(SrcReg))
|
|
return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
|
|
}
|
|
|
|
|
|
// SrcReg(VR128) -> DestReg(GR64)
|
|
// SrcReg(VR64) -> DestReg(GR64)
|
|
// SrcReg(GR64) -> DestReg(VR128)
|
|
// SrcReg(GR64) -> DestReg(VR64)
|
|
|
|
if (X86::GR64RegClass.contains(DestReg)) {
|
|
if (X86::VR128XRegClass.contains(SrcReg))
|
|
// Copy from a VR128 register to a GR64 register.
|
|
return HasAVX512 ? X86::VMOVPQIto64Zrr :
|
|
HasAVX ? X86::VMOVPQIto64rr :
|
|
X86::MOVPQIto64rr;
|
|
if (X86::VR64RegClass.contains(SrcReg))
|
|
// Copy from a VR64 register to a GR64 register.
|
|
return X86::MMX_MOVD64from64rr;
|
|
} else if (X86::GR64RegClass.contains(SrcReg)) {
|
|
// Copy from a GR64 register to a VR128 register.
|
|
if (X86::VR128XRegClass.contains(DestReg))
|
|
return HasAVX512 ? X86::VMOV64toPQIZrr :
|
|
HasAVX ? X86::VMOV64toPQIrr :
|
|
X86::MOV64toPQIrr;
|
|
// Copy from a GR64 register to a VR64 register.
|
|
if (X86::VR64RegClass.contains(DestReg))
|
|
return X86::MMX_MOVD64to64rr;
|
|
}
|
|
|
|
// SrcReg(VR128) -> DestReg(GR32)
|
|
// SrcReg(GR32) -> DestReg(VR128)
|
|
|
|
if (X86::GR32RegClass.contains(DestReg) &&
|
|
X86::VR128XRegClass.contains(SrcReg))
|
|
// Copy from a VR128 register to a GR32 register.
|
|
return HasAVX512 ? X86::VMOVPDI2DIZrr :
|
|
HasAVX ? X86::VMOVPDI2DIrr :
|
|
X86::MOVPDI2DIrr;
|
|
|
|
if (X86::VR128XRegClass.contains(DestReg) &&
|
|
X86::GR32RegClass.contains(SrcReg))
|
|
// Copy from a VR128 register to a VR128 register.
|
|
return HasAVX512 ? X86::VMOVDI2PDIZrr :
|
|
HasAVX ? X86::VMOVDI2PDIrr :
|
|
X86::MOVDI2PDIrr;
|
|
return 0;
|
|
}
|
|
|
|
void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const DebugLoc &DL, MCRegister DestReg,
|
|
MCRegister SrcReg, bool KillSrc) const {
|
|
// First deal with the normal symmetric copies.
|
|
bool HasAVX = Subtarget.hasAVX();
|
|
bool HasVLX = Subtarget.hasVLX();
|
|
unsigned Opc = 0;
|
|
if (X86::GR64RegClass.contains(DestReg, SrcReg))
|
|
Opc = X86::MOV64rr;
|
|
else if (X86::GR32RegClass.contains(DestReg, SrcReg))
|
|
Opc = X86::MOV32rr;
|
|
else if (X86::GR16RegClass.contains(DestReg, SrcReg))
|
|
Opc = X86::MOV16rr;
|
|
else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
|
|
// Copying to or from a physical H register on x86-64 requires a NOREX
|
|
// move. Otherwise use a normal move.
|
|
if ((isHReg(DestReg) || isHReg(SrcReg)) &&
|
|
Subtarget.is64Bit()) {
|
|
Opc = X86::MOV8rr_NOREX;
|
|
// Both operands must be encodable without an REX prefix.
|
|
assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
|
|
"8-bit H register can not be copied outside GR8_NOREX");
|
|
} else
|
|
Opc = X86::MOV8rr;
|
|
}
|
|
else if (X86::VR64RegClass.contains(DestReg, SrcReg))
|
|
Opc = X86::MMX_MOVQ64rr;
|
|
else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
|
|
if (HasVLX)
|
|
Opc = X86::VMOVAPSZ128rr;
|
|
else if (X86::VR128RegClass.contains(DestReg, SrcReg))
|
|
Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
|
|
else {
|
|
// If this an extended register and we don't have VLX we need to use a
|
|
// 512-bit move.
|
|
Opc = X86::VMOVAPSZrr;
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
|
|
&X86::VR512RegClass);
|
|
SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
|
|
&X86::VR512RegClass);
|
|
}
|
|
} else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
|
|
if (HasVLX)
|
|
Opc = X86::VMOVAPSZ256rr;
|
|
else if (X86::VR256RegClass.contains(DestReg, SrcReg))
|
|
Opc = X86::VMOVAPSYrr;
|
|
else {
|
|
// If this an extended register and we don't have VLX we need to use a
|
|
// 512-bit move.
|
|
Opc = X86::VMOVAPSZrr;
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
|
|
&X86::VR512RegClass);
|
|
SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
|
|
&X86::VR512RegClass);
|
|
}
|
|
} else if (X86::VR512RegClass.contains(DestReg, SrcReg))
|
|
Opc = X86::VMOVAPSZrr;
|
|
// All KMASK RegClasses hold the same k registers, can be tested against anyone.
|
|
else if (X86::VK16RegClass.contains(DestReg, SrcReg))
|
|
Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
|
|
if (!Opc)
|
|
Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
|
|
|
|
if (Opc) {
|
|
BuildMI(MBB, MI, DL, get(Opc), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
|
|
// FIXME: We use a fatal error here because historically LLVM has tried
|
|
// lower some of these physreg copies and we want to ensure we get
|
|
// reasonable bug reports if someone encounters a case no other testing
|
|
// found. This path should be removed after the LLVM 7 release.
|
|
report_fatal_error("Unable to copy EFLAGS physical register!");
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
|
|
<< RI.getName(DestReg) << '\n');
|
|
report_fatal_error("Cannot emit physreg copy instruction");
|
|
}
|
|
|
|
Optional<DestSourcePair>
|
|
X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
|
|
if (MI.isMoveReg())
|
|
return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
|
|
return None;
|
|
}
|
|
|
|
static unsigned getLoadStoreRegOpcode(Register Reg,
|
|
const TargetRegisterClass *RC,
|
|
bool IsStackAligned,
|
|
const X86Subtarget &STI, bool load) {
|
|
bool HasAVX = STI.hasAVX();
|
|
bool HasAVX512 = STI.hasAVX512();
|
|
bool HasVLX = STI.hasVLX();
|
|
|
|
switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
|
|
default:
|
|
llvm_unreachable("Unknown spill size");
|
|
case 1:
|
|
assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
|
|
if (STI.is64Bit())
|
|
// Copying to or from a physical H register on x86-64 requires a NOREX
|
|
// move. Otherwise use a normal move.
|
|
if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
|
|
return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
|
|
return load ? X86::MOV8rm : X86::MOV8mr;
|
|
case 2:
|
|
if (X86::VK16RegClass.hasSubClassEq(RC))
|
|
return load ? X86::KMOVWkm : X86::KMOVWmk;
|
|
assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
|
|
return load ? X86::MOV16rm : X86::MOV16mr;
|
|
case 4:
|
|
if (X86::GR32RegClass.hasSubClassEq(RC))
|
|
return load ? X86::MOV32rm : X86::MOV32mr;
|
|
if (X86::FR32XRegClass.hasSubClassEq(RC))
|
|
return load ?
|
|
(HasAVX512 ? X86::VMOVSSZrm_alt :
|
|
HasAVX ? X86::VMOVSSrm_alt :
|
|
X86::MOVSSrm_alt) :
|
|
(HasAVX512 ? X86::VMOVSSZmr :
|
|
HasAVX ? X86::VMOVSSmr :
|
|
X86::MOVSSmr);
|
|
if (X86::RFP32RegClass.hasSubClassEq(RC))
|
|
return load ? X86::LD_Fp32m : X86::ST_Fp32m;
|
|
if (X86::VK32RegClass.hasSubClassEq(RC)) {
|
|
assert(STI.hasBWI() && "KMOVD requires BWI");
|
|
return load ? X86::KMOVDkm : X86::KMOVDmk;
|
|
}
|
|
// All of these mask pair classes have the same spill size, the same kind
|
|
// of kmov instructions can be used with all of them.
|
|
if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
|
|
X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
|
|
X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
|
|
X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
|
|
X86::VK16PAIRRegClass.hasSubClassEq(RC))
|
|
return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
|
|
llvm_unreachable("Unknown 4-byte regclass");
|
|
case 8:
|
|
if (X86::GR64RegClass.hasSubClassEq(RC))
|
|
return load ? X86::MOV64rm : X86::MOV64mr;
|
|
if (X86::FR64XRegClass.hasSubClassEq(RC))
|
|
return load ?
|
|
(HasAVX512 ? X86::VMOVSDZrm_alt :
|
|
HasAVX ? X86::VMOVSDrm_alt :
|
|
X86::MOVSDrm_alt) :
|
|
(HasAVX512 ? X86::VMOVSDZmr :
|
|
HasAVX ? X86::VMOVSDmr :
|
|
X86::MOVSDmr);
|
|
if (X86::VR64RegClass.hasSubClassEq(RC))
|
|
return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
|
|
if (X86::RFP64RegClass.hasSubClassEq(RC))
|
|
return load ? X86::LD_Fp64m : X86::ST_Fp64m;
|
|
if (X86::VK64RegClass.hasSubClassEq(RC)) {
|
|
assert(STI.hasBWI() && "KMOVQ requires BWI");
|
|
return load ? X86::KMOVQkm : X86::KMOVQmk;
|
|
}
|
|
llvm_unreachable("Unknown 8-byte regclass");
|
|
case 10:
|
|
assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
|
|
return load ? X86::LD_Fp80m : X86::ST_FpP80m;
|
|
case 16: {
|
|
if (X86::VR128XRegClass.hasSubClassEq(RC)) {
|
|
// If stack is realigned we can use aligned stores.
|
|
if (IsStackAligned)
|
|
return load ?
|
|
(HasVLX ? X86::VMOVAPSZ128rm :
|
|
HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
|
|
HasAVX ? X86::VMOVAPSrm :
|
|
X86::MOVAPSrm):
|
|
(HasVLX ? X86::VMOVAPSZ128mr :
|
|
HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
|
|
HasAVX ? X86::VMOVAPSmr :
|
|
X86::MOVAPSmr);
|
|
else
|
|
return load ?
|
|
(HasVLX ? X86::VMOVUPSZ128rm :
|
|
HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
|
|
HasAVX ? X86::VMOVUPSrm :
|
|
X86::MOVUPSrm):
|
|
(HasVLX ? X86::VMOVUPSZ128mr :
|
|
HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
|
|
HasAVX ? X86::VMOVUPSmr :
|
|
X86::MOVUPSmr);
|
|
}
|
|
if (X86::BNDRRegClass.hasSubClassEq(RC)) {
|
|
if (STI.is64Bit())
|
|
return load ? X86::BNDMOV64rm : X86::BNDMOV64mr;
|
|
else
|
|
return load ? X86::BNDMOV32rm : X86::BNDMOV32mr;
|
|
}
|
|
llvm_unreachable("Unknown 16-byte regclass");
|
|
}
|
|
case 32:
|
|
assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
|
|
// If stack is realigned we can use aligned stores.
|
|
if (IsStackAligned)
|
|
return load ?
|
|
(HasVLX ? X86::VMOVAPSZ256rm :
|
|
HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
|
|
X86::VMOVAPSYrm) :
|
|
(HasVLX ? X86::VMOVAPSZ256mr :
|
|
HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
|
|
X86::VMOVAPSYmr);
|
|
else
|
|
return load ?
|
|
(HasVLX ? X86::VMOVUPSZ256rm :
|
|
HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
|
|
X86::VMOVUPSYrm) :
|
|
(HasVLX ? X86::VMOVUPSZ256mr :
|
|
HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
|
|
X86::VMOVUPSYmr);
|
|
case 64:
|
|
assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
|
|
assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
|
|
if (IsStackAligned)
|
|
return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
|
|
else
|
|
return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
|
|
}
|
|
}
|
|
|
|
Optional<ExtAddrMode>
|
|
X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
|
|
const TargetRegisterInfo *TRI) const {
|
|
const MCInstrDesc &Desc = MemI.getDesc();
|
|
int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
|
|
if (MemRefBegin < 0)
|
|
return None;
|
|
|
|
MemRefBegin += X86II::getOperandBias(Desc);
|
|
|
|
auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
|
|
if (!BaseOp.isReg()) // Can be an MO_FrameIndex
|
|
return None;
|
|
|
|
const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
|
|
// Displacement can be symbolic
|
|
if (!DispMO.isImm())
|
|
return None;
|
|
|
|
ExtAddrMode AM;
|
|
AM.BaseReg = BaseOp.getReg();
|
|
AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
|
|
AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
|
|
AM.Displacement = DispMO.getImm();
|
|
return AM;
|
|
}
|
|
|
|
bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
|
|
const Register Reg,
|
|
int64_t &ImmVal) const {
|
|
if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
|
|
return false;
|
|
// Mov Src can be a global address.
|
|
if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
|
|
return false;
|
|
ImmVal = MI.getOperand(1).getImm();
|
|
return true;
|
|
}
|
|
|
|
bool X86InstrInfo::preservesZeroValueInReg(
|
|
const MachineInstr *MI, const Register NullValueReg,
|
|
const TargetRegisterInfo *TRI) const {
|
|
if (!MI->modifiesRegister(NullValueReg, TRI))
|
|
return true;
|
|
switch (MI->getOpcode()) {
|
|
// Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
|
|
// X.
|
|
case X86::SHR64ri:
|
|
case X86::SHR32ri:
|
|
case X86::SHL64ri:
|
|
case X86::SHL32ri:
|
|
assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
|
|
"expected for shift opcode!");
|
|
return MI->getOperand(0).getReg() == NullValueReg &&
|
|
MI->getOperand(1).getReg() == NullValueReg;
|
|
// Zero extend of a sub-reg of NullValueReg into itself does not change the
|
|
// null value.
|
|
case X86::MOV32rr:
|
|
return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
|
|
return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
|
|
});
|
|
default:
|
|
return false;
|
|
}
|
|
llvm_unreachable("Should be handled above!");
|
|
}
|
|
|
|
bool X86InstrInfo::getMemOperandsWithOffsetWidth(
|
|
const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
|
|
int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
|
|
const TargetRegisterInfo *TRI) const {
|
|
const MCInstrDesc &Desc = MemOp.getDesc();
|
|
int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
|
|
if (MemRefBegin < 0)
|
|
return false;
|
|
|
|
MemRefBegin += X86II::getOperandBias(Desc);
|
|
|
|
const MachineOperand *BaseOp =
|
|
&MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
|
|
if (!BaseOp->isReg()) // Can be an MO_FrameIndex
|
|
return false;
|
|
|
|
if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
|
|
return false;
|
|
|
|
if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
|
|
X86::NoRegister)
|
|
return false;
|
|
|
|
const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
|
|
|
|
// Displacement can be symbolic
|
|
if (!DispMO.isImm())
|
|
return false;
|
|
|
|
Offset = DispMO.getImm();
|
|
|
|
if (!BaseOp->isReg())
|
|
return false;
|
|
|
|
OffsetIsScalable = false;
|
|
// FIXME: Relying on memoperands() may not be right thing to do here. Check
|
|
// with X86 maintainers, and fix it accordingly. For now, it is ok, since
|
|
// there is no use of `Width` for X86 back-end at the moment.
|
|
Width =
|
|
!MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
|
|
BaseOps.push_back(BaseOp);
|
|
return true;
|
|
}
|
|
|
|
static unsigned getStoreRegOpcode(Register SrcReg,
|
|
const TargetRegisterClass *RC,
|
|
bool IsStackAligned,
|
|
const X86Subtarget &STI) {
|
|
return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
|
|
}
|
|
|
|
static unsigned getLoadRegOpcode(Register DestReg,
|
|
const TargetRegisterClass *RC,
|
|
bool IsStackAligned, const X86Subtarget &STI) {
|
|
return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
|
|
}
|
|
|
|
void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
Register SrcReg, bool isKill, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
const MachineFunction &MF = *MBB.getParent();
|
|
assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
|
|
"Stack slot too small for store");
|
|
if (RC->getID() == X86::TILERegClassID) {
|
|
unsigned Opc = X86::TILESTORED;
|
|
// tilestored %tmm, (%sp, %idx)
|
|
MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
|
|
Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
|
|
BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
|
|
MachineInstr *NewMI =
|
|
addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
|
|
.addReg(SrcReg, getKillRegState(isKill));
|
|
MachineOperand &MO = NewMI->getOperand(2);
|
|
MO.setReg(VirtReg);
|
|
MO.setIsKill(true);
|
|
} else if (RC->getID() == X86::TILECFGRegClassID) {
|
|
unsigned Opc = X86::PSTTILECFG;
|
|
addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
|
|
.addReg(SrcReg, getKillRegState(isKill));
|
|
} else {
|
|
unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
|
|
bool isAligned =
|
|
(Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
|
|
RI.canRealignStack(MF);
|
|
unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
|
|
addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
|
|
.addReg(SrcReg, getKillRegState(isKill));
|
|
}
|
|
}
|
|
|
|
void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
Register DestReg, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
if (RC->getID() == X86::TILERegClassID) {
|
|
unsigned Opc = X86::TILELOADD;
|
|
// tileloadd (%sp, %idx), %tmm
|
|
MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
|
|
Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
|
|
MachineInstr *NewMI =
|
|
BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
|
|
NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
|
|
FrameIdx);
|
|
MachineOperand &MO = NewMI->getOperand(3);
|
|
MO.setReg(VirtReg);
|
|
MO.setIsKill(true);
|
|
} else if (RC->getID() == X86::TILECFGRegClassID) {
|
|
unsigned Opc = X86::PLDTILECFG;
|
|
addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
|
|
FrameIdx);
|
|
} else {
|
|
const MachineFunction &MF = *MBB.getParent();
|
|
unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
|
|
bool isAligned =
|
|
(Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
|
|
RI.canRealignStack(MF);
|
|
unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
|
|
addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
|
|
FrameIdx);
|
|
}
|
|
}
|
|
|
|
bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
|
|
Register &SrcReg2, int &CmpMask,
|
|
int &CmpValue) const {
|
|
switch (MI.getOpcode()) {
|
|
default: break;
|
|
case X86::CMP64ri32:
|
|
case X86::CMP64ri8:
|
|
case X86::CMP32ri:
|
|
case X86::CMP32ri8:
|
|
case X86::CMP16ri:
|
|
case X86::CMP16ri8:
|
|
case X86::CMP8ri:
|
|
SrcReg = MI.getOperand(0).getReg();
|
|
SrcReg2 = 0;
|
|
if (MI.getOperand(1).isImm()) {
|
|
CmpMask = ~0;
|
|
CmpValue = MI.getOperand(1).getImm();
|
|
} else {
|
|
CmpMask = CmpValue = 0;
|
|
}
|
|
return true;
|
|
// A SUB can be used to perform comparison.
|
|
case X86::SUB64rm:
|
|
case X86::SUB32rm:
|
|
case X86::SUB16rm:
|
|
case X86::SUB8rm:
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
SrcReg2 = 0;
|
|
CmpMask = 0;
|
|
CmpValue = 0;
|
|
return true;
|
|
case X86::SUB64rr:
|
|
case X86::SUB32rr:
|
|
case X86::SUB16rr:
|
|
case X86::SUB8rr:
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
SrcReg2 = MI.getOperand(2).getReg();
|
|
CmpMask = 0;
|
|
CmpValue = 0;
|
|
return true;
|
|
case X86::SUB64ri32:
|
|
case X86::SUB64ri8:
|
|
case X86::SUB32ri:
|
|
case X86::SUB32ri8:
|
|
case X86::SUB16ri:
|
|
case X86::SUB16ri8:
|
|
case X86::SUB8ri:
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
SrcReg2 = 0;
|
|
if (MI.getOperand(2).isImm()) {
|
|
CmpMask = ~0;
|
|
CmpValue = MI.getOperand(2).getImm();
|
|
} else {
|
|
CmpMask = CmpValue = 0;
|
|
}
|
|
return true;
|
|
case X86::CMP64rr:
|
|
case X86::CMP32rr:
|
|
case X86::CMP16rr:
|
|
case X86::CMP8rr:
|
|
SrcReg = MI.getOperand(0).getReg();
|
|
SrcReg2 = MI.getOperand(1).getReg();
|
|
CmpMask = 0;
|
|
CmpValue = 0;
|
|
return true;
|
|
case X86::TEST8rr:
|
|
case X86::TEST16rr:
|
|
case X86::TEST32rr:
|
|
case X86::TEST64rr:
|
|
SrcReg = MI.getOperand(0).getReg();
|
|
if (MI.getOperand(1).getReg() != SrcReg)
|
|
return false;
|
|
// Compare against zero.
|
|
SrcReg2 = 0;
|
|
CmpMask = ~0;
|
|
CmpValue = 0;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check whether the first instruction, whose only
|
|
/// purpose is to update flags, can be made redundant.
|
|
/// CMPrr can be made redundant by SUBrr if the operands are the same.
|
|
/// This function can be extended later on.
|
|
/// SrcReg, SrcRegs: register operands for FlagI.
|
|
/// ImmValue: immediate for FlagI if it takes an immediate.
|
|
inline static bool isRedundantFlagInstr(const MachineInstr &FlagI,
|
|
Register SrcReg, Register SrcReg2,
|
|
int ImmMask, int ImmValue,
|
|
const MachineInstr &OI) {
|
|
if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
|
|
(FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
|
|
(FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
|
|
(FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
|
|
((OI.getOperand(1).getReg() == SrcReg &&
|
|
OI.getOperand(2).getReg() == SrcReg2) ||
|
|
(OI.getOperand(1).getReg() == SrcReg2 &&
|
|
OI.getOperand(2).getReg() == SrcReg)))
|
|
return true;
|
|
|
|
if (ImmMask != 0 &&
|
|
((FlagI.getOpcode() == X86::CMP64ri32 &&
|
|
OI.getOpcode() == X86::SUB64ri32) ||
|
|
(FlagI.getOpcode() == X86::CMP64ri8 &&
|
|
OI.getOpcode() == X86::SUB64ri8) ||
|
|
(FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
|
|
(FlagI.getOpcode() == X86::CMP32ri8 &&
|
|
OI.getOpcode() == X86::SUB32ri8) ||
|
|
(FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
|
|
(FlagI.getOpcode() == X86::CMP16ri8 &&
|
|
OI.getOpcode() == X86::SUB16ri8) ||
|
|
(FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
|
|
OI.getOperand(1).getReg() == SrcReg &&
|
|
OI.getOperand(2).getImm() == ImmValue)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Check whether the definition can be converted
|
|
/// to remove a comparison against zero.
|
|
inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag) {
|
|
NoSignFlag = false;
|
|
|
|
switch (MI.getOpcode()) {
|
|
default: return false;
|
|
|
|
// The shift instructions only modify ZF if their shift count is non-zero.
|
|
// N.B.: The processor truncates the shift count depending on the encoding.
|
|
case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
|
|
case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
|
|
return getTruncatedShiftCount(MI, 2) != 0;
|
|
|
|
// Some left shift instructions can be turned into LEA instructions but only
|
|
// if their flags aren't used. Avoid transforming such instructions.
|
|
case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
|
|
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
|
|
if (isTruncatedShiftCountForLEA(ShAmt)) return false;
|
|
return ShAmt != 0;
|
|
}
|
|
|
|
case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
|
|
case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
|
|
return getTruncatedShiftCount(MI, 3) != 0;
|
|
|
|
case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
|
|
case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
|
|
case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
|
|
case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
|
|
case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
|
|
case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
|
|
case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
|
|
case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
|
|
case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
|
|
case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
|
|
case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
|
|
case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
|
|
case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
|
|
case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
|
|
case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
|
|
case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
|
|
case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
|
|
case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
|
|
case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
|
|
case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
|
|
case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
|
|
case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
|
|
case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
|
|
case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
|
|
case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
|
|
case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
|
|
case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
|
|
case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
|
|
case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8:
|
|
case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr:
|
|
case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm:
|
|
case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm:
|
|
case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
|
|
case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8:
|
|
case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr:
|
|
case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm:
|
|
case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm:
|
|
case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
|
|
case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
|
|
case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
|
|
case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
|
|
case X86::ANDN32rr: case X86::ANDN32rm:
|
|
case X86::ANDN64rr: case X86::ANDN64rm:
|
|
case X86::BLSI32rr: case X86::BLSI32rm:
|
|
case X86::BLSI64rr: case X86::BLSI64rm:
|
|
case X86::BLSMSK32rr:case X86::BLSMSK32rm:
|
|
case X86::BLSMSK64rr:case X86::BLSMSK64rm:
|
|
case X86::BLSR32rr: case X86::BLSR32rm:
|
|
case X86::BLSR64rr: case X86::BLSR64rm:
|
|
case X86::BZHI32rr: case X86::BZHI32rm:
|
|
case X86::BZHI64rr: case X86::BZHI64rm:
|
|
case X86::LZCNT16rr: case X86::LZCNT16rm:
|
|
case X86::LZCNT32rr: case X86::LZCNT32rm:
|
|
case X86::LZCNT64rr: case X86::LZCNT64rm:
|
|
case X86::POPCNT16rr:case X86::POPCNT16rm:
|
|
case X86::POPCNT32rr:case X86::POPCNT32rm:
|
|
case X86::POPCNT64rr:case X86::POPCNT64rm:
|
|
case X86::TZCNT16rr: case X86::TZCNT16rm:
|
|
case X86::TZCNT32rr: case X86::TZCNT32rm:
|
|
case X86::TZCNT64rr: case X86::TZCNT64rm:
|
|
case X86::BLCFILL32rr: case X86::BLCFILL32rm:
|
|
case X86::BLCFILL64rr: case X86::BLCFILL64rm:
|
|
case X86::BLCI32rr: case X86::BLCI32rm:
|
|
case X86::BLCI64rr: case X86::BLCI64rm:
|
|
case X86::BLCIC32rr: case X86::BLCIC32rm:
|
|
case X86::BLCIC64rr: case X86::BLCIC64rm:
|
|
case X86::BLCMSK32rr: case X86::BLCMSK32rm:
|
|
case X86::BLCMSK64rr: case X86::BLCMSK64rm:
|
|
case X86::BLCS32rr: case X86::BLCS32rm:
|
|
case X86::BLCS64rr: case X86::BLCS64rm:
|
|
case X86::BLSFILL32rr: case X86::BLSFILL32rm:
|
|
case X86::BLSFILL64rr: case X86::BLSFILL64rm:
|
|
case X86::BLSIC32rr: case X86::BLSIC32rm:
|
|
case X86::BLSIC64rr: case X86::BLSIC64rm:
|
|
case X86::T1MSKC32rr: case X86::T1MSKC32rm:
|
|
case X86::T1MSKC64rr: case X86::T1MSKC64rm:
|
|
case X86::TZMSK32rr: case X86::TZMSK32rm:
|
|
case X86::TZMSK64rr: case X86::TZMSK64rm:
|
|
return true;
|
|
case X86::BEXTR32rr: case X86::BEXTR64rr:
|
|
case X86::BEXTR32rm: case X86::BEXTR64rm:
|
|
case X86::BEXTRI32ri: case X86::BEXTRI32mi:
|
|
case X86::BEXTRI64ri: case X86::BEXTRI64mi:
|
|
// BEXTR doesn't update the sign flag so we can't use it.
|
|
NoSignFlag = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Check whether the use can be converted to remove a comparison against zero.
|
|
static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default: return X86::COND_INVALID;
|
|
case X86::NEG8r:
|
|
case X86::NEG16r:
|
|
case X86::NEG32r:
|
|
case X86::NEG64r:
|
|
return X86::COND_AE;
|
|
case X86::LZCNT16rr:
|
|
case X86::LZCNT32rr:
|
|
case X86::LZCNT64rr:
|
|
return X86::COND_B;
|
|
case X86::POPCNT16rr:
|
|
case X86::POPCNT32rr:
|
|
case X86::POPCNT64rr:
|
|
return X86::COND_E;
|
|
case X86::TZCNT16rr:
|
|
case X86::TZCNT32rr:
|
|
case X86::TZCNT64rr:
|
|
return X86::COND_B;
|
|
case X86::BSF16rr:
|
|
case X86::BSF32rr:
|
|
case X86::BSF64rr:
|
|
case X86::BSR16rr:
|
|
case X86::BSR32rr:
|
|
case X86::BSR64rr:
|
|
return X86::COND_E;
|
|
case X86::BLSI32rr:
|
|
case X86::BLSI64rr:
|
|
return X86::COND_AE;
|
|
case X86::BLSR32rr:
|
|
case X86::BLSR64rr:
|
|
case X86::BLSMSK32rr:
|
|
case X86::BLSMSK64rr:
|
|
return X86::COND_B;
|
|
// TODO: TBM instructions.
|
|
}
|
|
}
|
|
|
|
/// Check if there exists an earlier instruction that
|
|
/// operates on the same source operands and sets flags in the same way as
|
|
/// Compare; remove Compare if possible.
|
|
bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
|
|
Register SrcReg2, int CmpMask,
|
|
int CmpValue,
|
|
const MachineRegisterInfo *MRI) const {
|
|
// Check whether we can replace SUB with CMP.
|
|
switch (CmpInstr.getOpcode()) {
|
|
default: break;
|
|
case X86::SUB64ri32:
|
|
case X86::SUB64ri8:
|
|
case X86::SUB32ri:
|
|
case X86::SUB32ri8:
|
|
case X86::SUB16ri:
|
|
case X86::SUB16ri8:
|
|
case X86::SUB8ri:
|
|
case X86::SUB64rm:
|
|
case X86::SUB32rm:
|
|
case X86::SUB16rm:
|
|
case X86::SUB8rm:
|
|
case X86::SUB64rr:
|
|
case X86::SUB32rr:
|
|
case X86::SUB16rr:
|
|
case X86::SUB8rr: {
|
|
if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
|
|
return false;
|
|
// There is no use of the destination register, we can replace SUB with CMP.
|
|
unsigned NewOpcode = 0;
|
|
switch (CmpInstr.getOpcode()) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
|
|
case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
|
|
case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
|
|
case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
|
|
case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
|
|
case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
|
|
case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
|
|
case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
|
|
case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
|
|
case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
|
|
case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
|
|
case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
|
|
case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
|
|
case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
|
|
case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
|
|
}
|
|
CmpInstr.setDesc(get(NewOpcode));
|
|
CmpInstr.RemoveOperand(0);
|
|
// Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
|
|
if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
|
|
NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Get the unique definition of SrcReg.
|
|
MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
|
|
if (!MI) return false;
|
|
|
|
// CmpInstr is the first instruction of the BB.
|
|
MachineBasicBlock::iterator I = CmpInstr, Def = MI;
|
|
|
|
// If we are comparing against zero, check whether we can use MI to update
|
|
// EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
|
|
bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
|
|
if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
|
|
return false;
|
|
|
|
// If we have a use of the source register between the def and our compare
|
|
// instruction we can eliminate the compare iff the use sets EFLAGS in the
|
|
// right way.
|
|
bool ShouldUpdateCC = false;
|
|
bool NoSignFlag = false;
|
|
X86::CondCode NewCC = X86::COND_INVALID;
|
|
if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag)) {
|
|
// Scan forward from the use until we hit the use we're looking for or the
|
|
// compare instruction.
|
|
for (MachineBasicBlock::iterator J = MI;; ++J) {
|
|
// Do we have a convertible instruction?
|
|
NewCC = isUseDefConvertible(*J);
|
|
if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
|
|
J->getOperand(1).getReg() == SrcReg) {
|
|
assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
|
|
ShouldUpdateCC = true; // Update CC later on.
|
|
// This is not a def of SrcReg, but still a def of EFLAGS. Keep going
|
|
// with the new def.
|
|
Def = J;
|
|
MI = &*Def;
|
|
break;
|
|
}
|
|
|
|
if (J == I)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We are searching for an earlier instruction that can make CmpInstr
|
|
// redundant and that instruction will be saved in Sub.
|
|
MachineInstr *Sub = nullptr;
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
|
|
// We iterate backward, starting from the instruction before CmpInstr and
|
|
// stop when reaching the definition of a source register or done with the BB.
|
|
// RI points to the instruction before CmpInstr.
|
|
// If the definition is in this basic block, RE points to the definition;
|
|
// otherwise, RE is the rend of the basic block.
|
|
MachineBasicBlock::reverse_iterator
|
|
RI = ++I.getReverse(),
|
|
RE = CmpInstr.getParent() == MI->getParent()
|
|
? Def.getReverse() /* points to MI */
|
|
: CmpInstr.getParent()->rend();
|
|
MachineInstr *Movr0Inst = nullptr;
|
|
for (; RI != RE; ++RI) {
|
|
MachineInstr &Instr = *RI;
|
|
// Check whether CmpInstr can be made redundant by the current instruction.
|
|
if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
|
|
CmpValue, Instr)) {
|
|
Sub = &Instr;
|
|
break;
|
|
}
|
|
|
|
if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
|
|
Instr.readsRegister(X86::EFLAGS, TRI)) {
|
|
// This instruction modifies or uses EFLAGS.
|
|
|
|
// MOV32r0 etc. are implemented with xor which clobbers condition code.
|
|
// They are safe to move up, if the definition to EFLAGS is dead and
|
|
// earlier instructions do not read or write EFLAGS.
|
|
if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
|
|
Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
|
|
Movr0Inst = &Instr;
|
|
continue;
|
|
}
|
|
|
|
// We can't remove CmpInstr.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Return false if no candidates exist.
|
|
if (!IsCmpZero && !Sub)
|
|
return false;
|
|
|
|
bool IsSwapped =
|
|
(SrcReg2 != 0 && Sub && Sub->getOperand(1).getReg() == SrcReg2 &&
|
|
Sub->getOperand(2).getReg() == SrcReg);
|
|
|
|
// Scan forward from the instruction after CmpInstr for uses of EFLAGS.
|
|
// It is safe to remove CmpInstr if EFLAGS is redefined or killed.
|
|
// If we are done with the basic block, we need to check whether EFLAGS is
|
|
// live-out.
|
|
bool IsSafe = false;
|
|
SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
|
|
MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
|
|
for (++I; I != E; ++I) {
|
|
const MachineInstr &Instr = *I;
|
|
bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
|
|
bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
|
|
// We should check the usage if this instruction uses and updates EFLAGS.
|
|
if (!UseEFLAGS && ModifyEFLAGS) {
|
|
// It is safe to remove CmpInstr if EFLAGS is updated again.
|
|
IsSafe = true;
|
|
break;
|
|
}
|
|
if (!UseEFLAGS && !ModifyEFLAGS)
|
|
continue;
|
|
|
|
// EFLAGS is used by this instruction.
|
|
X86::CondCode OldCC = X86::COND_INVALID;
|
|
if (IsCmpZero || IsSwapped) {
|
|
// We decode the condition code from opcode.
|
|
if (Instr.isBranch())
|
|
OldCC = X86::getCondFromBranch(Instr);
|
|
else {
|
|
OldCC = X86::getCondFromSETCC(Instr);
|
|
if (OldCC == X86::COND_INVALID)
|
|
OldCC = X86::getCondFromCMov(Instr);
|
|
}
|
|
if (OldCC == X86::COND_INVALID) return false;
|
|
}
|
|
X86::CondCode ReplacementCC = X86::COND_INVALID;
|
|
if (IsCmpZero) {
|
|
switch (OldCC) {
|
|
default: break;
|
|
case X86::COND_A: case X86::COND_AE:
|
|
case X86::COND_B: case X86::COND_BE:
|
|
case X86::COND_G: case X86::COND_GE:
|
|
case X86::COND_L: case X86::COND_LE:
|
|
case X86::COND_O: case X86::COND_NO:
|
|
// CF and OF are used, we can't perform this optimization.
|
|
return false;
|
|
case X86::COND_S: case X86::COND_NS:
|
|
// If SF is used, but the instruction doesn't update the SF, then we
|
|
// can't do the optimization.
|
|
if (NoSignFlag)
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
// If we're updating the condition code check if we have to reverse the
|
|
// condition.
|
|
if (ShouldUpdateCC)
|
|
switch (OldCC) {
|
|
default:
|
|
return false;
|
|
case X86::COND_E:
|
|
ReplacementCC = NewCC;
|
|
break;
|
|
case X86::COND_NE:
|
|
ReplacementCC = GetOppositeBranchCondition(NewCC);
|
|
break;
|
|
}
|
|
} else if (IsSwapped) {
|
|
// If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
|
|
// to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
|
|
// We swap the condition code and synthesize the new opcode.
|
|
ReplacementCC = getSwappedCondition(OldCC);
|
|
if (ReplacementCC == X86::COND_INVALID) return false;
|
|
}
|
|
|
|
if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
|
|
// Push the MachineInstr to OpsToUpdate.
|
|
// If it is safe to remove CmpInstr, the condition code of these
|
|
// instructions will be modified.
|
|
OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC));
|
|
}
|
|
if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
|
|
// It is safe to remove CmpInstr if EFLAGS is updated again or killed.
|
|
IsSafe = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If EFLAGS is not killed nor re-defined, we should check whether it is
|
|
// live-out. If it is live-out, do not optimize.
|
|
if ((IsCmpZero || IsSwapped) && !IsSafe) {
|
|
MachineBasicBlock *MBB = CmpInstr.getParent();
|
|
for (MachineBasicBlock *Successor : MBB->successors())
|
|
if (Successor->isLiveIn(X86::EFLAGS))
|
|
return false;
|
|
}
|
|
|
|
// The instruction to be updated is either Sub or MI.
|
|
Sub = IsCmpZero ? MI : Sub;
|
|
// Move Movr0Inst to the appropriate place before Sub.
|
|
if (Movr0Inst) {
|
|
// Look backwards until we find a def that doesn't use the current EFLAGS.
|
|
Def = Sub;
|
|
MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
|
|
InsertE = Sub->getParent()->rend();
|
|
for (; InsertI != InsertE; ++InsertI) {
|
|
MachineInstr *Instr = &*InsertI;
|
|
if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
|
|
Instr->modifiesRegister(X86::EFLAGS, TRI)) {
|
|
Sub->getParent()->remove(Movr0Inst);
|
|
Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
|
|
Movr0Inst);
|
|
break;
|
|
}
|
|
}
|
|
if (InsertI == InsertE)
|
|
return false;
|
|
}
|
|
|
|
// Make sure Sub instruction defines EFLAGS and mark the def live.
|
|
MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
|
|
assert(FlagDef && "Unable to locate a def EFLAGS operand");
|
|
FlagDef->setIsDead(false);
|
|
|
|
CmpInstr.eraseFromParent();
|
|
|
|
// Modify the condition code of instructions in OpsToUpdate.
|
|
for (auto &Op : OpsToUpdate) {
|
|
Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
|
|
.setImm(Op.second);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Try to remove the load by folding it to a register
|
|
/// operand at the use. We fold the load instructions if load defines a virtual
|
|
/// register, the virtual register is used once in the same BB, and the
|
|
/// instructions in-between do not load or store, and have no side effects.
|
|
MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
|
|
const MachineRegisterInfo *MRI,
|
|
Register &FoldAsLoadDefReg,
|
|
MachineInstr *&DefMI) const {
|
|
// Check whether we can move DefMI here.
|
|
DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
|
|
assert(DefMI);
|
|
bool SawStore = false;
|
|
if (!DefMI->isSafeToMove(nullptr, SawStore))
|
|
return nullptr;
|
|
|
|
// Collect information about virtual register operands of MI.
|
|
SmallVector<unsigned, 1> SrcOperandIds;
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (Reg != FoldAsLoadDefReg)
|
|
continue;
|
|
// Do not fold if we have a subreg use or a def.
|
|
if (MO.getSubReg() || MO.isDef())
|
|
return nullptr;
|
|
SrcOperandIds.push_back(i);
|
|
}
|
|
if (SrcOperandIds.empty())
|
|
return nullptr;
|
|
|
|
// Check whether we can fold the def into SrcOperandId.
|
|
if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
|
|
FoldAsLoadDefReg = 0;
|
|
return FoldMI;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Expand a single-def pseudo instruction to a two-addr
|
|
/// instruction with two undef reads of the register being defined.
|
|
/// This is used for mapping:
|
|
/// %xmm4 = V_SET0
|
|
/// to:
|
|
/// %xmm4 = PXORrr undef %xmm4, undef %xmm4
|
|
///
|
|
static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
|
|
const MCInstrDesc &Desc) {
|
|
assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
|
|
Register Reg = MIB.getReg(0);
|
|
MIB->setDesc(Desc);
|
|
|
|
// MachineInstr::addOperand() will insert explicit operands before any
|
|
// implicit operands.
|
|
MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
|
|
// But we don't trust that.
|
|
assert(MIB.getReg(1) == Reg &&
|
|
MIB.getReg(2) == Reg && "Misplaced operand");
|
|
return true;
|
|
}
|
|
|
|
/// Expand a single-def pseudo instruction to a two-addr
|
|
/// instruction with two %k0 reads.
|
|
/// This is used for mapping:
|
|
/// %k4 = K_SET1
|
|
/// to:
|
|
/// %k4 = KXNORrr %k0, %k0
|
|
static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
|
|
Register Reg) {
|
|
assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
|
|
MIB->setDesc(Desc);
|
|
MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
|
|
return true;
|
|
}
|
|
|
|
static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
|
|
bool MinusOne) {
|
|
MachineBasicBlock &MBB = *MIB->getParent();
|
|
DebugLoc DL = MIB->getDebugLoc();
|
|
Register Reg = MIB.getReg(0);
|
|
|
|
// Insert the XOR.
|
|
BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
|
|
.addReg(Reg, RegState::Undef)
|
|
.addReg(Reg, RegState::Undef);
|
|
|
|
// Turn the pseudo into an INC or DEC.
|
|
MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
|
|
MIB.addReg(Reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
|
|
const TargetInstrInfo &TII,
|
|
const X86Subtarget &Subtarget) {
|
|
MachineBasicBlock &MBB = *MIB->getParent();
|
|
DebugLoc DL = MIB->getDebugLoc();
|
|
int64_t Imm = MIB->getOperand(1).getImm();
|
|
assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
|
|
MachineBasicBlock::iterator I = MIB.getInstr();
|
|
|
|
int StackAdjustment;
|
|
|
|
if (Subtarget.is64Bit()) {
|
|
assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
|
|
MIB->getOpcode() == X86::MOV32ImmSExti8);
|
|
|
|
// Can't use push/pop lowering if the function might write to the red zone.
|
|
X86MachineFunctionInfo *X86FI =
|
|
MBB.getParent()->getInfo<X86MachineFunctionInfo>();
|
|
if (X86FI->getUsesRedZone()) {
|
|
MIB->setDesc(TII.get(MIB->getOpcode() ==
|
|
X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
|
|
return true;
|
|
}
|
|
|
|
// 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
|
|
// widen the register if necessary.
|
|
StackAdjustment = 8;
|
|
BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
|
|
MIB->setDesc(TII.get(X86::POP64r));
|
|
MIB->getOperand(0)
|
|
.setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
|
|
} else {
|
|
assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
|
|
StackAdjustment = 4;
|
|
BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
|
|
MIB->setDesc(TII.get(X86::POP32r));
|
|
}
|
|
MIB->RemoveOperand(1);
|
|
MIB->addImplicitDefUseOperands(*MBB.getParent());
|
|
|
|
// Build CFI if necessary.
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const X86FrameLowering *TFL = Subtarget.getFrameLowering();
|
|
bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
|
|
bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
|
|
bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
|
|
if (EmitCFI) {
|
|
TFL->BuildCFI(MBB, I, DL,
|
|
MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
|
|
TFL->BuildCFI(MBB, std::next(I), DL,
|
|
MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
|
|
// code sequence is needed for other targets.
|
|
static void expandLoadStackGuard(MachineInstrBuilder &MIB,
|
|
const TargetInstrInfo &TII) {
|
|
MachineBasicBlock &MBB = *MIB->getParent();
|
|
DebugLoc DL = MIB->getDebugLoc();
|
|
Register Reg = MIB.getReg(0);
|
|
const GlobalValue *GV =
|
|
cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
|
|
auto Flags = MachineMemOperand::MOLoad |
|
|
MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant;
|
|
MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
|
|
MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
|
|
MachineBasicBlock::iterator I = MIB.getInstr();
|
|
|
|
BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
|
|
.addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
|
|
.addMemOperand(MMO);
|
|
MIB->setDebugLoc(DL);
|
|
MIB->setDesc(TII.get(X86::MOV64rm));
|
|
MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
|
|
}
|
|
|
|
static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
|
|
MachineBasicBlock &MBB = *MIB->getParent();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
|
|
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
unsigned XorOp =
|
|
MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
|
|
MIB->setDesc(TII.get(XorOp));
|
|
MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
|
|
return true;
|
|
}
|
|
|
|
// This is used to handle spills for 128/256-bit registers when we have AVX512,
|
|
// but not VLX. If it uses an extended register we need to use an instruction
|
|
// that loads the lower 128/256-bit, but is available with only AVX512F.
|
|
static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
|
|
const TargetRegisterInfo *TRI,
|
|
const MCInstrDesc &LoadDesc,
|
|
const MCInstrDesc &BroadcastDesc,
|
|
unsigned SubIdx) {
|
|
Register DestReg = MIB.getReg(0);
|
|
// Check if DestReg is XMM16-31 or YMM16-31.
|
|
if (TRI->getEncodingValue(DestReg) < 16) {
|
|
// We can use a normal VEX encoded load.
|
|
MIB->setDesc(LoadDesc);
|
|
} else {
|
|
// Use a 128/256-bit VBROADCAST instruction.
|
|
MIB->setDesc(BroadcastDesc);
|
|
// Change the destination to a 512-bit register.
|
|
DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
|
|
MIB->getOperand(0).setReg(DestReg);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// This is used to handle spills for 128/256-bit registers when we have AVX512,
|
|
// but not VLX. If it uses an extended register we need to use an instruction
|
|
// that stores the lower 128/256-bit, but is available with only AVX512F.
|
|
static bool expandNOVLXStore(MachineInstrBuilder &MIB,
|
|
const TargetRegisterInfo *TRI,
|
|
const MCInstrDesc &StoreDesc,
|
|
const MCInstrDesc &ExtractDesc,
|
|
unsigned SubIdx) {
|
|
Register SrcReg = MIB.getReg(X86::AddrNumOperands);
|
|
// Check if DestReg is XMM16-31 or YMM16-31.
|
|
if (TRI->getEncodingValue(SrcReg) < 16) {
|
|
// We can use a normal VEX encoded store.
|
|
MIB->setDesc(StoreDesc);
|
|
} else {
|
|
// Use a VEXTRACTF instruction.
|
|
MIB->setDesc(ExtractDesc);
|
|
// Change the destination to a 512-bit register.
|
|
SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
|
|
MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
|
|
MIB.addImm(0x0); // Append immediate to extract from the lower bits.
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
|
|
MIB->setDesc(Desc);
|
|
int64_t ShiftAmt = MIB->getOperand(2).getImm();
|
|
// Temporarily remove the immediate so we can add another source register.
|
|
MIB->RemoveOperand(2);
|
|
// Add the register. Don't copy the kill flag if there is one.
|
|
MIB.addReg(MIB.getReg(1),
|
|
getUndefRegState(MIB->getOperand(1).isUndef()));
|
|
// Add back the immediate.
|
|
MIB.addImm(ShiftAmt);
|
|
return true;
|
|
}
|
|
|
|
bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
|
|
bool HasAVX = Subtarget.hasAVX();
|
|
MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
|
|
switch (MI.getOpcode()) {
|
|
case X86::MOV32r0:
|
|
return Expand2AddrUndef(MIB, get(X86::XOR32rr));
|
|
case X86::MOV32r1:
|
|
return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
|
|
case X86::MOV32r_1:
|
|
return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
|
|
case X86::MOV32ImmSExti8:
|
|
case X86::MOV64ImmSExti8:
|
|
return ExpandMOVImmSExti8(MIB, *this, Subtarget);
|
|
case X86::SETB_C32r:
|
|
return Expand2AddrUndef(MIB, get(X86::SBB32rr));
|
|
case X86::SETB_C64r:
|
|
return Expand2AddrUndef(MIB, get(X86::SBB64rr));
|
|
case X86::MMX_SET0:
|
|
return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
|
|
case X86::V_SET0:
|
|
case X86::FsFLD0SS:
|
|
case X86::FsFLD0SD:
|
|
case X86::FsFLD0F128:
|
|
return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
|
|
case X86::AVX_SET0: {
|
|
assert(HasAVX && "AVX not supported");
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
Register SrcReg = MIB.getReg(0);
|
|
Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
|
|
MIB->getOperand(0).setReg(XReg);
|
|
Expand2AddrUndef(MIB, get(X86::VXORPSrr));
|
|
MIB.addReg(SrcReg, RegState::ImplicitDefine);
|
|
return true;
|
|
}
|
|
case X86::AVX512_128_SET0:
|
|
case X86::AVX512_FsFLD0SS:
|
|
case X86::AVX512_FsFLD0SD:
|
|
case X86::AVX512_FsFLD0F128: {
|
|
bool HasVLX = Subtarget.hasVLX();
|
|
Register SrcReg = MIB.getReg(0);
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
|
|
return Expand2AddrUndef(MIB,
|
|
get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
|
|
// Extended register without VLX. Use a larger XOR.
|
|
SrcReg =
|
|
TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
|
|
MIB->getOperand(0).setReg(SrcReg);
|
|
return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
|
|
}
|
|
case X86::AVX512_256_SET0:
|
|
case X86::AVX512_512_SET0: {
|
|
bool HasVLX = Subtarget.hasVLX();
|
|
Register SrcReg = MIB.getReg(0);
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
|
|
Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
|
|
MIB->getOperand(0).setReg(XReg);
|
|
Expand2AddrUndef(MIB,
|
|
get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
|
|
MIB.addReg(SrcReg, RegState::ImplicitDefine);
|
|
return true;
|
|
}
|
|
if (MI.getOpcode() == X86::AVX512_256_SET0) {
|
|
// No VLX so we must reference a zmm.
|
|
unsigned ZReg =
|
|
TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
|
|
MIB->getOperand(0).setReg(ZReg);
|
|
}
|
|
return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
|
|
}
|
|
case X86::V_SETALLONES:
|
|
return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
|
|
case X86::AVX2_SETALLONES:
|
|
return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
|
|
case X86::AVX1_SETALLONES: {
|
|
Register Reg = MIB.getReg(0);
|
|
// VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
|
|
MIB->setDesc(get(X86::VCMPPSYrri));
|
|
MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
|
|
return true;
|
|
}
|
|
case X86::AVX512_512_SETALLONES: {
|
|
Register Reg = MIB.getReg(0);
|
|
MIB->setDesc(get(X86::VPTERNLOGDZrri));
|
|
// VPTERNLOGD needs 3 register inputs and an immediate.
|
|
// 0xff will return 1s for any input.
|
|
MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
|
|
.addReg(Reg, RegState::Undef).addImm(0xff);
|
|
return true;
|
|
}
|
|
case X86::AVX512_512_SEXT_MASK_32:
|
|
case X86::AVX512_512_SEXT_MASK_64: {
|
|
Register Reg = MIB.getReg(0);
|
|
Register MaskReg = MIB.getReg(1);
|
|
unsigned MaskState = getRegState(MIB->getOperand(1));
|
|
unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
|
|
X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
|
|
MI.RemoveOperand(1);
|
|
MIB->setDesc(get(Opc));
|
|
// VPTERNLOG needs 3 register inputs and an immediate.
|
|
// 0xff will return 1s for any input.
|
|
MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
|
|
.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
|
|
return true;
|
|
}
|
|
case X86::VMOVAPSZ128rm_NOVLX:
|
|
return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
|
|
get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
|
|
case X86::VMOVUPSZ128rm_NOVLX:
|
|
return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
|
|
get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
|
|
case X86::VMOVAPSZ256rm_NOVLX:
|
|
return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
|
|
get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
|
|
case X86::VMOVUPSZ256rm_NOVLX:
|
|
return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
|
|
get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
|
|
case X86::VMOVAPSZ128mr_NOVLX:
|
|
return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
|
|
get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
|
|
case X86::VMOVUPSZ128mr_NOVLX:
|
|
return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
|
|
get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
|
|
case X86::VMOVAPSZ256mr_NOVLX:
|
|
return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
|
|
get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
|
|
case X86::VMOVUPSZ256mr_NOVLX:
|
|
return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
|
|
get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
|
|
case X86::MOV32ri64: {
|
|
Register Reg = MIB.getReg(0);
|
|
Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
|
|
MI.setDesc(get(X86::MOV32ri));
|
|
MIB->getOperand(0).setReg(Reg32);
|
|
MIB.addReg(Reg, RegState::ImplicitDefine);
|
|
return true;
|
|
}
|
|
|
|
// KNL does not recognize dependency-breaking idioms for mask registers,
|
|
// so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
|
|
// Using %k0 as the undef input register is a performance heuristic based
|
|
// on the assumption that %k0 is used less frequently than the other mask
|
|
// registers, since it is not usable as a write mask.
|
|
// FIXME: A more advanced approach would be to choose the best input mask
|
|
// register based on context.
|
|
case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
|
|
case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
|
|
case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
|
|
case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
|
|
case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
|
|
case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
|
|
case TargetOpcode::LOAD_STACK_GUARD:
|
|
expandLoadStackGuard(MIB, *this);
|
|
return true;
|
|
case X86::XOR64_FP:
|
|
case X86::XOR32_FP:
|
|
return expandXorFP(MIB, *this);
|
|
case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
|
|
case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
|
|
case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
|
|
case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
|
|
case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break;
|
|
case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break;
|
|
case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break;
|
|
case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break;
|
|
case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break;
|
|
case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break;
|
|
case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break;
|
|
case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
|
|
case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break;
|
|
case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break;
|
|
case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Return true for all instructions that only update
|
|
/// the first 32 or 64-bits of the destination register and leave the rest
|
|
/// unmodified. This can be used to avoid folding loads if the instructions
|
|
/// only update part of the destination register, and the non-updated part is
|
|
/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
|
|
/// instructions breaks the partial register dependency and it can improve
|
|
/// performance. e.g.:
|
|
///
|
|
/// movss (%rdi), %xmm0
|
|
/// cvtss2sd %xmm0, %xmm0
|
|
///
|
|
/// Instead of
|
|
/// cvtss2sd (%rdi), %xmm0
|
|
///
|
|
/// FIXME: This should be turned into a TSFlags.
|
|
///
|
|
static bool hasPartialRegUpdate(unsigned Opcode,
|
|
const X86Subtarget &Subtarget,
|
|
bool ForLoadFold = false) {
|
|
switch (Opcode) {
|
|
case X86::CVTSI2SSrr:
|
|
case X86::CVTSI2SSrm:
|
|
case X86::CVTSI642SSrr:
|
|
case X86::CVTSI642SSrm:
|
|
case X86::CVTSI2SDrr:
|
|
case X86::CVTSI2SDrm:
|
|
case X86::CVTSI642SDrr:
|
|
case X86::CVTSI642SDrm:
|
|
// Load folding won't effect the undef register update since the input is
|
|
// a GPR.
|
|
return !ForLoadFold;
|
|
case X86::CVTSD2SSrr:
|
|
case X86::CVTSD2SSrm:
|
|
case X86::CVTSS2SDrr:
|
|
case X86::CVTSS2SDrm:
|
|
case X86::MOVHPDrm:
|
|
case X86::MOVHPSrm:
|
|
case X86::MOVLPDrm:
|
|
case X86::MOVLPSrm:
|
|
case X86::RCPSSr:
|
|
case X86::RCPSSm:
|
|
case X86::RCPSSr_Int:
|
|
case X86::RCPSSm_Int:
|
|
case X86::ROUNDSDr:
|
|
case X86::ROUNDSDm:
|
|
case X86::ROUNDSSr:
|
|
case X86::ROUNDSSm:
|
|
case X86::RSQRTSSr:
|
|
case X86::RSQRTSSm:
|
|
case X86::RSQRTSSr_Int:
|
|
case X86::RSQRTSSm_Int:
|
|
case X86::SQRTSSr:
|
|
case X86::SQRTSSm:
|
|
case X86::SQRTSSr_Int:
|
|
case X86::SQRTSSm_Int:
|
|
case X86::SQRTSDr:
|
|
case X86::SQRTSDm:
|
|
case X86::SQRTSDr_Int:
|
|
case X86::SQRTSDm_Int:
|
|
return true;
|
|
// GPR
|
|
case X86::POPCNT32rm:
|
|
case X86::POPCNT32rr:
|
|
case X86::POPCNT64rm:
|
|
case X86::POPCNT64rr:
|
|
return Subtarget.hasPOPCNTFalseDeps();
|
|
case X86::LZCNT32rm:
|
|
case X86::LZCNT32rr:
|
|
case X86::LZCNT64rm:
|
|
case X86::LZCNT64rr:
|
|
case X86::TZCNT32rm:
|
|
case X86::TZCNT32rr:
|
|
case X86::TZCNT64rm:
|
|
case X86::TZCNT64rr:
|
|
return Subtarget.hasLZCNTFalseDeps();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Inform the BreakFalseDeps pass how many idle
|
|
/// instructions we would like before a partial register update.
|
|
unsigned X86InstrInfo::getPartialRegUpdateClearance(
|
|
const MachineInstr &MI, unsigned OpNum,
|
|
const TargetRegisterInfo *TRI) const {
|
|
if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
|
|
return 0;
|
|
|
|
// If MI is marked as reading Reg, the partial register update is wanted.
|
|
const MachineOperand &MO = MI.getOperand(0);
|
|
Register Reg = MO.getReg();
|
|
if (Reg.isVirtual()) {
|
|
if (MO.readsReg() || MI.readsVirtualRegister(Reg))
|
|
return 0;
|
|
} else {
|
|
if (MI.readsRegister(Reg, TRI))
|
|
return 0;
|
|
}
|
|
|
|
// If any instructions in the clearance range are reading Reg, insert a
|
|
// dependency breaking instruction, which is inexpensive and is likely to
|
|
// be hidden in other instruction's cycles.
|
|
return PartialRegUpdateClearance;
|
|
}
|
|
|
|
// Return true for any instruction the copies the high bits of the first source
|
|
// operand into the unused high bits of the destination operand.
|
|
// Also returns true for instructions that have two inputs where one may
|
|
// be undef and we want it to use the same register as the other input.
|
|
static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
|
|
bool ForLoadFold = false) {
|
|
// Set the OpNum parameter to the first source operand.
|
|
switch (Opcode) {
|
|
case X86::MMX_PUNPCKHBWirr:
|
|
case X86::MMX_PUNPCKHWDirr:
|
|
case X86::MMX_PUNPCKHDQirr:
|
|
case X86::MMX_PUNPCKLBWirr:
|
|
case X86::MMX_PUNPCKLWDirr:
|
|
case X86::MMX_PUNPCKLDQirr:
|
|
case X86::MOVHLPSrr:
|
|
case X86::PACKSSWBrr:
|
|
case X86::PACKUSWBrr:
|
|
case X86::PACKSSDWrr:
|
|
case X86::PACKUSDWrr:
|
|
case X86::PUNPCKHBWrr:
|
|
case X86::PUNPCKLBWrr:
|
|
case X86::PUNPCKHWDrr:
|
|
case X86::PUNPCKLWDrr:
|
|
case X86::PUNPCKHDQrr:
|
|
case X86::PUNPCKLDQrr:
|
|
case X86::PUNPCKHQDQrr:
|
|
case X86::PUNPCKLQDQrr:
|
|
case X86::SHUFPDrri:
|
|
case X86::SHUFPSrri:
|
|
// These instructions are sometimes used with an undef first or second
|
|
// source. Return true here so BreakFalseDeps will assign this source to the
|
|
// same register as the first source to avoid a false dependency.
|
|
// Operand 1 of these instructions is tied so they're separate from their
|
|
// VEX counterparts.
|
|
return OpNum == 2 && !ForLoadFold;
|
|
|
|
case X86::VMOVLHPSrr:
|
|
case X86::VMOVLHPSZrr:
|
|
case X86::VPACKSSWBrr:
|
|
case X86::VPACKUSWBrr:
|
|
case X86::VPACKSSDWrr:
|
|
case X86::VPACKUSDWrr:
|
|
case X86::VPACKSSWBZ128rr:
|
|
case X86::VPACKUSWBZ128rr:
|
|
case X86::VPACKSSDWZ128rr:
|
|
case X86::VPACKUSDWZ128rr:
|
|
case X86::VPERM2F128rr:
|
|
case X86::VPERM2I128rr:
|
|
case X86::VSHUFF32X4Z256rri:
|
|
case X86::VSHUFF32X4Zrri:
|
|
case X86::VSHUFF64X2Z256rri:
|
|
case X86::VSHUFF64X2Zrri:
|
|
case X86::VSHUFI32X4Z256rri:
|
|
case X86::VSHUFI32X4Zrri:
|
|
case X86::VSHUFI64X2Z256rri:
|
|
case X86::VSHUFI64X2Zrri:
|
|
case X86::VPUNPCKHBWrr:
|
|
case X86::VPUNPCKLBWrr:
|
|
case X86::VPUNPCKHBWYrr:
|
|
case X86::VPUNPCKLBWYrr:
|
|
case X86::VPUNPCKHBWZ128rr:
|
|
case X86::VPUNPCKLBWZ128rr:
|
|
case X86::VPUNPCKHBWZ256rr:
|
|
case X86::VPUNPCKLBWZ256rr:
|
|
case X86::VPUNPCKHBWZrr:
|
|
case X86::VPUNPCKLBWZrr:
|
|
case X86::VPUNPCKHWDrr:
|
|
case X86::VPUNPCKLWDrr:
|
|
case X86::VPUNPCKHWDYrr:
|
|
case X86::VPUNPCKLWDYrr:
|
|
case X86::VPUNPCKHWDZ128rr:
|
|
case X86::VPUNPCKLWDZ128rr:
|
|
case X86::VPUNPCKHWDZ256rr:
|
|
case X86::VPUNPCKLWDZ256rr:
|
|
case X86::VPUNPCKHWDZrr:
|
|
case X86::VPUNPCKLWDZrr:
|
|
case X86::VPUNPCKHDQrr:
|
|
case X86::VPUNPCKLDQrr:
|
|
case X86::VPUNPCKHDQYrr:
|
|
case X86::VPUNPCKLDQYrr:
|
|
case X86::VPUNPCKHDQZ128rr:
|
|
case X86::VPUNPCKLDQZ128rr:
|
|
case X86::VPUNPCKHDQZ256rr:
|
|
case X86::VPUNPCKLDQZ256rr:
|
|
case X86::VPUNPCKHDQZrr:
|
|
case X86::VPUNPCKLDQZrr:
|
|
case X86::VPUNPCKHQDQrr:
|
|
case X86::VPUNPCKLQDQrr:
|
|
case X86::VPUNPCKHQDQYrr:
|
|
case X86::VPUNPCKLQDQYrr:
|
|
case X86::VPUNPCKHQDQZ128rr:
|
|
case X86::VPUNPCKLQDQZ128rr:
|
|
case X86::VPUNPCKHQDQZ256rr:
|
|
case X86::VPUNPCKLQDQZ256rr:
|
|
case X86::VPUNPCKHQDQZrr:
|
|
case X86::VPUNPCKLQDQZrr:
|
|
// These instructions are sometimes used with an undef first or second
|
|
// source. Return true here so BreakFalseDeps will assign this source to the
|
|
// same register as the first source to avoid a false dependency.
|
|
return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
|
|
|
|
case X86::VCVTSI2SSrr:
|
|
case X86::VCVTSI2SSrm:
|
|
case X86::VCVTSI2SSrr_Int:
|
|
case X86::VCVTSI2SSrm_Int:
|
|
case X86::VCVTSI642SSrr:
|
|
case X86::VCVTSI642SSrm:
|
|
case X86::VCVTSI642SSrr_Int:
|
|
case X86::VCVTSI642SSrm_Int:
|
|
case X86::VCVTSI2SDrr:
|
|
case X86::VCVTSI2SDrm:
|
|
case X86::VCVTSI2SDrr_Int:
|
|
case X86::VCVTSI2SDrm_Int:
|
|
case X86::VCVTSI642SDrr:
|
|
case X86::VCVTSI642SDrm:
|
|
case X86::VCVTSI642SDrr_Int:
|
|
case X86::VCVTSI642SDrm_Int:
|
|
// AVX-512
|
|
case X86::VCVTSI2SSZrr:
|
|
case X86::VCVTSI2SSZrm:
|
|
case X86::VCVTSI2SSZrr_Int:
|
|
case X86::VCVTSI2SSZrrb_Int:
|
|
case X86::VCVTSI2SSZrm_Int:
|
|
case X86::VCVTSI642SSZrr:
|
|
case X86::VCVTSI642SSZrm:
|
|
case X86::VCVTSI642SSZrr_Int:
|
|
case X86::VCVTSI642SSZrrb_Int:
|
|
case X86::VCVTSI642SSZrm_Int:
|
|
case X86::VCVTSI2SDZrr:
|
|
case X86::VCVTSI2SDZrm:
|
|
case X86::VCVTSI2SDZrr_Int:
|
|
case X86::VCVTSI2SDZrm_Int:
|
|
case X86::VCVTSI642SDZrr:
|
|
case X86::VCVTSI642SDZrm:
|
|
case X86::VCVTSI642SDZrr_Int:
|
|
case X86::VCVTSI642SDZrrb_Int:
|
|
case X86::VCVTSI642SDZrm_Int:
|
|
case X86::VCVTUSI2SSZrr:
|
|
case X86::VCVTUSI2SSZrm:
|
|
case X86::VCVTUSI2SSZrr_Int:
|
|
case X86::VCVTUSI2SSZrrb_Int:
|
|
case X86::VCVTUSI2SSZrm_Int:
|
|
case X86::VCVTUSI642SSZrr:
|
|
case X86::VCVTUSI642SSZrm:
|
|
case X86::VCVTUSI642SSZrr_Int:
|
|
case X86::VCVTUSI642SSZrrb_Int:
|
|
case X86::VCVTUSI642SSZrm_Int:
|
|
case X86::VCVTUSI2SDZrr:
|
|
case X86::VCVTUSI2SDZrm:
|
|
case X86::VCVTUSI2SDZrr_Int:
|
|
case X86::VCVTUSI2SDZrm_Int:
|
|
case X86::VCVTUSI642SDZrr:
|
|
case X86::VCVTUSI642SDZrm:
|
|
case X86::VCVTUSI642SDZrr_Int:
|
|
case X86::VCVTUSI642SDZrrb_Int:
|
|
case X86::VCVTUSI642SDZrm_Int:
|
|
// Load folding won't effect the undef register update since the input is
|
|
// a GPR.
|
|
return OpNum == 1 && !ForLoadFold;
|
|
case X86::VCVTSD2SSrr:
|
|
case X86::VCVTSD2SSrm:
|
|
case X86::VCVTSD2SSrr_Int:
|
|
case X86::VCVTSD2SSrm_Int:
|
|
case X86::VCVTSS2SDrr:
|
|
case X86::VCVTSS2SDrm:
|
|
case X86::VCVTSS2SDrr_Int:
|
|
case X86::VCVTSS2SDrm_Int:
|
|
case X86::VRCPSSr:
|
|
case X86::VRCPSSr_Int:
|
|
case X86::VRCPSSm:
|
|
case X86::VRCPSSm_Int:
|
|
case X86::VROUNDSDr:
|
|
case X86::VROUNDSDm:
|
|
case X86::VROUNDSDr_Int:
|
|
case X86::VROUNDSDm_Int:
|
|
case X86::VROUNDSSr:
|
|
case X86::VROUNDSSm:
|
|
case X86::VROUNDSSr_Int:
|
|
case X86::VROUNDSSm_Int:
|
|
case X86::VRSQRTSSr:
|
|
case X86::VRSQRTSSr_Int:
|
|
case X86::VRSQRTSSm:
|
|
case X86::VRSQRTSSm_Int:
|
|
case X86::VSQRTSSr:
|
|
case X86::VSQRTSSr_Int:
|
|
case X86::VSQRTSSm:
|
|
case X86::VSQRTSSm_Int:
|
|
case X86::VSQRTSDr:
|
|
case X86::VSQRTSDr_Int:
|
|
case X86::VSQRTSDm:
|
|
case X86::VSQRTSDm_Int:
|
|
// AVX-512
|
|
case X86::VCVTSD2SSZrr:
|
|
case X86::VCVTSD2SSZrr_Int:
|
|
case X86::VCVTSD2SSZrrb_Int:
|
|
case X86::VCVTSD2SSZrm:
|
|
case X86::VCVTSD2SSZrm_Int:
|
|
case X86::VCVTSS2SDZrr:
|
|
case X86::VCVTSS2SDZrr_Int:
|
|
case X86::VCVTSS2SDZrrb_Int:
|
|
case X86::VCVTSS2SDZrm:
|
|
case X86::VCVTSS2SDZrm_Int:
|
|
case X86::VGETEXPSDZr:
|
|
case X86::VGETEXPSDZrb:
|
|
case X86::VGETEXPSDZm:
|
|
case X86::VGETEXPSSZr:
|
|
case X86::VGETEXPSSZrb:
|
|
case X86::VGETEXPSSZm:
|
|
case X86::VGETMANTSDZrri:
|
|
case X86::VGETMANTSDZrrib:
|
|
case X86::VGETMANTSDZrmi:
|
|
case X86::VGETMANTSSZrri:
|
|
case X86::VGETMANTSSZrrib:
|
|
case X86::VGETMANTSSZrmi:
|
|
case X86::VRNDSCALESDZr:
|
|
case X86::VRNDSCALESDZr_Int:
|
|
case X86::VRNDSCALESDZrb_Int:
|
|
case X86::VRNDSCALESDZm:
|
|
case X86::VRNDSCALESDZm_Int:
|
|
case X86::VRNDSCALESSZr:
|
|
case X86::VRNDSCALESSZr_Int:
|
|
case X86::VRNDSCALESSZrb_Int:
|
|
case X86::VRNDSCALESSZm:
|
|
case X86::VRNDSCALESSZm_Int:
|
|
case X86::VRCP14SDZrr:
|
|
case X86::VRCP14SDZrm:
|
|
case X86::VRCP14SSZrr:
|
|
case X86::VRCP14SSZrm:
|
|
case X86::VRCP28SDZr:
|
|
case X86::VRCP28SDZrb:
|
|
case X86::VRCP28SDZm:
|
|
case X86::VRCP28SSZr:
|
|
case X86::VRCP28SSZrb:
|
|
case X86::VRCP28SSZm:
|
|
case X86::VREDUCESSZrmi:
|
|
case X86::VREDUCESSZrri:
|
|
case X86::VREDUCESSZrrib:
|
|
case X86::VRSQRT14SDZrr:
|
|
case X86::VRSQRT14SDZrm:
|
|
case X86::VRSQRT14SSZrr:
|
|
case X86::VRSQRT14SSZrm:
|
|
case X86::VRSQRT28SDZr:
|
|
case X86::VRSQRT28SDZrb:
|
|
case X86::VRSQRT28SDZm:
|
|
case X86::VRSQRT28SSZr:
|
|
case X86::VRSQRT28SSZrb:
|
|
case X86::VRSQRT28SSZm:
|
|
case X86::VSQRTSSZr:
|
|
case X86::VSQRTSSZr_Int:
|
|
case X86::VSQRTSSZrb_Int:
|
|
case X86::VSQRTSSZm:
|
|
case X86::VSQRTSSZm_Int:
|
|
case X86::VSQRTSDZr:
|
|
case X86::VSQRTSDZr_Int:
|
|
case X86::VSQRTSDZrb_Int:
|
|
case X86::VSQRTSDZm:
|
|
case X86::VSQRTSDZm_Int:
|
|
return OpNum == 1;
|
|
case X86::VMOVSSZrrk:
|
|
case X86::VMOVSDZrrk:
|
|
return OpNum == 3 && !ForLoadFold;
|
|
case X86::VMOVSSZrrkz:
|
|
case X86::VMOVSDZrrkz:
|
|
return OpNum == 2 && !ForLoadFold;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Inform the BreakFalseDeps pass how many idle instructions we would like
|
|
/// before certain undef register reads.
|
|
///
|
|
/// This catches the VCVTSI2SD family of instructions:
|
|
///
|
|
/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
|
|
///
|
|
/// We should to be careful *not* to catch VXOR idioms which are presumably
|
|
/// handled specially in the pipeline:
|
|
///
|
|
/// vxorps undef %xmm1, undef %xmm1, %xmm1
|
|
///
|
|
/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
|
|
/// high bits that are passed-through are not live.
|
|
unsigned
|
|
X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
|
|
const TargetRegisterInfo *TRI) const {
|
|
const MachineOperand &MO = MI.getOperand(OpNum);
|
|
if (Register::isPhysicalRegister(MO.getReg()) &&
|
|
hasUndefRegUpdate(MI.getOpcode(), OpNum))
|
|
return UndefRegClearance;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void X86InstrInfo::breakPartialRegDependency(
|
|
MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
|
|
Register Reg = MI.getOperand(OpNum).getReg();
|
|
// If MI kills this register, the false dependence is already broken.
|
|
if (MI.killsRegister(Reg, TRI))
|
|
return;
|
|
|
|
if (X86::VR128RegClass.contains(Reg)) {
|
|
// These instructions are all floating point domain, so xorps is the best
|
|
// choice.
|
|
unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
|
|
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
|
|
.addReg(Reg, RegState::Undef)
|
|
.addReg(Reg, RegState::Undef);
|
|
MI.addRegisterKilled(Reg, TRI, true);
|
|
} else if (X86::VR256RegClass.contains(Reg)) {
|
|
// Use vxorps to clear the full ymm register.
|
|
// It wants to read and write the xmm sub-register.
|
|
Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
|
|
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
|
|
.addReg(XReg, RegState::Undef)
|
|
.addReg(XReg, RegState::Undef)
|
|
.addReg(Reg, RegState::ImplicitDefine);
|
|
MI.addRegisterKilled(Reg, TRI, true);
|
|
} else if (X86::GR64RegClass.contains(Reg)) {
|
|
// Using XOR32rr because it has shorter encoding and zeros up the upper bits
|
|
// as well.
|
|
Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
|
|
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
|
|
.addReg(XReg, RegState::Undef)
|
|
.addReg(XReg, RegState::Undef)
|
|
.addReg(Reg, RegState::ImplicitDefine);
|
|
MI.addRegisterKilled(Reg, TRI, true);
|
|
} else if (X86::GR32RegClass.contains(Reg)) {
|
|
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
|
|
.addReg(Reg, RegState::Undef)
|
|
.addReg(Reg, RegState::Undef);
|
|
MI.addRegisterKilled(Reg, TRI, true);
|
|
}
|
|
}
|
|
|
|
static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
|
|
int PtrOffset = 0) {
|
|
unsigned NumAddrOps = MOs.size();
|
|
|
|
if (NumAddrOps < 4) {
|
|
// FrameIndex only - add an immediate offset (whether its zero or not).
|
|
for (unsigned i = 0; i != NumAddrOps; ++i)
|
|
MIB.add(MOs[i]);
|
|
addOffset(MIB, PtrOffset);
|
|
} else {
|
|
// General Memory Addressing - we need to add any offset to an existing
|
|
// offset.
|
|
assert(MOs.size() == 5 && "Unexpected memory operand list length");
|
|
for (unsigned i = 0; i != NumAddrOps; ++i) {
|
|
const MachineOperand &MO = MOs[i];
|
|
if (i == 3 && PtrOffset != 0) {
|
|
MIB.addDisp(MO, PtrOffset);
|
|
} else {
|
|
MIB.add(MO);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void updateOperandRegConstraints(MachineFunction &MF,
|
|
MachineInstr &NewMI,
|
|
const TargetInstrInfo &TII) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
|
|
|
|
for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
|
|
MachineOperand &MO = NewMI.getOperand(Idx);
|
|
// We only need to update constraints on virtual register operands.
|
|
if (!MO.isReg())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg.isVirtual())
|
|
continue;
|
|
|
|
auto *NewRC = MRI.constrainRegClass(
|
|
Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
|
|
if (!NewRC) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "WARNING: Unable to update register constraint for operand "
|
|
<< Idx << " of instruction:\n";
|
|
NewMI.dump(); dbgs() << "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
|
|
ArrayRef<MachineOperand> MOs,
|
|
MachineBasicBlock::iterator InsertPt,
|
|
MachineInstr &MI,
|
|
const TargetInstrInfo &TII) {
|
|
// Create the base instruction with the memory operand as the first part.
|
|
// Omit the implicit operands, something BuildMI can't do.
|
|
MachineInstr *NewMI =
|
|
MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
|
|
MachineInstrBuilder MIB(MF, NewMI);
|
|
addOperands(MIB, MOs);
|
|
|
|
// Loop over the rest of the ri operands, converting them over.
|
|
unsigned NumOps = MI.getDesc().getNumOperands() - 2;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i + 2);
|
|
MIB.add(MO);
|
|
}
|
|
for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
MIB.add(MO);
|
|
}
|
|
|
|
updateOperandRegConstraints(MF, *NewMI, TII);
|
|
|
|
MachineBasicBlock *MBB = InsertPt->getParent();
|
|
MBB->insert(InsertPt, NewMI);
|
|
|
|
return MIB;
|
|
}
|
|
|
|
static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
|
|
unsigned OpNo, ArrayRef<MachineOperand> MOs,
|
|
MachineBasicBlock::iterator InsertPt,
|
|
MachineInstr &MI, const TargetInstrInfo &TII,
|
|
int PtrOffset = 0) {
|
|
// Omit the implicit operands, something BuildMI can't do.
|
|
MachineInstr *NewMI =
|
|
MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
|
|
MachineInstrBuilder MIB(MF, NewMI);
|
|
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (i == OpNo) {
|
|
assert(MO.isReg() && "Expected to fold into reg operand!");
|
|
addOperands(MIB, MOs, PtrOffset);
|
|
} else {
|
|
MIB.add(MO);
|
|
}
|
|
}
|
|
|
|
updateOperandRegConstraints(MF, *NewMI, TII);
|
|
|
|
// Copy the NoFPExcept flag from the instruction we're fusing.
|
|
if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
|
|
NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
|
|
|
|
MachineBasicBlock *MBB = InsertPt->getParent();
|
|
MBB->insert(InsertPt, NewMI);
|
|
|
|
return MIB;
|
|
}
|
|
|
|
static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
|
|
ArrayRef<MachineOperand> MOs,
|
|
MachineBasicBlock::iterator InsertPt,
|
|
MachineInstr &MI) {
|
|
MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
|
|
MI.getDebugLoc(), TII.get(Opcode));
|
|
addOperands(MIB, MOs);
|
|
return MIB.addImm(0);
|
|
}
|
|
|
|
MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
|
|
MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
|
|
ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
|
|
unsigned Size, Align Alignment) const {
|
|
switch (MI.getOpcode()) {
|
|
case X86::INSERTPSrr:
|
|
case X86::VINSERTPSrr:
|
|
case X86::VINSERTPSZrr:
|
|
// Attempt to convert the load of inserted vector into a fold load
|
|
// of a single float.
|
|
if (OpNum == 2) {
|
|
unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
|
|
unsigned ZMask = Imm & 15;
|
|
unsigned DstIdx = (Imm >> 4) & 3;
|
|
unsigned SrcIdx = (Imm >> 6) & 3;
|
|
|
|
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
|
|
const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
|
|
unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
|
|
if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) {
|
|
int PtrOffset = SrcIdx * 4;
|
|
unsigned NewImm = (DstIdx << 4) | ZMask;
|
|
unsigned NewOpCode =
|
|
(MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
|
|
(MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm :
|
|
X86::INSERTPSrm;
|
|
MachineInstr *NewMI =
|
|
FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
|
|
NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
|
|
return NewMI;
|
|
}
|
|
}
|
|
break;
|
|
case X86::MOVHLPSrr:
|
|
case X86::VMOVHLPSrr:
|
|
case X86::VMOVHLPSZrr:
|
|
// Move the upper 64-bits of the second operand to the lower 64-bits.
|
|
// To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
|
|
// TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
|
|
if (OpNum == 2) {
|
|
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
|
|
const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
|
|
unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
|
|
if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
|
|
unsigned NewOpCode =
|
|
(MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
|
|
(MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm :
|
|
X86::MOVLPSrm;
|
|
MachineInstr *NewMI =
|
|
FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
|
|
return NewMI;
|
|
}
|
|
}
|
|
break;
|
|
case X86::UNPCKLPDrr:
|
|
// If we won't be able to fold this to the memory form of UNPCKL, use
|
|
// MOVHPD instead. Done as custom because we can't have this in the load
|
|
// table twice.
|
|
if (OpNum == 2) {
|
|
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
|
|
const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
|
|
unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
|
|
if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
|
|
MachineInstr *NewMI =
|
|
FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
|
|
return NewMI;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
|
|
MachineInstr &MI) {
|
|
if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) ||
|
|
!MI.getOperand(1).isReg())
|
|
return false;
|
|
|
|
// The are two cases we need to handle depending on where in the pipeline
|
|
// the folding attempt is being made.
|
|
// -Register has the undef flag set.
|
|
// -Register is produced by the IMPLICIT_DEF instruction.
|
|
|
|
if (MI.getOperand(1).isUndef())
|
|
return true;
|
|
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
|
|
return VRegDef && VRegDef->isImplicitDef();
|
|
}
|
|
|
|
MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
|
|
MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
|
|
ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
|
|
unsigned Size, Align Alignment, bool AllowCommute) const {
|
|
bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
|
|
bool isTwoAddrFold = false;
|
|
|
|
// For CPUs that favor the register form of a call or push,
|
|
// do not fold loads into calls or pushes, unless optimizing for size
|
|
// aggressively.
|
|
if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
|
|
(MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
|
|
MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
|
|
MI.getOpcode() == X86::PUSH64r))
|
|
return nullptr;
|
|
|
|
// Avoid partial and undef register update stalls unless optimizing for size.
|
|
if (!MF.getFunction().hasOptSize() &&
|
|
(hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
|
|
shouldPreventUndefRegUpdateMemFold(MF, MI)))
|
|
return nullptr;
|
|
|
|
unsigned NumOps = MI.getDesc().getNumOperands();
|
|
bool isTwoAddr =
|
|
NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
|
|
|
|
// FIXME: AsmPrinter doesn't know how to handle
|
|
// X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
|
|
if (MI.getOpcode() == X86::ADD32ri &&
|
|
MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
|
|
return nullptr;
|
|
|
|
// GOTTPOFF relocation loads can only be folded into add instructions.
|
|
// FIXME: Need to exclude other relocations that only support specific
|
|
// instructions.
|
|
if (MOs.size() == X86::AddrNumOperands &&
|
|
MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
|
|
MI.getOpcode() != X86::ADD64rr)
|
|
return nullptr;
|
|
|
|
MachineInstr *NewMI = nullptr;
|
|
|
|
// Attempt to fold any custom cases we have.
|
|
if (MachineInstr *CustomMI = foldMemoryOperandCustom(
|
|
MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
|
|
return CustomMI;
|
|
|
|
const X86MemoryFoldTableEntry *I = nullptr;
|
|
|
|
// Folding a memory location into the two-address part of a two-address
|
|
// instruction is different than folding it other places. It requires
|
|
// replacing the *two* registers with the memory location.
|
|
if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
|
|
MI.getOperand(1).isReg() &&
|
|
MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
|
|
I = lookupTwoAddrFoldTable(MI.getOpcode());
|
|
isTwoAddrFold = true;
|
|
} else {
|
|
if (OpNum == 0) {
|
|
if (MI.getOpcode() == X86::MOV32r0) {
|
|
NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
|
|
if (NewMI)
|
|
return NewMI;
|
|
}
|
|
}
|
|
|
|
I = lookupFoldTable(MI.getOpcode(), OpNum);
|
|
}
|
|
|
|
if (I != nullptr) {
|
|
unsigned Opcode = I->DstOp;
|
|
bool FoldedLoad =
|
|
isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
|
|
bool FoldedStore =
|
|
isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
|
|
MaybeAlign MinAlign =
|
|
decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT);
|
|
if (MinAlign && Alignment < *MinAlign)
|
|
return nullptr;
|
|
bool NarrowToMOV32rm = false;
|
|
if (Size) {
|
|
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
|
|
const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
|
|
&RI, MF);
|
|
unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
|
|
// Check if it's safe to fold the load. If the size of the object is
|
|
// narrower than the load width, then it's not.
|
|
// FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
|
|
if (FoldedLoad && Size < RCSize) {
|
|
// If this is a 64-bit load, but the spill slot is 32, then we can do
|
|
// a 32-bit load which is implicitly zero-extended. This likely is
|
|
// due to live interval analysis remat'ing a load from stack slot.
|
|
if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
|
|
return nullptr;
|
|
if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
|
|
return nullptr;
|
|
Opcode = X86::MOV32rm;
|
|
NarrowToMOV32rm = true;
|
|
}
|
|
// For stores, make sure the size of the object is equal to the size of
|
|
// the store. If the object is larger, the extra bits would be garbage. If
|
|
// the object is smaller we might overwrite another object or fault.
|
|
if (FoldedStore && Size != RCSize)
|
|
return nullptr;
|
|
}
|
|
|
|
if (isTwoAddrFold)
|
|
NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
|
|
else
|
|
NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
|
|
|
|
if (NarrowToMOV32rm) {
|
|
// If this is the special case where we use a MOV32rm to load a 32-bit
|
|
// value and zero-extend the top bits. Change the destination register
|
|
// to a 32-bit one.
|
|
Register DstReg = NewMI->getOperand(0).getReg();
|
|
if (DstReg.isPhysical())
|
|
NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
|
|
else
|
|
NewMI->getOperand(0).setSubReg(X86::sub_32bit);
|
|
}
|
|
return NewMI;
|
|
}
|
|
|
|
// If the instruction and target operand are commutable, commute the
|
|
// instruction and try again.
|
|
if (AllowCommute) {
|
|
unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
|
|
if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
|
|
bool HasDef = MI.getDesc().getNumDefs();
|
|
Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
|
|
Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
|
|
Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
|
|
bool Tied1 =
|
|
0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
|
|
bool Tied2 =
|
|
0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
|
|
|
|
// If either of the commutable operands are tied to the destination
|
|
// then we can not commute + fold.
|
|
if ((HasDef && Reg0 == Reg1 && Tied1) ||
|
|
(HasDef && Reg0 == Reg2 && Tied2))
|
|
return nullptr;
|
|
|
|
MachineInstr *CommutedMI =
|
|
commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
|
|
if (!CommutedMI) {
|
|
// Unable to commute.
|
|
return nullptr;
|
|
}
|
|
if (CommutedMI != &MI) {
|
|
// New instruction. We can't fold from this.
|
|
CommutedMI->eraseFromParent();
|
|
return nullptr;
|
|
}
|
|
|
|
// Attempt to fold with the commuted version of the instruction.
|
|
NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
|
|
Alignment, /*AllowCommute=*/false);
|
|
if (NewMI)
|
|
return NewMI;
|
|
|
|
// Folding failed again - undo the commute before returning.
|
|
MachineInstr *UncommutedMI =
|
|
commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
|
|
if (!UncommutedMI) {
|
|
// Unable to commute.
|
|
return nullptr;
|
|
}
|
|
if (UncommutedMI != &MI) {
|
|
// New instruction. It doesn't need to be kept.
|
|
UncommutedMI->eraseFromParent();
|
|
return nullptr;
|
|
}
|
|
|
|
// Return here to prevent duplicate fuse failure report.
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// No fusion
|
|
if (PrintFailedFusing && !MI.isCopy())
|
|
dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
|
|
return nullptr;
|
|
}
|
|
|
|
MachineInstr *
|
|
X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
|
|
ArrayRef<unsigned> Ops,
|
|
MachineBasicBlock::iterator InsertPt,
|
|
int FrameIndex, LiveIntervals *LIS,
|
|
VirtRegMap *VRM) const {
|
|
// Check switch flag
|
|
if (NoFusing)
|
|
return nullptr;
|
|
|
|
// Avoid partial and undef register update stalls unless optimizing for size.
|
|
if (!MF.getFunction().hasOptSize() &&
|
|
(hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
|
|
shouldPreventUndefRegUpdateMemFold(MF, MI)))
|
|
return nullptr;
|
|
|
|
// Don't fold subreg spills, or reloads that use a high subreg.
|
|
for (auto Op : Ops) {
|
|
MachineOperand &MO = MI.getOperand(Op);
|
|
auto SubReg = MO.getSubReg();
|
|
if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
|
|
return nullptr;
|
|
}
|
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
unsigned Size = MFI.getObjectSize(FrameIndex);
|
|
Align Alignment = MFI.getObjectAlign(FrameIndex);
|
|
// If the function stack isn't realigned we don't want to fold instructions
|
|
// that need increased alignment.
|
|
if (!RI.needsStackRealignment(MF))
|
|
Alignment =
|
|
std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
|
|
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
|
|
unsigned NewOpc = 0;
|
|
unsigned RCSize = 0;
|
|
switch (MI.getOpcode()) {
|
|
default: return nullptr;
|
|
case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
|
|
case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
|
|
case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
|
|
case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
|
|
}
|
|
// Check if it's safe to fold the load. If the size of the object is
|
|
// narrower than the load width, then it's not.
|
|
if (Size < RCSize)
|
|
return nullptr;
|
|
// Change to CMPXXri r, 0 first.
|
|
MI.setDesc(get(NewOpc));
|
|
MI.getOperand(1).ChangeToImmediate(0);
|
|
} else if (Ops.size() != 1)
|
|
return nullptr;
|
|
|
|
return foldMemoryOperandImpl(MF, MI, Ops[0],
|
|
MachineOperand::CreateFI(FrameIndex), InsertPt,
|
|
Size, Alignment, /*AllowCommute=*/true);
|
|
}
|
|
|
|
/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
|
|
/// because the latter uses contents that wouldn't be defined in the folded
|
|
/// version. For instance, this transformation isn't legal:
|
|
/// movss (%rdi), %xmm0
|
|
/// addps %xmm0, %xmm0
|
|
/// ->
|
|
/// addps (%rdi), %xmm0
|
|
///
|
|
/// But this one is:
|
|
/// movss (%rdi), %xmm0
|
|
/// addss %xmm0, %xmm0
|
|
/// ->
|
|
/// addss (%rdi), %xmm0
|
|
///
|
|
static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
|
|
const MachineInstr &UserMI,
|
|
const MachineFunction &MF) {
|
|
unsigned Opc = LoadMI.getOpcode();
|
|
unsigned UserOpc = UserMI.getOpcode();
|
|
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
|
|
const TargetRegisterClass *RC =
|
|
MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
|
|
unsigned RegSize = TRI.getRegSizeInBits(*RC);
|
|
|
|
if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
|
|
Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
|
|
Opc == X86::VMOVSSZrm_alt) &&
|
|
RegSize > 32) {
|
|
// These instructions only load 32 bits, we can't fold them if the
|
|
// destination register is wider than 32 bits (4 bytes), and its user
|
|
// instruction isn't scalar (SS).
|
|
switch (UserOpc) {
|
|
case X86::CVTSS2SDrr_Int:
|
|
case X86::VCVTSS2SDrr_Int:
|
|
case X86::VCVTSS2SDZrr_Int:
|
|
case X86::VCVTSS2SDZrr_Intk:
|
|
case X86::VCVTSS2SDZrr_Intkz:
|
|
case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int:
|
|
case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int:
|
|
case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int:
|
|
case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int:
|
|
case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int:
|
|
case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int:
|
|
case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int:
|
|
case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int:
|
|
case X86::RCPSSr_Int: case X86::VRCPSSr_Int:
|
|
case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int:
|
|
case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int:
|
|
case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int:
|
|
case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int:
|
|
case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
|
|
case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
|
|
case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
|
|
case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
|
|
case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
|
|
case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
|
|
case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int:
|
|
case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
|
|
case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
|
|
case X86::VCMPSSZrr_Intk:
|
|
case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
|
|
case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
|
|
case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
|
|
case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
|
|
case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz:
|
|
case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
|
|
case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int:
|
|
case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int:
|
|
case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int:
|
|
case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int:
|
|
case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int:
|
|
case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int:
|
|
case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int:
|
|
case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int:
|
|
case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
|
|
case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
|
|
case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
|
|
case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
|
|
case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
|
|
case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
|
|
case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
|
|
case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
|
|
case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
|
|
case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
|
|
case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
|
|
case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
|
|
case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
|
|
case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
|
|
case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
|
|
case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
|
|
case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
|
|
case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
|
|
case X86::VFIXUPIMMSSZrri:
|
|
case X86::VFIXUPIMMSSZrrik:
|
|
case X86::VFIXUPIMMSSZrrikz:
|
|
case X86::VFPCLASSSSZrr:
|
|
case X86::VFPCLASSSSZrrk:
|
|
case X86::VGETEXPSSZr:
|
|
case X86::VGETEXPSSZrk:
|
|
case X86::VGETEXPSSZrkz:
|
|
case X86::VGETMANTSSZrri:
|
|
case X86::VGETMANTSSZrrik:
|
|
case X86::VGETMANTSSZrrikz:
|
|
case X86::VRANGESSZrri:
|
|
case X86::VRANGESSZrrik:
|
|
case X86::VRANGESSZrrikz:
|
|
case X86::VRCP14SSZrr:
|
|
case X86::VRCP14SSZrrk:
|
|
case X86::VRCP14SSZrrkz:
|
|
case X86::VRCP28SSZr:
|
|
case X86::VRCP28SSZrk:
|
|
case X86::VRCP28SSZrkz:
|
|
case X86::VREDUCESSZrri:
|
|
case X86::VREDUCESSZrrik:
|
|
case X86::VREDUCESSZrrikz:
|
|
case X86::VRNDSCALESSZr_Int:
|
|
case X86::VRNDSCALESSZr_Intk:
|
|
case X86::VRNDSCALESSZr_Intkz:
|
|
case X86::VRSQRT14SSZrr:
|
|
case X86::VRSQRT14SSZrrk:
|
|
case X86::VRSQRT14SSZrrkz:
|
|
case X86::VRSQRT28SSZr:
|
|
case X86::VRSQRT28SSZrk:
|
|
case X86::VRSQRT28SSZrkz:
|
|
case X86::VSCALEFSSZrr:
|
|
case X86::VSCALEFSSZrrk:
|
|
case X86::VSCALEFSSZrrkz:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
|
|
Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
|
|
Opc == X86::VMOVSDZrm_alt) &&
|
|
RegSize > 64) {
|
|
// These instructions only load 64 bits, we can't fold them if the
|
|
// destination register is wider than 64 bits (8 bytes), and its user
|
|
// instruction isn't scalar (SD).
|
|
switch (UserOpc) {
|
|
case X86::CVTSD2SSrr_Int:
|
|
case X86::VCVTSD2SSrr_Int:
|
|
case X86::VCVTSD2SSZrr_Int:
|
|
case X86::VCVTSD2SSZrr_Intk:
|
|
case X86::VCVTSD2SSZrr_Intkz:
|
|
case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int:
|
|
case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int:
|
|
case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int:
|
|
case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int:
|
|
case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int:
|
|
case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int:
|
|
case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int:
|
|
case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int:
|
|
case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int:
|
|
case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int:
|
|
case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int:
|
|
case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
|
|
case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
|
|
case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
|
|
case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
|
|
case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
|
|
case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
|
|
case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int:
|
|
case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
|
|
case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
|
|
case X86::VCMPSDZrr_Intk:
|
|
case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
|
|
case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
|
|
case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
|
|
case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
|
|
case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz:
|
|
case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
|
|
case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int:
|
|
case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int:
|
|
case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int:
|
|
case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int:
|
|
case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int:
|
|
case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int:
|
|
case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int:
|
|
case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int:
|
|
case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
|
|
case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
|
|
case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
|
|
case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
|
|
case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
|
|
case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
|
|
case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
|
|
case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
|
|
case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
|
|
case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
|
|
case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
|
|
case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
|
|
case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
|
|
case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
|
|
case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
|
|
case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
|
|
case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
|
|
case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
|
|
case X86::VFIXUPIMMSDZrri:
|
|
case X86::VFIXUPIMMSDZrrik:
|
|
case X86::VFIXUPIMMSDZrrikz:
|
|
case X86::VFPCLASSSDZrr:
|
|
case X86::VFPCLASSSDZrrk:
|
|
case X86::VGETEXPSDZr:
|
|
case X86::VGETEXPSDZrk:
|
|
case X86::VGETEXPSDZrkz:
|
|
case X86::VGETMANTSDZrri:
|
|
case X86::VGETMANTSDZrrik:
|
|
case X86::VGETMANTSDZrrikz:
|
|
case X86::VRANGESDZrri:
|
|
case X86::VRANGESDZrrik:
|
|
case X86::VRANGESDZrrikz:
|
|
case X86::VRCP14SDZrr:
|
|
case X86::VRCP14SDZrrk:
|
|
case X86::VRCP14SDZrrkz:
|
|
case X86::VRCP28SDZr:
|
|
case X86::VRCP28SDZrk:
|
|
case X86::VRCP28SDZrkz:
|
|
case X86::VREDUCESDZrri:
|
|
case X86::VREDUCESDZrrik:
|
|
case X86::VREDUCESDZrrikz:
|
|
case X86::VRNDSCALESDZr_Int:
|
|
case X86::VRNDSCALESDZr_Intk:
|
|
case X86::VRNDSCALESDZr_Intkz:
|
|
case X86::VRSQRT14SDZrr:
|
|
case X86::VRSQRT14SDZrrk:
|
|
case X86::VRSQRT14SDZrrkz:
|
|
case X86::VRSQRT28SDZr:
|
|
case X86::VRSQRT28SDZrk:
|
|
case X86::VRSQRT28SDZrkz:
|
|
case X86::VSCALEFSDZrr:
|
|
case X86::VSCALEFSDZrrk:
|
|
case X86::VSCALEFSDZrrkz:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
|
|
MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
|
|
MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
|
|
LiveIntervals *LIS) const {
|
|
|
|
// TODO: Support the case where LoadMI loads a wide register, but MI
|
|
// only uses a subreg.
|
|
for (auto Op : Ops) {
|
|
if (MI.getOperand(Op).getSubReg())
|
|
return nullptr;
|
|
}
|
|
|
|
// If loading from a FrameIndex, fold directly from the FrameIndex.
|
|
unsigned NumOps = LoadMI.getDesc().getNumOperands();
|
|
int FrameIndex;
|
|
if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
|
|
if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
|
|
return nullptr;
|
|
return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
|
|
}
|
|
|
|
// Check switch flag
|
|
if (NoFusing) return nullptr;
|
|
|
|
// Avoid partial and undef register update stalls unless optimizing for size.
|
|
if (!MF.getFunction().hasOptSize() &&
|
|
(hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
|
|
shouldPreventUndefRegUpdateMemFold(MF, MI)))
|
|
return nullptr;
|
|
|
|
// Determine the alignment of the load.
|
|
Align Alignment;
|
|
if (LoadMI.hasOneMemOperand())
|
|
Alignment = (*LoadMI.memoperands_begin())->getAlign();
|
|
else
|
|
switch (LoadMI.getOpcode()) {
|
|
case X86::AVX512_512_SET0:
|
|
case X86::AVX512_512_SETALLONES:
|
|
Alignment = Align(64);
|
|
break;
|
|
case X86::AVX2_SETALLONES:
|
|
case X86::AVX1_SETALLONES:
|
|
case X86::AVX_SET0:
|
|
case X86::AVX512_256_SET0:
|
|
Alignment = Align(32);
|
|
break;
|
|
case X86::V_SET0:
|
|
case X86::V_SETALLONES:
|
|
case X86::AVX512_128_SET0:
|
|
case X86::FsFLD0F128:
|
|
case X86::AVX512_FsFLD0F128:
|
|
Alignment = Align(16);
|
|
break;
|
|
case X86::MMX_SET0:
|
|
case X86::FsFLD0SD:
|
|
case X86::AVX512_FsFLD0SD:
|
|
Alignment = Align(8);
|
|
break;
|
|
case X86::FsFLD0SS:
|
|
case X86::AVX512_FsFLD0SS:
|
|
Alignment = Align(4);
|
|
break;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
|
|
unsigned NewOpc = 0;
|
|
switch (MI.getOpcode()) {
|
|
default: return nullptr;
|
|
case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
|
|
case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
|
|
case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
|
|
case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
|
|
}
|
|
// Change to CMPXXri r, 0 first.
|
|
MI.setDesc(get(NewOpc));
|
|
MI.getOperand(1).ChangeToImmediate(0);
|
|
} else if (Ops.size() != 1)
|
|
return nullptr;
|
|
|
|
// Make sure the subregisters match.
|
|
// Otherwise we risk changing the size of the load.
|
|
if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
|
|
return nullptr;
|
|
|
|
SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
|
|
switch (LoadMI.getOpcode()) {
|
|
case X86::MMX_SET0:
|
|
case X86::V_SET0:
|
|
case X86::V_SETALLONES:
|
|
case X86::AVX2_SETALLONES:
|
|
case X86::AVX1_SETALLONES:
|
|
case X86::AVX_SET0:
|
|
case X86::AVX512_128_SET0:
|
|
case X86::AVX512_256_SET0:
|
|
case X86::AVX512_512_SET0:
|
|
case X86::AVX512_512_SETALLONES:
|
|
case X86::FsFLD0SD:
|
|
case X86::AVX512_FsFLD0SD:
|
|
case X86::FsFLD0SS:
|
|
case X86::AVX512_FsFLD0SS:
|
|
case X86::FsFLD0F128:
|
|
case X86::AVX512_FsFLD0F128: {
|
|
// Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
|
|
// Create a constant-pool entry and operands to load from it.
|
|
|
|
// Medium and large mode can't fold loads this way.
|
|
if (MF.getTarget().getCodeModel() != CodeModel::Small &&
|
|
MF.getTarget().getCodeModel() != CodeModel::Kernel)
|
|
return nullptr;
|
|
|
|
// x86-32 PIC requires a PIC base register for constant pools.
|
|
unsigned PICBase = 0;
|
|
if (MF.getTarget().isPositionIndependent()) {
|
|
if (Subtarget.is64Bit())
|
|
PICBase = X86::RIP;
|
|
else
|
|
// FIXME: PICBase = getGlobalBaseReg(&MF);
|
|
// This doesn't work for several reasons.
|
|
// 1. GlobalBaseReg may have been spilled.
|
|
// 2. It may not be live at MI.
|
|
return nullptr;
|
|
}
|
|
|
|
// Create a constant-pool entry.
|
|
MachineConstantPool &MCP = *MF.getConstantPool();
|
|
Type *Ty;
|
|
unsigned Opc = LoadMI.getOpcode();
|
|
if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
|
|
Ty = Type::getFloatTy(MF.getFunction().getContext());
|
|
else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
|
|
Ty = Type::getDoubleTy(MF.getFunction().getContext());
|
|
else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
|
|
Ty = Type::getFP128Ty(MF.getFunction().getContext());
|
|
else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
|
|
Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
|
|
16);
|
|
else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
|
|
Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
|
|
Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
|
|
8);
|
|
else if (Opc == X86::MMX_SET0)
|
|
Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
|
|
2);
|
|
else
|
|
Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
|
|
4);
|
|
|
|
bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
|
|
Opc == X86::AVX512_512_SETALLONES ||
|
|
Opc == X86::AVX1_SETALLONES);
|
|
const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
|
|
Constant::getNullValue(Ty);
|
|
unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
|
|
|
|
// Create operands to load from the constant pool entry.
|
|
MOs.push_back(MachineOperand::CreateReg(PICBase, false));
|
|
MOs.push_back(MachineOperand::CreateImm(1));
|
|
MOs.push_back(MachineOperand::CreateReg(0, false));
|
|
MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
|
|
MOs.push_back(MachineOperand::CreateReg(0, false));
|
|
break;
|
|
}
|
|
default: {
|
|
if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
|
|
return nullptr;
|
|
|
|
// Folding a normal load. Just copy the load's address operands.
|
|
MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
|
|
LoadMI.operands_begin() + NumOps);
|
|
break;
|
|
}
|
|
}
|
|
return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
|
|
/*Size=*/0, Alignment, /*AllowCommute=*/true);
|
|
}
|
|
|
|
static SmallVector<MachineMemOperand *, 2>
|
|
extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
|
|
SmallVector<MachineMemOperand *, 2> LoadMMOs;
|
|
|
|
for (MachineMemOperand *MMO : MMOs) {
|
|
if (!MMO->isLoad())
|
|
continue;
|
|
|
|
if (!MMO->isStore()) {
|
|
// Reuse the MMO.
|
|
LoadMMOs.push_back(MMO);
|
|
} else {
|
|
// Clone the MMO and unset the store flag.
|
|
LoadMMOs.push_back(MF.getMachineMemOperand(
|
|
MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
|
|
}
|
|
}
|
|
|
|
return LoadMMOs;
|
|
}
|
|
|
|
static SmallVector<MachineMemOperand *, 2>
|
|
extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
|
|
SmallVector<MachineMemOperand *, 2> StoreMMOs;
|
|
|
|
for (MachineMemOperand *MMO : MMOs) {
|
|
if (!MMO->isStore())
|
|
continue;
|
|
|
|
if (!MMO->isLoad()) {
|
|
// Reuse the MMO.
|
|
StoreMMOs.push_back(MMO);
|
|
} else {
|
|
// Clone the MMO and unset the load flag.
|
|
StoreMMOs.push_back(MF.getMachineMemOperand(
|
|
MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
|
|
}
|
|
}
|
|
|
|
return StoreMMOs;
|
|
}
|
|
|
|
static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
|
|
const TargetRegisterClass *RC,
|
|
const X86Subtarget &STI) {
|
|
assert(STI.hasAVX512() && "Expected at least AVX512!");
|
|
unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
|
|
assert((SpillSize == 64 || STI.hasVLX()) &&
|
|
"Can't broadcast less than 64 bytes without AVX512VL!");
|
|
|
|
switch (I->Flags & TB_BCAST_MASK) {
|
|
default: llvm_unreachable("Unexpected broadcast type!");
|
|
case TB_BCAST_D:
|
|
switch (SpillSize) {
|
|
default: llvm_unreachable("Unknown spill size");
|
|
case 16: return X86::VPBROADCASTDZ128rm;
|
|
case 32: return X86::VPBROADCASTDZ256rm;
|
|
case 64: return X86::VPBROADCASTDZrm;
|
|
}
|
|
break;
|
|
case TB_BCAST_Q:
|
|
switch (SpillSize) {
|
|
default: llvm_unreachable("Unknown spill size");
|
|
case 16: return X86::VPBROADCASTQZ128rm;
|
|
case 32: return X86::VPBROADCASTQZ256rm;
|
|
case 64: return X86::VPBROADCASTQZrm;
|
|
}
|
|
break;
|
|
case TB_BCAST_SS:
|
|
switch (SpillSize) {
|
|
default: llvm_unreachable("Unknown spill size");
|
|
case 16: return X86::VBROADCASTSSZ128rm;
|
|
case 32: return X86::VBROADCASTSSZ256rm;
|
|
case 64: return X86::VBROADCASTSSZrm;
|
|
}
|
|
break;
|
|
case TB_BCAST_SD:
|
|
switch (SpillSize) {
|
|
default: llvm_unreachable("Unknown spill size");
|
|
case 16: return X86::VMOVDDUPZ128rm;
|
|
case 32: return X86::VBROADCASTSDZ256rm;
|
|
case 64: return X86::VBROADCASTSDZrm;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool X86InstrInfo::unfoldMemoryOperand(
|
|
MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
|
|
bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
|
|
const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
|
|
if (I == nullptr)
|
|
return false;
|
|
unsigned Opc = I->DstOp;
|
|
unsigned Index = I->Flags & TB_INDEX_MASK;
|
|
bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
|
|
bool FoldedStore = I->Flags & TB_FOLDED_STORE;
|
|
bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
|
|
if (UnfoldLoad && !FoldedLoad)
|
|
return false;
|
|
UnfoldLoad &= FoldedLoad;
|
|
if (UnfoldStore && !FoldedStore)
|
|
return false;
|
|
UnfoldStore &= FoldedStore;
|
|
|
|
const MCInstrDesc &MCID = get(Opc);
|
|
|
|
const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
|
|
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
|
|
// TODO: Check if 32-byte or greater accesses are slow too?
|
|
if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
|
|
Subtarget.isUnalignedMem16Slow())
|
|
// Without memoperands, loadRegFromAddr and storeRegToStackSlot will
|
|
// conservatively assume the address is unaligned. That's bad for
|
|
// performance.
|
|
return false;
|
|
SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
|
|
SmallVector<MachineOperand,2> BeforeOps;
|
|
SmallVector<MachineOperand,2> AfterOps;
|
|
SmallVector<MachineOperand,4> ImpOps;
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &Op = MI.getOperand(i);
|
|
if (i >= Index && i < Index + X86::AddrNumOperands)
|
|
AddrOps.push_back(Op);
|
|
else if (Op.isReg() && Op.isImplicit())
|
|
ImpOps.push_back(Op);
|
|
else if (i < Index)
|
|
BeforeOps.push_back(Op);
|
|
else if (i > Index)
|
|
AfterOps.push_back(Op);
|
|
}
|
|
|
|
// Emit the load or broadcast instruction.
|
|
if (UnfoldLoad) {
|
|
auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
|
|
|
|
unsigned Opc;
|
|
if (FoldedBCast) {
|
|
Opc = getBroadcastOpcode(I, RC, Subtarget);
|
|
} else {
|
|
unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
|
|
bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
|
|
Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
|
|
}
|
|
|
|
DebugLoc DL;
|
|
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
|
|
for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
|
|
MIB.add(AddrOps[i]);
|
|
MIB.setMemRefs(MMOs);
|
|
NewMIs.push_back(MIB);
|
|
|
|
if (UnfoldStore) {
|
|
// Address operands cannot be marked isKill.
|
|
for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
|
|
MachineOperand &MO = NewMIs[0]->getOperand(i);
|
|
if (MO.isReg())
|
|
MO.setIsKill(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Emit the data processing instruction.
|
|
MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
|
|
MachineInstrBuilder MIB(MF, DataMI);
|
|
|
|
if (FoldedStore)
|
|
MIB.addReg(Reg, RegState::Define);
|
|
for (MachineOperand &BeforeOp : BeforeOps)
|
|
MIB.add(BeforeOp);
|
|
if (FoldedLoad)
|
|
MIB.addReg(Reg);
|
|
for (MachineOperand &AfterOp : AfterOps)
|
|
MIB.add(AfterOp);
|
|
for (MachineOperand &ImpOp : ImpOps) {
|
|
MIB.addReg(ImpOp.getReg(),
|
|
getDefRegState(ImpOp.isDef()) |
|
|
RegState::Implicit |
|
|
getKillRegState(ImpOp.isKill()) |
|
|
getDeadRegState(ImpOp.isDead()) |
|
|
getUndefRegState(ImpOp.isUndef()));
|
|
}
|
|
// Change CMP32ri r, 0 back to TEST32rr r, r, etc.
|
|
switch (DataMI->getOpcode()) {
|
|
default: break;
|
|
case X86::CMP64ri32:
|
|
case X86::CMP64ri8:
|
|
case X86::CMP32ri:
|
|
case X86::CMP32ri8:
|
|
case X86::CMP16ri:
|
|
case X86::CMP16ri8:
|
|
case X86::CMP8ri: {
|
|
MachineOperand &MO0 = DataMI->getOperand(0);
|
|
MachineOperand &MO1 = DataMI->getOperand(1);
|
|
if (MO1.getImm() == 0) {
|
|
unsigned NewOpc;
|
|
switch (DataMI->getOpcode()) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case X86::CMP64ri8:
|
|
case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
|
|
case X86::CMP32ri8:
|
|
case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
|
|
case X86::CMP16ri8:
|
|
case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
|
|
case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
|
|
}
|
|
DataMI->setDesc(get(NewOpc));
|
|
MO1.ChangeToRegister(MO0.getReg(), false);
|
|
}
|
|
}
|
|
}
|
|
NewMIs.push_back(DataMI);
|
|
|
|
// Emit the store instruction.
|
|
if (UnfoldStore) {
|
|
const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
|
|
auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
|
|
unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
|
|
bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
|
|
unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
|
|
DebugLoc DL;
|
|
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
|
|
for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
|
|
MIB.add(AddrOps[i]);
|
|
MIB.addReg(Reg, RegState::Kill);
|
|
MIB.setMemRefs(MMOs);
|
|
NewMIs.push_back(MIB);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
|
|
SmallVectorImpl<SDNode*> &NewNodes) const {
|
|
if (!N->isMachineOpcode())
|
|
return false;
|
|
|
|
const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
|
|
if (I == nullptr)
|
|
return false;
|
|
unsigned Opc = I->DstOp;
|
|
unsigned Index = I->Flags & TB_INDEX_MASK;
|
|
bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
|
|
bool FoldedStore = I->Flags & TB_FOLDED_STORE;
|
|
bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
|
|
const MCInstrDesc &MCID = get(Opc);
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
|
|
const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
|
|
unsigned NumDefs = MCID.NumDefs;
|
|
std::vector<SDValue> AddrOps;
|
|
std::vector<SDValue> BeforeOps;
|
|
std::vector<SDValue> AfterOps;
|
|
SDLoc dl(N);
|
|
unsigned NumOps = N->getNumOperands();
|
|
for (unsigned i = 0; i != NumOps-1; ++i) {
|
|
SDValue Op = N->getOperand(i);
|
|
if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
|
|
AddrOps.push_back(Op);
|
|
else if (i < Index-NumDefs)
|
|
BeforeOps.push_back(Op);
|
|
else if (i > Index-NumDefs)
|
|
AfterOps.push_back(Op);
|
|
}
|
|
SDValue Chain = N->getOperand(NumOps-1);
|
|
AddrOps.push_back(Chain);
|
|
|
|
// Emit the load instruction.
|
|
SDNode *Load = nullptr;
|
|
if (FoldedLoad) {
|
|
EVT VT = *TRI.legalclasstypes_begin(*RC);
|
|
auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
|
|
if (MMOs.empty() && RC == &X86::VR128RegClass &&
|
|
Subtarget.isUnalignedMem16Slow())
|
|
// Do not introduce a slow unaligned load.
|
|
return false;
|
|
// FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
|
|
// memory access is slow above.
|
|
|
|
unsigned Opc;
|
|
if (FoldedBCast) {
|
|
Opc = getBroadcastOpcode(I, RC, Subtarget);
|
|
} else {
|
|
unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
|
|
bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
|
|
Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
|
|
}
|
|
|
|
Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
|
|
NewNodes.push_back(Load);
|
|
|
|
// Preserve memory reference information.
|
|
DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
|
|
}
|
|
|
|
// Emit the data processing instruction.
|
|
std::vector<EVT> VTs;
|
|
const TargetRegisterClass *DstRC = nullptr;
|
|
if (MCID.getNumDefs() > 0) {
|
|
DstRC = getRegClass(MCID, 0, &RI, MF);
|
|
VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
|
|
}
|
|
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
|
|
EVT VT = N->getValueType(i);
|
|
if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
|
|
VTs.push_back(VT);
|
|
}
|
|
if (Load)
|
|
BeforeOps.push_back(SDValue(Load, 0));
|
|
llvm::append_range(BeforeOps, AfterOps);
|
|
// Change CMP32ri r, 0 back to TEST32rr r, r, etc.
|
|
switch (Opc) {
|
|
default: break;
|
|
case X86::CMP64ri32:
|
|
case X86::CMP64ri8:
|
|
case X86::CMP32ri:
|
|
case X86::CMP32ri8:
|
|
case X86::CMP16ri:
|
|
case X86::CMP16ri8:
|
|
case X86::CMP8ri:
|
|
if (isNullConstant(BeforeOps[1])) {
|
|
switch (Opc) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case X86::CMP64ri8:
|
|
case X86::CMP64ri32: Opc = X86::TEST64rr; break;
|
|
case X86::CMP32ri8:
|
|
case X86::CMP32ri: Opc = X86::TEST32rr; break;
|
|
case X86::CMP16ri8:
|
|
case X86::CMP16ri: Opc = X86::TEST16rr; break;
|
|
case X86::CMP8ri: Opc = X86::TEST8rr; break;
|
|
}
|
|
BeforeOps[1] = BeforeOps[0];
|
|
}
|
|
}
|
|
SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
|
|
NewNodes.push_back(NewNode);
|
|
|
|
// Emit the store instruction.
|
|
if (FoldedStore) {
|
|
AddrOps.pop_back();
|
|
AddrOps.push_back(SDValue(NewNode, 0));
|
|
AddrOps.push_back(Chain);
|
|
auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
|
|
if (MMOs.empty() && RC == &X86::VR128RegClass &&
|
|
Subtarget.isUnalignedMem16Slow())
|
|
// Do not introduce a slow unaligned store.
|
|
return false;
|
|
// FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
|
|
// memory access is slow above.
|
|
unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
|
|
bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
|
|
SDNode *Store =
|
|
DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
|
|
dl, MVT::Other, AddrOps);
|
|
NewNodes.push_back(Store);
|
|
|
|
// Preserve memory reference information.
|
|
DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
|
|
bool UnfoldLoad, bool UnfoldStore,
|
|
unsigned *LoadRegIndex) const {
|
|
const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
|
|
if (I == nullptr)
|
|
return 0;
|
|
bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
|
|
bool FoldedStore = I->Flags & TB_FOLDED_STORE;
|
|
if (UnfoldLoad && !FoldedLoad)
|
|
return 0;
|
|
if (UnfoldStore && !FoldedStore)
|
|
return 0;
|
|
if (LoadRegIndex)
|
|
*LoadRegIndex = I->Flags & TB_INDEX_MASK;
|
|
return I->DstOp;
|
|
}
|
|
|
|
bool
|
|
X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
|
|
int64_t &Offset1, int64_t &Offset2) const {
|
|
if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
|
|
return false;
|
|
unsigned Opc1 = Load1->getMachineOpcode();
|
|
unsigned Opc2 = Load2->getMachineOpcode();
|
|
switch (Opc1) {
|
|
default: return false;
|
|
case X86::MOV8rm:
|
|
case X86::MOV16rm:
|
|
case X86::MOV32rm:
|
|
case X86::MOV64rm:
|
|
case X86::LD_Fp32m:
|
|
case X86::LD_Fp64m:
|
|
case X86::LD_Fp80m:
|
|
case X86::MOVSSrm:
|
|
case X86::MOVSSrm_alt:
|
|
case X86::MOVSDrm:
|
|
case X86::MOVSDrm_alt:
|
|
case X86::MMX_MOVD64rm:
|
|
case X86::MMX_MOVQ64rm:
|
|
case X86::MOVAPSrm:
|
|
case X86::MOVUPSrm:
|
|
case X86::MOVAPDrm:
|
|
case X86::MOVUPDrm:
|
|
case X86::MOVDQArm:
|
|
case X86::MOVDQUrm:
|
|
// AVX load instructions
|
|
case X86::VMOVSSrm:
|
|
case X86::VMOVSSrm_alt:
|
|
case X86::VMOVSDrm:
|
|
case X86::VMOVSDrm_alt:
|
|
case X86::VMOVAPSrm:
|
|
case X86::VMOVUPSrm:
|
|
case X86::VMOVAPDrm:
|
|
case X86::VMOVUPDrm:
|
|
case X86::VMOVDQArm:
|
|
case X86::VMOVDQUrm:
|
|
case X86::VMOVAPSYrm:
|
|
case X86::VMOVUPSYrm:
|
|
case X86::VMOVAPDYrm:
|
|
case X86::VMOVUPDYrm:
|
|
case X86::VMOVDQAYrm:
|
|
case X86::VMOVDQUYrm:
|
|
// AVX512 load instructions
|
|
case X86::VMOVSSZrm:
|
|
case X86::VMOVSSZrm_alt:
|
|
case X86::VMOVSDZrm:
|
|
case X86::VMOVSDZrm_alt:
|
|
case X86::VMOVAPSZ128rm:
|
|
case X86::VMOVUPSZ128rm:
|
|
case X86::VMOVAPSZ128rm_NOVLX:
|
|
case X86::VMOVUPSZ128rm_NOVLX:
|
|
case X86::VMOVAPDZ128rm:
|
|
case X86::VMOVUPDZ128rm:
|
|
case X86::VMOVDQU8Z128rm:
|
|
case X86::VMOVDQU16Z128rm:
|
|
case X86::VMOVDQA32Z128rm:
|
|
case X86::VMOVDQU32Z128rm:
|
|
case X86::VMOVDQA64Z128rm:
|
|
case X86::VMOVDQU64Z128rm:
|
|
case X86::VMOVAPSZ256rm:
|
|
case X86::VMOVUPSZ256rm:
|
|
case X86::VMOVAPSZ256rm_NOVLX:
|
|
case X86::VMOVUPSZ256rm_NOVLX:
|
|
case X86::VMOVAPDZ256rm:
|
|
case X86::VMOVUPDZ256rm:
|
|
case X86::VMOVDQU8Z256rm:
|
|
case X86::VMOVDQU16Z256rm:
|
|
case X86::VMOVDQA32Z256rm:
|
|
case X86::VMOVDQU32Z256rm:
|
|
case X86::VMOVDQA64Z256rm:
|
|
case X86::VMOVDQU64Z256rm:
|
|
case X86::VMOVAPSZrm:
|
|
case X86::VMOVUPSZrm:
|
|
case X86::VMOVAPDZrm:
|
|
case X86::VMOVUPDZrm:
|
|
case X86::VMOVDQU8Zrm:
|
|
case X86::VMOVDQU16Zrm:
|
|
case X86::VMOVDQA32Zrm:
|
|
case X86::VMOVDQU32Zrm:
|
|
case X86::VMOVDQA64Zrm:
|
|
case X86::VMOVDQU64Zrm:
|
|
case X86::KMOVBkm:
|
|
case X86::KMOVWkm:
|
|
case X86::KMOVDkm:
|
|
case X86::KMOVQkm:
|
|
break;
|
|
}
|
|
switch (Opc2) {
|
|
default: return false;
|
|
case X86::MOV8rm:
|
|
case X86::MOV16rm:
|
|
case X86::MOV32rm:
|
|
case X86::MOV64rm:
|
|
case X86::LD_Fp32m:
|
|
case X86::LD_Fp64m:
|
|
case X86::LD_Fp80m:
|
|
case X86::MOVSSrm:
|
|
case X86::MOVSSrm_alt:
|
|
case X86::MOVSDrm:
|
|
case X86::MOVSDrm_alt:
|
|
case X86::MMX_MOVD64rm:
|
|
case X86::MMX_MOVQ64rm:
|
|
case X86::MOVAPSrm:
|
|
case X86::MOVUPSrm:
|
|
case X86::MOVAPDrm:
|
|
case X86::MOVUPDrm:
|
|
case X86::MOVDQArm:
|
|
case X86::MOVDQUrm:
|
|
// AVX load instructions
|
|
case X86::VMOVSSrm:
|
|
case X86::VMOVSSrm_alt:
|
|
case X86::VMOVSDrm:
|
|
case X86::VMOVSDrm_alt:
|
|
case X86::VMOVAPSrm:
|
|
case X86::VMOVUPSrm:
|
|
case X86::VMOVAPDrm:
|
|
case X86::VMOVUPDrm:
|
|
case X86::VMOVDQArm:
|
|
case X86::VMOVDQUrm:
|
|
case X86::VMOVAPSYrm:
|
|
case X86::VMOVUPSYrm:
|
|
case X86::VMOVAPDYrm:
|
|
case X86::VMOVUPDYrm:
|
|
case X86::VMOVDQAYrm:
|
|
case X86::VMOVDQUYrm:
|
|
// AVX512 load instructions
|
|
case X86::VMOVSSZrm:
|
|
case X86::VMOVSSZrm_alt:
|
|
case X86::VMOVSDZrm:
|
|
case X86::VMOVSDZrm_alt:
|
|
case X86::VMOVAPSZ128rm:
|
|
case X86::VMOVUPSZ128rm:
|
|
case X86::VMOVAPSZ128rm_NOVLX:
|
|
case X86::VMOVUPSZ128rm_NOVLX:
|
|
case X86::VMOVAPDZ128rm:
|
|
case X86::VMOVUPDZ128rm:
|
|
case X86::VMOVDQU8Z128rm:
|
|
case X86::VMOVDQU16Z128rm:
|
|
case X86::VMOVDQA32Z128rm:
|
|
case X86::VMOVDQU32Z128rm:
|
|
case X86::VMOVDQA64Z128rm:
|
|
case X86::VMOVDQU64Z128rm:
|
|
case X86::VMOVAPSZ256rm:
|
|
case X86::VMOVUPSZ256rm:
|
|
case X86::VMOVAPSZ256rm_NOVLX:
|
|
case X86::VMOVUPSZ256rm_NOVLX:
|
|
case X86::VMOVAPDZ256rm:
|
|
case X86::VMOVUPDZ256rm:
|
|
case X86::VMOVDQU8Z256rm:
|
|
case X86::VMOVDQU16Z256rm:
|
|
case X86::VMOVDQA32Z256rm:
|
|
case X86::VMOVDQU32Z256rm:
|
|
case X86::VMOVDQA64Z256rm:
|
|
case X86::VMOVDQU64Z256rm:
|
|
case X86::VMOVAPSZrm:
|
|
case X86::VMOVUPSZrm:
|
|
case X86::VMOVAPDZrm:
|
|
case X86::VMOVUPDZrm:
|
|
case X86::VMOVDQU8Zrm:
|
|
case X86::VMOVDQU16Zrm:
|
|
case X86::VMOVDQA32Zrm:
|
|
case X86::VMOVDQU32Zrm:
|
|
case X86::VMOVDQA64Zrm:
|
|
case X86::VMOVDQU64Zrm:
|
|
case X86::KMOVBkm:
|
|
case X86::KMOVWkm:
|
|
case X86::KMOVDkm:
|
|
case X86::KMOVQkm:
|
|
break;
|
|
}
|
|
|
|
// Lambda to check if both the loads have the same value for an operand index.
|
|
auto HasSameOp = [&](int I) {
|
|
return Load1->getOperand(I) == Load2->getOperand(I);
|
|
};
|
|
|
|
// All operands except the displacement should match.
|
|
if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
|
|
!HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
|
|
return false;
|
|
|
|
// Chain Operand must be the same.
|
|
if (!HasSameOp(5))
|
|
return false;
|
|
|
|
// Now let's examine if the displacements are constants.
|
|
auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
|
|
auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
|
|
if (!Disp1 || !Disp2)
|
|
return false;
|
|
|
|
Offset1 = Disp1->getSExtValue();
|
|
Offset2 = Disp2->getSExtValue();
|
|
return true;
|
|
}
|
|
|
|
bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
|
|
int64_t Offset1, int64_t Offset2,
|
|
unsigned NumLoads) const {
|
|
assert(Offset2 > Offset1);
|
|
if ((Offset2 - Offset1) / 8 > 64)
|
|
return false;
|
|
|
|
unsigned Opc1 = Load1->getMachineOpcode();
|
|
unsigned Opc2 = Load2->getMachineOpcode();
|
|
if (Opc1 != Opc2)
|
|
return false; // FIXME: overly conservative?
|
|
|
|
switch (Opc1) {
|
|
default: break;
|
|
case X86::LD_Fp32m:
|
|
case X86::LD_Fp64m:
|
|
case X86::LD_Fp80m:
|
|
case X86::MMX_MOVD64rm:
|
|
case X86::MMX_MOVQ64rm:
|
|
return false;
|
|
}
|
|
|
|
EVT VT = Load1->getValueType(0);
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
// XMM registers. In 64-bit mode we can be a bit more aggressive since we
|
|
// have 16 of them to play with.
|
|
if (Subtarget.is64Bit()) {
|
|
if (NumLoads >= 3)
|
|
return false;
|
|
} else if (NumLoads) {
|
|
return false;
|
|
}
|
|
break;
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
if (NumLoads)
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
|
|
const MachineBasicBlock *MBB,
|
|
const MachineFunction &MF) const {
|
|
|
|
// ENDBR instructions should not be scheduled around.
|
|
unsigned Opcode = MI.getOpcode();
|
|
if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32)
|
|
return true;
|
|
|
|
return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
|
|
}
|
|
|
|
bool X86InstrInfo::
|
|
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
|
|
assert(Cond.size() == 1 && "Invalid X86 branch condition!");
|
|
X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
|
|
Cond[0].setImm(GetOppositeBranchCondition(CC));
|
|
return false;
|
|
}
|
|
|
|
bool X86InstrInfo::
|
|
isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
|
|
// FIXME: Return false for x87 stack register classes for now. We can't
|
|
// allow any loads of these registers before FpGet_ST0_80.
|
|
return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
|
|
RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
|
|
RC == &X86::RFP80RegClass);
|
|
}
|
|
|
|
/// Return a virtual register initialized with the
|
|
/// the global base register value. Output instructions required to
|
|
/// initialize the register in the function entry block, if necessary.
|
|
///
|
|
/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
|
|
///
|
|
unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
|
|
assert((!Subtarget.is64Bit() ||
|
|
MF->getTarget().getCodeModel() == CodeModel::Medium ||
|
|
MF->getTarget().getCodeModel() == CodeModel::Large) &&
|
|
"X86-64 PIC uses RIP relative addressing");
|
|
|
|
X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
|
|
Register GlobalBaseReg = X86FI->getGlobalBaseReg();
|
|
if (GlobalBaseReg != 0)
|
|
return GlobalBaseReg;
|
|
|
|
// Create the register. The code to initialize it is inserted
|
|
// later, by the CGBR pass (below).
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
GlobalBaseReg = RegInfo.createVirtualRegister(
|
|
Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
|
|
X86FI->setGlobalBaseReg(GlobalBaseReg);
|
|
return GlobalBaseReg;
|
|
}
|
|
|
|
// These are the replaceable SSE instructions. Some of these have Int variants
|
|
// that we don't include here. We don't want to replace instructions selected
|
|
// by intrinsics.
|
|
static const uint16_t ReplaceableInstrs[][3] = {
|
|
//PackedSingle PackedDouble PackedInt
|
|
{ X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
|
|
{ X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
|
|
{ X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
|
|
{ X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
|
|
{ X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
|
|
{ X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
|
|
{ X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr },
|
|
{ X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr },
|
|
{ X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm },
|
|
{ X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
|
|
{ X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm },
|
|
{ X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
|
|
{ X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
|
|
{ X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
|
|
{ X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
|
|
{ X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
|
|
{ X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
|
|
{ X86::ORPSrm, X86::ORPDrm, X86::PORrm },
|
|
{ X86::ORPSrr, X86::ORPDrr, X86::PORrr },
|
|
{ X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
|
|
{ X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
|
|
{ X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
|
|
{ X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
|
|
{ X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
|
|
{ X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
|
|
{ X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
|
|
{ X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
|
|
{ X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
|
|
{ X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
|
|
{ X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
|
|
{ X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
|
|
// AVX 128-bit support
|
|
{ X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
|
|
{ X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
|
|
{ X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
|
|
{ X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
|
|
{ X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
|
|
{ X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
|
|
{ X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr },
|
|
{ X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr },
|
|
{ X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm },
|
|
{ X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
|
|
{ X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm },
|
|
{ X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
|
|
{ X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
|
|
{ X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
|
|
{ X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
|
|
{ X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
|
|
{ X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
|
|
{ X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
|
|
{ X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
|
|
{ X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
|
|
{ X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
|
|
{ X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
|
|
{ X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
|
|
{ X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
|
|
{ X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
|
|
{ X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
|
|
{ X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
|
|
{ X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
|
|
{ X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
|
|
{ X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
|
|
{ X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
|
|
// AVX 256-bit support
|
|
{ X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
|
|
{ X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
|
|
{ X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
|
|
{ X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
|
|
{ X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
|
|
{ X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr },
|
|
{ X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm },
|
|
{ X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr },
|
|
{ X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi },
|
|
{ X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri },
|
|
// AVX512 support
|
|
{ X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr },
|
|
{ X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
|
|
{ X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
|
|
{ X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr },
|
|
{ X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr },
|
|
{ X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr },
|
|
{ X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm },
|
|
{ X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm },
|
|
{ X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm },
|
|
{ X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm },
|
|
{ X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr },
|
|
{ X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm },
|
|
{ X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr },
|
|
{ X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm },
|
|
{ X86::VBROADCASTSSZrr, X86::VBROADCASTSSZrr, X86::VPBROADCASTDZrr },
|
|
{ X86::VBROADCASTSSZrm, X86::VBROADCASTSSZrm, X86::VPBROADCASTDZrm },
|
|
{ X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128rr },
|
|
{ X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128rm },
|
|
{ X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr },
|
|
{ X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm },
|
|
{ X86::VBROADCASTSDZrr, X86::VBROADCASTSDZrr, X86::VPBROADCASTQZrr },
|
|
{ X86::VBROADCASTSDZrm, X86::VBROADCASTSDZrm, X86::VPBROADCASTQZrm },
|
|
{ X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr },
|
|
{ X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm },
|
|
{ X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr },
|
|
{ X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm },
|
|
{ X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr },
|
|
{ X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm },
|
|
{ X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr },
|
|
{ X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm },
|
|
{ X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
|
|
{ X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
|
|
{ X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
|
|
{ X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
|
|
{ X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr },
|
|
{ X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr },
|
|
{ X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr },
|
|
{ X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr },
|
|
{ X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr },
|
|
{ X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr },
|
|
{ X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr },
|
|
{ X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr },
|
|
{ X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
|
|
{ X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
|
|
{ X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
|
|
{ X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
|
|
{ X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi },
|
|
{ X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri },
|
|
{ X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi },
|
|
{ X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri },
|
|
{ X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi },
|
|
{ X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri },
|
|
{ X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi },
|
|
{ X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri },
|
|
{ X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm },
|
|
{ X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr },
|
|
{ X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi },
|
|
{ X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri },
|
|
{ X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm },
|
|
{ X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr },
|
|
{ X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm },
|
|
{ X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr },
|
|
{ X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi },
|
|
{ X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri },
|
|
{ X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm },
|
|
{ X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr },
|
|
{ X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm },
|
|
{ X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr },
|
|
{ X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm },
|
|
{ X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr },
|
|
{ X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm },
|
|
{ X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr },
|
|
{ X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm },
|
|
{ X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr },
|
|
{ X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm },
|
|
{ X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr },
|
|
{ X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm },
|
|
{ X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr },
|
|
{ X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm },
|
|
{ X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr },
|
|
{ X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm },
|
|
{ X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr },
|
|
{ X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm },
|
|
{ X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr },
|
|
{ X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm },
|
|
{ X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr },
|
|
{ X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm },
|
|
{ X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr },
|
|
{ X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm },
|
|
{ X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr },
|
|
{ X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr },
|
|
{ X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr },
|
|
};
|
|
|
|
static const uint16_t ReplaceableInstrsAVX2[][3] = {
|
|
//PackedSingle PackedDouble PackedInt
|
|
{ X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
|
|
{ X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
|
|
{ X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
|
|
{ X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
|
|
{ X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
|
|
{ X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
|
|
{ X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
|
|
{ X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
|
|
{ X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
|
|
{ X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
|
|
{ X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
|
|
{ X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
|
|
{ X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm},
|
|
{ X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr},
|
|
{ X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
|
|
{ X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
|
|
{ X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
|
|
{ X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
|
|
{ X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 },
|
|
{ X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri },
|
|
{ X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi },
|
|
{ X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi },
|
|
{ X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri },
|
|
{ X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm },
|
|
{ X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr },
|
|
{ X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm },
|
|
{ X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr },
|
|
{ X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm },
|
|
{ X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr },
|
|
{ X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm },
|
|
{ X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr },
|
|
};
|
|
|
|
static const uint16_t ReplaceableInstrsFP[][3] = {
|
|
//PackedSingle PackedDouble
|
|
{ X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END },
|
|
{ X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END },
|
|
{ X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END },
|
|
{ X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END },
|
|
{ X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END },
|
|
{ X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END },
|
|
{ X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
|
|
{ X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
|
|
{ X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
|
|
};
|
|
|
|
static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
|
|
//PackedSingle PackedDouble PackedInt
|
|
{ X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
|
|
{ X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
|
|
{ X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
|
|
{ X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
|
|
};
|
|
|
|
static const uint16_t ReplaceableInstrsAVX512[][4] = {
|
|
// Two integer columns for 64-bit and 32-bit elements.
|
|
//PackedSingle PackedDouble PackedInt PackedInt
|
|
{ X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr },
|
|
{ X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm },
|
|
{ X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr },
|
|
{ X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr },
|
|
{ X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm },
|
|
{ X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr },
|
|
{ X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm },
|
|
{ X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr },
|
|
{ X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr },
|
|
{ X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm },
|
|
{ X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr },
|
|
{ X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm },
|
|
{ X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr },
|
|
{ X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr },
|
|
{ X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm },
|
|
};
|
|
|
|
static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
|
|
// Two integer columns for 64-bit and 32-bit elements.
|
|
//PackedSingle PackedDouble PackedInt PackedInt
|
|
{ X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
|
|
{ X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
|
|
{ X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
|
|
{ X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
|
|
{ X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm },
|
|
{ X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr },
|
|
{ X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
|
|
{ X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
|
|
{ X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
|
|
{ X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
|
|
{ X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
|
|
{ X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
|
|
{ X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm },
|
|
{ X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr },
|
|
{ X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
|
|
{ X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
|
|
{ X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm },
|
|
{ X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr },
|
|
{ X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm },
|
|
{ X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr },
|
|
{ X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm },
|
|
{ X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr },
|
|
{ X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm },
|
|
{ X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr },
|
|
};
|
|
|
|
static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
|
|
// Two integer columns for 64-bit and 32-bit elements.
|
|
//PackedSingle PackedDouble
|
|
//PackedInt PackedInt
|
|
{ X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk,
|
|
X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk },
|
|
{ X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
|
|
X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
|
|
{ X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk,
|
|
X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk },
|
|
{ X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
|
|
X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
|
|
{ X86::VANDPSZ128rmk, X86::VANDPDZ128rmk,
|
|
X86::VPANDQZ128rmk, X86::VPANDDZ128rmk },
|
|
{ X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz,
|
|
X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz },
|
|
{ X86::VANDPSZ128rrk, X86::VANDPDZ128rrk,
|
|
X86::VPANDQZ128rrk, X86::VPANDDZ128rrk },
|
|
{ X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz,
|
|
X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz },
|
|
{ X86::VORPSZ128rmk, X86::VORPDZ128rmk,
|
|
X86::VPORQZ128rmk, X86::VPORDZ128rmk },
|
|
{ X86::VORPSZ128rmkz, X86::VORPDZ128rmkz,
|
|
X86::VPORQZ128rmkz, X86::VPORDZ128rmkz },
|
|
{ X86::VORPSZ128rrk, X86::VORPDZ128rrk,
|
|
X86::VPORQZ128rrk, X86::VPORDZ128rrk },
|
|
{ X86::VORPSZ128rrkz, X86::VORPDZ128rrkz,
|
|
X86::VPORQZ128rrkz, X86::VPORDZ128rrkz },
|
|
{ X86::VXORPSZ128rmk, X86::VXORPDZ128rmk,
|
|
X86::VPXORQZ128rmk, X86::VPXORDZ128rmk },
|
|
{ X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz,
|
|
X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz },
|
|
{ X86::VXORPSZ128rrk, X86::VXORPDZ128rrk,
|
|
X86::VPXORQZ128rrk, X86::VPXORDZ128rrk },
|
|
{ X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz,
|
|
X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz },
|
|
{ X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk,
|
|
X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk },
|
|
{ X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
|
|
X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
|
|
{ X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk,
|
|
X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk },
|
|
{ X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
|
|
X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
|
|
{ X86::VANDPSZ256rmk, X86::VANDPDZ256rmk,
|
|
X86::VPANDQZ256rmk, X86::VPANDDZ256rmk },
|
|
{ X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz,
|
|
X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz },
|
|
{ X86::VANDPSZ256rrk, X86::VANDPDZ256rrk,
|
|
X86::VPANDQZ256rrk, X86::VPANDDZ256rrk },
|
|
{ X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz,
|
|
X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz },
|
|
{ X86::VORPSZ256rmk, X86::VORPDZ256rmk,
|
|
X86::VPORQZ256rmk, X86::VPORDZ256rmk },
|
|
{ X86::VORPSZ256rmkz, X86::VORPDZ256rmkz,
|
|
X86::VPORQZ256rmkz, X86::VPORDZ256rmkz },
|
|
{ X86::VORPSZ256rrk, X86::VORPDZ256rrk,
|
|
X86::VPORQZ256rrk, X86::VPORDZ256rrk },
|
|
{ X86::VORPSZ256rrkz, X86::VORPDZ256rrkz,
|
|
X86::VPORQZ256rrkz, X86::VPORDZ256rrkz },
|
|
{ X86::VXORPSZ256rmk, X86::VXORPDZ256rmk,
|
|
X86::VPXORQZ256rmk, X86::VPXORDZ256rmk },
|
|
{ X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz,
|
|
X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz },
|
|
{ X86::VXORPSZ256rrk, X86::VXORPDZ256rrk,
|
|
X86::VPXORQZ256rrk, X86::VPXORDZ256rrk },
|
|
{ X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz,
|
|
X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz },
|
|
{ X86::VANDNPSZrmk, X86::VANDNPDZrmk,
|
|
X86::VPANDNQZrmk, X86::VPANDNDZrmk },
|
|
{ X86::VANDNPSZrmkz, X86::VANDNPDZrmkz,
|
|
X86::VPANDNQZrmkz, X86::VPANDNDZrmkz },
|
|
{ X86::VANDNPSZrrk, X86::VANDNPDZrrk,
|
|
X86::VPANDNQZrrk, X86::VPANDNDZrrk },
|
|
{ X86::VANDNPSZrrkz, X86::VANDNPDZrrkz,
|
|
X86::VPANDNQZrrkz, X86::VPANDNDZrrkz },
|
|
{ X86::VANDPSZrmk, X86::VANDPDZrmk,
|
|
X86::VPANDQZrmk, X86::VPANDDZrmk },
|
|
{ X86::VANDPSZrmkz, X86::VANDPDZrmkz,
|
|
X86::VPANDQZrmkz, X86::VPANDDZrmkz },
|
|
{ X86::VANDPSZrrk, X86::VANDPDZrrk,
|
|
X86::VPANDQZrrk, X86::VPANDDZrrk },
|
|
{ X86::VANDPSZrrkz, X86::VANDPDZrrkz,
|
|
X86::VPANDQZrrkz, X86::VPANDDZrrkz },
|
|
{ X86::VORPSZrmk, X86::VORPDZrmk,
|
|
X86::VPORQZrmk, X86::VPORDZrmk },
|
|
{ X86::VORPSZrmkz, X86::VORPDZrmkz,
|
|
X86::VPORQZrmkz, X86::VPORDZrmkz },
|
|
{ X86::VORPSZrrk, X86::VORPDZrrk,
|
|
X86::VPORQZrrk, X86::VPORDZrrk },
|
|
{ X86::VORPSZrrkz, X86::VORPDZrrkz,
|
|
X86::VPORQZrrkz, X86::VPORDZrrkz },
|
|
{ X86::VXORPSZrmk, X86::VXORPDZrmk,
|
|
X86::VPXORQZrmk, X86::VPXORDZrmk },
|
|
{ X86::VXORPSZrmkz, X86::VXORPDZrmkz,
|
|
X86::VPXORQZrmkz, X86::VPXORDZrmkz },
|
|
{ X86::VXORPSZrrk, X86::VXORPDZrrk,
|
|
X86::VPXORQZrrk, X86::VPXORDZrrk },
|
|
{ X86::VXORPSZrrkz, X86::VXORPDZrrkz,
|
|
X86::VPXORQZrrkz, X86::VPXORDZrrkz },
|
|
// Broadcast loads can be handled the same as masked operations to avoid
|
|
// changing element size.
|
|
{ X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb,
|
|
X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb },
|
|
{ X86::VANDPSZ128rmb, X86::VANDPDZ128rmb,
|
|
X86::VPANDQZ128rmb, X86::VPANDDZ128rmb },
|
|
{ X86::VORPSZ128rmb, X86::VORPDZ128rmb,
|
|
X86::VPORQZ128rmb, X86::VPORDZ128rmb },
|
|
{ X86::VXORPSZ128rmb, X86::VXORPDZ128rmb,
|
|
X86::VPXORQZ128rmb, X86::VPXORDZ128rmb },
|
|
{ X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb,
|
|
X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb },
|
|
{ X86::VANDPSZ256rmb, X86::VANDPDZ256rmb,
|
|
X86::VPANDQZ256rmb, X86::VPANDDZ256rmb },
|
|
{ X86::VORPSZ256rmb, X86::VORPDZ256rmb,
|
|
X86::VPORQZ256rmb, X86::VPORDZ256rmb },
|
|
{ X86::VXORPSZ256rmb, X86::VXORPDZ256rmb,
|
|
X86::VPXORQZ256rmb, X86::VPXORDZ256rmb },
|
|
{ X86::VANDNPSZrmb, X86::VANDNPDZrmb,
|
|
X86::VPANDNQZrmb, X86::VPANDNDZrmb },
|
|
{ X86::VANDPSZrmb, X86::VANDPDZrmb,
|
|
X86::VPANDQZrmb, X86::VPANDDZrmb },
|
|
{ X86::VANDPSZrmb, X86::VANDPDZrmb,
|
|
X86::VPANDQZrmb, X86::VPANDDZrmb },
|
|
{ X86::VORPSZrmb, X86::VORPDZrmb,
|
|
X86::VPORQZrmb, X86::VPORDZrmb },
|
|
{ X86::VXORPSZrmb, X86::VXORPDZrmb,
|
|
X86::VPXORQZrmb, X86::VPXORDZrmb },
|
|
{ X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
|
|
X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
|
|
{ X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk,
|
|
X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk },
|
|
{ X86::VORPSZ128rmbk, X86::VORPDZ128rmbk,
|
|
X86::VPORQZ128rmbk, X86::VPORDZ128rmbk },
|
|
{ X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk,
|
|
X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk },
|
|
{ X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
|
|
X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
|
|
{ X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk,
|
|
X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk },
|
|
{ X86::VORPSZ256rmbk, X86::VORPDZ256rmbk,
|
|
X86::VPORQZ256rmbk, X86::VPORDZ256rmbk },
|
|
{ X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk,
|
|
X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk },
|
|
{ X86::VANDNPSZrmbk, X86::VANDNPDZrmbk,
|
|
X86::VPANDNQZrmbk, X86::VPANDNDZrmbk },
|
|
{ X86::VANDPSZrmbk, X86::VANDPDZrmbk,
|
|
X86::VPANDQZrmbk, X86::VPANDDZrmbk },
|
|
{ X86::VANDPSZrmbk, X86::VANDPDZrmbk,
|
|
X86::VPANDQZrmbk, X86::VPANDDZrmbk },
|
|
{ X86::VORPSZrmbk, X86::VORPDZrmbk,
|
|
X86::VPORQZrmbk, X86::VPORDZrmbk },
|
|
{ X86::VXORPSZrmbk, X86::VXORPDZrmbk,
|
|
X86::VPXORQZrmbk, X86::VPXORDZrmbk },
|
|
{ X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
|
|
X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
|
|
{ X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
|
|
X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
|
|
{ X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz,
|
|
X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz },
|
|
{ X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
|
|
X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
|
|
{ X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
|
|
X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
|
|
{ X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
|
|
X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
|
|
{ X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz,
|
|
X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz },
|
|
{ X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
|
|
X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
|
|
{ X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz,
|
|
X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz },
|
|
{ X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
|
|
X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
|
|
{ X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
|
|
X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
|
|
{ X86::VORPSZrmbkz, X86::VORPDZrmbkz,
|
|
X86::VPORQZrmbkz, X86::VPORDZrmbkz },
|
|
{ X86::VXORPSZrmbkz, X86::VXORPDZrmbkz,
|
|
X86::VPXORQZrmbkz, X86::VPXORDZrmbkz },
|
|
};
|
|
|
|
// NOTE: These should only be used by the custom domain methods.
|
|
static const uint16_t ReplaceableBlendInstrs[][3] = {
|
|
//PackedSingle PackedDouble PackedInt
|
|
{ X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi },
|
|
{ X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri },
|
|
{ X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi },
|
|
{ X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri },
|
|
{ X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi },
|
|
{ X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri },
|
|
};
|
|
static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
|
|
//PackedSingle PackedDouble PackedInt
|
|
{ X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi },
|
|
{ X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri },
|
|
{ X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi },
|
|
{ X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri },
|
|
};
|
|
|
|
// Special table for changing EVEX logic instructions to VEX.
|
|
// TODO: Should we run EVEX->VEX earlier?
|
|
static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
|
|
// Two integer columns for 64-bit and 32-bit elements.
|
|
//PackedSingle PackedDouble PackedInt PackedInt
|
|
{ X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
|
|
{ X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
|
|
{ X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
|
|
{ X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
|
|
{ X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm },
|
|
{ X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr },
|
|
{ X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
|
|
{ X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
|
|
{ X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
|
|
{ X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
|
|
{ X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
|
|
{ X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
|
|
{ X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm },
|
|
{ X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr },
|
|
{ X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
|
|
{ X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
|
|
};
|
|
|
|
// FIXME: Some shuffle and unpack instructions have equivalents in different
|
|
// domains, but they require a bit more work than just switching opcodes.
|
|
|
|
static const uint16_t *lookup(unsigned opcode, unsigned domain,
|
|
ArrayRef<uint16_t[3]> Table) {
|
|
for (const uint16_t (&Row)[3] : Table)
|
|
if (Row[domain-1] == opcode)
|
|
return Row;
|
|
return nullptr;
|
|
}
|
|
|
|
static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
|
|
ArrayRef<uint16_t[4]> Table) {
|
|
// If this is the integer domain make sure to check both integer columns.
|
|
for (const uint16_t (&Row)[4] : Table)
|
|
if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
|
|
return Row;
|
|
return nullptr;
|
|
}
|
|
|
|
// Helper to attempt to widen/narrow blend masks.
|
|
static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
|
|
unsigned NewWidth, unsigned *pNewMask = nullptr) {
|
|
assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
|
|
"Illegal blend mask scale");
|
|
unsigned NewMask = 0;
|
|
|
|
if ((OldWidth % NewWidth) == 0) {
|
|
unsigned Scale = OldWidth / NewWidth;
|
|
unsigned SubMask = (1u << Scale) - 1;
|
|
for (unsigned i = 0; i != NewWidth; ++i) {
|
|
unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
|
|
if (Sub == SubMask)
|
|
NewMask |= (1u << i);
|
|
else if (Sub != 0x0)
|
|
return false;
|
|
}
|
|
} else {
|
|
unsigned Scale = NewWidth / OldWidth;
|
|
unsigned SubMask = (1u << Scale) - 1;
|
|
for (unsigned i = 0; i != OldWidth; ++i) {
|
|
if (OldMask & (1 << i)) {
|
|
NewMask |= (SubMask << (i * Scale));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (pNewMask)
|
|
*pNewMask = NewMask;
|
|
return true;
|
|
}
|
|
|
|
uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
|
|
unsigned Opcode = MI.getOpcode();
|
|
unsigned NumOperands = MI.getDesc().getNumOperands();
|
|
|
|
auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
|
|
uint16_t validDomains = 0;
|
|
if (MI.getOperand(NumOperands - 1).isImm()) {
|
|
unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
|
|
if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
|
|
validDomains |= 0x2; // PackedSingle
|
|
if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
|
|
validDomains |= 0x4; // PackedDouble
|
|
if (!Is256 || Subtarget.hasAVX2())
|
|
validDomains |= 0x8; // PackedInt
|
|
}
|
|
return validDomains;
|
|
};
|
|
|
|
switch (Opcode) {
|
|
case X86::BLENDPDrmi:
|
|
case X86::BLENDPDrri:
|
|
case X86::VBLENDPDrmi:
|
|
case X86::VBLENDPDrri:
|
|
return GetBlendDomains(2, false);
|
|
case X86::VBLENDPDYrmi:
|
|
case X86::VBLENDPDYrri:
|
|
return GetBlendDomains(4, true);
|
|
case X86::BLENDPSrmi:
|
|
case X86::BLENDPSrri:
|
|
case X86::VBLENDPSrmi:
|
|
case X86::VBLENDPSrri:
|
|
case X86::VPBLENDDrmi:
|
|
case X86::VPBLENDDrri:
|
|
return GetBlendDomains(4, false);
|
|
case X86::VBLENDPSYrmi:
|
|
case X86::VBLENDPSYrri:
|
|
case X86::VPBLENDDYrmi:
|
|
case X86::VPBLENDDYrri:
|
|
return GetBlendDomains(8, true);
|
|
case X86::PBLENDWrmi:
|
|
case X86::PBLENDWrri:
|
|
case X86::VPBLENDWrmi:
|
|
case X86::VPBLENDWrri:
|
|
// Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
|
|
case X86::VPBLENDWYrmi:
|
|
case X86::VPBLENDWYrri:
|
|
return GetBlendDomains(8, false);
|
|
case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
|
|
case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
|
|
case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
|
|
case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
|
|
case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
|
|
case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
|
|
case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
|
|
case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
|
|
case X86::VPORDZ128rr: case X86::VPORDZ128rm:
|
|
case X86::VPORDZ256rr: case X86::VPORDZ256rm:
|
|
case X86::VPORQZ128rr: case X86::VPORQZ128rm:
|
|
case X86::VPORQZ256rr: case X86::VPORQZ256rm:
|
|
case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
|
|
case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
|
|
case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
|
|
case X86::VPXORQZ256rr: case X86::VPXORQZ256rm:
|
|
// If we don't have DQI see if we can still switch from an EVEX integer
|
|
// instruction to a VEX floating point instruction.
|
|
if (Subtarget.hasDQI())
|
|
return 0;
|
|
|
|
if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
|
|
return 0;
|
|
if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
|
|
return 0;
|
|
// Register forms will have 3 operands. Memory form will have more.
|
|
if (NumOperands == 3 &&
|
|
RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
|
|
return 0;
|
|
|
|
// All domains are valid.
|
|
return 0xe;
|
|
case X86::MOVHLPSrr:
|
|
// We can swap domains when both inputs are the same register.
|
|
// FIXME: This doesn't catch all the cases we would like. If the input
|
|
// register isn't KILLed by the instruction, the two address instruction
|
|
// pass puts a COPY on one input. The other input uses the original
|
|
// register. This prevents the same physical register from being used by
|
|
// both inputs.
|
|
if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
|
|
MI.getOperand(0).getSubReg() == 0 &&
|
|
MI.getOperand(1).getSubReg() == 0 &&
|
|
MI.getOperand(2).getSubReg() == 0)
|
|
return 0x6;
|
|
return 0;
|
|
case X86::SHUFPDrri:
|
|
return 0x6;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
|
|
unsigned Domain) const {
|
|
assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
|
|
uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
|
|
assert(dom && "Not an SSE instruction");
|
|
|
|
unsigned Opcode = MI.getOpcode();
|
|
unsigned NumOperands = MI.getDesc().getNumOperands();
|
|
|
|
auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
|
|
if (MI.getOperand(NumOperands - 1).isImm()) {
|
|
unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
|
|
Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
|
|
unsigned NewImm = Imm;
|
|
|
|
const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
|
|
if (!table)
|
|
table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
|
|
|
|
if (Domain == 1) { // PackedSingle
|
|
AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
|
|
} else if (Domain == 2) { // PackedDouble
|
|
AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
|
|
} else if (Domain == 3) { // PackedInt
|
|
if (Subtarget.hasAVX2()) {
|
|
// If we are already VPBLENDW use that, else use VPBLENDD.
|
|
if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
|
|
table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
|
|
AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
|
|
}
|
|
} else {
|
|
assert(!Is256 && "128-bit vector expected");
|
|
AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
|
|
}
|
|
}
|
|
|
|
assert(table && table[Domain - 1] && "Unknown domain op");
|
|
MI.setDesc(get(table[Domain - 1]));
|
|
MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
|
|
}
|
|
return true;
|
|
};
|
|
|
|
switch (Opcode) {
|
|
case X86::BLENDPDrmi:
|
|
case X86::BLENDPDrri:
|
|
case X86::VBLENDPDrmi:
|
|
case X86::VBLENDPDrri:
|
|
return SetBlendDomain(2, false);
|
|
case X86::VBLENDPDYrmi:
|
|
case X86::VBLENDPDYrri:
|
|
return SetBlendDomain(4, true);
|
|
case X86::BLENDPSrmi:
|
|
case X86::BLENDPSrri:
|
|
case X86::VBLENDPSrmi:
|
|
case X86::VBLENDPSrri:
|
|
case X86::VPBLENDDrmi:
|
|
case X86::VPBLENDDrri:
|
|
return SetBlendDomain(4, false);
|
|
case X86::VBLENDPSYrmi:
|
|
case X86::VBLENDPSYrri:
|
|
case X86::VPBLENDDYrmi:
|
|
case X86::VPBLENDDYrri:
|
|
return SetBlendDomain(8, true);
|
|
case X86::PBLENDWrmi:
|
|
case X86::PBLENDWrri:
|
|
case X86::VPBLENDWrmi:
|
|
case X86::VPBLENDWrri:
|
|
return SetBlendDomain(8, false);
|
|
case X86::VPBLENDWYrmi:
|
|
case X86::VPBLENDWYrri:
|
|
return SetBlendDomain(16, true);
|
|
case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
|
|
case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
|
|
case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
|
|
case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
|
|
case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
|
|
case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
|
|
case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
|
|
case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
|
|
case X86::VPORDZ128rr: case X86::VPORDZ128rm:
|
|
case X86::VPORDZ256rr: case X86::VPORDZ256rm:
|
|
case X86::VPORQZ128rr: case X86::VPORQZ128rm:
|
|
case X86::VPORQZ256rr: case X86::VPORQZ256rm:
|
|
case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
|
|
case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
|
|
case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
|
|
case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: {
|
|
// Without DQI, convert EVEX instructions to VEX instructions.
|
|
if (Subtarget.hasDQI())
|
|
return false;
|
|
|
|
const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
|
|
ReplaceableCustomAVX512LogicInstrs);
|
|
assert(table && "Instruction not found in table?");
|
|
// Don't change integer Q instructions to D instructions and
|
|
// use D intructions if we started with a PS instruction.
|
|
if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
|
|
Domain = 4;
|
|
MI.setDesc(get(table[Domain - 1]));
|
|
return true;
|
|
}
|
|
case X86::UNPCKHPDrr:
|
|
case X86::MOVHLPSrr:
|
|
// We just need to commute the instruction which will switch the domains.
|
|
if (Domain != dom && Domain != 3 &&
|
|
MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
|
|
MI.getOperand(0).getSubReg() == 0 &&
|
|
MI.getOperand(1).getSubReg() == 0 &&
|
|
MI.getOperand(2).getSubReg() == 0) {
|
|
commuteInstruction(MI, false);
|
|
return true;
|
|
}
|
|
// We must always return true for MOVHLPSrr.
|
|
if (Opcode == X86::MOVHLPSrr)
|
|
return true;
|
|
break;
|
|
case X86::SHUFPDrri: {
|
|
if (Domain == 1) {
|
|
unsigned Imm = MI.getOperand(3).getImm();
|
|
unsigned NewImm = 0x44;
|
|
if (Imm & 1) NewImm |= 0x0a;
|
|
if (Imm & 2) NewImm |= 0xa0;
|
|
MI.getOperand(3).setImm(NewImm);
|
|
MI.setDesc(get(X86::SHUFPSrri));
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::pair<uint16_t, uint16_t>
|
|
X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
|
|
uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
|
|
unsigned opcode = MI.getOpcode();
|
|
uint16_t validDomains = 0;
|
|
if (domain) {
|
|
// Attempt to match for custom instructions.
|
|
validDomains = getExecutionDomainCustom(MI);
|
|
if (validDomains)
|
|
return std::make_pair(domain, validDomains);
|
|
|
|
if (lookup(opcode, domain, ReplaceableInstrs)) {
|
|
validDomains = 0xe;
|
|
} else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
|
|
validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
|
|
} else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
|
|
validDomains = 0x6;
|
|
} else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
|
|
// Insert/extract instructions should only effect domain if AVX2
|
|
// is enabled.
|
|
if (!Subtarget.hasAVX2())
|
|
return std::make_pair(0, 0);
|
|
validDomains = 0xe;
|
|
} else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
|
|
validDomains = 0xe;
|
|
} else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
|
|
ReplaceableInstrsAVX512DQ)) {
|
|
validDomains = 0xe;
|
|
} else if (Subtarget.hasDQI()) {
|
|
if (const uint16_t *table = lookupAVX512(opcode, domain,
|
|
ReplaceableInstrsAVX512DQMasked)) {
|
|
if (domain == 1 || (domain == 3 && table[3] == opcode))
|
|
validDomains = 0xa;
|
|
else
|
|
validDomains = 0xc;
|
|
}
|
|
}
|
|
}
|
|
return std::make_pair(domain, validDomains);
|
|
}
|
|
|
|
void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
|
|
assert(Domain>0 && Domain<4 && "Invalid execution domain");
|
|
uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
|
|
assert(dom && "Not an SSE instruction");
|
|
|
|
// Attempt to match for custom instructions.
|
|
if (setExecutionDomainCustom(MI, Domain))
|
|
return;
|
|
|
|
const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
|
|
if (!table) { // try the other table
|
|
assert((Subtarget.hasAVX2() || Domain < 3) &&
|
|
"256-bit vector operations only available in AVX2");
|
|
table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
|
|
}
|
|
if (!table) { // try the FP table
|
|
table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
|
|
assert((!table || Domain < 3) &&
|
|
"Can only select PackedSingle or PackedDouble");
|
|
}
|
|
if (!table) { // try the other table
|
|
assert(Subtarget.hasAVX2() &&
|
|
"256-bit insert/extract only available in AVX2");
|
|
table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
|
|
}
|
|
if (!table) { // try the AVX512 table
|
|
assert(Subtarget.hasAVX512() && "Requires AVX-512");
|
|
table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
|
|
// Don't change integer Q instructions to D instructions.
|
|
if (table && Domain == 3 && table[3] == MI.getOpcode())
|
|
Domain = 4;
|
|
}
|
|
if (!table) { // try the AVX512DQ table
|
|
assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
|
|
table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
|
|
// Don't change integer Q instructions to D instructions and
|
|
// use D instructions if we started with a PS instruction.
|
|
if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
|
|
Domain = 4;
|
|
}
|
|
if (!table) { // try the AVX512DQMasked table
|
|
assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
|
|
table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
|
|
if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
|
|
Domain = 4;
|
|
}
|
|
assert(table && "Cannot change domain");
|
|
MI.setDesc(get(table[Domain - 1]));
|
|
}
|
|
|
|
/// Return the noop instruction to use for a noop.
|
|
void X86InstrInfo::getNoop(MCInst &NopInst) const {
|
|
NopInst.setOpcode(X86::NOOP);
|
|
}
|
|
|
|
bool X86InstrInfo::isHighLatencyDef(int opc) const {
|
|
switch (opc) {
|
|
default: return false;
|
|
case X86::DIVPDrm:
|
|
case X86::DIVPDrr:
|
|
case X86::DIVPSrm:
|
|
case X86::DIVPSrr:
|
|
case X86::DIVSDrm:
|
|
case X86::DIVSDrm_Int:
|
|
case X86::DIVSDrr:
|
|
case X86::DIVSDrr_Int:
|
|
case X86::DIVSSrm:
|
|
case X86::DIVSSrm_Int:
|
|
case X86::DIVSSrr:
|
|
case X86::DIVSSrr_Int:
|
|
case X86::SQRTPDm:
|
|
case X86::SQRTPDr:
|
|
case X86::SQRTPSm:
|
|
case X86::SQRTPSr:
|
|
case X86::SQRTSDm:
|
|
case X86::SQRTSDm_Int:
|
|
case X86::SQRTSDr:
|
|
case X86::SQRTSDr_Int:
|
|
case X86::SQRTSSm:
|
|
case X86::SQRTSSm_Int:
|
|
case X86::SQRTSSr:
|
|
case X86::SQRTSSr_Int:
|
|
// AVX instructions with high latency
|
|
case X86::VDIVPDrm:
|
|
case X86::VDIVPDrr:
|
|
case X86::VDIVPDYrm:
|
|
case X86::VDIVPDYrr:
|
|
case X86::VDIVPSrm:
|
|
case X86::VDIVPSrr:
|
|
case X86::VDIVPSYrm:
|
|
case X86::VDIVPSYrr:
|
|
case X86::VDIVSDrm:
|
|
case X86::VDIVSDrm_Int:
|
|
case X86::VDIVSDrr:
|
|
case X86::VDIVSDrr_Int:
|
|
case X86::VDIVSSrm:
|
|
case X86::VDIVSSrm_Int:
|
|
case X86::VDIVSSrr:
|
|
case X86::VDIVSSrr_Int:
|
|
case X86::VSQRTPDm:
|
|
case X86::VSQRTPDr:
|
|
case X86::VSQRTPDYm:
|
|
case X86::VSQRTPDYr:
|
|
case X86::VSQRTPSm:
|
|
case X86::VSQRTPSr:
|
|
case X86::VSQRTPSYm:
|
|
case X86::VSQRTPSYr:
|
|
case X86::VSQRTSDm:
|
|
case X86::VSQRTSDm_Int:
|
|
case X86::VSQRTSDr:
|
|
case X86::VSQRTSDr_Int:
|
|
case X86::VSQRTSSm:
|
|
case X86::VSQRTSSm_Int:
|
|
case X86::VSQRTSSr:
|
|
case X86::VSQRTSSr_Int:
|
|
// AVX512 instructions with high latency
|
|
case X86::VDIVPDZ128rm:
|
|
case X86::VDIVPDZ128rmb:
|
|
case X86::VDIVPDZ128rmbk:
|
|
case X86::VDIVPDZ128rmbkz:
|
|
case X86::VDIVPDZ128rmk:
|
|
case X86::VDIVPDZ128rmkz:
|
|
case X86::VDIVPDZ128rr:
|
|
case X86::VDIVPDZ128rrk:
|
|
case X86::VDIVPDZ128rrkz:
|
|
case X86::VDIVPDZ256rm:
|
|
case X86::VDIVPDZ256rmb:
|
|
case X86::VDIVPDZ256rmbk:
|
|
case X86::VDIVPDZ256rmbkz:
|
|
case X86::VDIVPDZ256rmk:
|
|
case X86::VDIVPDZ256rmkz:
|
|
case X86::VDIVPDZ256rr:
|
|
case X86::VDIVPDZ256rrk:
|
|
case X86::VDIVPDZ256rrkz:
|
|
case X86::VDIVPDZrrb:
|
|
case X86::VDIVPDZrrbk:
|
|
case X86::VDIVPDZrrbkz:
|
|
case X86::VDIVPDZrm:
|
|
case X86::VDIVPDZrmb:
|
|
case X86::VDIVPDZrmbk:
|
|
case X86::VDIVPDZrmbkz:
|
|
case X86::VDIVPDZrmk:
|
|
case X86::VDIVPDZrmkz:
|
|
case X86::VDIVPDZrr:
|
|
case X86::VDIVPDZrrk:
|
|
case X86::VDIVPDZrrkz:
|
|
case X86::VDIVPSZ128rm:
|
|
case X86::VDIVPSZ128rmb:
|
|
case X86::VDIVPSZ128rmbk:
|
|
case X86::VDIVPSZ128rmbkz:
|
|
case X86::VDIVPSZ128rmk:
|
|
case X86::VDIVPSZ128rmkz:
|
|
case X86::VDIVPSZ128rr:
|
|
case X86::VDIVPSZ128rrk:
|
|
case X86::VDIVPSZ128rrkz:
|
|
case X86::VDIVPSZ256rm:
|
|
case X86::VDIVPSZ256rmb:
|
|
case X86::VDIVPSZ256rmbk:
|
|
case X86::VDIVPSZ256rmbkz:
|
|
case X86::VDIVPSZ256rmk:
|
|
case X86::VDIVPSZ256rmkz:
|
|
case X86::VDIVPSZ256rr:
|
|
case X86::VDIVPSZ256rrk:
|
|
case X86::VDIVPSZ256rrkz:
|
|
case X86::VDIVPSZrrb:
|
|
case X86::VDIVPSZrrbk:
|
|
case X86::VDIVPSZrrbkz:
|
|
case X86::VDIVPSZrm:
|
|
case X86::VDIVPSZrmb:
|
|
case X86::VDIVPSZrmbk:
|
|
case X86::VDIVPSZrmbkz:
|
|
case X86::VDIVPSZrmk:
|
|
case X86::VDIVPSZrmkz:
|
|
case X86::VDIVPSZrr:
|
|
case X86::VDIVPSZrrk:
|
|
case X86::VDIVPSZrrkz:
|
|
case X86::VDIVSDZrm:
|
|
case X86::VDIVSDZrr:
|
|
case X86::VDIVSDZrm_Int:
|
|
case X86::VDIVSDZrm_Intk:
|
|
case X86::VDIVSDZrm_Intkz:
|
|
case X86::VDIVSDZrr_Int:
|
|
case X86::VDIVSDZrr_Intk:
|
|
case X86::VDIVSDZrr_Intkz:
|
|
case X86::VDIVSDZrrb_Int:
|
|
case X86::VDIVSDZrrb_Intk:
|
|
case X86::VDIVSDZrrb_Intkz:
|
|
case X86::VDIVSSZrm:
|
|
case X86::VDIVSSZrr:
|
|
case X86::VDIVSSZrm_Int:
|
|
case X86::VDIVSSZrm_Intk:
|
|
case X86::VDIVSSZrm_Intkz:
|
|
case X86::VDIVSSZrr_Int:
|
|
case X86::VDIVSSZrr_Intk:
|
|
case X86::VDIVSSZrr_Intkz:
|
|
case X86::VDIVSSZrrb_Int:
|
|
case X86::VDIVSSZrrb_Intk:
|
|
case X86::VDIVSSZrrb_Intkz:
|
|
case X86::VSQRTPDZ128m:
|
|
case X86::VSQRTPDZ128mb:
|
|
case X86::VSQRTPDZ128mbk:
|
|
case X86::VSQRTPDZ128mbkz:
|
|
case X86::VSQRTPDZ128mk:
|
|
case X86::VSQRTPDZ128mkz:
|
|
case X86::VSQRTPDZ128r:
|
|
case X86::VSQRTPDZ128rk:
|
|
case X86::VSQRTPDZ128rkz:
|
|
case X86::VSQRTPDZ256m:
|
|
case X86::VSQRTPDZ256mb:
|
|
case X86::VSQRTPDZ256mbk:
|
|
case X86::VSQRTPDZ256mbkz:
|
|
case X86::VSQRTPDZ256mk:
|
|
case X86::VSQRTPDZ256mkz:
|
|
case X86::VSQRTPDZ256r:
|
|
case X86::VSQRTPDZ256rk:
|
|
case X86::VSQRTPDZ256rkz:
|
|
case X86::VSQRTPDZm:
|
|
case X86::VSQRTPDZmb:
|
|
case X86::VSQRTPDZmbk:
|
|
case X86::VSQRTPDZmbkz:
|
|
case X86::VSQRTPDZmk:
|
|
case X86::VSQRTPDZmkz:
|
|
case X86::VSQRTPDZr:
|
|
case X86::VSQRTPDZrb:
|
|
case X86::VSQRTPDZrbk:
|
|
case X86::VSQRTPDZrbkz:
|
|
case X86::VSQRTPDZrk:
|
|
case X86::VSQRTPDZrkz:
|
|
case X86::VSQRTPSZ128m:
|
|
case X86::VSQRTPSZ128mb:
|
|
case X86::VSQRTPSZ128mbk:
|
|
case X86::VSQRTPSZ128mbkz:
|
|
case X86::VSQRTPSZ128mk:
|
|
case X86::VSQRTPSZ128mkz:
|
|
case X86::VSQRTPSZ128r:
|
|
case X86::VSQRTPSZ128rk:
|
|
case X86::VSQRTPSZ128rkz:
|
|
case X86::VSQRTPSZ256m:
|
|
case X86::VSQRTPSZ256mb:
|
|
case X86::VSQRTPSZ256mbk:
|
|
case X86::VSQRTPSZ256mbkz:
|
|
case X86::VSQRTPSZ256mk:
|
|
case X86::VSQRTPSZ256mkz:
|
|
case X86::VSQRTPSZ256r:
|
|
case X86::VSQRTPSZ256rk:
|
|
case X86::VSQRTPSZ256rkz:
|
|
case X86::VSQRTPSZm:
|
|
case X86::VSQRTPSZmb:
|
|
case X86::VSQRTPSZmbk:
|
|
case X86::VSQRTPSZmbkz:
|
|
case X86::VSQRTPSZmk:
|
|
case X86::VSQRTPSZmkz:
|
|
case X86::VSQRTPSZr:
|
|
case X86::VSQRTPSZrb:
|
|
case X86::VSQRTPSZrbk:
|
|
case X86::VSQRTPSZrbkz:
|
|
case X86::VSQRTPSZrk:
|
|
case X86::VSQRTPSZrkz:
|
|
case X86::VSQRTSDZm:
|
|
case X86::VSQRTSDZm_Int:
|
|
case X86::VSQRTSDZm_Intk:
|
|
case X86::VSQRTSDZm_Intkz:
|
|
case X86::VSQRTSDZr:
|
|
case X86::VSQRTSDZr_Int:
|
|
case X86::VSQRTSDZr_Intk:
|
|
case X86::VSQRTSDZr_Intkz:
|
|
case X86::VSQRTSDZrb_Int:
|
|
case X86::VSQRTSDZrb_Intk:
|
|
case X86::VSQRTSDZrb_Intkz:
|
|
case X86::VSQRTSSZm:
|
|
case X86::VSQRTSSZm_Int:
|
|
case X86::VSQRTSSZm_Intk:
|
|
case X86::VSQRTSSZm_Intkz:
|
|
case X86::VSQRTSSZr:
|
|
case X86::VSQRTSSZr_Int:
|
|
case X86::VSQRTSSZr_Intk:
|
|
case X86::VSQRTSSZr_Intkz:
|
|
case X86::VSQRTSSZrb_Int:
|
|
case X86::VSQRTSSZrb_Intk:
|
|
case X86::VSQRTSSZrb_Intkz:
|
|
|
|
case X86::VGATHERDPDYrm:
|
|
case X86::VGATHERDPDZ128rm:
|
|
case X86::VGATHERDPDZ256rm:
|
|
case X86::VGATHERDPDZrm:
|
|
case X86::VGATHERDPDrm:
|
|
case X86::VGATHERDPSYrm:
|
|
case X86::VGATHERDPSZ128rm:
|
|
case X86::VGATHERDPSZ256rm:
|
|
case X86::VGATHERDPSZrm:
|
|
case X86::VGATHERDPSrm:
|
|
case X86::VGATHERPF0DPDm:
|
|
case X86::VGATHERPF0DPSm:
|
|
case X86::VGATHERPF0QPDm:
|
|
case X86::VGATHERPF0QPSm:
|
|
case X86::VGATHERPF1DPDm:
|
|
case X86::VGATHERPF1DPSm:
|
|
case X86::VGATHERPF1QPDm:
|
|
case X86::VGATHERPF1QPSm:
|
|
case X86::VGATHERQPDYrm:
|
|
case X86::VGATHERQPDZ128rm:
|
|
case X86::VGATHERQPDZ256rm:
|
|
case X86::VGATHERQPDZrm:
|
|
case X86::VGATHERQPDrm:
|
|
case X86::VGATHERQPSYrm:
|
|
case X86::VGATHERQPSZ128rm:
|
|
case X86::VGATHERQPSZ256rm:
|
|
case X86::VGATHERQPSZrm:
|
|
case X86::VGATHERQPSrm:
|
|
case X86::VPGATHERDDYrm:
|
|
case X86::VPGATHERDDZ128rm:
|
|
case X86::VPGATHERDDZ256rm:
|
|
case X86::VPGATHERDDZrm:
|
|
case X86::VPGATHERDDrm:
|
|
case X86::VPGATHERDQYrm:
|
|
case X86::VPGATHERDQZ128rm:
|
|
case X86::VPGATHERDQZ256rm:
|
|
case X86::VPGATHERDQZrm:
|
|
case X86::VPGATHERDQrm:
|
|
case X86::VPGATHERQDYrm:
|
|
case X86::VPGATHERQDZ128rm:
|
|
case X86::VPGATHERQDZ256rm:
|
|
case X86::VPGATHERQDZrm:
|
|
case X86::VPGATHERQDrm:
|
|
case X86::VPGATHERQQYrm:
|
|
case X86::VPGATHERQQZ128rm:
|
|
case X86::VPGATHERQQZ256rm:
|
|
case X86::VPGATHERQQZrm:
|
|
case X86::VPGATHERQQrm:
|
|
case X86::VSCATTERDPDZ128mr:
|
|
case X86::VSCATTERDPDZ256mr:
|
|
case X86::VSCATTERDPDZmr:
|
|
case X86::VSCATTERDPSZ128mr:
|
|
case X86::VSCATTERDPSZ256mr:
|
|
case X86::VSCATTERDPSZmr:
|
|
case X86::VSCATTERPF0DPDm:
|
|
case X86::VSCATTERPF0DPSm:
|
|
case X86::VSCATTERPF0QPDm:
|
|
case X86::VSCATTERPF0QPSm:
|
|
case X86::VSCATTERPF1DPDm:
|
|
case X86::VSCATTERPF1DPSm:
|
|
case X86::VSCATTERPF1QPDm:
|
|
case X86::VSCATTERPF1QPSm:
|
|
case X86::VSCATTERQPDZ128mr:
|
|
case X86::VSCATTERQPDZ256mr:
|
|
case X86::VSCATTERQPDZmr:
|
|
case X86::VSCATTERQPSZ128mr:
|
|
case X86::VSCATTERQPSZ256mr:
|
|
case X86::VSCATTERQPSZmr:
|
|
case X86::VPSCATTERDDZ128mr:
|
|
case X86::VPSCATTERDDZ256mr:
|
|
case X86::VPSCATTERDDZmr:
|
|
case X86::VPSCATTERDQZ128mr:
|
|
case X86::VPSCATTERDQZ256mr:
|
|
case X86::VPSCATTERDQZmr:
|
|
case X86::VPSCATTERQDZ128mr:
|
|
case X86::VPSCATTERQDZ256mr:
|
|
case X86::VPSCATTERQDZmr:
|
|
case X86::VPSCATTERQQZ128mr:
|
|
case X86::VPSCATTERQQZ256mr:
|
|
case X86::VPSCATTERQQZmr:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
|
|
const MachineRegisterInfo *MRI,
|
|
const MachineInstr &DefMI,
|
|
unsigned DefIdx,
|
|
const MachineInstr &UseMI,
|
|
unsigned UseIdx) const {
|
|
return isHighLatencyDef(DefMI.getOpcode());
|
|
}
|
|
|
|
bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
|
|
const MachineBasicBlock *MBB) const {
|
|
assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
|
|
Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
|
|
|
|
// Integer binary math/logic instructions have a third source operand:
|
|
// the EFLAGS register. That operand must be both defined here and never
|
|
// used; ie, it must be dead. If the EFLAGS operand is live, then we can
|
|
// not change anything because rearranging the operands could affect other
|
|
// instructions that depend on the exact status flags (zero, sign, etc.)
|
|
// that are set by using these particular operands with this operation.
|
|
const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
|
|
assert((Inst.getNumDefs() == 1 || FlagDef) &&
|
|
"Implicit def isn't flags?");
|
|
if (FlagDef && !FlagDef->isDead())
|
|
return false;
|
|
|
|
return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
|
|
}
|
|
|
|
// TODO: There are many more machine instruction opcodes to match:
|
|
// 1. Other data types (integer, vectors)
|
|
// 2. Other math / logic operations (xor, or)
|
|
// 3. Other forms of the same operation (intrinsics and other variants)
|
|
bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
|
|
switch (Inst.getOpcode()) {
|
|
case X86::AND8rr:
|
|
case X86::AND16rr:
|
|
case X86::AND32rr:
|
|
case X86::AND64rr:
|
|
case X86::OR8rr:
|
|
case X86::OR16rr:
|
|
case X86::OR32rr:
|
|
case X86::OR64rr:
|
|
case X86::XOR8rr:
|
|
case X86::XOR16rr:
|
|
case X86::XOR32rr:
|
|
case X86::XOR64rr:
|
|
case X86::IMUL16rr:
|
|
case X86::IMUL32rr:
|
|
case X86::IMUL64rr:
|
|
case X86::PANDrr:
|
|
case X86::PORrr:
|
|
case X86::PXORrr:
|
|
case X86::ANDPDrr:
|
|
case X86::ANDPSrr:
|
|
case X86::ORPDrr:
|
|
case X86::ORPSrr:
|
|
case X86::XORPDrr:
|
|
case X86::XORPSrr:
|
|
case X86::PADDBrr:
|
|
case X86::PADDWrr:
|
|
case X86::PADDDrr:
|
|
case X86::PADDQrr:
|
|
case X86::PMULLWrr:
|
|
case X86::PMULLDrr:
|
|
case X86::PMAXSBrr:
|
|
case X86::PMAXSDrr:
|
|
case X86::PMAXSWrr:
|
|
case X86::PMAXUBrr:
|
|
case X86::PMAXUDrr:
|
|
case X86::PMAXUWrr:
|
|
case X86::PMINSBrr:
|
|
case X86::PMINSDrr:
|
|
case X86::PMINSWrr:
|
|
case X86::PMINUBrr:
|
|
case X86::PMINUDrr:
|
|
case X86::PMINUWrr:
|
|
case X86::VPANDrr:
|
|
case X86::VPANDYrr:
|
|
case X86::VPANDDZ128rr:
|
|
case X86::VPANDDZ256rr:
|
|
case X86::VPANDDZrr:
|
|
case X86::VPANDQZ128rr:
|
|
case X86::VPANDQZ256rr:
|
|
case X86::VPANDQZrr:
|
|
case X86::VPORrr:
|
|
case X86::VPORYrr:
|
|
case X86::VPORDZ128rr:
|
|
case X86::VPORDZ256rr:
|
|
case X86::VPORDZrr:
|
|
case X86::VPORQZ128rr:
|
|
case X86::VPORQZ256rr:
|
|
case X86::VPORQZrr:
|
|
case X86::VPXORrr:
|
|
case X86::VPXORYrr:
|
|
case X86::VPXORDZ128rr:
|
|
case X86::VPXORDZ256rr:
|
|
case X86::VPXORDZrr:
|
|
case X86::VPXORQZ128rr:
|
|
case X86::VPXORQZ256rr:
|
|
case X86::VPXORQZrr:
|
|
case X86::VANDPDrr:
|
|
case X86::VANDPSrr:
|
|
case X86::VANDPDYrr:
|
|
case X86::VANDPSYrr:
|
|
case X86::VANDPDZ128rr:
|
|
case X86::VANDPSZ128rr:
|
|
case X86::VANDPDZ256rr:
|
|
case X86::VANDPSZ256rr:
|
|
case X86::VANDPDZrr:
|
|
case X86::VANDPSZrr:
|
|
case X86::VORPDrr:
|
|
case X86::VORPSrr:
|
|
case X86::VORPDYrr:
|
|
case X86::VORPSYrr:
|
|
case X86::VORPDZ128rr:
|
|
case X86::VORPSZ128rr:
|
|
case X86::VORPDZ256rr:
|
|
case X86::VORPSZ256rr:
|
|
case X86::VORPDZrr:
|
|
case X86::VORPSZrr:
|
|
case X86::VXORPDrr:
|
|
case X86::VXORPSrr:
|
|
case X86::VXORPDYrr:
|
|
case X86::VXORPSYrr:
|
|
case X86::VXORPDZ128rr:
|
|
case X86::VXORPSZ128rr:
|
|
case X86::VXORPDZ256rr:
|
|
case X86::VXORPSZ256rr:
|
|
case X86::VXORPDZrr:
|
|
case X86::VXORPSZrr:
|
|
case X86::KADDBrr:
|
|
case X86::KADDWrr:
|
|
case X86::KADDDrr:
|
|
case X86::KADDQrr:
|
|
case X86::KANDBrr:
|
|
case X86::KANDWrr:
|
|
case X86::KANDDrr:
|
|
case X86::KANDQrr:
|
|
case X86::KORBrr:
|
|
case X86::KORWrr:
|
|
case X86::KORDrr:
|
|
case X86::KORQrr:
|
|
case X86::KXORBrr:
|
|
case X86::KXORWrr:
|
|
case X86::KXORDrr:
|
|
case X86::KXORQrr:
|
|
case X86::VPADDBrr:
|
|
case X86::VPADDWrr:
|
|
case X86::VPADDDrr:
|
|
case X86::VPADDQrr:
|
|
case X86::VPADDBYrr:
|
|
case X86::VPADDWYrr:
|
|
case X86::VPADDDYrr:
|
|
case X86::VPADDQYrr:
|
|
case X86::VPADDBZ128rr:
|
|
case X86::VPADDWZ128rr:
|
|
case X86::VPADDDZ128rr:
|
|
case X86::VPADDQZ128rr:
|
|
case X86::VPADDBZ256rr:
|
|
case X86::VPADDWZ256rr:
|
|
case X86::VPADDDZ256rr:
|
|
case X86::VPADDQZ256rr:
|
|
case X86::VPADDBZrr:
|
|
case X86::VPADDWZrr:
|
|
case X86::VPADDDZrr:
|
|
case X86::VPADDQZrr:
|
|
case X86::VPMULLWrr:
|
|
case X86::VPMULLWYrr:
|
|
case X86::VPMULLWZ128rr:
|
|
case X86::VPMULLWZ256rr:
|
|
case X86::VPMULLWZrr:
|
|
case X86::VPMULLDrr:
|
|
case X86::VPMULLDYrr:
|
|
case X86::VPMULLDZ128rr:
|
|
case X86::VPMULLDZ256rr:
|
|
case X86::VPMULLDZrr:
|
|
case X86::VPMULLQZ128rr:
|
|
case X86::VPMULLQZ256rr:
|
|
case X86::VPMULLQZrr:
|
|
case X86::VPMAXSBrr:
|
|
case X86::VPMAXSBYrr:
|
|
case X86::VPMAXSBZ128rr:
|
|
case X86::VPMAXSBZ256rr:
|
|
case X86::VPMAXSBZrr:
|
|
case X86::VPMAXSDrr:
|
|
case X86::VPMAXSDYrr:
|
|
case X86::VPMAXSDZ128rr:
|
|
case X86::VPMAXSDZ256rr:
|
|
case X86::VPMAXSDZrr:
|
|
case X86::VPMAXSQZ128rr:
|
|
case X86::VPMAXSQZ256rr:
|
|
case X86::VPMAXSQZrr:
|
|
case X86::VPMAXSWrr:
|
|
case X86::VPMAXSWYrr:
|
|
case X86::VPMAXSWZ128rr:
|
|
case X86::VPMAXSWZ256rr:
|
|
case X86::VPMAXSWZrr:
|
|
case X86::VPMAXUBrr:
|
|
case X86::VPMAXUBYrr:
|
|
case X86::VPMAXUBZ128rr:
|
|
case X86::VPMAXUBZ256rr:
|
|
case X86::VPMAXUBZrr:
|
|
case X86::VPMAXUDrr:
|
|
case X86::VPMAXUDYrr:
|
|
case X86::VPMAXUDZ128rr:
|
|
case X86::VPMAXUDZ256rr:
|
|
case X86::VPMAXUDZrr:
|
|
case X86::VPMAXUQZ128rr:
|
|
case X86::VPMAXUQZ256rr:
|
|
case X86::VPMAXUQZrr:
|
|
case X86::VPMAXUWrr:
|
|
case X86::VPMAXUWYrr:
|
|
case X86::VPMAXUWZ128rr:
|
|
case X86::VPMAXUWZ256rr:
|
|
case X86::VPMAXUWZrr:
|
|
case X86::VPMINSBrr:
|
|
case X86::VPMINSBYrr:
|
|
case X86::VPMINSBZ128rr:
|
|
case X86::VPMINSBZ256rr:
|
|
case X86::VPMINSBZrr:
|
|
case X86::VPMINSDrr:
|
|
case X86::VPMINSDYrr:
|
|
case X86::VPMINSDZ128rr:
|
|
case X86::VPMINSDZ256rr:
|
|
case X86::VPMINSDZrr:
|
|
case X86::VPMINSQZ128rr:
|
|
case X86::VPMINSQZ256rr:
|
|
case X86::VPMINSQZrr:
|
|
case X86::VPMINSWrr:
|
|
case X86::VPMINSWYrr:
|
|
case X86::VPMINSWZ128rr:
|
|
case X86::VPMINSWZ256rr:
|
|
case X86::VPMINSWZrr:
|
|
case X86::VPMINUBrr:
|
|
case X86::VPMINUBYrr:
|
|
case X86::VPMINUBZ128rr:
|
|
case X86::VPMINUBZ256rr:
|
|
case X86::VPMINUBZrr:
|
|
case X86::VPMINUDrr:
|
|
case X86::VPMINUDYrr:
|
|
case X86::VPMINUDZ128rr:
|
|
case X86::VPMINUDZ256rr:
|
|
case X86::VPMINUDZrr:
|
|
case X86::VPMINUQZ128rr:
|
|
case X86::VPMINUQZ256rr:
|
|
case X86::VPMINUQZrr:
|
|
case X86::VPMINUWrr:
|
|
case X86::VPMINUWYrr:
|
|
case X86::VPMINUWZ128rr:
|
|
case X86::VPMINUWZ256rr:
|
|
case X86::VPMINUWZrr:
|
|
// Normal min/max instructions are not commutative because of NaN and signed
|
|
// zero semantics, but these are. Thus, there's no need to check for global
|
|
// relaxed math; the instructions themselves have the properties we need.
|
|
case X86::MAXCPDrr:
|
|
case X86::MAXCPSrr:
|
|
case X86::MAXCSDrr:
|
|
case X86::MAXCSSrr:
|
|
case X86::MINCPDrr:
|
|
case X86::MINCPSrr:
|
|
case X86::MINCSDrr:
|
|
case X86::MINCSSrr:
|
|
case X86::VMAXCPDrr:
|
|
case X86::VMAXCPSrr:
|
|
case X86::VMAXCPDYrr:
|
|
case X86::VMAXCPSYrr:
|
|
case X86::VMAXCPDZ128rr:
|
|
case X86::VMAXCPSZ128rr:
|
|
case X86::VMAXCPDZ256rr:
|
|
case X86::VMAXCPSZ256rr:
|
|
case X86::VMAXCPDZrr:
|
|
case X86::VMAXCPSZrr:
|
|
case X86::VMAXCSDrr:
|
|
case X86::VMAXCSSrr:
|
|
case X86::VMAXCSDZrr:
|
|
case X86::VMAXCSSZrr:
|
|
case X86::VMINCPDrr:
|
|
case X86::VMINCPSrr:
|
|
case X86::VMINCPDYrr:
|
|
case X86::VMINCPSYrr:
|
|
case X86::VMINCPDZ128rr:
|
|
case X86::VMINCPSZ128rr:
|
|
case X86::VMINCPDZ256rr:
|
|
case X86::VMINCPSZ256rr:
|
|
case X86::VMINCPDZrr:
|
|
case X86::VMINCPSZrr:
|
|
case X86::VMINCSDrr:
|
|
case X86::VMINCSSrr:
|
|
case X86::VMINCSDZrr:
|
|
case X86::VMINCSSZrr:
|
|
return true;
|
|
case X86::ADDPDrr:
|
|
case X86::ADDPSrr:
|
|
case X86::ADDSDrr:
|
|
case X86::ADDSSrr:
|
|
case X86::MULPDrr:
|
|
case X86::MULPSrr:
|
|
case X86::MULSDrr:
|
|
case X86::MULSSrr:
|
|
case X86::VADDPDrr:
|
|
case X86::VADDPSrr:
|
|
case X86::VADDPDYrr:
|
|
case X86::VADDPSYrr:
|
|
case X86::VADDPDZ128rr:
|
|
case X86::VADDPSZ128rr:
|
|
case X86::VADDPDZ256rr:
|
|
case X86::VADDPSZ256rr:
|
|
case X86::VADDPDZrr:
|
|
case X86::VADDPSZrr:
|
|
case X86::VADDSDrr:
|
|
case X86::VADDSSrr:
|
|
case X86::VADDSDZrr:
|
|
case X86::VADDSSZrr:
|
|
case X86::VMULPDrr:
|
|
case X86::VMULPSrr:
|
|
case X86::VMULPDYrr:
|
|
case X86::VMULPSYrr:
|
|
case X86::VMULPDZ128rr:
|
|
case X86::VMULPSZ128rr:
|
|
case X86::VMULPDZ256rr:
|
|
case X86::VMULPSZ256rr:
|
|
case X86::VMULPDZrr:
|
|
case X86::VMULPSZrr:
|
|
case X86::VMULSDrr:
|
|
case X86::VMULSSrr:
|
|
case X86::VMULSDZrr:
|
|
case X86::VMULSSZrr:
|
|
return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
|
|
Inst.getFlag(MachineInstr::MIFlag::FmNsz);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// If \p DescribedReg overlaps with the MOVrr instruction's destination
|
|
/// register then, if possible, describe the value in terms of the source
|
|
/// register.
|
|
static Optional<ParamLoadedValue>
|
|
describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
|
|
const TargetRegisterInfo *TRI) {
|
|
Register DestReg = MI.getOperand(0).getReg();
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
|
|
auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
|
|
|
|
// If the described register is the destination, just return the source.
|
|
if (DestReg == DescribedReg)
|
|
return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
|
|
|
|
// If the described register is a sub-register of the destination register,
|
|
// then pick out the source register's corresponding sub-register.
|
|
if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
|
|
Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
|
|
return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
|
|
}
|
|
|
|
// The remaining case to consider is when the described register is a
|
|
// super-register of the destination register. MOV8rr and MOV16rr does not
|
|
// write to any of the other bytes in the register, meaning that we'd have to
|
|
// describe the value using a combination of the source register and the
|
|
// non-overlapping bits in the described register, which is not currently
|
|
// possible.
|
|
if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
|
|
!TRI->isSuperRegister(DestReg, DescribedReg))
|
|
return None;
|
|
|
|
assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
|
|
return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
|
|
}
|
|
|
|
Optional<ParamLoadedValue>
|
|
X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
|
|
const MachineOperand *Op = nullptr;
|
|
DIExpression *Expr = nullptr;
|
|
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
|
|
switch (MI.getOpcode()) {
|
|
case X86::LEA32r:
|
|
case X86::LEA64r:
|
|
case X86::LEA64_32r: {
|
|
// We may need to describe a 64-bit parameter with a 32-bit LEA.
|
|
if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
|
|
return None;
|
|
|
|
// Operand 4 could be global address. For now we do not support
|
|
// such situation.
|
|
if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
|
|
return None;
|
|
|
|
const MachineOperand &Op1 = MI.getOperand(1);
|
|
const MachineOperand &Op2 = MI.getOperand(3);
|
|
assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||
|
|
Register::isPhysicalRegister(Op2.getReg())));
|
|
|
|
// Omit situations like:
|
|
// %rsi = lea %rsi, 4, ...
|
|
if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
|
|
Op2.getReg() == MI.getOperand(0).getReg())
|
|
return None;
|
|
else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
|
|
TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
|
|
(Op2.getReg() != X86::NoRegister &&
|
|
TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
|
|
return None;
|
|
|
|
int64_t Coef = MI.getOperand(2).getImm();
|
|
int64_t Offset = MI.getOperand(4).getImm();
|
|
SmallVector<uint64_t, 8> Ops;
|
|
|
|
if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
|
|
Op = &Op1;
|
|
} else if (Op1.isFI())
|
|
Op = &Op1;
|
|
|
|
if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
|
|
Ops.push_back(dwarf::DW_OP_constu);
|
|
Ops.push_back(Coef + 1);
|
|
Ops.push_back(dwarf::DW_OP_mul);
|
|
} else {
|
|
if (Op && Op2.getReg() != X86::NoRegister) {
|
|
int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
|
|
if (dwarfReg < 0)
|
|
return None;
|
|
else if (dwarfReg < 32) {
|
|
Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
|
|
Ops.push_back(0);
|
|
} else {
|
|
Ops.push_back(dwarf::DW_OP_bregx);
|
|
Ops.push_back(dwarfReg);
|
|
Ops.push_back(0);
|
|
}
|
|
} else if (!Op) {
|
|
assert(Op2.getReg() != X86::NoRegister);
|
|
Op = &Op2;
|
|
}
|
|
|
|
if (Coef > 1) {
|
|
assert(Op2.getReg() != X86::NoRegister);
|
|
Ops.push_back(dwarf::DW_OP_constu);
|
|
Ops.push_back(Coef);
|
|
Ops.push_back(dwarf::DW_OP_mul);
|
|
}
|
|
|
|
if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
|
|
Op2.getReg() != X86::NoRegister) {
|
|
Ops.push_back(dwarf::DW_OP_plus);
|
|
}
|
|
}
|
|
|
|
DIExpression::appendOffset(Ops, Offset);
|
|
Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
|
|
|
|
return ParamLoadedValue(*Op, Expr);;
|
|
}
|
|
case X86::MOV8ri:
|
|
case X86::MOV16ri:
|
|
// TODO: Handle MOV8ri and MOV16ri.
|
|
return None;
|
|
case X86::MOV32ri:
|
|
case X86::MOV64ri:
|
|
case X86::MOV64ri32:
|
|
// MOV32ri may be used for producing zero-extended 32-bit immediates in
|
|
// 64-bit parameters, so we need to consider super-registers.
|
|
if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
|
|
return None;
|
|
return ParamLoadedValue(MI.getOperand(1), Expr);
|
|
case X86::MOV8rr:
|
|
case X86::MOV16rr:
|
|
case X86::MOV32rr:
|
|
case X86::MOV64rr:
|
|
return describeMOVrrLoadedValue(MI, Reg, TRI);
|
|
case X86::XOR32rr: {
|
|
// 64-bit parameters are zero-materialized using XOR32rr, so also consider
|
|
// super-registers.
|
|
if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
|
|
return None;
|
|
if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
|
|
return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
|
|
return None;
|
|
}
|
|
case X86::MOVSX64rr32: {
|
|
// We may need to describe the lower 32 bits of the MOVSX; for example, in
|
|
// cases like this:
|
|
//
|
|
// $ebx = [...]
|
|
// $rdi = MOVSX64rr32 $ebx
|
|
// $esi = MOV32rr $edi
|
|
if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
|
|
return None;
|
|
|
|
Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
|
|
|
|
// If the described register is the destination register we need to
|
|
// sign-extend the source register from 32 bits. The other case we handle
|
|
// is when the described register is the 32-bit sub-register of the
|
|
// destination register, in case we just need to return the source
|
|
// register.
|
|
if (Reg == MI.getOperand(0).getReg())
|
|
Expr = DIExpression::appendExt(Expr, 32, 64, true);
|
|
else
|
|
assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
|
|
"Unhandled sub-register case for MOVSX64rr32");
|
|
|
|
return ParamLoadedValue(MI.getOperand(1), Expr);
|
|
}
|
|
default:
|
|
assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
|
|
return TargetInstrInfo::describeLoadedValue(MI, Reg);
|
|
}
|
|
}
|
|
|
|
/// This is an architecture-specific helper function of reassociateOps.
|
|
/// Set special operand attributes for new instructions after reassociation.
|
|
void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
|
|
MachineInstr &OldMI2,
|
|
MachineInstr &NewMI1,
|
|
MachineInstr &NewMI2) const {
|
|
// Propagate FP flags from the original instructions.
|
|
// But clear poison-generating flags because those may not be valid now.
|
|
// TODO: There should be a helper function for copying only fast-math-flags.
|
|
uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
|
|
NewMI1.setFlags(IntersectedFlags);
|
|
NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
|
|
NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
|
|
NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
|
|
|
|
NewMI2.setFlags(IntersectedFlags);
|
|
NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
|
|
NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
|
|
NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
|
|
|
|
// Integer instructions may define an implicit EFLAGS dest register operand.
|
|
MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
|
|
MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
|
|
|
|
assert(!OldFlagDef1 == !OldFlagDef2 &&
|
|
"Unexpected instruction type for reassociation");
|
|
|
|
if (!OldFlagDef1 || !OldFlagDef2)
|
|
return;
|
|
|
|
assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
|
|
"Must have dead EFLAGS operand in reassociable instruction");
|
|
|
|
MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
|
|
MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
|
|
|
|
assert(NewFlagDef1 && NewFlagDef2 &&
|
|
"Unexpected operand in reassociable instruction");
|
|
|
|
// Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
|
|
// of this pass or other passes. The EFLAGS operands must be dead in these new
|
|
// instructions because the EFLAGS operands in the original instructions must
|
|
// be dead in order for reassociation to occur.
|
|
NewFlagDef1->setIsDead();
|
|
NewFlagDef2->setIsDead();
|
|
}
|
|
|
|
std::pair<unsigned, unsigned>
|
|
X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
|
|
return std::make_pair(TF, 0u);
|
|
}
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
|
|
using namespace X86II;
|
|
static const std::pair<unsigned, const char *> TargetFlags[] = {
|
|
{MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
|
|
{MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
|
|
{MO_GOT, "x86-got"},
|
|
{MO_GOTOFF, "x86-gotoff"},
|
|
{MO_GOTPCREL, "x86-gotpcrel"},
|
|
{MO_PLT, "x86-plt"},
|
|
{MO_TLSGD, "x86-tlsgd"},
|
|
{MO_TLSLD, "x86-tlsld"},
|
|
{MO_TLSLDM, "x86-tlsldm"},
|
|
{MO_GOTTPOFF, "x86-gottpoff"},
|
|
{MO_INDNTPOFF, "x86-indntpoff"},
|
|
{MO_TPOFF, "x86-tpoff"},
|
|
{MO_DTPOFF, "x86-dtpoff"},
|
|
{MO_NTPOFF, "x86-ntpoff"},
|
|
{MO_GOTNTPOFF, "x86-gotntpoff"},
|
|
{MO_DLLIMPORT, "x86-dllimport"},
|
|
{MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
|
|
{MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
|
|
{MO_TLVP, "x86-tlvp"},
|
|
{MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
|
|
{MO_SECREL, "x86-secrel"},
|
|
{MO_COFFSTUB, "x86-coffstub"}};
|
|
return makeArrayRef(TargetFlags);
|
|
}
|
|
|
|
namespace {
|
|
/// Create Global Base Reg pass. This initializes the PIC
|
|
/// global base register for x86-32.
|
|
struct CGBR : public MachineFunctionPass {
|
|
static char ID;
|
|
CGBR() : MachineFunctionPass(ID) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
const X86TargetMachine *TM =
|
|
static_cast<const X86TargetMachine *>(&MF.getTarget());
|
|
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
|
|
|
|
// Don't do anything in the 64-bit small and kernel code models. They use
|
|
// RIP-relative addressing for everything.
|
|
if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
|
|
TM->getCodeModel() == CodeModel::Kernel))
|
|
return false;
|
|
|
|
// Only emit a global base reg in PIC mode.
|
|
if (!TM->isPositionIndependent())
|
|
return false;
|
|
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
Register GlobalBaseReg = X86FI->getGlobalBaseReg();
|
|
|
|
// If we didn't need a GlobalBaseReg, don't insert code.
|
|
if (GlobalBaseReg == 0)
|
|
return false;
|
|
|
|
// Insert the set of GlobalBaseReg into the first MBB of the function
|
|
MachineBasicBlock &FirstMBB = MF.front();
|
|
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
|
|
DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
const X86InstrInfo *TII = STI.getInstrInfo();
|
|
|
|
Register PC;
|
|
if (STI.isPICStyleGOT())
|
|
PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
|
|
else
|
|
PC = GlobalBaseReg;
|
|
|
|
if (STI.is64Bit()) {
|
|
if (TM->getCodeModel() == CodeModel::Medium) {
|
|
// In the medium code model, use a RIP-relative LEA to materialize the
|
|
// GOT.
|
|
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
|
|
.addReg(X86::RIP)
|
|
.addImm(0)
|
|
.addReg(0)
|
|
.addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
|
|
.addReg(0);
|
|
} else if (TM->getCodeModel() == CodeModel::Large) {
|
|
// In the large code model, we are aiming for this code, though the
|
|
// register allocation may vary:
|
|
// leaq .LN$pb(%rip), %rax
|
|
// movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
|
|
// addq %rcx, %rax
|
|
// RAX now holds address of _GLOBAL_OFFSET_TABLE_.
|
|
Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
|
|
Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
|
|
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
|
|
.addReg(X86::RIP)
|
|
.addImm(0)
|
|
.addReg(0)
|
|
.addSym(MF.getPICBaseSymbol())
|
|
.addReg(0);
|
|
std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
|
|
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
|
|
.addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
|
|
X86II::MO_PIC_BASE_OFFSET);
|
|
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
|
|
.addReg(PBReg, RegState::Kill)
|
|
.addReg(GOTReg, RegState::Kill);
|
|
} else {
|
|
llvm_unreachable("unexpected code model");
|
|
}
|
|
} else {
|
|
// Operand of MovePCtoStack is completely ignored by asm printer. It's
|
|
// only used in JIT code emission as displacement to pc.
|
|
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
|
|
|
|
// If we're using vanilla 'GOT' PIC style, we should use relative
|
|
// addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
|
|
if (STI.isPICStyleGOT()) {
|
|
// Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
|
|
// %some_register
|
|
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
|
|
.addReg(PC)
|
|
.addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
|
|
X86II::MO_GOT_ABSOLUTE_ADDRESS);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
StringRef getPassName() const override {
|
|
return "X86 PIC Global Base Reg Initialization";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
char CGBR::ID = 0;
|
|
FunctionPass*
|
|
llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
|
|
|
|
namespace {
|
|
struct LDTLSCleanup : public MachineFunctionPass {
|
|
static char ID;
|
|
LDTLSCleanup() : MachineFunctionPass(ID) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
if (skipFunction(MF.getFunction()))
|
|
return false;
|
|
|
|
X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
|
|
if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
|
|
// No point folding accesses if there isn't at least two.
|
|
return false;
|
|
}
|
|
|
|
MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
|
|
return VisitNode(DT->getRootNode(), 0);
|
|
}
|
|
|
|
// Visit the dominator subtree rooted at Node in pre-order.
|
|
// If TLSBaseAddrReg is non-null, then use that to replace any
|
|
// TLS_base_addr instructions. Otherwise, create the register
|
|
// when the first such instruction is seen, and then use it
|
|
// as we encounter more instructions.
|
|
bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
|
|
MachineBasicBlock *BB = Node->getBlock();
|
|
bool Changed = false;
|
|
|
|
// Traverse the current block.
|
|
for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
|
|
++I) {
|
|
switch (I->getOpcode()) {
|
|
case X86::TLS_base_addr32:
|
|
case X86::TLS_base_addr64:
|
|
if (TLSBaseAddrReg)
|
|
I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
|
|
else
|
|
I = SetRegister(*I, &TLSBaseAddrReg);
|
|
Changed = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Visit the children of this block in the dominator tree.
|
|
for (auto I = Node->begin(), E = Node->end(); I != E; ++I) {
|
|
Changed |= VisitNode(*I, TLSBaseAddrReg);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// Replace the TLS_base_addr instruction I with a copy from
|
|
// TLSBaseAddrReg, returning the new instruction.
|
|
MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
|
|
unsigned TLSBaseAddrReg) {
|
|
MachineFunction *MF = I.getParent()->getParent();
|
|
const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
|
|
const bool is64Bit = STI.is64Bit();
|
|
const X86InstrInfo *TII = STI.getInstrInfo();
|
|
|
|
// Insert a Copy from TLSBaseAddrReg to RAX/EAX.
|
|
MachineInstr *Copy =
|
|
BuildMI(*I.getParent(), I, I.getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
|
|
.addReg(TLSBaseAddrReg);
|
|
|
|
// Erase the TLS_base_addr instruction.
|
|
I.eraseFromParent();
|
|
|
|
return Copy;
|
|
}
|
|
|
|
// Create a virtual register in *TLSBaseAddrReg, and populate it by
|
|
// inserting a copy instruction after I. Returns the new instruction.
|
|
MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
|
|
MachineFunction *MF = I.getParent()->getParent();
|
|
const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
|
|
const bool is64Bit = STI.is64Bit();
|
|
const X86InstrInfo *TII = STI.getInstrInfo();
|
|
|
|
// Create a virtual register for the TLS base address.
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
*TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
|
|
? &X86::GR64RegClass
|
|
: &X86::GR32RegClass);
|
|
|
|
// Insert a copy from RAX/EAX to TLSBaseAddrReg.
|
|
MachineInstr *Next = I.getNextNode();
|
|
MachineInstr *Copy =
|
|
BuildMI(*I.getParent(), Next, I.getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
|
|
.addReg(is64Bit ? X86::RAX : X86::EAX);
|
|
|
|
return Copy;
|
|
}
|
|
|
|
StringRef getPassName() const override {
|
|
return "Local Dynamic TLS Access Clean-up";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<MachineDominatorTree>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
}
|
|
|
|
char LDTLSCleanup::ID = 0;
|
|
FunctionPass*
|
|
llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
|
|
|
|
/// Constants defining how certain sequences should be outlined.
|
|
///
|
|
/// \p MachineOutlinerDefault implies that the function is called with a call
|
|
/// instruction, and a return must be emitted for the outlined function frame.
|
|
///
|
|
/// That is,
|
|
///
|
|
/// I1 OUTLINED_FUNCTION:
|
|
/// I2 --> call OUTLINED_FUNCTION I1
|
|
/// I3 I2
|
|
/// I3
|
|
/// ret
|
|
///
|
|
/// * Call construction overhead: 1 (call instruction)
|
|
/// * Frame construction overhead: 1 (return instruction)
|
|
///
|
|
/// \p MachineOutlinerTailCall implies that the function is being tail called.
|
|
/// A jump is emitted instead of a call, and the return is already present in
|
|
/// the outlined sequence. That is,
|
|
///
|
|
/// I1 OUTLINED_FUNCTION:
|
|
/// I2 --> jmp OUTLINED_FUNCTION I1
|
|
/// ret I2
|
|
/// ret
|
|
///
|
|
/// * Call construction overhead: 1 (jump instruction)
|
|
/// * Frame construction overhead: 0 (don't need to return)
|
|
///
|
|
enum MachineOutlinerClass {
|
|
MachineOutlinerDefault,
|
|
MachineOutlinerTailCall
|
|
};
|
|
|
|
outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
|
|
std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
|
|
unsigned SequenceSize =
|
|
std::accumulate(RepeatedSequenceLocs[0].front(),
|
|
std::next(RepeatedSequenceLocs[0].back()), 0,
|
|
[](unsigned Sum, const MachineInstr &MI) {
|
|
// FIXME: x86 doesn't implement getInstSizeInBytes, so
|
|
// we can't tell the cost. Just assume each instruction
|
|
// is one byte.
|
|
if (MI.isDebugInstr() || MI.isKill())
|
|
return Sum;
|
|
return Sum + 1;
|
|
});
|
|
|
|
// We check to see if CFI Instructions are present, and if they are
|
|
// we find the number of CFI Instructions in the candidates.
|
|
unsigned CFICount = 0;
|
|
MachineBasicBlock::iterator MBBI = RepeatedSequenceLocs[0].front();
|
|
for (unsigned Loc = RepeatedSequenceLocs[0].getStartIdx();
|
|
Loc < RepeatedSequenceLocs[0].getEndIdx() + 1; Loc++) {
|
|
const std::vector<MCCFIInstruction> &CFIInstructions =
|
|
RepeatedSequenceLocs[0].getMF()->getFrameInstructions();
|
|
if (MBBI->isCFIInstruction()) {
|
|
unsigned CFIIndex = MBBI->getOperand(0).getCFIIndex();
|
|
MCCFIInstruction CFI = CFIInstructions[CFIIndex];
|
|
CFICount++;
|
|
}
|
|
MBBI++;
|
|
}
|
|
|
|
// We compare the number of found CFI Instructions to the number of CFI
|
|
// instructions in the parent function for each candidate. We must check this
|
|
// since if we outline one of the CFI instructions in a function, we have to
|
|
// outline them all for correctness. If we do not, the address offsets will be
|
|
// incorrect between the two sections of the program.
|
|
for (outliner::Candidate &C : RepeatedSequenceLocs) {
|
|
std::vector<MCCFIInstruction> CFIInstructions =
|
|
C.getMF()->getFrameInstructions();
|
|
|
|
if (CFICount > 0 && CFICount != CFIInstructions.size())
|
|
return outliner::OutlinedFunction();
|
|
}
|
|
|
|
// FIXME: Use real size in bytes for call and ret instructions.
|
|
if (RepeatedSequenceLocs[0].back()->isTerminator()) {
|
|
for (outliner::Candidate &C : RepeatedSequenceLocs)
|
|
C.setCallInfo(MachineOutlinerTailCall, 1);
|
|
|
|
return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
|
|
0, // Number of bytes to emit frame.
|
|
MachineOutlinerTailCall // Type of frame.
|
|
);
|
|
}
|
|
|
|
if (CFICount > 0)
|
|
return outliner::OutlinedFunction();
|
|
|
|
for (outliner::Candidate &C : RepeatedSequenceLocs)
|
|
C.setCallInfo(MachineOutlinerDefault, 1);
|
|
|
|
return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
|
|
MachineOutlinerDefault);
|
|
}
|
|
|
|
bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
|
|
bool OutlineFromLinkOnceODRs) const {
|
|
const Function &F = MF.getFunction();
|
|
|
|
// Does the function use a red zone? If it does, then we can't risk messing
|
|
// with the stack.
|
|
if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
|
|
// It could have a red zone. If it does, then we don't want to touch it.
|
|
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
if (!X86FI || X86FI->getUsesRedZone())
|
|
return false;
|
|
}
|
|
|
|
// If we *don't* want to outline from things that could potentially be deduped
|
|
// then return false.
|
|
if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
|
|
return false;
|
|
|
|
// This function is viable for outlining, so return true.
|
|
return true;
|
|
}
|
|
|
|
outliner::InstrType
|
|
X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
|
|
MachineInstr &MI = *MIT;
|
|
// Don't allow debug values to impact outlining type.
|
|
if (MI.isDebugInstr() || MI.isIndirectDebugValue())
|
|
return outliner::InstrType::Invisible;
|
|
|
|
// At this point, KILL instructions don't really tell us much so we can go
|
|
// ahead and skip over them.
|
|
if (MI.isKill())
|
|
return outliner::InstrType::Invisible;
|
|
|
|
// Is this a tail call? If yes, we can outline as a tail call.
|
|
if (isTailCall(MI))
|
|
return outliner::InstrType::Legal;
|
|
|
|
// Is this the terminator of a basic block?
|
|
if (MI.isTerminator() || MI.isReturn()) {
|
|
|
|
// Does its parent have any successors in its MachineFunction?
|
|
if (MI.getParent()->succ_empty())
|
|
return outliner::InstrType::Legal;
|
|
|
|
// It does, so we can't tail call it.
|
|
return outliner::InstrType::Illegal;
|
|
}
|
|
|
|
// Don't outline anything that modifies or reads from the stack pointer.
|
|
//
|
|
// FIXME: There are instructions which are being manually built without
|
|
// explicit uses/defs so we also have to check the MCInstrDesc. We should be
|
|
// able to remove the extra checks once those are fixed up. For example,
|
|
// sometimes we might get something like %rax = POP64r 1. This won't be
|
|
// caught by modifiesRegister or readsRegister even though the instruction
|
|
// really ought to be formed so that modifiesRegister/readsRegister would
|
|
// catch it.
|
|
if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
|
|
MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
|
|
MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
|
|
return outliner::InstrType::Illegal;
|
|
|
|
// Outlined calls change the instruction pointer, so don't read from it.
|
|
if (MI.readsRegister(X86::RIP, &RI) ||
|
|
MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
|
|
MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
|
|
return outliner::InstrType::Illegal;
|
|
|
|
// Positions can't safely be outlined.
|
|
if (MI.isPosition())
|
|
return outliner::InstrType::Illegal;
|
|
|
|
// Make sure none of the operands of this instruction do anything tricky.
|
|
for (const MachineOperand &MOP : MI.operands())
|
|
if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
|
|
MOP.isTargetIndex())
|
|
return outliner::InstrType::Illegal;
|
|
|
|
return outliner::InstrType::Legal;
|
|
}
|
|
|
|
void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
|
|
MachineFunction &MF,
|
|
const outliner::OutlinedFunction &OF)
|
|
const {
|
|
// If we're a tail call, we already have a return, so don't do anything.
|
|
if (OF.FrameConstructionID == MachineOutlinerTailCall)
|
|
return;
|
|
|
|
// We're a normal call, so our sequence doesn't have a return instruction.
|
|
// Add it in.
|
|
MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
|
|
MBB.insert(MBB.end(), retq);
|
|
}
|
|
|
|
MachineBasicBlock::iterator
|
|
X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &It,
|
|
MachineFunction &MF,
|
|
const outliner::Candidate &C) const {
|
|
// Is it a tail call?
|
|
if (C.CallConstructionID == MachineOutlinerTailCall) {
|
|
// Yes, just insert a JMP.
|
|
It = MBB.insert(It,
|
|
BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
|
|
.addGlobalAddress(M.getNamedValue(MF.getName())));
|
|
} else {
|
|
// No, insert a call.
|
|
It = MBB.insert(It,
|
|
BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
|
|
.addGlobalAddress(M.getNamedValue(MF.getName())));
|
|
}
|
|
|
|
return It;
|
|
}
|
|
|
|
#define GET_INSTRINFO_HELPERS
|
|
#include "X86GenInstrInfo.inc"
|