llvm-for-llvmta/lib/Target/ARM/ARMCallingConv.td

346 lines
15 KiB
TableGen

//===-- ARMCallingConv.td - Calling Conventions for ARM ----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This describes the calling conventions for ARM architecture.
//===----------------------------------------------------------------------===//
/// CCIfAlign - Match of the original alignment of the arg
class CCIfAlign<string Align, CCAction A>:
CCIf<!strconcat("ArgFlags.getNonZeroOrigAlign() == ", Align), A>;
//===----------------------------------------------------------------------===//
// ARM APCS Calling Convention
//===----------------------------------------------------------------------===//
let Entry = 1 in
def CC_ARM_APCS : CallingConv<[
// Handles byval parameters.
CCIfByVal<CCPassByVal<4, 4>>,
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
// Pass SwiftSelf in a callee saved register.
CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[R10]>>>,
// A SwiftError is passed in R8.
CCIfSwiftError<CCIfType<[i32], CCAssignToReg<[R8]>>>,
// Handle all vector types as either f64 or v2f64.
CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>,
CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
// f64 and v2f64 are passed in adjacent GPRs, possibly split onto the stack
CCIfType<[f64, v2f64], CCCustom<"CC_ARM_APCS_Custom_f64">>,
CCIfType<[f32], CCBitConvertToType<i32>>,
CCIfType<[i32], CCAssignToReg<[R0, R1, R2, R3]>>,
CCIfType<[i32], CCAssignToStack<4, 4>>,
CCIfType<[f64], CCAssignToStack<8, 4>>,
CCIfType<[v2f64], CCAssignToStack<16, 4>>
]>;
let Entry = 1 in
def RetCC_ARM_APCS : CallingConv<[
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
CCIfType<[f32], CCBitConvertToType<i32>>,
// Pass SwiftSelf in a callee saved register.
CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[R10]>>>,
// A SwiftError is returned in R8.
CCIfSwiftError<CCIfType<[i32], CCAssignToReg<[R8]>>>,
// Handle all vector types as either f64 or v2f64.
CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>,
CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
CCIfType<[f64, v2f64], CCCustom<"RetCC_ARM_APCS_Custom_f64">>,
CCIfType<[i32], CCAssignToReg<[R0, R1, R2, R3]>>,
CCIfType<[i64], CCAssignToRegWithShadow<[R0, R2], [R1, R3]>>
]>;
//===----------------------------------------------------------------------===//
// ARM APCS Calling Convention for FastCC (when VFP2 or later is available)
//===----------------------------------------------------------------------===//
let Entry = 1 in
def FastCC_ARM_APCS : CallingConv<[
// Handle all vector types as either f64 or v2f64.
CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>,
CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>,
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8,
S9, S10, S11, S12, S13, S14, S15]>>,
// CPRCs may be allocated to co-processor registers or the stack - they
// may never be allocated to core registers.
CCIfType<[f32], CCAssignToStackWithShadow<4, 4, [Q0, Q1, Q2, Q3]>>,
CCIfType<[f64], CCAssignToStackWithShadow<8, 4, [Q0, Q1, Q2, Q3]>>,
CCIfType<[v2f64], CCAssignToStackWithShadow<16, 4, [Q0, Q1, Q2, Q3]>>,
CCDelegateTo<CC_ARM_APCS>
]>;
let Entry = 1 in
def RetFastCC_ARM_APCS : CallingConv<[
// Handle all vector types as either f64 or v2f64.
CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>,
CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>,
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8,
S9, S10, S11, S12, S13, S14, S15]>>,
CCDelegateTo<RetCC_ARM_APCS>
]>;
//===----------------------------------------------------------------------===//
// ARM APCS Calling Convention for GHC
//===----------------------------------------------------------------------===//
let Entry = 1 in
def CC_ARM_APCS_GHC : CallingConv<[
// Handle all vector types as either f64 or v2f64.
CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>,
CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>,
CCIfType<[f64], CCAssignToReg<[D8, D9, D10, D11]>>,
CCIfType<[f32], CCAssignToReg<[S16, S17, S18, S19, S20, S21, S22, S23]>>,
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, SpLim
CCIfType<[i32], CCAssignToReg<[R4, R5, R6, R7, R8, R9, R10, R11]>>
]>;
//===----------------------------------------------------------------------===//
// ARM AAPCS (EABI) Calling Convention, common parts
//===----------------------------------------------------------------------===//
def CC_ARM_AAPCS_Common : CallingConv<[
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
// i64/f64 is passed in even pairs of GPRs
// i64 is 8-aligned i32 here, so we may need to eat R1 as a pad register
// (and the same is true for f64 if VFP is not enabled)
CCIfType<[i32], CCIfAlign<"8", CCAssignToRegWithShadow<[R0, R2], [R0, R1]>>>,
CCIfType<[i32], CCIf<"ArgFlags.getNonZeroOrigAlign() != Align(8)",
CCAssignToReg<[R0, R1, R2, R3]>>>,
CCIfType<[i32], CCIfAlign<"8", CCAssignToStackWithShadow<4, 8, [R0, R1, R2, R3]>>>,
CCIfType<[i32], CCAssignToStackWithShadow<4, 4, [R0, R1, R2, R3]>>,
CCIfType<[f16, bf16, f32], CCAssignToStackWithShadow<4, 4, [Q0, Q1, Q2, Q3]>>,
CCIfType<[f64], CCAssignToStackWithShadow<8, 8, [Q0, Q1, Q2, Q3]>>,
CCIfType<[v2f64], CCIfAlign<"16",
CCAssignToStackWithShadow<16, 16, [Q0, Q1, Q2, Q3]>>>,
CCIfType<[v2f64], CCAssignToStackWithShadow<16, 8, [Q0, Q1, Q2, Q3]>>
]>;
def RetCC_ARM_AAPCS_Common : CallingConv<[
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
CCIfType<[i32], CCAssignToReg<[R0, R1, R2, R3]>>,
CCIfType<[i64], CCAssignToRegWithShadow<[R0, R2], [R1, R3]>>
]>;
//===----------------------------------------------------------------------===//
// ARM AAPCS (EABI) Calling Convention
//===----------------------------------------------------------------------===//
let Entry = 1 in
def CC_ARM_AAPCS : CallingConv<[
// Handles byval parameters.
CCIfByVal<CCPassByVal<4, 4>>,
// The 'nest' parameter, if any, is passed in R12.
CCIfNest<CCAssignToReg<[R12]>>,
// Handle all vector types as either f64 or v2f64.
CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>,
CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
// Pass SwiftSelf in a callee saved register.
CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[R10]>>>,
// A SwiftError is passed in R8.
CCIfSwiftError<CCIfType<[i32], CCAssignToReg<[R8]>>>,
CCIfType<[f64, v2f64], CCCustom<"CC_ARM_AAPCS_Custom_f64">>,
CCIfType<[f32], CCBitConvertToType<i32>>,
CCIfType<[f16, bf16], CCCustom<"CC_ARM_AAPCS_Custom_f16">>,
CCDelegateTo<CC_ARM_AAPCS_Common>
]>;
let Entry = 1 in
def RetCC_ARM_AAPCS : CallingConv<[
// Handle all vector types as either f64 or v2f64.
CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>,
CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
// Pass SwiftSelf in a callee saved register.
CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[R10]>>>,
// A SwiftError is returned in R8.
CCIfSwiftError<CCIfType<[i32], CCAssignToReg<[R8]>>>,
CCIfType<[f64, v2f64], CCCustom<"RetCC_ARM_AAPCS_Custom_f64">>,
CCIfType<[f32], CCBitConvertToType<i32>>,
CCIfType<[f16, bf16], CCCustom<"CC_ARM_AAPCS_Custom_f16">>,
CCDelegateTo<RetCC_ARM_AAPCS_Common>
]>;
//===----------------------------------------------------------------------===//
// ARM AAPCS-VFP (EABI) Calling Convention
// Also used for FastCC (when VFP2 or later is available)
//===----------------------------------------------------------------------===//
let Entry = 1 in
def CC_ARM_AAPCS_VFP : CallingConv<[
// Handles byval parameters.
CCIfByVal<CCPassByVal<4, 4>>,
// Handle all vector types as either f64 or v2f64.
CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>,
CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
// Pass SwiftSelf in a callee saved register.
CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[R10]>>>,
// A SwiftError is passed in R8.
CCIfSwiftError<CCIfType<[i32], CCAssignToReg<[R8]>>>,
// HFAs are passed in a contiguous block of registers, or on the stack
CCIfConsecutiveRegs<CCCustom<"CC_ARM_AAPCS_Custom_Aggregate">>,
CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>,
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8,
S9, S10, S11, S12, S13, S14, S15]>>,
CCIfType<[f16, bf16], CCCustom<"CC_ARM_AAPCS_VFP_Custom_f16">>,
CCDelegateTo<CC_ARM_AAPCS_Common>
]>;
let Entry = 1 in
def RetCC_ARM_AAPCS_VFP : CallingConv<[
// Handle all vector types as either f64 or v2f64.
CCIfType<[v1i64, v2i32, v4i16, v4f16, v4bf16, v8i8, v2f32], CCBitConvertToType<f64>>,
CCIfType<[v2i64, v4i32, v8i16, v8f16, v8bf16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
// Pass SwiftSelf in a callee saved register.
CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[R10]>>>,
// A SwiftError is returned in R8.
CCIfSwiftError<CCIfType<[i32], CCAssignToReg<[R8]>>>,
CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>,
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8,
S9, S10, S11, S12, S13, S14, S15]>>,
CCIfType<[f16, bf16], CCCustom<"CC_ARM_AAPCS_VFP_Custom_f16">>,
CCDelegateTo<RetCC_ARM_AAPCS_Common>
]>;
// Windows Control Flow Guard checks take a single argument (the target function
// address) and have no return value.
let Entry = 1 in
def CC_ARM_Win32_CFGuard_Check : CallingConv<[
CCIfType<[i32], CCAssignToReg<[R0]>>
]>;
//===----------------------------------------------------------------------===//
// Callee-saved register lists.
//===----------------------------------------------------------------------===//
def CSR_NoRegs : CalleeSavedRegs<(add)>;
def CSR_FPRegs : CalleeSavedRegs<(add (sequence "D%u", 0, 31))>;
def CSR_AAPCS : CalleeSavedRegs<(add LR, R11, R10, R9, R8, R7, R6, R5, R4,
(sequence "D%u", 15, 8))>;
// The Windows Control Flow Guard Check function preserves the same registers as
// AAPCS, and also preserves all floating point registers.
def CSR_Win_AAPCS_CFGuard_Check : CalleeSavedRegs<(add LR, R11, R10, R9, R8, R7,
R6, R5, R4, (sequence "D%u", 15, 0))>;
// R8 is used to pass swifterror, remove it from CSR.
def CSR_AAPCS_SwiftError : CalleeSavedRegs<(sub CSR_AAPCS, R8)>;
// The order of callee-saved registers needs to match the order we actually push
// them in FrameLowering, because this order is what's used by
// PrologEpilogInserter to allocate frame index slots. So when R7 is the frame
// pointer, we use this AAPCS alternative.
def CSR_AAPCS_SplitPush : CalleeSavedRegs<(add LR, R7, R6, R5, R4,
R11, R10, R9, R8,
(sequence "D%u", 15, 8))>;
// R8 is used to pass swifterror, remove it from CSR.
def CSR_AAPCS_SplitPush_SwiftError : CalleeSavedRegs<(sub CSR_AAPCS_SplitPush,
R8)>;
// Constructors and destructors return 'this' in the ARM C++ ABI; since 'this'
// and the pointer return value are both passed in R0 in these cases, this can
// be partially modelled by treating R0 as a callee-saved register
// Only the resulting RegMask is used; the SaveList is ignored
def CSR_AAPCS_ThisReturn : CalleeSavedRegs<(add LR, R11, R10, R9, R8, R7, R6,
R5, R4, (sequence "D%u", 15, 8),
R0)>;
// iOS ABI deviates from ARM standard ABI. R9 is not a callee-saved register.
// Also save R7-R4 first to match the stack frame fixed spill areas.
def CSR_iOS : CalleeSavedRegs<(add LR, R7, R6, R5, R4, (sub CSR_AAPCS, R9))>;
// R8 is used to pass swifterror, remove it from CSR.
def CSR_iOS_SwiftError : CalleeSavedRegs<(sub CSR_iOS, R8)>;
def CSR_iOS_ThisReturn : CalleeSavedRegs<(add LR, R7, R6, R5, R4,
(sub CSR_AAPCS_ThisReturn, R9))>;
def CSR_iOS_TLSCall
: CalleeSavedRegs<(add LR, SP, (sub(sequence "R%u", 12, 1), R9, R12),
(sequence "D%u", 31, 0))>;
// C++ TLS access function saves all registers except SP. Try to match
// the order of CSRs in CSR_iOS.
def CSR_iOS_CXX_TLS : CalleeSavedRegs<(add CSR_iOS, (sequence "R%u", 12, 1),
(sequence "D%u", 31, 0))>;
// CSRs that are handled by prologue, epilogue.
def CSR_iOS_CXX_TLS_PE : CalleeSavedRegs<(add LR, R12, R11, R7, R5, R4)>;
// CSRs that are handled explicitly via copies.
def CSR_iOS_CXX_TLS_ViaCopy : CalleeSavedRegs<(sub CSR_iOS_CXX_TLS,
CSR_iOS_CXX_TLS_PE)>;
// The "interrupt" attribute is used to generate code that is acceptable in
// exception-handlers of various kinds. It makes us use a different return
// instruction (handled elsewhere) and affects which registers we must return to
// our "caller" in the same state as we receive them.
// For most interrupts, all registers except SP and LR are shared with
// user-space. We mark LR to be saved anyway, since this is what the ARM backend
// generally does rather than tracking its liveness as a normal register.
def CSR_GenericInt : CalleeSavedRegs<(add LR, (sequence "R%u", 12, 0))>;
// The fast interrupt handlers have more private state and get their own copies
// of R8-R12, in addition to SP and LR. As before, mark LR for saving too.
// FIXME: we mark R11 as callee-saved since it's often the frame-pointer, and
// current frame lowering expects to encounter it while processing callee-saved
// registers.
def CSR_FIQ : CalleeSavedRegs<(add LR, R11, (sequence "R%u", 7, 0))>;