1268 lines
45 KiB
C++
1268 lines
45 KiB
C++
//===- InstrProf.cpp - Instrumented profiling format support --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains support for clang's instrumentation based PGO and
|
|
// coverage.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ProfileData/InstrProf.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/ProfileData/InstrProfReader.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Compression.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/SwapByteOrder.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <system_error>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> StaticFuncFullModulePrefix(
|
|
"static-func-full-module-prefix", cl::init(true), cl::Hidden,
|
|
cl::desc("Use full module build paths in the profile counter names for "
|
|
"static functions."));
|
|
|
|
// This option is tailored to users that have different top-level directory in
|
|
// profile-gen and profile-use compilation. Users need to specific the number
|
|
// of levels to strip. A value larger than the number of directories in the
|
|
// source file will strip all the directory names and only leave the basename.
|
|
//
|
|
// Note current ThinLTO module importing for the indirect-calls assumes
|
|
// the source directory name not being stripped. A non-zero option value here
|
|
// can potentially prevent some inter-module indirect-call-promotions.
|
|
static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
|
|
"static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
|
|
cl::desc("Strip specified level of directory name from source path in "
|
|
"the profile counter name for static functions."));
|
|
|
|
static std::string getInstrProfErrString(instrprof_error Err) {
|
|
switch (Err) {
|
|
case instrprof_error::success:
|
|
return "Success";
|
|
case instrprof_error::eof:
|
|
return "End of File";
|
|
case instrprof_error::unrecognized_format:
|
|
return "Unrecognized instrumentation profile encoding format";
|
|
case instrprof_error::bad_magic:
|
|
return "Invalid instrumentation profile data (bad magic)";
|
|
case instrprof_error::bad_header:
|
|
return "Invalid instrumentation profile data (file header is corrupt)";
|
|
case instrprof_error::unsupported_version:
|
|
return "Unsupported instrumentation profile format version";
|
|
case instrprof_error::unsupported_hash_type:
|
|
return "Unsupported instrumentation profile hash type";
|
|
case instrprof_error::too_large:
|
|
return "Too much profile data";
|
|
case instrprof_error::truncated:
|
|
return "Truncated profile data";
|
|
case instrprof_error::malformed:
|
|
return "Malformed instrumentation profile data";
|
|
case instrprof_error::unknown_function:
|
|
return "No profile data available for function";
|
|
case instrprof_error::hash_mismatch:
|
|
return "Function control flow change detected (hash mismatch)";
|
|
case instrprof_error::count_mismatch:
|
|
return "Function basic block count change detected (counter mismatch)";
|
|
case instrprof_error::counter_overflow:
|
|
return "Counter overflow";
|
|
case instrprof_error::value_site_count_mismatch:
|
|
return "Function value site count change detected (counter mismatch)";
|
|
case instrprof_error::compress_failed:
|
|
return "Failed to compress data (zlib)";
|
|
case instrprof_error::uncompress_failed:
|
|
return "Failed to uncompress data (zlib)";
|
|
case instrprof_error::empty_raw_profile:
|
|
return "Empty raw profile file";
|
|
case instrprof_error::zlib_unavailable:
|
|
return "Profile uses zlib compression but the profile reader was built without zlib support";
|
|
}
|
|
llvm_unreachable("A value of instrprof_error has no message.");
|
|
}
|
|
|
|
namespace {
|
|
|
|
// FIXME: This class is only here to support the transition to llvm::Error. It
|
|
// will be removed once this transition is complete. Clients should prefer to
|
|
// deal with the Error value directly, rather than converting to error_code.
|
|
class InstrProfErrorCategoryType : public std::error_category {
|
|
const char *name() const noexcept override { return "llvm.instrprof"; }
|
|
|
|
std::string message(int IE) const override {
|
|
return getInstrProfErrString(static_cast<instrprof_error>(IE));
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory;
|
|
|
|
const std::error_category &llvm::instrprof_category() {
|
|
return *ErrorCategory;
|
|
}
|
|
|
|
namespace {
|
|
|
|
const char *InstrProfSectNameCommon[] = {
|
|
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
|
|
SectNameCommon,
|
|
#include "llvm/ProfileData/InstrProfData.inc"
|
|
};
|
|
|
|
const char *InstrProfSectNameCoff[] = {
|
|
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
|
|
SectNameCoff,
|
|
#include "llvm/ProfileData/InstrProfData.inc"
|
|
};
|
|
|
|
const char *InstrProfSectNamePrefix[] = {
|
|
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
|
|
Prefix,
|
|
#include "llvm/ProfileData/InstrProfData.inc"
|
|
};
|
|
|
|
} // namespace
|
|
|
|
namespace llvm {
|
|
|
|
cl::opt<bool> DoInstrProfNameCompression(
|
|
"enable-name-compression",
|
|
cl::desc("Enable name/filename string compression"), cl::init(true));
|
|
|
|
std::string getInstrProfSectionName(InstrProfSectKind IPSK,
|
|
Triple::ObjectFormatType OF,
|
|
bool AddSegmentInfo) {
|
|
std::string SectName;
|
|
|
|
if (OF == Triple::MachO && AddSegmentInfo)
|
|
SectName = InstrProfSectNamePrefix[IPSK];
|
|
|
|
if (OF == Triple::COFF)
|
|
SectName += InstrProfSectNameCoff[IPSK];
|
|
else
|
|
SectName += InstrProfSectNameCommon[IPSK];
|
|
|
|
if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
|
|
SectName += ",regular,live_support";
|
|
|
|
return SectName;
|
|
}
|
|
|
|
void SoftInstrProfErrors::addError(instrprof_error IE) {
|
|
if (IE == instrprof_error::success)
|
|
return;
|
|
|
|
if (FirstError == instrprof_error::success)
|
|
FirstError = IE;
|
|
|
|
switch (IE) {
|
|
case instrprof_error::hash_mismatch:
|
|
++NumHashMismatches;
|
|
break;
|
|
case instrprof_error::count_mismatch:
|
|
++NumCountMismatches;
|
|
break;
|
|
case instrprof_error::counter_overflow:
|
|
++NumCounterOverflows;
|
|
break;
|
|
case instrprof_error::value_site_count_mismatch:
|
|
++NumValueSiteCountMismatches;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Not a soft error");
|
|
}
|
|
}
|
|
|
|
std::string InstrProfError::message() const {
|
|
return getInstrProfErrString(Err);
|
|
}
|
|
|
|
char InstrProfError::ID = 0;
|
|
|
|
std::string getPGOFuncName(StringRef RawFuncName,
|
|
GlobalValue::LinkageTypes Linkage,
|
|
StringRef FileName,
|
|
uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
|
|
return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName);
|
|
}
|
|
|
|
// Strip NumPrefix level of directory name from PathNameStr. If the number of
|
|
// directory separators is less than NumPrefix, strip all the directories and
|
|
// leave base file name only.
|
|
static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
|
|
uint32_t Count = NumPrefix;
|
|
uint32_t Pos = 0, LastPos = 0;
|
|
for (auto & CI : PathNameStr) {
|
|
++Pos;
|
|
if (llvm::sys::path::is_separator(CI)) {
|
|
LastPos = Pos;
|
|
--Count;
|
|
}
|
|
if (Count == 0)
|
|
break;
|
|
}
|
|
return PathNameStr.substr(LastPos);
|
|
}
|
|
|
|
// Return the PGOFuncName. This function has some special handling when called
|
|
// in LTO optimization. The following only applies when calling in LTO passes
|
|
// (when \c InLTO is true): LTO's internalization privatizes many global linkage
|
|
// symbols. This happens after value profile annotation, but those internal
|
|
// linkage functions should not have a source prefix.
|
|
// Additionally, for ThinLTO mode, exported internal functions are promoted
|
|
// and renamed. We need to ensure that the original internal PGO name is
|
|
// used when computing the GUID that is compared against the profiled GUIDs.
|
|
// To differentiate compiler generated internal symbols from original ones,
|
|
// PGOFuncName meta data are created and attached to the original internal
|
|
// symbols in the value profile annotation step
|
|
// (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
|
|
// data, its original linkage must be non-internal.
|
|
std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
|
|
if (!InLTO) {
|
|
StringRef FileName(F.getParent()->getSourceFileName());
|
|
uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
|
|
if (StripLevel < StaticFuncStripDirNamePrefix)
|
|
StripLevel = StaticFuncStripDirNamePrefix;
|
|
if (StripLevel)
|
|
FileName = stripDirPrefix(FileName, StripLevel);
|
|
return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
|
|
}
|
|
|
|
// In LTO mode (when InLTO is true), first check if there is a meta data.
|
|
if (MDNode *MD = getPGOFuncNameMetadata(F)) {
|
|
StringRef S = cast<MDString>(MD->getOperand(0))->getString();
|
|
return S.str();
|
|
}
|
|
|
|
// If there is no meta data, the function must be a global before the value
|
|
// profile annotation pass. Its current linkage may be internal if it is
|
|
// internalized in LTO mode.
|
|
return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
|
|
}
|
|
|
|
StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
|
|
if (FileName.empty())
|
|
return PGOFuncName;
|
|
// Drop the file name including ':'. See also getPGOFuncName.
|
|
if (PGOFuncName.startswith(FileName))
|
|
PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
|
|
return PGOFuncName;
|
|
}
|
|
|
|
// \p FuncName is the string used as profile lookup key for the function. A
|
|
// symbol is created to hold the name. Return the legalized symbol name.
|
|
std::string getPGOFuncNameVarName(StringRef FuncName,
|
|
GlobalValue::LinkageTypes Linkage) {
|
|
std::string VarName = std::string(getInstrProfNameVarPrefix());
|
|
VarName += FuncName;
|
|
|
|
if (!GlobalValue::isLocalLinkage(Linkage))
|
|
return VarName;
|
|
|
|
// Now fix up illegal chars in local VarName that may upset the assembler.
|
|
const char *InvalidChars = "-:<>/\"'";
|
|
size_t found = VarName.find_first_of(InvalidChars);
|
|
while (found != std::string::npos) {
|
|
VarName[found] = '_';
|
|
found = VarName.find_first_of(InvalidChars, found + 1);
|
|
}
|
|
return VarName;
|
|
}
|
|
|
|
GlobalVariable *createPGOFuncNameVar(Module &M,
|
|
GlobalValue::LinkageTypes Linkage,
|
|
StringRef PGOFuncName) {
|
|
// We generally want to match the function's linkage, but available_externally
|
|
// and extern_weak both have the wrong semantics, and anything that doesn't
|
|
// need to link across compilation units doesn't need to be visible at all.
|
|
if (Linkage == GlobalValue::ExternalWeakLinkage)
|
|
Linkage = GlobalValue::LinkOnceAnyLinkage;
|
|
else if (Linkage == GlobalValue::AvailableExternallyLinkage)
|
|
Linkage = GlobalValue::LinkOnceODRLinkage;
|
|
else if (Linkage == GlobalValue::InternalLinkage ||
|
|
Linkage == GlobalValue::ExternalLinkage)
|
|
Linkage = GlobalValue::PrivateLinkage;
|
|
|
|
auto *Value =
|
|
ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
|
|
auto FuncNameVar =
|
|
new GlobalVariable(M, Value->getType(), true, Linkage, Value,
|
|
getPGOFuncNameVarName(PGOFuncName, Linkage));
|
|
|
|
// Hide the symbol so that we correctly get a copy for each executable.
|
|
if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
|
|
FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
|
|
|
|
return FuncNameVar;
|
|
}
|
|
|
|
GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
|
|
return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
|
|
}
|
|
|
|
Error InstrProfSymtab::create(Module &M, bool InLTO) {
|
|
for (Function &F : M) {
|
|
// Function may not have a name: like using asm("") to overwrite the name.
|
|
// Ignore in this case.
|
|
if (!F.hasName())
|
|
continue;
|
|
const std::string &PGOFuncName = getPGOFuncName(F, InLTO);
|
|
if (Error E = addFuncName(PGOFuncName))
|
|
return E;
|
|
MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F);
|
|
// In ThinLTO, local function may have been promoted to global and have
|
|
// suffix added to the function name. We need to add the stripped function
|
|
// name to the symbol table so that we can find a match from profile.
|
|
if (InLTO) {
|
|
auto pos = PGOFuncName.find('.');
|
|
if (pos != std::string::npos) {
|
|
const std::string &OtherFuncName = PGOFuncName.substr(0, pos);
|
|
if (Error E = addFuncName(OtherFuncName))
|
|
return E;
|
|
MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F);
|
|
}
|
|
}
|
|
}
|
|
Sorted = false;
|
|
finalizeSymtab();
|
|
return Error::success();
|
|
}
|
|
|
|
uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
|
|
finalizeSymtab();
|
|
auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) {
|
|
return A.first < Address;
|
|
});
|
|
// Raw function pointer collected by value profiler may be from
|
|
// external functions that are not instrumented. They won't have
|
|
// mapping data to be used by the deserializer. Force the value to
|
|
// be 0 in this case.
|
|
if (It != AddrToMD5Map.end() && It->first == Address)
|
|
return (uint64_t)It->second;
|
|
return 0;
|
|
}
|
|
|
|
Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs,
|
|
bool doCompression, std::string &Result) {
|
|
assert(!NameStrs.empty() && "No name data to emit");
|
|
|
|
uint8_t Header[16], *P = Header;
|
|
std::string UncompressedNameStrings =
|
|
join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());
|
|
|
|
assert(StringRef(UncompressedNameStrings)
|
|
.count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
|
|
"PGO name is invalid (contains separator token)");
|
|
|
|
unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
|
|
P += EncLen;
|
|
|
|
auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
|
|
EncLen = encodeULEB128(CompressedLen, P);
|
|
P += EncLen;
|
|
char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
|
|
unsigned HeaderLen = P - &Header[0];
|
|
Result.append(HeaderStr, HeaderLen);
|
|
Result += InputStr;
|
|
return Error::success();
|
|
};
|
|
|
|
if (!doCompression) {
|
|
return WriteStringToResult(0, UncompressedNameStrings);
|
|
}
|
|
|
|
SmallString<128> CompressedNameStrings;
|
|
Error E = zlib::compress(StringRef(UncompressedNameStrings),
|
|
CompressedNameStrings, zlib::BestSizeCompression);
|
|
if (E) {
|
|
consumeError(std::move(E));
|
|
return make_error<InstrProfError>(instrprof_error::compress_failed);
|
|
}
|
|
|
|
return WriteStringToResult(CompressedNameStrings.size(),
|
|
CompressedNameStrings);
|
|
}
|
|
|
|
StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
|
|
auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
|
|
StringRef NameStr =
|
|
Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
|
|
return NameStr;
|
|
}
|
|
|
|
Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
|
|
std::string &Result, bool doCompression) {
|
|
std::vector<std::string> NameStrs;
|
|
for (auto *NameVar : NameVars) {
|
|
NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar)));
|
|
}
|
|
return collectPGOFuncNameStrings(
|
|
NameStrs, zlib::isAvailable() && doCompression, Result);
|
|
}
|
|
|
|
Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) {
|
|
const uint8_t *P = NameStrings.bytes_begin();
|
|
const uint8_t *EndP = NameStrings.bytes_end();
|
|
while (P < EndP) {
|
|
uint32_t N;
|
|
uint64_t UncompressedSize = decodeULEB128(P, &N);
|
|
P += N;
|
|
uint64_t CompressedSize = decodeULEB128(P, &N);
|
|
P += N;
|
|
bool isCompressed = (CompressedSize != 0);
|
|
SmallString<128> UncompressedNameStrings;
|
|
StringRef NameStrings;
|
|
if (isCompressed) {
|
|
if (!llvm::zlib::isAvailable())
|
|
return make_error<InstrProfError>(instrprof_error::zlib_unavailable);
|
|
|
|
StringRef CompressedNameStrings(reinterpret_cast<const char *>(P),
|
|
CompressedSize);
|
|
if (Error E =
|
|
zlib::uncompress(CompressedNameStrings, UncompressedNameStrings,
|
|
UncompressedSize)) {
|
|
consumeError(std::move(E));
|
|
return make_error<InstrProfError>(instrprof_error::uncompress_failed);
|
|
}
|
|
P += CompressedSize;
|
|
NameStrings = StringRef(UncompressedNameStrings.data(),
|
|
UncompressedNameStrings.size());
|
|
} else {
|
|
NameStrings =
|
|
StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
|
|
P += UncompressedSize;
|
|
}
|
|
// Now parse the name strings.
|
|
SmallVector<StringRef, 0> Names;
|
|
NameStrings.split(Names, getInstrProfNameSeparator());
|
|
for (StringRef &Name : Names)
|
|
if (Error E = Symtab.addFuncName(Name))
|
|
return E;
|
|
|
|
while (P < EndP && *P == 0)
|
|
P++;
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const {
|
|
uint64_t FuncSum = 0;
|
|
Sum.NumEntries += Counts.size();
|
|
for (size_t F = 0, E = Counts.size(); F < E; ++F)
|
|
FuncSum += Counts[F];
|
|
Sum.CountSum += FuncSum;
|
|
|
|
for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
|
|
uint64_t KindSum = 0;
|
|
uint32_t NumValueSites = getNumValueSites(VK);
|
|
for (size_t I = 0; I < NumValueSites; ++I) {
|
|
uint32_t NV = getNumValueDataForSite(VK, I);
|
|
std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I);
|
|
for (uint32_t V = 0; V < NV; V++)
|
|
KindSum += VD[V].Count;
|
|
}
|
|
Sum.ValueCounts[VK] += KindSum;
|
|
}
|
|
}
|
|
|
|
void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
|
|
uint32_t ValueKind,
|
|
OverlapStats &Overlap,
|
|
OverlapStats &FuncLevelOverlap) {
|
|
this->sortByTargetValues();
|
|
Input.sortByTargetValues();
|
|
double Score = 0.0f, FuncLevelScore = 0.0f;
|
|
auto I = ValueData.begin();
|
|
auto IE = ValueData.end();
|
|
auto J = Input.ValueData.begin();
|
|
auto JE = Input.ValueData.end();
|
|
while (I != IE && J != JE) {
|
|
if (I->Value == J->Value) {
|
|
Score += OverlapStats::score(I->Count, J->Count,
|
|
Overlap.Base.ValueCounts[ValueKind],
|
|
Overlap.Test.ValueCounts[ValueKind]);
|
|
FuncLevelScore += OverlapStats::score(
|
|
I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind],
|
|
FuncLevelOverlap.Test.ValueCounts[ValueKind]);
|
|
++I;
|
|
} else if (I->Value < J->Value) {
|
|
++I;
|
|
continue;
|
|
}
|
|
++J;
|
|
}
|
|
Overlap.Overlap.ValueCounts[ValueKind] += Score;
|
|
FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
|
|
}
|
|
|
|
// Return false on mismatch.
|
|
void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
|
|
InstrProfRecord &Other,
|
|
OverlapStats &Overlap,
|
|
OverlapStats &FuncLevelOverlap) {
|
|
uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
|
|
assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
|
|
if (!ThisNumValueSites)
|
|
return;
|
|
|
|
std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
|
|
getOrCreateValueSitesForKind(ValueKind);
|
|
MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
|
|
Other.getValueSitesForKind(ValueKind);
|
|
for (uint32_t I = 0; I < ThisNumValueSites; I++)
|
|
ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap,
|
|
FuncLevelOverlap);
|
|
}
|
|
|
|
void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
|
|
OverlapStats &FuncLevelOverlap,
|
|
uint64_t ValueCutoff) {
|
|
// FuncLevel CountSum for other should already computed and nonzero.
|
|
assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
|
|
accumulateCounts(FuncLevelOverlap.Base);
|
|
bool Mismatch = (Counts.size() != Other.Counts.size());
|
|
|
|
// Check if the value profiles mismatch.
|
|
if (!Mismatch) {
|
|
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
|
|
uint32_t ThisNumValueSites = getNumValueSites(Kind);
|
|
uint32_t OtherNumValueSites = Other.getNumValueSites(Kind);
|
|
if (ThisNumValueSites != OtherNumValueSites) {
|
|
Mismatch = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (Mismatch) {
|
|
Overlap.addOneMismatch(FuncLevelOverlap.Test);
|
|
return;
|
|
}
|
|
|
|
// Compute overlap for value counts.
|
|
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
|
|
overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap);
|
|
|
|
double Score = 0.0;
|
|
uint64_t MaxCount = 0;
|
|
// Compute overlap for edge counts.
|
|
for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
|
|
Score += OverlapStats::score(Counts[I], Other.Counts[I],
|
|
Overlap.Base.CountSum, Overlap.Test.CountSum);
|
|
MaxCount = std::max(Other.Counts[I], MaxCount);
|
|
}
|
|
Overlap.Overlap.CountSum += Score;
|
|
Overlap.Overlap.NumEntries += 1;
|
|
|
|
if (MaxCount >= ValueCutoff) {
|
|
double FuncScore = 0.0;
|
|
for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
|
|
FuncScore += OverlapStats::score(Counts[I], Other.Counts[I],
|
|
FuncLevelOverlap.Base.CountSum,
|
|
FuncLevelOverlap.Test.CountSum);
|
|
FuncLevelOverlap.Overlap.CountSum = FuncScore;
|
|
FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
|
|
FuncLevelOverlap.Valid = true;
|
|
}
|
|
}
|
|
|
|
void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
|
|
uint64_t Weight,
|
|
function_ref<void(instrprof_error)> Warn) {
|
|
this->sortByTargetValues();
|
|
Input.sortByTargetValues();
|
|
auto I = ValueData.begin();
|
|
auto IE = ValueData.end();
|
|
for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE;
|
|
++J) {
|
|
while (I != IE && I->Value < J->Value)
|
|
++I;
|
|
if (I != IE && I->Value == J->Value) {
|
|
bool Overflowed;
|
|
I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed);
|
|
if (Overflowed)
|
|
Warn(instrprof_error::counter_overflow);
|
|
++I;
|
|
continue;
|
|
}
|
|
ValueData.insert(I, *J);
|
|
}
|
|
}
|
|
|
|
void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D,
|
|
function_ref<void(instrprof_error)> Warn) {
|
|
for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) {
|
|
bool Overflowed;
|
|
I->Count = SaturatingMultiply(I->Count, N, &Overflowed) / D;
|
|
if (Overflowed)
|
|
Warn(instrprof_error::counter_overflow);
|
|
}
|
|
}
|
|
|
|
// Merge Value Profile data from Src record to this record for ValueKind.
|
|
// Scale merged value counts by \p Weight.
|
|
void InstrProfRecord::mergeValueProfData(
|
|
uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
|
|
function_ref<void(instrprof_error)> Warn) {
|
|
uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
|
|
uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
|
|
if (ThisNumValueSites != OtherNumValueSites) {
|
|
Warn(instrprof_error::value_site_count_mismatch);
|
|
return;
|
|
}
|
|
if (!ThisNumValueSites)
|
|
return;
|
|
std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
|
|
getOrCreateValueSitesForKind(ValueKind);
|
|
MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
|
|
Src.getValueSitesForKind(ValueKind);
|
|
for (uint32_t I = 0; I < ThisNumValueSites; I++)
|
|
ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
|
|
}
|
|
|
|
void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
|
|
function_ref<void(instrprof_error)> Warn) {
|
|
// If the number of counters doesn't match we either have bad data
|
|
// or a hash collision.
|
|
if (Counts.size() != Other.Counts.size()) {
|
|
Warn(instrprof_error::count_mismatch);
|
|
return;
|
|
}
|
|
|
|
for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
|
|
bool Overflowed;
|
|
Counts[I] =
|
|
SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
|
|
if (Overflowed)
|
|
Warn(instrprof_error::counter_overflow);
|
|
}
|
|
|
|
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
|
|
mergeValueProfData(Kind, Other, Weight, Warn);
|
|
}
|
|
|
|
void InstrProfRecord::scaleValueProfData(
|
|
uint32_t ValueKind, uint64_t N, uint64_t D,
|
|
function_ref<void(instrprof_error)> Warn) {
|
|
for (auto &R : getValueSitesForKind(ValueKind))
|
|
R.scale(N, D, Warn);
|
|
}
|
|
|
|
void InstrProfRecord::scale(uint64_t N, uint64_t D,
|
|
function_ref<void(instrprof_error)> Warn) {
|
|
assert(D != 0 && "D cannot be 0");
|
|
for (auto &Count : this->Counts) {
|
|
bool Overflowed;
|
|
Count = SaturatingMultiply(Count, N, &Overflowed) / D;
|
|
if (Overflowed)
|
|
Warn(instrprof_error::counter_overflow);
|
|
}
|
|
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
|
|
scaleValueProfData(Kind, N, D, Warn);
|
|
}
|
|
|
|
// Map indirect call target name hash to name string.
|
|
uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
|
|
InstrProfSymtab *SymTab) {
|
|
if (!SymTab)
|
|
return Value;
|
|
|
|
if (ValueKind == IPVK_IndirectCallTarget)
|
|
return SymTab->getFunctionHashFromAddress(Value);
|
|
|
|
return Value;
|
|
}
|
|
|
|
void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
|
|
InstrProfValueData *VData, uint32_t N,
|
|
InstrProfSymtab *ValueMap) {
|
|
for (uint32_t I = 0; I < N; I++) {
|
|
VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap);
|
|
}
|
|
std::vector<InstrProfValueSiteRecord> &ValueSites =
|
|
getOrCreateValueSitesForKind(ValueKind);
|
|
if (N == 0)
|
|
ValueSites.emplace_back();
|
|
else
|
|
ValueSites.emplace_back(VData, VData + N);
|
|
}
|
|
|
|
#define INSTR_PROF_COMMON_API_IMPL
|
|
#include "llvm/ProfileData/InstrProfData.inc"
|
|
|
|
/*!
|
|
* ValueProfRecordClosure Interface implementation for InstrProfRecord
|
|
* class. These C wrappers are used as adaptors so that C++ code can be
|
|
* invoked as callbacks.
|
|
*/
|
|
uint32_t getNumValueKindsInstrProf(const void *Record) {
|
|
return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
|
|
}
|
|
|
|
uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
|
|
return reinterpret_cast<const InstrProfRecord *>(Record)
|
|
->getNumValueSites(VKind);
|
|
}
|
|
|
|
uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
|
|
return reinterpret_cast<const InstrProfRecord *>(Record)
|
|
->getNumValueData(VKind);
|
|
}
|
|
|
|
uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
|
|
uint32_t S) {
|
|
return reinterpret_cast<const InstrProfRecord *>(R)
|
|
->getNumValueDataForSite(VK, S);
|
|
}
|
|
|
|
void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
|
|
uint32_t K, uint32_t S) {
|
|
reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S);
|
|
}
|
|
|
|
ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
|
|
ValueProfData *VD =
|
|
(ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
|
|
memset(VD, 0, TotalSizeInBytes);
|
|
return VD;
|
|
}
|
|
|
|
static ValueProfRecordClosure InstrProfRecordClosure = {
|
|
nullptr,
|
|
getNumValueKindsInstrProf,
|
|
getNumValueSitesInstrProf,
|
|
getNumValueDataInstrProf,
|
|
getNumValueDataForSiteInstrProf,
|
|
nullptr,
|
|
getValueForSiteInstrProf,
|
|
allocValueProfDataInstrProf};
|
|
|
|
// Wrapper implementation using the closure mechanism.
|
|
uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
|
|
auto Closure = InstrProfRecordClosure;
|
|
Closure.Record = &Record;
|
|
return getValueProfDataSize(&Closure);
|
|
}
|
|
|
|
// Wrapper implementation using the closure mechanism.
|
|
std::unique_ptr<ValueProfData>
|
|
ValueProfData::serializeFrom(const InstrProfRecord &Record) {
|
|
InstrProfRecordClosure.Record = &Record;
|
|
|
|
std::unique_ptr<ValueProfData> VPD(
|
|
serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
|
|
return VPD;
|
|
}
|
|
|
|
void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
|
|
InstrProfSymtab *SymTab) {
|
|
Record.reserveSites(Kind, NumValueSites);
|
|
|
|
InstrProfValueData *ValueData = getValueProfRecordValueData(this);
|
|
for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
|
|
uint8_t ValueDataCount = this->SiteCountArray[VSite];
|
|
Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab);
|
|
ValueData += ValueDataCount;
|
|
}
|
|
}
|
|
|
|
// For writing/serializing, Old is the host endianness, and New is
|
|
// byte order intended on disk. For Reading/deserialization, Old
|
|
// is the on-disk source endianness, and New is the host endianness.
|
|
void ValueProfRecord::swapBytes(support::endianness Old,
|
|
support::endianness New) {
|
|
using namespace support;
|
|
|
|
if (Old == New)
|
|
return;
|
|
|
|
if (getHostEndianness() != Old) {
|
|
sys::swapByteOrder<uint32_t>(NumValueSites);
|
|
sys::swapByteOrder<uint32_t>(Kind);
|
|
}
|
|
uint32_t ND = getValueProfRecordNumValueData(this);
|
|
InstrProfValueData *VD = getValueProfRecordValueData(this);
|
|
|
|
// No need to swap byte array: SiteCountArrray.
|
|
for (uint32_t I = 0; I < ND; I++) {
|
|
sys::swapByteOrder<uint64_t>(VD[I].Value);
|
|
sys::swapByteOrder<uint64_t>(VD[I].Count);
|
|
}
|
|
if (getHostEndianness() == Old) {
|
|
sys::swapByteOrder<uint32_t>(NumValueSites);
|
|
sys::swapByteOrder<uint32_t>(Kind);
|
|
}
|
|
}
|
|
|
|
void ValueProfData::deserializeTo(InstrProfRecord &Record,
|
|
InstrProfSymtab *SymTab) {
|
|
if (NumValueKinds == 0)
|
|
return;
|
|
|
|
ValueProfRecord *VR = getFirstValueProfRecord(this);
|
|
for (uint32_t K = 0; K < NumValueKinds; K++) {
|
|
VR->deserializeTo(Record, SymTab);
|
|
VR = getValueProfRecordNext(VR);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) {
|
|
using namespace support;
|
|
|
|
if (Orig == little)
|
|
return endian::readNext<T, little, unaligned>(D);
|
|
else
|
|
return endian::readNext<T, big, unaligned>(D);
|
|
}
|
|
|
|
static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
|
|
return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
|
|
ValueProfData());
|
|
}
|
|
|
|
Error ValueProfData::checkIntegrity() {
|
|
if (NumValueKinds > IPVK_Last + 1)
|
|
return make_error<InstrProfError>(instrprof_error::malformed);
|
|
// Total size needs to be mulltiple of quadword size.
|
|
if (TotalSize % sizeof(uint64_t))
|
|
return make_error<InstrProfError>(instrprof_error::malformed);
|
|
|
|
ValueProfRecord *VR = getFirstValueProfRecord(this);
|
|
for (uint32_t K = 0; K < this->NumValueKinds; K++) {
|
|
if (VR->Kind > IPVK_Last)
|
|
return make_error<InstrProfError>(instrprof_error::malformed);
|
|
VR = getValueProfRecordNext(VR);
|
|
if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
|
|
return make_error<InstrProfError>(instrprof_error::malformed);
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
Expected<std::unique_ptr<ValueProfData>>
|
|
ValueProfData::getValueProfData(const unsigned char *D,
|
|
const unsigned char *const BufferEnd,
|
|
support::endianness Endianness) {
|
|
using namespace support;
|
|
|
|
if (D + sizeof(ValueProfData) > BufferEnd)
|
|
return make_error<InstrProfError>(instrprof_error::truncated);
|
|
|
|
const unsigned char *Header = D;
|
|
uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness);
|
|
if (D + TotalSize > BufferEnd)
|
|
return make_error<InstrProfError>(instrprof_error::too_large);
|
|
|
|
std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
|
|
memcpy(VPD.get(), D, TotalSize);
|
|
// Byte swap.
|
|
VPD->swapBytesToHost(Endianness);
|
|
|
|
Error E = VPD->checkIntegrity();
|
|
if (E)
|
|
return std::move(E);
|
|
|
|
return std::move(VPD);
|
|
}
|
|
|
|
void ValueProfData::swapBytesToHost(support::endianness Endianness) {
|
|
using namespace support;
|
|
|
|
if (Endianness == getHostEndianness())
|
|
return;
|
|
|
|
sys::swapByteOrder<uint32_t>(TotalSize);
|
|
sys::swapByteOrder<uint32_t>(NumValueKinds);
|
|
|
|
ValueProfRecord *VR = getFirstValueProfRecord(this);
|
|
for (uint32_t K = 0; K < NumValueKinds; K++) {
|
|
VR->swapBytes(Endianness, getHostEndianness());
|
|
VR = getValueProfRecordNext(VR);
|
|
}
|
|
}
|
|
|
|
void ValueProfData::swapBytesFromHost(support::endianness Endianness) {
|
|
using namespace support;
|
|
|
|
if (Endianness == getHostEndianness())
|
|
return;
|
|
|
|
ValueProfRecord *VR = getFirstValueProfRecord(this);
|
|
for (uint32_t K = 0; K < NumValueKinds; K++) {
|
|
ValueProfRecord *NVR = getValueProfRecordNext(VR);
|
|
VR->swapBytes(getHostEndianness(), Endianness);
|
|
VR = NVR;
|
|
}
|
|
sys::swapByteOrder<uint32_t>(TotalSize);
|
|
sys::swapByteOrder<uint32_t>(NumValueKinds);
|
|
}
|
|
|
|
void annotateValueSite(Module &M, Instruction &Inst,
|
|
const InstrProfRecord &InstrProfR,
|
|
InstrProfValueKind ValueKind, uint32_t SiteIdx,
|
|
uint32_t MaxMDCount) {
|
|
uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx);
|
|
if (!NV)
|
|
return;
|
|
|
|
uint64_t Sum = 0;
|
|
std::unique_ptr<InstrProfValueData[]> VD =
|
|
InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum);
|
|
|
|
ArrayRef<InstrProfValueData> VDs(VD.get(), NV);
|
|
annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
|
|
}
|
|
|
|
void annotateValueSite(Module &M, Instruction &Inst,
|
|
ArrayRef<InstrProfValueData> VDs,
|
|
uint64_t Sum, InstrProfValueKind ValueKind,
|
|
uint32_t MaxMDCount) {
|
|
LLVMContext &Ctx = M.getContext();
|
|
MDBuilder MDHelper(Ctx);
|
|
SmallVector<Metadata *, 3> Vals;
|
|
// Tag
|
|
Vals.push_back(MDHelper.createString("VP"));
|
|
// Value Kind
|
|
Vals.push_back(MDHelper.createConstant(
|
|
ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
|
|
// Total Count
|
|
Vals.push_back(
|
|
MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));
|
|
|
|
// Value Profile Data
|
|
uint32_t MDCount = MaxMDCount;
|
|
for (auto &VD : VDs) {
|
|
Vals.push_back(MDHelper.createConstant(
|
|
ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
|
|
Vals.push_back(MDHelper.createConstant(
|
|
ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
|
|
if (--MDCount == 0)
|
|
break;
|
|
}
|
|
Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
|
|
}
|
|
|
|
bool getValueProfDataFromInst(const Instruction &Inst,
|
|
InstrProfValueKind ValueKind,
|
|
uint32_t MaxNumValueData,
|
|
InstrProfValueData ValueData[],
|
|
uint32_t &ActualNumValueData, uint64_t &TotalC) {
|
|
MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
|
|
if (!MD)
|
|
return false;
|
|
|
|
unsigned NOps = MD->getNumOperands();
|
|
|
|
if (NOps < 5)
|
|
return false;
|
|
|
|
// Operand 0 is a string tag "VP":
|
|
MDString *Tag = cast<MDString>(MD->getOperand(0));
|
|
if (!Tag)
|
|
return false;
|
|
|
|
if (!Tag->getString().equals("VP"))
|
|
return false;
|
|
|
|
// Now check kind:
|
|
ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
|
|
if (!KindInt)
|
|
return false;
|
|
if (KindInt->getZExtValue() != ValueKind)
|
|
return false;
|
|
|
|
// Get total count
|
|
ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
|
|
if (!TotalCInt)
|
|
return false;
|
|
TotalC = TotalCInt->getZExtValue();
|
|
|
|
ActualNumValueData = 0;
|
|
|
|
for (unsigned I = 3; I < NOps; I += 2) {
|
|
if (ActualNumValueData >= MaxNumValueData)
|
|
break;
|
|
ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
|
|
ConstantInt *Count =
|
|
mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
|
|
if (!Value || !Count)
|
|
return false;
|
|
ValueData[ActualNumValueData].Value = Value->getZExtValue();
|
|
ValueData[ActualNumValueData].Count = Count->getZExtValue();
|
|
ActualNumValueData++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
MDNode *getPGOFuncNameMetadata(const Function &F) {
|
|
return F.getMetadata(getPGOFuncNameMetadataName());
|
|
}
|
|
|
|
void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
|
|
// Only for internal linkage functions.
|
|
if (PGOFuncName == F.getName())
|
|
return;
|
|
// Don't create duplicated meta-data.
|
|
if (getPGOFuncNameMetadata(F))
|
|
return;
|
|
LLVMContext &C = F.getContext();
|
|
MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName));
|
|
F.setMetadata(getPGOFuncNameMetadataName(), N);
|
|
}
|
|
|
|
bool needsComdatForCounter(const Function &F, const Module &M) {
|
|
if (F.hasComdat())
|
|
return true;
|
|
|
|
if (!Triple(M.getTargetTriple()).supportsCOMDAT())
|
|
return false;
|
|
|
|
// See createPGOFuncNameVar for more details. To avoid link errors, profile
|
|
// counters for function with available_externally linkage needs to be changed
|
|
// to linkonce linkage. On ELF based systems, this leads to weak symbols to be
|
|
// created. Without using comdat, duplicate entries won't be removed by the
|
|
// linker leading to increased data segement size and raw profile size. Even
|
|
// worse, since the referenced counter from profile per-function data object
|
|
// will be resolved to the common strong definition, the profile counts for
|
|
// available_externally functions will end up being duplicated in raw profile
|
|
// data. This can result in distorted profile as the counts of those dups
|
|
// will be accumulated by the profile merger.
|
|
GlobalValue::LinkageTypes Linkage = F.getLinkage();
|
|
if (Linkage != GlobalValue::ExternalWeakLinkage &&
|
|
Linkage != GlobalValue::AvailableExternallyLinkage)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check if INSTR_PROF_RAW_VERSION_VAR is defined.
|
|
bool isIRPGOFlagSet(const Module *M) {
|
|
auto IRInstrVar =
|
|
M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
|
|
if (!IRInstrVar || IRInstrVar->isDeclaration() ||
|
|
IRInstrVar->hasLocalLinkage())
|
|
return false;
|
|
|
|
// Check if the flag is set.
|
|
if (!IRInstrVar->hasInitializer())
|
|
return false;
|
|
|
|
auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer());
|
|
if (!InitVal)
|
|
return false;
|
|
return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0;
|
|
}
|
|
|
|
// Check if we can safely rename this Comdat function.
|
|
bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
|
|
if (F.getName().empty())
|
|
return false;
|
|
if (!needsComdatForCounter(F, *(F.getParent())))
|
|
return false;
|
|
// Unsafe to rename the address-taken function (which can be used in
|
|
// function comparison).
|
|
if (CheckAddressTaken && F.hasAddressTaken())
|
|
return false;
|
|
// Only safe to do if this function may be discarded if it is not used
|
|
// in the compilation unit.
|
|
if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
|
|
return false;
|
|
|
|
// For AvailableExternallyLinkage functions.
|
|
if (!F.hasComdat()) {
|
|
assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
|
|
return true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
|
|
// aware this is an ir_level profile so it can set the version flag.
|
|
void createIRLevelProfileFlagVar(Module &M, bool IsCS,
|
|
bool InstrEntryBBEnabled) {
|
|
const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
|
|
Type *IntTy64 = Type::getInt64Ty(M.getContext());
|
|
uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
|
|
if (IsCS)
|
|
ProfileVersion |= VARIANT_MASK_CSIR_PROF;
|
|
if (InstrEntryBBEnabled)
|
|
ProfileVersion |= VARIANT_MASK_INSTR_ENTRY;
|
|
auto IRLevelVersionVariable = new GlobalVariable(
|
|
M, IntTy64, true, GlobalValue::WeakAnyLinkage,
|
|
Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
|
|
IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility);
|
|
Triple TT(M.getTargetTriple());
|
|
if (TT.supportsCOMDAT()) {
|
|
IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage);
|
|
IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName));
|
|
}
|
|
}
|
|
|
|
// Create the variable for the profile file name.
|
|
void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
|
|
if (InstrProfileOutput.empty())
|
|
return;
|
|
Constant *ProfileNameConst =
|
|
ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true);
|
|
GlobalVariable *ProfileNameVar = new GlobalVariable(
|
|
M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
|
|
ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
|
|
Triple TT(M.getTargetTriple());
|
|
if (TT.supportsCOMDAT()) {
|
|
ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
|
|
ProfileNameVar->setComdat(M.getOrInsertComdat(
|
|
StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
|
|
}
|
|
}
|
|
|
|
Error OverlapStats::accumulateCounts(const std::string &BaseFilename,
|
|
const std::string &TestFilename,
|
|
bool IsCS) {
|
|
auto getProfileSum = [IsCS](const std::string &Filename,
|
|
CountSumOrPercent &Sum) -> Error {
|
|
auto ReaderOrErr = InstrProfReader::create(Filename);
|
|
if (Error E = ReaderOrErr.takeError()) {
|
|
return E;
|
|
}
|
|
auto Reader = std::move(ReaderOrErr.get());
|
|
Reader->accumulateCounts(Sum, IsCS);
|
|
return Error::success();
|
|
};
|
|
auto Ret = getProfileSum(BaseFilename, Base);
|
|
if (Ret)
|
|
return Ret;
|
|
Ret = getProfileSum(TestFilename, Test);
|
|
if (Ret)
|
|
return Ret;
|
|
this->BaseFilename = &BaseFilename;
|
|
this->TestFilename = &TestFilename;
|
|
Valid = true;
|
|
return Error::success();
|
|
}
|
|
|
|
void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
|
|
Mismatch.NumEntries += 1;
|
|
Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
|
|
for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
|
|
if (Test.ValueCounts[I] >= 1.0f)
|
|
Mismatch.ValueCounts[I] +=
|
|
MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
|
|
}
|
|
}
|
|
|
|
void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
|
|
Unique.NumEntries += 1;
|
|
Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
|
|
for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
|
|
if (Test.ValueCounts[I] >= 1.0f)
|
|
Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
|
|
}
|
|
}
|
|
|
|
void OverlapStats::dump(raw_fd_ostream &OS) const {
|
|
if (!Valid)
|
|
return;
|
|
|
|
const char *EntryName =
|
|
(Level == ProgramLevel ? "functions" : "edge counters");
|
|
if (Level == ProgramLevel) {
|
|
OS << "Profile overlap infomation for base_profile: " << *BaseFilename
|
|
<< " and test_profile: " << *TestFilename << "\nProgram level:\n";
|
|
} else {
|
|
OS << "Function level:\n"
|
|
<< " Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
|
|
}
|
|
|
|
OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
|
|
if (Mismatch.NumEntries)
|
|
OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries
|
|
<< "\n";
|
|
if (Unique.NumEntries)
|
|
OS << " # of " << EntryName
|
|
<< " only in test_profile: " << Unique.NumEntries << "\n";
|
|
|
|
OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100)
|
|
<< "\n";
|
|
if (Mismatch.NumEntries)
|
|
OS << " Mismatched count percentage (Edge): "
|
|
<< format("%.3f%%", Mismatch.CountSum * 100) << "\n";
|
|
if (Unique.NumEntries)
|
|
OS << " Percentage of Edge profile only in test_profile: "
|
|
<< format("%.3f%%", Unique.CountSum * 100) << "\n";
|
|
OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum)
|
|
<< "\n"
|
|
<< " Edge profile test count sum: " << format("%.0f", Test.CountSum)
|
|
<< "\n";
|
|
|
|
for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
|
|
if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
|
|
continue;
|
|
char ProfileKindName[20];
|
|
switch (I) {
|
|
case IPVK_IndirectCallTarget:
|
|
strncpy(ProfileKindName, "IndirectCall", 19);
|
|
break;
|
|
case IPVK_MemOPSize:
|
|
strncpy(ProfileKindName, "MemOP", 19);
|
|
break;
|
|
default:
|
|
snprintf(ProfileKindName, 19, "VP[%d]", I);
|
|
break;
|
|
}
|
|
OS << " " << ProfileKindName
|
|
<< " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100)
|
|
<< "\n";
|
|
if (Mismatch.NumEntries)
|
|
OS << " Mismatched count percentage (" << ProfileKindName
|
|
<< "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n";
|
|
if (Unique.NumEntries)
|
|
OS << " Percentage of " << ProfileKindName
|
|
<< " profile only in test_profile: "
|
|
<< format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n";
|
|
OS << " " << ProfileKindName
|
|
<< " profile base count sum: " << format("%.0f", Base.ValueCounts[I])
|
|
<< "\n"
|
|
<< " " << ProfileKindName
|
|
<< " profile test count sum: " << format("%.0f", Test.ValueCounts[I])
|
|
<< "\n";
|
|
}
|
|
}
|
|
|
|
} // end namespace llvm
|