llvm-for-llvmta/lib/Analysis/StackLifetime.cpp

403 lines
13 KiB
C++

//===- StackLifetime.cpp - Alloca Lifetime Analysis -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/StackLifetime.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include <algorithm>
#include <memory>
#include <tuple>
using namespace llvm;
#define DEBUG_TYPE "stack-lifetime"
const StackLifetime::LiveRange &
StackLifetime::getLiveRange(const AllocaInst *AI) const {
const auto IT = AllocaNumbering.find(AI);
assert(IT != AllocaNumbering.end());
return LiveRanges[IT->second];
}
bool StackLifetime::isReachable(const Instruction *I) const {
return BlockInstRange.find(I->getParent()) != BlockInstRange.end();
}
bool StackLifetime::isAliveAfter(const AllocaInst *AI,
const Instruction *I) const {
const BasicBlock *BB = I->getParent();
auto ItBB = BlockInstRange.find(BB);
assert(ItBB != BlockInstRange.end() && "Unreachable is not expected");
// Search the block for the first instruction following 'I'.
auto It = std::upper_bound(Instructions.begin() + ItBB->getSecond().first + 1,
Instructions.begin() + ItBB->getSecond().second, I,
[](const Instruction *L, const Instruction *R) {
return L->comesBefore(R);
});
--It;
unsigned InstNum = It - Instructions.begin();
return getLiveRange(AI).test(InstNum);
}
// Returns unique alloca annotated by lifetime marker only if
// markers has the same size and points to the alloca start.
static const AllocaInst *findMatchingAlloca(const IntrinsicInst &II,
const DataLayout &DL) {
const AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
if (!AI)
return nullptr;
auto AllocaSizeInBits = AI->getAllocationSizeInBits(DL);
if (!AllocaSizeInBits)
return nullptr;
int64_t AllocaSize = AllocaSizeInBits.getValue() / 8;
auto *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
if (!Size)
return nullptr;
int64_t LifetimeSize = Size->getSExtValue();
if (LifetimeSize != -1 && LifetimeSize != AllocaSize)
return nullptr;
return AI;
}
void StackLifetime::collectMarkers() {
InterestingAllocas.resize(NumAllocas);
DenseMap<const BasicBlock *, SmallDenseMap<const IntrinsicInst *, Marker>>
BBMarkerSet;
const DataLayout &DL = F.getParent()->getDataLayout();
// Compute the set of start/end markers per basic block.
for (const BasicBlock *BB : depth_first(&F)) {
for (const Instruction &I : *BB) {
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
if (!II || !II->isLifetimeStartOrEnd())
continue;
const AllocaInst *AI = findMatchingAlloca(*II, DL);
if (!AI) {
HasUnknownLifetimeStartOrEnd = true;
continue;
}
auto It = AllocaNumbering.find(AI);
if (It == AllocaNumbering.end())
continue;
auto AllocaNo = It->second;
bool IsStart = II->getIntrinsicID() == Intrinsic::lifetime_start;
if (IsStart)
InterestingAllocas.set(AllocaNo);
BBMarkerSet[BB][II] = {AllocaNo, IsStart};
}
}
// Compute instruction numbering. Only the following instructions are
// considered:
// * Basic block entries
// * Lifetime markers
// For each basic block, compute
// * the list of markers in the instruction order
// * the sets of allocas whose lifetime starts or ends in this BB
LLVM_DEBUG(dbgs() << "Instructions:\n");
for (const BasicBlock *BB : depth_first(&F)) {
LLVM_DEBUG(dbgs() << " " << Instructions.size() << ": BB " << BB->getName()
<< "\n");
auto BBStart = Instructions.size();
Instructions.push_back(nullptr);
BlockLifetimeInfo &BlockInfo =
BlockLiveness.try_emplace(BB, NumAllocas).first->getSecond();
auto &BlockMarkerSet = BBMarkerSet[BB];
if (BlockMarkerSet.empty()) {
BlockInstRange[BB] = std::make_pair(BBStart, Instructions.size());
continue;
}
auto ProcessMarker = [&](const IntrinsicInst *I, const Marker &M) {
LLVM_DEBUG(dbgs() << " " << Instructions.size() << ": "
<< (M.IsStart ? "start " : "end ") << M.AllocaNo
<< ", " << *I << "\n");
BBMarkers[BB].push_back({Instructions.size(), M});
Instructions.push_back(I);
if (M.IsStart) {
BlockInfo.End.reset(M.AllocaNo);
BlockInfo.Begin.set(M.AllocaNo);
} else {
BlockInfo.Begin.reset(M.AllocaNo);
BlockInfo.End.set(M.AllocaNo);
}
};
if (BlockMarkerSet.size() == 1) {
ProcessMarker(BlockMarkerSet.begin()->getFirst(),
BlockMarkerSet.begin()->getSecond());
} else {
// Scan the BB to determine the marker order.
for (const Instruction &I : *BB) {
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
if (!II)
continue;
auto It = BlockMarkerSet.find(II);
if (It == BlockMarkerSet.end())
continue;
ProcessMarker(II, It->getSecond());
}
}
BlockInstRange[BB] = std::make_pair(BBStart, Instructions.size());
}
}
void StackLifetime::calculateLocalLiveness() {
bool Changed = true;
while (Changed) {
Changed = false;
for (const BasicBlock *BB : depth_first(&F)) {
BlockLifetimeInfo &BlockInfo = BlockLiveness.find(BB)->getSecond();
// Compute LiveIn by unioning together the LiveOut sets of all preds.
BitVector LocalLiveIn;
for (auto *PredBB : predecessors(BB)) {
LivenessMap::const_iterator I = BlockLiveness.find(PredBB);
// If a predecessor is unreachable, ignore it.
if (I == BlockLiveness.end())
continue;
switch (Type) {
case LivenessType::May:
LocalLiveIn |= I->second.LiveOut;
break;
case LivenessType::Must:
if (LocalLiveIn.empty())
LocalLiveIn = I->second.LiveOut;
else
LocalLiveIn &= I->second.LiveOut;
break;
}
}
// Compute LiveOut by subtracting out lifetimes that end in this
// block, then adding in lifetimes that begin in this block. If
// we have both BEGIN and END markers in the same basic block
// then we know that the BEGIN marker comes after the END,
// because we already handle the case where the BEGIN comes
// before the END when collecting the markers (and building the
// BEGIN/END vectors).
BitVector LocalLiveOut = LocalLiveIn;
LocalLiveOut.reset(BlockInfo.End);
LocalLiveOut |= BlockInfo.Begin;
// Update block LiveIn set, noting whether it has changed.
if (LocalLiveIn.test(BlockInfo.LiveIn)) {
BlockInfo.LiveIn |= LocalLiveIn;
}
// Update block LiveOut set, noting whether it has changed.
if (LocalLiveOut.test(BlockInfo.LiveOut)) {
Changed = true;
BlockInfo.LiveOut |= LocalLiveOut;
}
}
} // while changed.
}
void StackLifetime::calculateLiveIntervals() {
for (auto IT : BlockLiveness) {
const BasicBlock *BB = IT.getFirst();
BlockLifetimeInfo &BlockInfo = IT.getSecond();
unsigned BBStart, BBEnd;
std::tie(BBStart, BBEnd) = BlockInstRange[BB];
BitVector Started, Ended;
Started.resize(NumAllocas);
Ended.resize(NumAllocas);
SmallVector<unsigned, 8> Start;
Start.resize(NumAllocas);
// LiveIn ranges start at the first instruction.
for (unsigned AllocaNo = 0; AllocaNo < NumAllocas; ++AllocaNo) {
if (BlockInfo.LiveIn.test(AllocaNo)) {
Started.set(AllocaNo);
Start[AllocaNo] = BBStart;
}
}
for (auto &It : BBMarkers[BB]) {
unsigned InstNo = It.first;
bool IsStart = It.second.IsStart;
unsigned AllocaNo = It.second.AllocaNo;
if (IsStart) {
assert(!Started.test(AllocaNo) || Start[AllocaNo] == BBStart);
if (!Started.test(AllocaNo)) {
Started.set(AllocaNo);
Ended.reset(AllocaNo);
Start[AllocaNo] = InstNo;
}
} else {
assert(!Ended.test(AllocaNo));
if (Started.test(AllocaNo)) {
LiveRanges[AllocaNo].addRange(Start[AllocaNo], InstNo);
Started.reset(AllocaNo);
}
Ended.set(AllocaNo);
}
}
for (unsigned AllocaNo = 0; AllocaNo < NumAllocas; ++AllocaNo)
if (Started.test(AllocaNo))
LiveRanges[AllocaNo].addRange(Start[AllocaNo], BBEnd);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void StackLifetime::dumpAllocas() const {
dbgs() << "Allocas:\n";
for (unsigned AllocaNo = 0; AllocaNo < NumAllocas; ++AllocaNo)
dbgs() << " " << AllocaNo << ": " << *Allocas[AllocaNo] << "\n";
}
LLVM_DUMP_METHOD void StackLifetime::dumpBlockLiveness() const {
dbgs() << "Block liveness:\n";
for (auto IT : BlockLiveness) {
const BasicBlock *BB = IT.getFirst();
const BlockLifetimeInfo &BlockInfo = BlockLiveness.find(BB)->getSecond();
auto BlockRange = BlockInstRange.find(BB)->getSecond();
dbgs() << " BB (" << BB->getName() << ") [" << BlockRange.first << ", " << BlockRange.second
<< "): begin " << BlockInfo.Begin << ", end " << BlockInfo.End
<< ", livein " << BlockInfo.LiveIn << ", liveout "
<< BlockInfo.LiveOut << "\n";
}
}
LLVM_DUMP_METHOD void StackLifetime::dumpLiveRanges() const {
dbgs() << "Alloca liveness:\n";
for (unsigned AllocaNo = 0; AllocaNo < NumAllocas; ++AllocaNo)
dbgs() << " " << AllocaNo << ": " << LiveRanges[AllocaNo] << "\n";
}
#endif
StackLifetime::StackLifetime(const Function &F,
ArrayRef<const AllocaInst *> Allocas,
LivenessType Type)
: F(F), Type(Type), Allocas(Allocas), NumAllocas(Allocas.size()) {
LLVM_DEBUG(dumpAllocas());
for (unsigned I = 0; I < NumAllocas; ++I)
AllocaNumbering[Allocas[I]] = I;
collectMarkers();
}
void StackLifetime::run() {
if (HasUnknownLifetimeStartOrEnd) {
// There is marker which we can't assign to a specific alloca, so we
// fallback to the most conservative results for the type.
switch (Type) {
case LivenessType::May:
LiveRanges.resize(NumAllocas, getFullLiveRange());
break;
case LivenessType::Must:
LiveRanges.resize(NumAllocas, LiveRange(Instructions.size()));
break;
}
return;
}
LiveRanges.resize(NumAllocas, LiveRange(Instructions.size()));
for (unsigned I = 0; I < NumAllocas; ++I)
if (!InterestingAllocas.test(I))
LiveRanges[I] = getFullLiveRange();
calculateLocalLiveness();
LLVM_DEBUG(dumpBlockLiveness());
calculateLiveIntervals();
LLVM_DEBUG(dumpLiveRanges());
}
class StackLifetime::LifetimeAnnotationWriter
: public AssemblyAnnotationWriter {
const StackLifetime &SL;
void printInstrAlive(unsigned InstrNo, formatted_raw_ostream &OS) {
SmallVector<StringRef, 16> Names;
for (const auto &KV : SL.AllocaNumbering) {
if (SL.LiveRanges[KV.getSecond()].test(InstrNo))
Names.push_back(KV.getFirst()->getName());
}
llvm::sort(Names);
OS << " ; Alive: <" << llvm::join(Names, " ") << ">\n";
}
void emitBasicBlockStartAnnot(const BasicBlock *BB,
formatted_raw_ostream &OS) override {
auto ItBB = SL.BlockInstRange.find(BB);
if (ItBB == SL.BlockInstRange.end())
return; // Unreachable.
printInstrAlive(ItBB->getSecond().first, OS);
}
void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
const Instruction *Instr = dyn_cast<Instruction>(&V);
if (!Instr || !SL.isReachable(Instr))
return;
SmallVector<StringRef, 16> Names;
for (const auto &KV : SL.AllocaNumbering) {
if (SL.isAliveAfter(KV.getFirst(), Instr))
Names.push_back(KV.getFirst()->getName());
}
llvm::sort(Names);
OS << "\n ; Alive: <" << llvm::join(Names, " ") << ">\n";
}
public:
LifetimeAnnotationWriter(const StackLifetime &SL) : SL(SL) {}
};
void StackLifetime::print(raw_ostream &OS) {
LifetimeAnnotationWriter AAW(*this);
F.print(OS, &AAW);
}
PreservedAnalyses StackLifetimePrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
SmallVector<const AllocaInst *, 8> Allocas;
for (auto &I : instructions(F))
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I))
Allocas.push_back(AI);
StackLifetime SL(F, Allocas, Type);
SL.run();
SL.print(OS);
return PreservedAnalyses::all();
}