264 lines
9.6 KiB
C++
264 lines
9.6 KiB
C++
//===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements class that drive and introspect deterministic finite-
|
|
// state automata (DFAs) as generated by TableGen's -gen-automata backend.
|
|
//
|
|
// For a description of how to define an automaton, see
|
|
// include/llvm/TableGen/Automaton.td.
|
|
//
|
|
// One important detail is that these deterministic automata are created from
|
|
// (potentially) nondeterministic definitions. Therefore a unique sequence of
|
|
// input symbols will produce one path through the DFA but multiple paths
|
|
// through the original NFA. An automaton by default only returns "accepted" or
|
|
// "not accepted", but frequently we want to analyze what NFA path was taken.
|
|
// Finding a path through the NFA states that results in a DFA state can help
|
|
// answer *what* the solution to a problem was, not just that there exists a
|
|
// solution.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_SUPPORT_AUTOMATON_H
|
|
#define LLVM_SUPPORT_AUTOMATON_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include <deque>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
using NfaPath = SmallVector<uint64_t, 4>;
|
|
|
|
/// Forward define the pair type used by the automata transition info tables.
|
|
///
|
|
/// Experimental results with large tables have shown a significant (multiple
|
|
/// orders of magnitude) parsing speedup by using a custom struct here with a
|
|
/// trivial constructor rather than std::pair<uint64_t, uint64_t>.
|
|
struct NfaStatePair {
|
|
uint64_t FromDfaState, ToDfaState;
|
|
|
|
bool operator<(const NfaStatePair &Other) const {
|
|
return std::make_tuple(FromDfaState, ToDfaState) <
|
|
std::make_tuple(Other.FromDfaState, Other.ToDfaState);
|
|
}
|
|
};
|
|
|
|
namespace internal {
|
|
/// The internal class that maintains all possible paths through an NFA based
|
|
/// on a path through the DFA.
|
|
class NfaTranscriber {
|
|
private:
|
|
/// Cached transition table. This is a table of NfaStatePairs that contains
|
|
/// zero-terminated sequences pointed to by DFA transitions.
|
|
ArrayRef<NfaStatePair> TransitionInfo;
|
|
|
|
/// A simple linked-list of traversed states that can have a shared tail. The
|
|
/// traversed path is stored in reverse order with the latest state as the
|
|
/// head.
|
|
struct PathSegment {
|
|
uint64_t State;
|
|
PathSegment *Tail;
|
|
};
|
|
|
|
/// We allocate segment objects frequently. Allocate them upfront and dispose
|
|
/// at the end of a traversal rather than hammering the system allocator.
|
|
SpecificBumpPtrAllocator<PathSegment> Allocator;
|
|
|
|
/// Heads of each tracked path. These are not ordered.
|
|
std::deque<PathSegment *> Heads;
|
|
|
|
/// The returned paths. This is populated during getPaths.
|
|
SmallVector<NfaPath, 4> Paths;
|
|
|
|
/// Create a new segment and return it.
|
|
PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) {
|
|
PathSegment *P = Allocator.Allocate();
|
|
*P = {State, Tail};
|
|
return P;
|
|
}
|
|
|
|
/// Pairs defines a sequence of possible NFA transitions for a single DFA
|
|
/// transition.
|
|
void transition(ArrayRef<NfaStatePair> Pairs) {
|
|
// Iterate over all existing heads. We will mutate the Heads deque during
|
|
// iteration.
|
|
unsigned NumHeads = Heads.size();
|
|
for (unsigned I = 0; I < NumHeads; ++I) {
|
|
PathSegment *Head = Heads[I];
|
|
// The sequence of pairs is sorted. Select the set of pairs that
|
|
// transition from the current head state.
|
|
auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL});
|
|
auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX});
|
|
// For every transition from the current head state, add a new path
|
|
// segment.
|
|
for (; PI != PE; ++PI)
|
|
if (PI->FromDfaState == Head->State)
|
|
Heads.push_back(makePathSegment(PI->ToDfaState, Head));
|
|
}
|
|
// Now we've iterated over all the initial heads and added new ones,
|
|
// dispose of the original heads.
|
|
Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads));
|
|
}
|
|
|
|
public:
|
|
NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo)
|
|
: TransitionInfo(TransitionInfo) {
|
|
reset();
|
|
}
|
|
|
|
ArrayRef<NfaStatePair> getTransitionInfo() const {
|
|
return TransitionInfo;
|
|
}
|
|
|
|
void reset() {
|
|
Paths.clear();
|
|
Heads.clear();
|
|
Allocator.DestroyAll();
|
|
// The initial NFA state is 0.
|
|
Heads.push_back(makePathSegment(0ULL, nullptr));
|
|
}
|
|
|
|
void transition(unsigned TransitionInfoIdx) {
|
|
unsigned EndIdx = TransitionInfoIdx;
|
|
while (TransitionInfo[EndIdx].ToDfaState != 0)
|
|
++EndIdx;
|
|
ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx],
|
|
EndIdx - TransitionInfoIdx);
|
|
transition(Pairs);
|
|
}
|
|
|
|
ArrayRef<NfaPath> getPaths() {
|
|
Paths.clear();
|
|
for (auto *Head : Heads) {
|
|
NfaPath P;
|
|
while (Head->State != 0) {
|
|
P.push_back(Head->State);
|
|
Head = Head->Tail;
|
|
}
|
|
std::reverse(P.begin(), P.end());
|
|
Paths.push_back(std::move(P));
|
|
}
|
|
return Paths;
|
|
}
|
|
};
|
|
} // namespace internal
|
|
|
|
/// A deterministic finite-state automaton. The automaton is defined in
|
|
/// TableGen; this object drives an automaton defined by tblgen-emitted tables.
|
|
///
|
|
/// An automaton accepts a sequence of input tokens ("actions"). This class is
|
|
/// templated on the type of these actions.
|
|
template <typename ActionT> class Automaton {
|
|
/// Map from {State, Action} to {NewState, TransitionInfoIdx}.
|
|
/// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition.
|
|
/// FIXME: This uses a std::map because ActionT can be a pair type including
|
|
/// an enum. In particular DenseMapInfo<ActionT> must be defined to use
|
|
/// DenseMap here.
|
|
/// This is a shared_ptr to allow very quick copy-construction of Automata; this
|
|
/// state is immutable after construction so this is safe.
|
|
using MapTy = std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>>;
|
|
std::shared_ptr<MapTy> M;
|
|
/// An optional transcription object. This uses much more state than simply
|
|
/// traversing the DFA for acceptance, so is heap allocated.
|
|
std::shared_ptr<internal::NfaTranscriber> Transcriber;
|
|
/// The initial DFA state is 1.
|
|
uint64_t State = 1;
|
|
/// True if we should transcribe and false if not (even if Transcriber is defined).
|
|
bool Transcribe;
|
|
|
|
public:
|
|
/// Create an automaton.
|
|
/// \param Transitions The Transitions table as created by TableGen. Note that
|
|
/// because the action type differs per automaton, the
|
|
/// table type is templated as ArrayRef<InfoT>.
|
|
/// \param TranscriptionTable The TransitionInfo table as created by TableGen.
|
|
///
|
|
/// Providing the TranscriptionTable argument as non-empty will enable the
|
|
/// use of transcription, which analyzes the possible paths in the original
|
|
/// NFA taken by the DFA. NOTE: This is substantially more work than simply
|
|
/// driving the DFA, so unless you require the getPaths() method leave this
|
|
/// empty.
|
|
template <typename InfoT>
|
|
Automaton(ArrayRef<InfoT> Transitions,
|
|
ArrayRef<NfaStatePair> TranscriptionTable = {}) {
|
|
if (!TranscriptionTable.empty())
|
|
Transcriber =
|
|
std::make_shared<internal::NfaTranscriber>(TranscriptionTable);
|
|
Transcribe = Transcriber != nullptr;
|
|
M = std::make_shared<MapTy>();
|
|
for (const auto &I : Transitions)
|
|
// Greedily read and cache the transition table.
|
|
M->emplace(std::make_pair(I.FromDfaState, I.Action),
|
|
std::make_pair(I.ToDfaState, I.InfoIdx));
|
|
}
|
|
Automaton(const Automaton &Other)
|
|
: M(Other.M), State(Other.State), Transcribe(Other.Transcribe) {
|
|
// Transcriber is not thread-safe, so create a new instance on copy.
|
|
if (Other.Transcriber)
|
|
Transcriber = std::make_shared<internal::NfaTranscriber>(
|
|
Other.Transcriber->getTransitionInfo());
|
|
}
|
|
|
|
/// Reset the automaton to its initial state.
|
|
void reset() {
|
|
State = 1;
|
|
if (Transcriber)
|
|
Transcriber->reset();
|
|
}
|
|
|
|
/// Enable or disable transcription. Transcription is only available if
|
|
/// TranscriptionTable was provided to the constructor.
|
|
void enableTranscription(bool Enable = true) {
|
|
assert(Transcriber &&
|
|
"Transcription is only available if TranscriptionTable was provided "
|
|
"to the Automaton constructor");
|
|
Transcribe = Enable;
|
|
}
|
|
|
|
/// Transition the automaton based on input symbol A. Return true if the
|
|
/// automaton transitioned to a valid state, false if the automaton
|
|
/// transitioned to an invalid state.
|
|
///
|
|
/// If this function returns false, all methods are undefined until reset() is
|
|
/// called.
|
|
bool add(const ActionT &A) {
|
|
auto I = M->find({State, A});
|
|
if (I == M->end())
|
|
return false;
|
|
if (Transcriber && Transcribe)
|
|
Transcriber->transition(I->second.second);
|
|
State = I->second.first;
|
|
return true;
|
|
}
|
|
|
|
/// Return true if the automaton can be transitioned based on input symbol A.
|
|
bool canAdd(const ActionT &A) {
|
|
auto I = M->find({State, A});
|
|
return I != M->end();
|
|
}
|
|
|
|
/// Obtain a set of possible paths through the input nondeterministic
|
|
/// automaton that could be obtained from the sequence of input actions
|
|
/// presented to this deterministic automaton.
|
|
ArrayRef<NfaPath> getNfaPaths() {
|
|
assert(Transcriber && Transcribe &&
|
|
"Can only obtain NFA paths if transcribing!");
|
|
return Transcriber->getPaths();
|
|
}
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
#endif // LLVM_SUPPORT_AUTOMATON_H
|