993 lines
36 KiB
C++
993 lines
36 KiB
C++
//===- SampleProf.h - Sampling profiling format support ---------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains common definitions used in the reading and writing of
|
|
// sample profile data.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_PROFILEDATA_SAMPLEPROF_H
|
|
#define LLVM_PROFILEDATA_SAMPLEPROF_H
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorOr.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <map>
|
|
#include <set>
|
|
#include <string>
|
|
#include <system_error>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
const std::error_category &sampleprof_category();
|
|
|
|
enum class sampleprof_error {
|
|
success = 0,
|
|
bad_magic,
|
|
unsupported_version,
|
|
too_large,
|
|
truncated,
|
|
malformed,
|
|
unrecognized_format,
|
|
unsupported_writing_format,
|
|
truncated_name_table,
|
|
not_implemented,
|
|
counter_overflow,
|
|
ostream_seek_unsupported,
|
|
compress_failed,
|
|
uncompress_failed,
|
|
zlib_unavailable,
|
|
hash_mismatch
|
|
};
|
|
|
|
inline std::error_code make_error_code(sampleprof_error E) {
|
|
return std::error_code(static_cast<int>(E), sampleprof_category());
|
|
}
|
|
|
|
inline sampleprof_error MergeResult(sampleprof_error &Accumulator,
|
|
sampleprof_error Result) {
|
|
// Prefer first error encountered as later errors may be secondary effects of
|
|
// the initial problem.
|
|
if (Accumulator == sampleprof_error::success &&
|
|
Result != sampleprof_error::success)
|
|
Accumulator = Result;
|
|
return Accumulator;
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
namespace std {
|
|
|
|
template <>
|
|
struct is_error_code_enum<llvm::sampleprof_error> : std::true_type {};
|
|
|
|
} // end namespace std
|
|
|
|
namespace llvm {
|
|
namespace sampleprof {
|
|
|
|
enum SampleProfileFormat {
|
|
SPF_None = 0,
|
|
SPF_Text = 0x1,
|
|
SPF_Compact_Binary = 0x2,
|
|
SPF_GCC = 0x3,
|
|
SPF_Ext_Binary = 0x4,
|
|
SPF_Binary = 0xff
|
|
};
|
|
|
|
static inline uint64_t SPMagic(SampleProfileFormat Format = SPF_Binary) {
|
|
return uint64_t('S') << (64 - 8) | uint64_t('P') << (64 - 16) |
|
|
uint64_t('R') << (64 - 24) | uint64_t('O') << (64 - 32) |
|
|
uint64_t('F') << (64 - 40) | uint64_t('4') << (64 - 48) |
|
|
uint64_t('2') << (64 - 56) | uint64_t(Format);
|
|
}
|
|
|
|
/// Get the proper representation of a string according to whether the
|
|
/// current Format uses MD5 to represent the string.
|
|
static inline StringRef getRepInFormat(StringRef Name, bool UseMD5,
|
|
std::string &GUIDBuf) {
|
|
if (Name.empty())
|
|
return Name;
|
|
GUIDBuf = std::to_string(Function::getGUID(Name));
|
|
return UseMD5 ? StringRef(GUIDBuf) : Name;
|
|
}
|
|
|
|
static inline uint64_t SPVersion() { return 103; }
|
|
|
|
// Section Type used by SampleProfileExtBinaryBaseReader and
|
|
// SampleProfileExtBinaryBaseWriter. Never change the existing
|
|
// value of enum. Only append new ones.
|
|
enum SecType {
|
|
SecInValid = 0,
|
|
SecProfSummary = 1,
|
|
SecNameTable = 2,
|
|
SecProfileSymbolList = 3,
|
|
SecFuncOffsetTable = 4,
|
|
SecFuncMetadata = 5,
|
|
// marker for the first type of profile.
|
|
SecFuncProfileFirst = 32,
|
|
SecLBRProfile = SecFuncProfileFirst
|
|
};
|
|
|
|
static inline std::string getSecName(SecType Type) {
|
|
switch (Type) {
|
|
case SecInValid:
|
|
return "InvalidSection";
|
|
case SecProfSummary:
|
|
return "ProfileSummarySection";
|
|
case SecNameTable:
|
|
return "NameTableSection";
|
|
case SecProfileSymbolList:
|
|
return "ProfileSymbolListSection";
|
|
case SecFuncOffsetTable:
|
|
return "FuncOffsetTableSection";
|
|
case SecFuncMetadata:
|
|
return "FunctionMetadata";
|
|
case SecLBRProfile:
|
|
return "LBRProfileSection";
|
|
}
|
|
llvm_unreachable("A SecType has no name for output");
|
|
}
|
|
|
|
// Entry type of section header table used by SampleProfileExtBinaryBaseReader
|
|
// and SampleProfileExtBinaryBaseWriter.
|
|
struct SecHdrTableEntry {
|
|
SecType Type;
|
|
uint64_t Flags;
|
|
uint64_t Offset;
|
|
uint64_t Size;
|
|
// The index indicating the location of the current entry in
|
|
// SectionHdrLayout table.
|
|
uint32_t LayoutIndex;
|
|
};
|
|
|
|
// Flags common for all sections are defined here. In SecHdrTableEntry::Flags,
|
|
// common flags will be saved in the lower 32bits and section specific flags
|
|
// will be saved in the higher 32 bits.
|
|
enum class SecCommonFlags : uint32_t {
|
|
SecFlagInValid = 0,
|
|
SecFlagCompress = (1 << 0),
|
|
// Indicate the section contains only profile without context.
|
|
SecFlagFlat = (1 << 1)
|
|
};
|
|
|
|
// Section specific flags are defined here.
|
|
// !!!Note: Everytime a new enum class is created here, please add
|
|
// a new check in verifySecFlag.
|
|
enum class SecNameTableFlags : uint32_t {
|
|
SecFlagInValid = 0,
|
|
SecFlagMD5Name = (1 << 0),
|
|
// Store MD5 in fixed length instead of ULEB128 so NameTable can be
|
|
// accessed like an array.
|
|
SecFlagFixedLengthMD5 = (1 << 1)
|
|
};
|
|
enum class SecProfSummaryFlags : uint32_t {
|
|
SecFlagInValid = 0,
|
|
/// SecFlagPartial means the profile is for common/shared code.
|
|
/// The common profile is usually merged from profiles collected
|
|
/// from running other targets.
|
|
SecFlagPartial = (1 << 0)
|
|
};
|
|
|
|
enum class SecFuncMetadataFlags : uint32_t {
|
|
SecFlagInvalid = 0,
|
|
SecFlagIsProbeBased = (1 << 0),
|
|
};
|
|
|
|
// Verify section specific flag is used for the correct section.
|
|
template <class SecFlagType>
|
|
static inline void verifySecFlag(SecType Type, SecFlagType Flag) {
|
|
// No verification is needed for common flags.
|
|
if (std::is_same<SecCommonFlags, SecFlagType>())
|
|
return;
|
|
|
|
// Verification starts here for section specific flag.
|
|
bool IsFlagLegal = false;
|
|
switch (Type) {
|
|
case SecNameTable:
|
|
IsFlagLegal = std::is_same<SecNameTableFlags, SecFlagType>();
|
|
break;
|
|
case SecProfSummary:
|
|
IsFlagLegal = std::is_same<SecProfSummaryFlags, SecFlagType>();
|
|
break;
|
|
case SecFuncMetadata:
|
|
IsFlagLegal = std::is_same<SecFuncMetadataFlags, SecFlagType>();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (!IsFlagLegal)
|
|
llvm_unreachable("Misuse of a flag in an incompatible section");
|
|
}
|
|
|
|
template <class SecFlagType>
|
|
static inline void addSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
|
|
verifySecFlag(Entry.Type, Flag);
|
|
auto FVal = static_cast<uint64_t>(Flag);
|
|
bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
|
|
Entry.Flags |= IsCommon ? FVal : (FVal << 32);
|
|
}
|
|
|
|
template <class SecFlagType>
|
|
static inline void removeSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
|
|
verifySecFlag(Entry.Type, Flag);
|
|
auto FVal = static_cast<uint64_t>(Flag);
|
|
bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
|
|
Entry.Flags &= ~(IsCommon ? FVal : (FVal << 32));
|
|
}
|
|
|
|
template <class SecFlagType>
|
|
static inline bool hasSecFlag(const SecHdrTableEntry &Entry, SecFlagType Flag) {
|
|
verifySecFlag(Entry.Type, Flag);
|
|
auto FVal = static_cast<uint64_t>(Flag);
|
|
bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
|
|
return Entry.Flags & (IsCommon ? FVal : (FVal << 32));
|
|
}
|
|
|
|
/// Represents the relative location of an instruction.
|
|
///
|
|
/// Instruction locations are specified by the line offset from the
|
|
/// beginning of the function (marked by the line where the function
|
|
/// header is) and the discriminator value within that line.
|
|
///
|
|
/// The discriminator value is useful to distinguish instructions
|
|
/// that are on the same line but belong to different basic blocks
|
|
/// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
|
|
struct LineLocation {
|
|
LineLocation(uint32_t L, uint32_t D) : LineOffset(L), Discriminator(D) {}
|
|
|
|
void print(raw_ostream &OS) const;
|
|
void dump() const;
|
|
|
|
bool operator<(const LineLocation &O) const {
|
|
return LineOffset < O.LineOffset ||
|
|
(LineOffset == O.LineOffset && Discriminator < O.Discriminator);
|
|
}
|
|
|
|
bool operator==(const LineLocation &O) const {
|
|
return LineOffset == O.LineOffset && Discriminator == O.Discriminator;
|
|
}
|
|
|
|
bool operator!=(const LineLocation &O) const {
|
|
return LineOffset != O.LineOffset || Discriminator != O.Discriminator;
|
|
}
|
|
|
|
uint32_t LineOffset;
|
|
uint32_t Discriminator;
|
|
};
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const LineLocation &Loc);
|
|
|
|
/// Representation of a single sample record.
|
|
///
|
|
/// A sample record is represented by a positive integer value, which
|
|
/// indicates how frequently was the associated line location executed.
|
|
///
|
|
/// Additionally, if the associated location contains a function call,
|
|
/// the record will hold a list of all the possible called targets. For
|
|
/// direct calls, this will be the exact function being invoked. For
|
|
/// indirect calls (function pointers, virtual table dispatch), this
|
|
/// will be a list of one or more functions.
|
|
class SampleRecord {
|
|
public:
|
|
using CallTarget = std::pair<StringRef, uint64_t>;
|
|
struct CallTargetComparator {
|
|
bool operator()(const CallTarget &LHS, const CallTarget &RHS) const {
|
|
if (LHS.second != RHS.second)
|
|
return LHS.second > RHS.second;
|
|
|
|
return LHS.first < RHS.first;
|
|
}
|
|
};
|
|
|
|
using SortedCallTargetSet = std::set<CallTarget, CallTargetComparator>;
|
|
using CallTargetMap = StringMap<uint64_t>;
|
|
SampleRecord() = default;
|
|
|
|
/// Increment the number of samples for this record by \p S.
|
|
/// Optionally scale sample count \p S by \p Weight.
|
|
///
|
|
/// Sample counts accumulate using saturating arithmetic, to avoid wrapping
|
|
/// around unsigned integers.
|
|
sampleprof_error addSamples(uint64_t S, uint64_t Weight = 1) {
|
|
bool Overflowed;
|
|
NumSamples = SaturatingMultiplyAdd(S, Weight, NumSamples, &Overflowed);
|
|
return Overflowed ? sampleprof_error::counter_overflow
|
|
: sampleprof_error::success;
|
|
}
|
|
|
|
/// Add called function \p F with samples \p S.
|
|
/// Optionally scale sample count \p S by \p Weight.
|
|
///
|
|
/// Sample counts accumulate using saturating arithmetic, to avoid wrapping
|
|
/// around unsigned integers.
|
|
sampleprof_error addCalledTarget(StringRef F, uint64_t S,
|
|
uint64_t Weight = 1) {
|
|
uint64_t &TargetSamples = CallTargets[F];
|
|
bool Overflowed;
|
|
TargetSamples =
|
|
SaturatingMultiplyAdd(S, Weight, TargetSamples, &Overflowed);
|
|
return Overflowed ? sampleprof_error::counter_overflow
|
|
: sampleprof_error::success;
|
|
}
|
|
|
|
/// Return true if this sample record contains function calls.
|
|
bool hasCalls() const { return !CallTargets.empty(); }
|
|
|
|
uint64_t getSamples() const { return NumSamples; }
|
|
const CallTargetMap &getCallTargets() const { return CallTargets; }
|
|
const SortedCallTargetSet getSortedCallTargets() const {
|
|
return SortCallTargets(CallTargets);
|
|
}
|
|
|
|
/// Sort call targets in descending order of call frequency.
|
|
static const SortedCallTargetSet SortCallTargets(const CallTargetMap &Targets) {
|
|
SortedCallTargetSet SortedTargets;
|
|
for (const auto &I : Targets) {
|
|
SortedTargets.emplace(I.first(), I.second);
|
|
}
|
|
return SortedTargets;
|
|
}
|
|
|
|
/// Prorate call targets by a distribution factor.
|
|
static const CallTargetMap adjustCallTargets(const CallTargetMap &Targets,
|
|
float DistributionFactor) {
|
|
CallTargetMap AdjustedTargets;
|
|
for (const auto &I : Targets) {
|
|
AdjustedTargets[I.first()] = I.second * DistributionFactor;
|
|
}
|
|
return AdjustedTargets;
|
|
}
|
|
|
|
/// Merge the samples in \p Other into this record.
|
|
/// Optionally scale sample counts by \p Weight.
|
|
sampleprof_error merge(const SampleRecord &Other, uint64_t Weight = 1) {
|
|
sampleprof_error Result = addSamples(Other.getSamples(), Weight);
|
|
for (const auto &I : Other.getCallTargets()) {
|
|
MergeResult(Result, addCalledTarget(I.first(), I.second, Weight));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
void print(raw_ostream &OS, unsigned Indent) const;
|
|
void dump() const;
|
|
|
|
private:
|
|
uint64_t NumSamples = 0;
|
|
CallTargetMap CallTargets;
|
|
};
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const SampleRecord &Sample);
|
|
|
|
// State of context associated with FunctionSamples
|
|
enum ContextStateMask {
|
|
UnknownContext = 0x0, // Profile without context
|
|
RawContext = 0x1, // Full context profile from input profile
|
|
SyntheticContext = 0x2, // Synthetic context created for context promotion
|
|
InlinedContext = 0x4, // Profile for context that is inlined into caller
|
|
MergedContext = 0x8 // Profile for context merged into base profile
|
|
};
|
|
|
|
// Sample context for FunctionSamples. It consists of the calling context,
|
|
// the function name and context state. Internally sample context is represented
|
|
// using StringRef, which is also the input for constructing a `SampleContext`.
|
|
// It can accept and represent both full context string as well as context-less
|
|
// function name.
|
|
// Example of full context string (note the wrapping `[]`):
|
|
// `[main:3 @ _Z5funcAi:1 @ _Z8funcLeafi]`
|
|
// Example of context-less function name (same as AutoFDO):
|
|
// `_Z8funcLeafi`
|
|
class SampleContext {
|
|
public:
|
|
SampleContext() : State(UnknownContext) {}
|
|
SampleContext(StringRef ContextStr,
|
|
ContextStateMask CState = UnknownContext) {
|
|
setContext(ContextStr, CState);
|
|
}
|
|
|
|
// Promote context by removing top frames (represented by `ContextStrToRemove`).
|
|
// Note that with string representation of context, the promotion is effectively
|
|
// a substr operation with `ContextStrToRemove` removed from left.
|
|
void promoteOnPath(StringRef ContextStrToRemove) {
|
|
assert(FullContext.startswith(ContextStrToRemove));
|
|
|
|
// Remove leading context and frame separator " @ ".
|
|
FullContext = FullContext.substr(ContextStrToRemove.size() + 3);
|
|
CallingContext = CallingContext.substr(ContextStrToRemove.size() + 3);
|
|
}
|
|
|
|
// Split the top context frame (left-most substr) from context.
|
|
static std::pair<StringRef, StringRef>
|
|
splitContextString(StringRef ContextStr) {
|
|
return ContextStr.split(" @ ");
|
|
}
|
|
|
|
// Decode context string for a frame to get function name and location.
|
|
// `ContextStr` is in the form of `FuncName:StartLine.Discriminator`.
|
|
static void decodeContextString(StringRef ContextStr, StringRef &FName,
|
|
LineLocation &LineLoc) {
|
|
// Get function name
|
|
auto EntrySplit = ContextStr.split(':');
|
|
FName = EntrySplit.first;
|
|
|
|
LineLoc = {0, 0};
|
|
if (!EntrySplit.second.empty()) {
|
|
// Get line offset, use signed int for getAsInteger so string will
|
|
// be parsed as signed.
|
|
int LineOffset = 0;
|
|
auto LocSplit = EntrySplit.second.split('.');
|
|
LocSplit.first.getAsInteger(10, LineOffset);
|
|
LineLoc.LineOffset = LineOffset;
|
|
|
|
// Get discriminator
|
|
if (!LocSplit.second.empty())
|
|
LocSplit.second.getAsInteger(10, LineLoc.Discriminator);
|
|
}
|
|
}
|
|
|
|
operator StringRef() const { return FullContext; }
|
|
bool hasState(ContextStateMask S) { return State & (uint32_t)S; }
|
|
void setState(ContextStateMask S) { State |= (uint32_t)S; }
|
|
void clearState(ContextStateMask S) { State &= (uint32_t)~S; }
|
|
bool hasContext() const { return State != UnknownContext; }
|
|
bool isBaseContext() const { return CallingContext.empty(); }
|
|
StringRef getNameWithoutContext() const { return Name; }
|
|
StringRef getCallingContext() const { return CallingContext; }
|
|
StringRef getNameWithContext(bool WithBracket = false) const {
|
|
return WithBracket ? InputContext : FullContext;
|
|
}
|
|
|
|
private:
|
|
// Give a context string, decode and populate internal states like
|
|
// Function name, Calling context and context state. Example of input
|
|
// `ContextStr`: `[main:3 @ _Z5funcAi:1 @ _Z8funcLeafi]`
|
|
void setContext(StringRef ContextStr, ContextStateMask CState) {
|
|
assert(!ContextStr.empty());
|
|
InputContext = ContextStr;
|
|
// Note that `[]` wrapped input indicates a full context string, otherwise
|
|
// it's treated as context-less function name only.
|
|
bool HasContext = ContextStr.startswith("[");
|
|
if (!HasContext && CState == UnknownContext) {
|
|
State = UnknownContext;
|
|
Name = FullContext = ContextStr;
|
|
} else {
|
|
// Assume raw context profile if unspecified
|
|
if (CState == UnknownContext)
|
|
State = RawContext;
|
|
else
|
|
State = CState;
|
|
|
|
// Remove encapsulating '[' and ']' if any
|
|
if (HasContext)
|
|
FullContext = ContextStr.substr(1, ContextStr.size() - 2);
|
|
else
|
|
FullContext = ContextStr;
|
|
|
|
// Caller is to the left of callee in context string
|
|
auto NameContext = FullContext.rsplit(" @ ");
|
|
if (NameContext.second.empty()) {
|
|
Name = NameContext.first;
|
|
CallingContext = NameContext.second;
|
|
} else {
|
|
Name = NameContext.second;
|
|
CallingContext = NameContext.first;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Input context string including bracketed calling context and leaf function
|
|
// name
|
|
StringRef InputContext;
|
|
// Full context string including calling context and leaf function name
|
|
StringRef FullContext;
|
|
// Function name for the associated sample profile
|
|
StringRef Name;
|
|
// Calling context (leaf function excluded) for the associated sample profile
|
|
StringRef CallingContext;
|
|
// State of the associated sample profile
|
|
uint32_t State;
|
|
};
|
|
|
|
class FunctionSamples;
|
|
class SampleProfileReaderItaniumRemapper;
|
|
|
|
using BodySampleMap = std::map<LineLocation, SampleRecord>;
|
|
// NOTE: Using a StringMap here makes parsed profiles consume around 17% more
|
|
// memory, which is *very* significant for large profiles.
|
|
using FunctionSamplesMap = std::map<std::string, FunctionSamples, std::less<>>;
|
|
using CallsiteSampleMap = std::map<LineLocation, FunctionSamplesMap>;
|
|
|
|
/// Representation of the samples collected for a function.
|
|
///
|
|
/// This data structure contains all the collected samples for the body
|
|
/// of a function. Each sample corresponds to a LineLocation instance
|
|
/// within the body of the function.
|
|
class FunctionSamples {
|
|
public:
|
|
FunctionSamples() = default;
|
|
|
|
void print(raw_ostream &OS = dbgs(), unsigned Indent = 0) const;
|
|
void dump() const;
|
|
|
|
sampleprof_error addTotalSamples(uint64_t Num, uint64_t Weight = 1) {
|
|
bool Overflowed;
|
|
TotalSamples =
|
|
SaturatingMultiplyAdd(Num, Weight, TotalSamples, &Overflowed);
|
|
return Overflowed ? sampleprof_error::counter_overflow
|
|
: sampleprof_error::success;
|
|
}
|
|
|
|
void setTotalSamples(uint64_t Num) { TotalSamples = Num; }
|
|
|
|
sampleprof_error addHeadSamples(uint64_t Num, uint64_t Weight = 1) {
|
|
bool Overflowed;
|
|
TotalHeadSamples =
|
|
SaturatingMultiplyAdd(Num, Weight, TotalHeadSamples, &Overflowed);
|
|
return Overflowed ? sampleprof_error::counter_overflow
|
|
: sampleprof_error::success;
|
|
}
|
|
|
|
sampleprof_error addBodySamples(uint32_t LineOffset, uint32_t Discriminator,
|
|
uint64_t Num, uint64_t Weight = 1) {
|
|
return BodySamples[LineLocation(LineOffset, Discriminator)].addSamples(
|
|
Num, Weight);
|
|
}
|
|
|
|
sampleprof_error addCalledTargetSamples(uint32_t LineOffset,
|
|
uint32_t Discriminator,
|
|
StringRef FName, uint64_t Num,
|
|
uint64_t Weight = 1) {
|
|
return BodySamples[LineLocation(LineOffset, Discriminator)].addCalledTarget(
|
|
FName, Num, Weight);
|
|
}
|
|
|
|
/// Return the number of samples collected at the given location.
|
|
/// Each location is specified by \p LineOffset and \p Discriminator.
|
|
/// If the location is not found in profile, return error.
|
|
ErrorOr<uint64_t> findSamplesAt(uint32_t LineOffset,
|
|
uint32_t Discriminator) const {
|
|
const auto &ret = BodySamples.find(LineLocation(LineOffset, Discriminator));
|
|
if (ret == BodySamples.end()) {
|
|
// For CSSPGO, in order to conserve profile size, we no longer write out
|
|
// locations profile for those not hit during training, so we need to
|
|
// treat them as zero instead of error here.
|
|
if (ProfileIsCS)
|
|
return 0;
|
|
return std::error_code();
|
|
// A missing counter for a probe likely means the probe was not executed.
|
|
// Treat it as a zero count instead of an unknown count to help edge
|
|
// weight inference.
|
|
if (FunctionSamples::ProfileIsProbeBased)
|
|
return 0;
|
|
return std::error_code();
|
|
} else {
|
|
return ret->second.getSamples();
|
|
}
|
|
}
|
|
|
|
/// Returns the call target map collected at a given location.
|
|
/// Each location is specified by \p LineOffset and \p Discriminator.
|
|
/// If the location is not found in profile, return error.
|
|
ErrorOr<SampleRecord::CallTargetMap>
|
|
findCallTargetMapAt(uint32_t LineOffset, uint32_t Discriminator) const {
|
|
const auto &ret = BodySamples.find(LineLocation(LineOffset, Discriminator));
|
|
if (ret == BodySamples.end())
|
|
return std::error_code();
|
|
return ret->second.getCallTargets();
|
|
}
|
|
|
|
/// Returns the call target map collected at a given location specified by \p
|
|
/// CallSite. If the location is not found in profile, return error.
|
|
ErrorOr<SampleRecord::CallTargetMap>
|
|
findCallTargetMapAt(const LineLocation &CallSite) const {
|
|
const auto &Ret = BodySamples.find(CallSite);
|
|
if (Ret == BodySamples.end())
|
|
return std::error_code();
|
|
return Ret->second.getCallTargets();
|
|
}
|
|
|
|
/// Return the function samples at the given callsite location.
|
|
FunctionSamplesMap &functionSamplesAt(const LineLocation &Loc) {
|
|
return CallsiteSamples[Loc];
|
|
}
|
|
|
|
/// Returns the FunctionSamplesMap at the given \p Loc.
|
|
const FunctionSamplesMap *
|
|
findFunctionSamplesMapAt(const LineLocation &Loc) const {
|
|
auto iter = CallsiteSamples.find(Loc);
|
|
if (iter == CallsiteSamples.end())
|
|
return nullptr;
|
|
return &iter->second;
|
|
}
|
|
|
|
/// Returns a pointer to FunctionSamples at the given callsite location
|
|
/// \p Loc with callee \p CalleeName. If no callsite can be found, relax
|
|
/// the restriction to return the FunctionSamples at callsite location
|
|
/// \p Loc with the maximum total sample count. If \p Remapper is not
|
|
/// nullptr, use \p Remapper to find FunctionSamples with equivalent name
|
|
/// as \p CalleeName.
|
|
const FunctionSamples *
|
|
findFunctionSamplesAt(const LineLocation &Loc, StringRef CalleeName,
|
|
SampleProfileReaderItaniumRemapper *Remapper) const;
|
|
|
|
bool empty() const { return TotalSamples == 0; }
|
|
|
|
/// Return the total number of samples collected inside the function.
|
|
uint64_t getTotalSamples() const { return TotalSamples; }
|
|
|
|
/// Return the total number of branch samples that have the function as the
|
|
/// branch target. This should be equivalent to the sample of the first
|
|
/// instruction of the symbol. But as we directly get this info for raw
|
|
/// profile without referring to potentially inaccurate debug info, this
|
|
/// gives more accurate profile data and is preferred for standalone symbols.
|
|
uint64_t getHeadSamples() const { return TotalHeadSamples; }
|
|
|
|
/// Return the sample count of the first instruction of the function.
|
|
/// The function can be either a standalone symbol or an inlined function.
|
|
uint64_t getEntrySamples() const {
|
|
if (FunctionSamples::ProfileIsCS && getHeadSamples()) {
|
|
// For CS profile, if we already have more accurate head samples
|
|
// counted by branch sample from caller, use them as entry samples.
|
|
return getHeadSamples();
|
|
}
|
|
uint64_t Count = 0;
|
|
// Use either BodySamples or CallsiteSamples which ever has the smaller
|
|
// lineno.
|
|
if (!BodySamples.empty() &&
|
|
(CallsiteSamples.empty() ||
|
|
BodySamples.begin()->first < CallsiteSamples.begin()->first))
|
|
Count = BodySamples.begin()->second.getSamples();
|
|
else if (!CallsiteSamples.empty()) {
|
|
// An indirect callsite may be promoted to several inlined direct calls.
|
|
// We need to get the sum of them.
|
|
for (const auto &N_FS : CallsiteSamples.begin()->second)
|
|
Count += N_FS.second.getEntrySamples();
|
|
}
|
|
// Return at least 1 if total sample is not 0.
|
|
return Count ? Count : TotalSamples > 0;
|
|
}
|
|
|
|
/// Return all the samples collected in the body of the function.
|
|
const BodySampleMap &getBodySamples() const { return BodySamples; }
|
|
|
|
/// Return all the callsite samples collected in the body of the function.
|
|
const CallsiteSampleMap &getCallsiteSamples() const {
|
|
return CallsiteSamples;
|
|
}
|
|
|
|
/// Return the maximum of sample counts in a function body including functions
|
|
/// inlined in it.
|
|
uint64_t getMaxCountInside() const {
|
|
uint64_t MaxCount = 0;
|
|
for (const auto &L : getBodySamples())
|
|
MaxCount = std::max(MaxCount, L.second.getSamples());
|
|
for (const auto &C : getCallsiteSamples())
|
|
for (const FunctionSamplesMap::value_type &F : C.second)
|
|
MaxCount = std::max(MaxCount, F.second.getMaxCountInside());
|
|
return MaxCount;
|
|
}
|
|
|
|
/// Merge the samples in \p Other into this one.
|
|
/// Optionally scale samples by \p Weight.
|
|
sampleprof_error merge(const FunctionSamples &Other, uint64_t Weight = 1) {
|
|
sampleprof_error Result = sampleprof_error::success;
|
|
Name = Other.getName();
|
|
if (!GUIDToFuncNameMap)
|
|
GUIDToFuncNameMap = Other.GUIDToFuncNameMap;
|
|
if (Context.getNameWithContext(true).empty())
|
|
Context = Other.getContext();
|
|
if (FunctionHash == 0) {
|
|
// Set the function hash code for the target profile.
|
|
FunctionHash = Other.getFunctionHash();
|
|
} else if (FunctionHash != Other.getFunctionHash()) {
|
|
// The two profiles coming with different valid hash codes indicates
|
|
// either:
|
|
// 1. They are same-named static functions from different compilation
|
|
// units (without using -unique-internal-linkage-names), or
|
|
// 2. They are really the same function but from different compilations.
|
|
// Let's bail out in either case for now, which means one profile is
|
|
// dropped.
|
|
return sampleprof_error::hash_mismatch;
|
|
}
|
|
|
|
MergeResult(Result, addTotalSamples(Other.getTotalSamples(), Weight));
|
|
MergeResult(Result, addHeadSamples(Other.getHeadSamples(), Weight));
|
|
for (const auto &I : Other.getBodySamples()) {
|
|
const LineLocation &Loc = I.first;
|
|
const SampleRecord &Rec = I.second;
|
|
MergeResult(Result, BodySamples[Loc].merge(Rec, Weight));
|
|
}
|
|
for (const auto &I : Other.getCallsiteSamples()) {
|
|
const LineLocation &Loc = I.first;
|
|
FunctionSamplesMap &FSMap = functionSamplesAt(Loc);
|
|
for (const auto &Rec : I.second)
|
|
MergeResult(Result, FSMap[Rec.first].merge(Rec.second, Weight));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// Recursively traverses all children, if the total sample count of the
|
|
/// corresponding function is no less than \p Threshold, add its corresponding
|
|
/// GUID to \p S. Also traverse the BodySamples to add hot CallTarget's GUID
|
|
/// to \p S.
|
|
void findInlinedFunctions(DenseSet<GlobalValue::GUID> &S, const Module *M,
|
|
uint64_t Threshold) const {
|
|
if (TotalSamples <= Threshold)
|
|
return;
|
|
auto isDeclaration = [](const Function *F) {
|
|
return !F || F->isDeclaration();
|
|
};
|
|
if (isDeclaration(M->getFunction(getFuncName()))) {
|
|
// Add to the import list only when it's defined out of module.
|
|
S.insert(getGUID(Name));
|
|
}
|
|
// Import hot CallTargets, which may not be available in IR because full
|
|
// profile annotation cannot be done until backend compilation in ThinLTO.
|
|
for (const auto &BS : BodySamples)
|
|
for (const auto &TS : BS.second.getCallTargets())
|
|
if (TS.getValue() > Threshold) {
|
|
const Function *Callee = M->getFunction(getFuncName(TS.getKey()));
|
|
if (isDeclaration(Callee))
|
|
S.insert(getGUID(TS.getKey()));
|
|
}
|
|
for (const auto &CS : CallsiteSamples)
|
|
for (const auto &NameFS : CS.second)
|
|
NameFS.second.findInlinedFunctions(S, M, Threshold);
|
|
}
|
|
|
|
/// Set the name of the function.
|
|
void setName(StringRef FunctionName) { Name = FunctionName; }
|
|
|
|
/// Return the function name.
|
|
StringRef getName() const { return Name; }
|
|
|
|
/// Return function name with context.
|
|
StringRef getNameWithContext(bool WithBracket = false) const {
|
|
return FunctionSamples::ProfileIsCS
|
|
? Context.getNameWithContext(WithBracket)
|
|
: Name;
|
|
}
|
|
|
|
/// Return the original function name.
|
|
StringRef getFuncName() const { return getFuncName(Name); }
|
|
|
|
void setFunctionHash(uint64_t Hash) { FunctionHash = Hash; }
|
|
|
|
uint64_t getFunctionHash() const { return FunctionHash; }
|
|
|
|
/// Return the canonical name for a function, taking into account
|
|
/// suffix elision policy attributes.
|
|
static StringRef getCanonicalFnName(const Function &F) {
|
|
auto AttrName = "sample-profile-suffix-elision-policy";
|
|
auto Attr = F.getFnAttribute(AttrName).getValueAsString();
|
|
return getCanonicalFnName(F.getName(), Attr);
|
|
}
|
|
|
|
static StringRef getCanonicalFnName(StringRef FnName, StringRef Attr = "") {
|
|
static const char *knownSuffixes[] = { ".llvm.", ".part." };
|
|
if (Attr == "" || Attr == "all") {
|
|
return FnName.split('.').first;
|
|
} else if (Attr == "selected") {
|
|
StringRef Cand(FnName);
|
|
for (const auto &Suf : knownSuffixes) {
|
|
StringRef Suffix(Suf);
|
|
auto It = Cand.rfind(Suffix);
|
|
if (It == StringRef::npos)
|
|
return Cand;
|
|
auto Dit = Cand.rfind('.');
|
|
if (Dit == It + Suffix.size() - 1)
|
|
Cand = Cand.substr(0, It);
|
|
}
|
|
return Cand;
|
|
} else if (Attr == "none") {
|
|
return FnName;
|
|
} else {
|
|
assert(false && "internal error: unknown suffix elision policy");
|
|
}
|
|
return FnName;
|
|
}
|
|
|
|
/// Translate \p Name into its original name.
|
|
/// When profile doesn't use MD5, \p Name needs no translation.
|
|
/// When profile uses MD5, \p Name in current FunctionSamples
|
|
/// is actually GUID of the original function name. getFuncName will
|
|
/// translate \p Name in current FunctionSamples into its original name
|
|
/// by looking up in the function map GUIDToFuncNameMap.
|
|
/// If the original name doesn't exist in the map, return empty StringRef.
|
|
StringRef getFuncName(StringRef Name) const {
|
|
if (!UseMD5)
|
|
return Name;
|
|
|
|
assert(GUIDToFuncNameMap && "GUIDToFuncNameMap needs to be popluated first");
|
|
return GUIDToFuncNameMap->lookup(std::stoull(Name.data()));
|
|
}
|
|
|
|
/// Returns the line offset to the start line of the subprogram.
|
|
/// We assume that a single function will not exceed 65535 LOC.
|
|
static unsigned getOffset(const DILocation *DIL);
|
|
|
|
/// Returns a unique call site identifier for a given debug location of a call
|
|
/// instruction. This is wrapper of two scenarios, the probe-based profile and
|
|
/// regular profile, to hide implementation details from the sample loader and
|
|
/// the context tracker.
|
|
static LineLocation getCallSiteIdentifier(const DILocation *DIL);
|
|
|
|
/// Get the FunctionSamples of the inline instance where DIL originates
|
|
/// from.
|
|
///
|
|
/// The FunctionSamples of the instruction (Machine or IR) associated to
|
|
/// \p DIL is the inlined instance in which that instruction is coming from.
|
|
/// We traverse the inline stack of that instruction, and match it with the
|
|
/// tree nodes in the profile.
|
|
///
|
|
/// \returns the FunctionSamples pointer to the inlined instance.
|
|
/// If \p Remapper is not nullptr, it will be used to find matching
|
|
/// FunctionSamples with not exactly the same but equivalent name.
|
|
const FunctionSamples *findFunctionSamples(
|
|
const DILocation *DIL,
|
|
SampleProfileReaderItaniumRemapper *Remapper = nullptr) const;
|
|
|
|
static bool ProfileIsProbeBased;
|
|
|
|
static bool ProfileIsCS;
|
|
|
|
SampleContext &getContext() const { return Context; }
|
|
|
|
void setContext(const SampleContext &FContext) { Context = FContext; }
|
|
|
|
static SampleProfileFormat Format;
|
|
|
|
/// Whether the profile uses MD5 to represent string.
|
|
static bool UseMD5;
|
|
|
|
/// GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
|
|
/// all the function symbols defined or declared in current module.
|
|
DenseMap<uint64_t, StringRef> *GUIDToFuncNameMap = nullptr;
|
|
|
|
// Assume the input \p Name is a name coming from FunctionSamples itself.
|
|
// If UseMD5 is true, the name is already a GUID and we
|
|
// don't want to return the GUID of GUID.
|
|
static uint64_t getGUID(StringRef Name) {
|
|
return UseMD5 ? std::stoull(Name.data()) : Function::getGUID(Name);
|
|
}
|
|
|
|
// Find all the names in the current FunctionSamples including names in
|
|
// all the inline instances and names of call targets.
|
|
void findAllNames(DenseSet<StringRef> &NameSet) const;
|
|
|
|
private:
|
|
/// Mangled name of the function.
|
|
StringRef Name;
|
|
|
|
/// CFG hash value for the function.
|
|
uint64_t FunctionHash = 0;
|
|
|
|
/// Calling context for function profile
|
|
mutable SampleContext Context;
|
|
|
|
/// Total number of samples collected inside this function.
|
|
///
|
|
/// Samples are cumulative, they include all the samples collected
|
|
/// inside this function and all its inlined callees.
|
|
uint64_t TotalSamples = 0;
|
|
|
|
/// Total number of samples collected at the head of the function.
|
|
/// This is an approximation of the number of calls made to this function
|
|
/// at runtime.
|
|
uint64_t TotalHeadSamples = 0;
|
|
|
|
/// Map instruction locations to collected samples.
|
|
///
|
|
/// Each entry in this map contains the number of samples
|
|
/// collected at the corresponding line offset. All line locations
|
|
/// are an offset from the start of the function.
|
|
BodySampleMap BodySamples;
|
|
|
|
/// Map call sites to collected samples for the called function.
|
|
///
|
|
/// Each entry in this map corresponds to all the samples
|
|
/// collected for the inlined function call at the given
|
|
/// location. For example, given:
|
|
///
|
|
/// void foo() {
|
|
/// 1 bar();
|
|
/// ...
|
|
/// 8 baz();
|
|
/// }
|
|
///
|
|
/// If the bar() and baz() calls were inlined inside foo(), this
|
|
/// map will contain two entries. One for all the samples collected
|
|
/// in the call to bar() at line offset 1, the other for all the samples
|
|
/// collected in the call to baz() at line offset 8.
|
|
CallsiteSampleMap CallsiteSamples;
|
|
};
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const FunctionSamples &FS);
|
|
|
|
/// Sort a LocationT->SampleT map by LocationT.
|
|
///
|
|
/// It produces a sorted list of <LocationT, SampleT> records by ascending
|
|
/// order of LocationT.
|
|
template <class LocationT, class SampleT> class SampleSorter {
|
|
public:
|
|
using SamplesWithLoc = std::pair<const LocationT, SampleT>;
|
|
using SamplesWithLocList = SmallVector<const SamplesWithLoc *, 20>;
|
|
|
|
SampleSorter(const std::map<LocationT, SampleT> &Samples) {
|
|
for (const auto &I : Samples)
|
|
V.push_back(&I);
|
|
llvm::stable_sort(V, [](const SamplesWithLoc *A, const SamplesWithLoc *B) {
|
|
return A->first < B->first;
|
|
});
|
|
}
|
|
|
|
const SamplesWithLocList &get() const { return V; }
|
|
|
|
private:
|
|
SamplesWithLocList V;
|
|
};
|
|
|
|
/// ProfileSymbolList records the list of function symbols shown up
|
|
/// in the binary used to generate the profile. It is useful to
|
|
/// to discriminate a function being so cold as not to shown up
|
|
/// in the profile and a function newly added.
|
|
class ProfileSymbolList {
|
|
public:
|
|
/// copy indicates whether we need to copy the underlying memory
|
|
/// for the input Name.
|
|
void add(StringRef Name, bool copy = false) {
|
|
if (!copy) {
|
|
Syms.insert(Name);
|
|
return;
|
|
}
|
|
Syms.insert(Name.copy(Allocator));
|
|
}
|
|
|
|
bool contains(StringRef Name) { return Syms.count(Name); }
|
|
|
|
void merge(const ProfileSymbolList &List) {
|
|
for (auto Sym : List.Syms)
|
|
add(Sym, true);
|
|
}
|
|
|
|
unsigned size() { return Syms.size(); }
|
|
|
|
void setToCompress(bool TC) { ToCompress = TC; }
|
|
bool toCompress() { return ToCompress; }
|
|
|
|
std::error_code read(const uint8_t *Data, uint64_t ListSize);
|
|
std::error_code write(raw_ostream &OS);
|
|
void dump(raw_ostream &OS = dbgs()) const;
|
|
|
|
private:
|
|
// Determine whether or not to compress the symbol list when
|
|
// writing it into profile. The variable is unused when the symbol
|
|
// list is read from an existing profile.
|
|
bool ToCompress = false;
|
|
DenseSet<StringRef> Syms;
|
|
BumpPtrAllocator Allocator;
|
|
};
|
|
|
|
} // end namespace sampleprof
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_PROFILEDATA_SAMPLEPROF_H
|