llvm-for-llvmta/tools/llvm-objcopy/MachO/Object.h

361 lines
13 KiB
C++

//===- Object.h - Mach-O object file model ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJCOPY_MACHO_OBJECT_H
#define LLVM_OBJCOPY_MACHO_OBJECT_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/ObjectYAML/DWARFYAML.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/YAMLTraits.h"
#include <cstdint>
#include <string>
#include <vector>
namespace llvm {
namespace objcopy {
namespace macho {
struct MachHeader {
uint32_t Magic;
uint32_t CPUType;
uint32_t CPUSubType;
uint32_t FileType;
uint32_t NCmds;
uint32_t SizeOfCmds;
uint32_t Flags;
uint32_t Reserved = 0;
};
struct RelocationInfo;
struct Section {
uint32_t Index;
std::string Segname;
std::string Sectname;
// CanonicalName is a string formatted as “<Segname>,<Sectname>".
std::string CanonicalName;
uint64_t Addr = 0;
uint64_t Size = 0;
// Offset in the input file.
Optional<uint32_t> OriginalOffset;
uint32_t Offset = 0;
uint32_t Align = 0;
uint32_t RelOff = 0;
uint32_t NReloc = 0;
uint32_t Flags = 0;
uint32_t Reserved1 = 0;
uint32_t Reserved2 = 0;
uint32_t Reserved3 = 0;
StringRef Content;
std::vector<RelocationInfo> Relocations;
Section(StringRef SegName, StringRef SectName)
: Segname(std::string(SegName)), Sectname(std::string(SectName)),
CanonicalName((Twine(SegName) + Twine(',') + SectName).str()) {}
Section(StringRef SegName, StringRef SectName, StringRef Content)
: Segname(std::string(SegName)), Sectname(std::string(SectName)),
CanonicalName((Twine(SegName) + Twine(',') + SectName).str()),
Content(Content) {}
MachO::SectionType getType() const {
return static_cast<MachO::SectionType>(Flags & MachO::SECTION_TYPE);
}
bool isVirtualSection() const {
return (getType() == MachO::S_ZEROFILL ||
getType() == MachO::S_GB_ZEROFILL ||
getType() == MachO::S_THREAD_LOCAL_ZEROFILL);
}
bool hasValidOffset() const {
return !(isVirtualSection() || (OriginalOffset && *OriginalOffset == 0));
}
};
struct LoadCommand {
// The type MachO::macho_load_command is defined in llvm/BinaryFormat/MachO.h
// and it is a union of all the structs corresponding to various load
// commands.
MachO::macho_load_command MachOLoadCommand;
// The raw content of the payload of the load command (located right after the
// corresponding struct). In some cases it is either empty or can be
// copied-over without digging into its structure.
std::vector<uint8_t> Payload;
// Some load commands can contain (inside the payload) an array of sections,
// though the contents of the sections are stored separately. The struct
// Section describes only sections' metadata and where to find the
// corresponding content inside the binary.
std::vector<std::unique_ptr<Section>> Sections;
// Returns the segment name if the load command is a segment command.
Optional<StringRef> getSegmentName() const;
// Returns the segment vm address if the load command is a segment command.
Optional<uint64_t> getSegmentVMAddr() const;
};
// A symbol information. Fields which starts with "n_" are same as them in the
// nlist.
struct SymbolEntry {
std::string Name;
bool Referenced = false;
uint32_t Index;
uint8_t n_type;
uint8_t n_sect;
uint16_t n_desc;
uint64_t n_value;
bool isExternalSymbol() const { return n_type & MachO::N_EXT; }
bool isLocalSymbol() const { return !isExternalSymbol(); }
bool isUndefinedSymbol() const {
return (n_type & MachO::N_TYPE) == MachO::N_UNDF;
}
bool isSwiftSymbol() const {
return StringRef(Name).startswith("_$s") ||
StringRef(Name).startswith("_$S");
}
Optional<uint32_t> section() const {
return n_sect == MachO::NO_SECT ? None : Optional<uint32_t>(n_sect);
}
};
/// The location of the symbol table inside the binary is described by LC_SYMTAB
/// load command.
struct SymbolTable {
std::vector<std::unique_ptr<SymbolEntry>> Symbols;
using iterator = pointee_iterator<
std::vector<std::unique_ptr<SymbolEntry>>::const_iterator>;
iterator begin() const { return iterator(Symbols.begin()); }
iterator end() const { return iterator(Symbols.end()); }
const SymbolEntry *getSymbolByIndex(uint32_t Index) const;
SymbolEntry *getSymbolByIndex(uint32_t Index);
void removeSymbols(
function_ref<bool(const std::unique_ptr<SymbolEntry> &)> ToRemove);
};
struct IndirectSymbolEntry {
// The original value in an indirect symbol table. Higher bits encode extra
// information (INDIRECT_SYMBOL_LOCAL and INDIRECT_SYMBOL_ABS).
uint32_t OriginalIndex;
/// The Symbol referenced by this entry. It's None if the index is
/// INDIRECT_SYMBOL_LOCAL or INDIRECT_SYMBOL_ABS.
Optional<SymbolEntry *> Symbol;
IndirectSymbolEntry(uint32_t OriginalIndex, Optional<SymbolEntry *> Symbol)
: OriginalIndex(OriginalIndex), Symbol(Symbol) {}
};
struct IndirectSymbolTable {
std::vector<IndirectSymbolEntry> Symbols;
};
/// The location of the string table inside the binary is described by LC_SYMTAB
/// load command.
struct StringTable {
std::vector<std::string> Strings;
};
struct RelocationInfo {
// The referenced symbol entry. Set if !Scattered && Extern.
Optional<const SymbolEntry *> Symbol;
// The referenced section. Set if !Scattered && !Extern.
Optional<const Section *> Sec;
// True if Info is a scattered_relocation_info.
bool Scattered;
// True if the r_symbolnum points to a section number (i.e. r_extern=0).
bool Extern;
MachO::any_relocation_info Info;
unsigned getPlainRelocationSymbolNum(bool IsLittleEndian) {
if (IsLittleEndian)
return Info.r_word1 & 0xffffff;
return Info.r_word1 >> 8;
}
void setPlainRelocationSymbolNum(unsigned SymbolNum, bool IsLittleEndian) {
assert(SymbolNum < (1 << 24) && "SymbolNum out of range");
if (IsLittleEndian)
Info.r_word1 = (Info.r_word1 & ~0x00ffffff) | SymbolNum;
else
Info.r_word1 = (Info.r_word1 & ~0xffffff00) | (SymbolNum << 8);
}
};
/// The location of the rebase info inside the binary is described by
/// LC_DYLD_INFO load command. Dyld rebases an image whenever dyld loads it at
/// an address different from its preferred address. The rebase information is
/// a stream of byte sized opcodes whose symbolic names start with
/// REBASE_OPCODE_. Conceptually the rebase information is a table of tuples:
/// <seg-index, seg-offset, type>
/// The opcodes are a compressed way to encode the table by only
/// encoding when a column changes. In addition simple patterns
/// like "every n'th offset for m times" can be encoded in a few
/// bytes.
struct RebaseInfo {
// At the moment we do not parse this info (and it is simply copied over),
// but the proper support will be added later.
ArrayRef<uint8_t> Opcodes;
};
/// The location of the bind info inside the binary is described by
/// LC_DYLD_INFO load command. Dyld binds an image during the loading process,
/// if the image requires any pointers to be initialized to symbols in other
/// images. The bind information is a stream of byte sized opcodes whose
/// symbolic names start with BIND_OPCODE_. Conceptually the bind information is
/// a table of tuples: <seg-index, seg-offset, type, symbol-library-ordinal,
/// symbol-name, addend> The opcodes are a compressed way to encode the table by
/// only encoding when a column changes. In addition simple patterns like for
/// runs of pointers initialized to the same value can be encoded in a few
/// bytes.
struct BindInfo {
// At the moment we do not parse this info (and it is simply copied over),
// but the proper support will be added later.
ArrayRef<uint8_t> Opcodes;
};
/// The location of the weak bind info inside the binary is described by
/// LC_DYLD_INFO load command. Some C++ programs require dyld to unique symbols
/// so that all images in the process use the same copy of some code/data. This
/// step is done after binding. The content of the weak_bind info is an opcode
/// stream like the bind_info. But it is sorted alphabetically by symbol name.
/// This enable dyld to walk all images with weak binding information in order
/// and look for collisions. If there are no collisions, dyld does no updating.
/// That means that some fixups are also encoded in the bind_info. For
/// instance, all calls to "operator new" are first bound to libstdc++.dylib
/// using the information in bind_info. Then if some image overrides operator
/// new that is detected when the weak_bind information is processed and the
/// call to operator new is then rebound.
struct WeakBindInfo {
// At the moment we do not parse this info (and it is simply copied over),
// but the proper support will be added later.
ArrayRef<uint8_t> Opcodes;
};
/// The location of the lazy bind info inside the binary is described by
/// LC_DYLD_INFO load command. Some uses of external symbols do not need to be
/// bound immediately. Instead they can be lazily bound on first use. The
/// lazy_bind contains a stream of BIND opcodes to bind all lazy symbols. Normal
/// use is that dyld ignores the lazy_bind section when loading an image.
/// Instead the static linker arranged for the lazy pointer to initially point
/// to a helper function which pushes the offset into the lazy_bind area for the
/// symbol needing to be bound, then jumps to dyld which simply adds the offset
/// to lazy_bind_off to get the information on what to bind.
struct LazyBindInfo {
ArrayRef<uint8_t> Opcodes;
};
/// The location of the export info inside the binary is described by
/// LC_DYLD_INFO load command. The symbols exported by a dylib are encoded in a
/// trie. This is a compact representation that factors out common prefixes. It
/// also reduces LINKEDIT pages in RAM because it encodes all information (name,
/// address, flags) in one small, contiguous range. The export area is a stream
/// of nodes. The first node sequentially is the start node for the trie. Nodes
/// for a symbol start with a uleb128 that is the length of the exported symbol
/// information for the string so far. If there is no exported symbol, the node
/// starts with a zero byte. If there is exported info, it follows the length.
/// First is a uleb128 containing flags. Normally, it is followed by
/// a uleb128 encoded offset which is location of the content named
/// by the symbol from the mach_header for the image. If the flags
/// is EXPORT_SYMBOL_FLAGS_REEXPORT, then following the flags is
/// a uleb128 encoded library ordinal, then a zero terminated
/// UTF8 string. If the string is zero length, then the symbol
/// is re-export from the specified dylib with the same name.
/// If the flags is EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, then following
/// the flags is two uleb128s: the stub offset and the resolver offset.
/// The stub is used by non-lazy pointers. The resolver is used
/// by lazy pointers and must be called to get the actual address to use.
/// After the optional exported symbol information is a byte of
/// how many edges (0-255) that this node has leaving it,
/// followed by each edge.
/// Each edge is a zero terminated UTF8 of the addition chars
/// in the symbol, followed by a uleb128 offset for the node that
/// edge points to.
struct ExportInfo {
ArrayRef<uint8_t> Trie;
};
struct LinkData {
ArrayRef<uint8_t> Data;
};
struct Object {
MachHeader Header;
std::vector<LoadCommand> LoadCommands;
SymbolTable SymTable;
StringTable StrTable;
RebaseInfo Rebases;
BindInfo Binds;
WeakBindInfo WeakBinds;
LazyBindInfo LazyBinds;
ExportInfo Exports;
IndirectSymbolTable IndirectSymTable;
LinkData DataInCode;
LinkData FunctionStarts;
LinkData CodeSignature;
Optional<uint32_t> SwiftVersion;
/// The index of LC_CODE_SIGNATURE load command if present.
Optional<size_t> CodeSignatureCommandIndex;
/// The index of LC_SYMTAB load command if present.
Optional<size_t> SymTabCommandIndex;
/// The index of LC_DYLD_INFO or LC_DYLD_INFO_ONLY load command if present.
Optional<size_t> DyLdInfoCommandIndex;
/// The index LC_DYSYMTAB load comamnd if present.
Optional<size_t> DySymTabCommandIndex;
/// The index LC_DATA_IN_CODE load comamnd if present.
Optional<size_t> DataInCodeCommandIndex;
/// The index LC_FUNCTION_STARTS load comamnd if present.
Optional<size_t> FunctionStartsCommandIndex;
BumpPtrAllocator Alloc;
StringSaver NewSectionsContents;
Object() : NewSectionsContents(Alloc) {}
Error
removeSections(function_ref<bool(const std::unique_ptr<Section> &)> ToRemove);
Error removeLoadCommands(function_ref<bool(const LoadCommand &)> ToRemove);
void updateLoadCommandIndexes();
/// Creates a new segment load command in the object and returns a reference
/// to the newly created load command. The caller should verify that SegName
/// is not too long (SegName.size() should be less than or equal to 16).
LoadCommand &addSegment(StringRef SegName, uint64_t SegVMSize);
bool is64Bit() const {
return Header.Magic == MachO::MH_MAGIC_64 ||
Header.Magic == MachO::MH_CIGAM_64;
}
uint64_t nextAvailableSegmentAddress() const;
};
} // end namespace macho
} // end namespace objcopy
} // end namespace llvm
#endif // LLVM_OBJCOPY_MACHO_OBJECT_H