llvm-for-llvmta/tools/llvm-objcopy/ELF/Object.h

1102 lines
35 KiB
C++

//===- Object.h -------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_OBJCOPY_OBJECT_H
#define LLVM_TOOLS_OBJCOPY_OBJECT_H
#include "Buffer.h"
#include "CopyConfig.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileOutputBuffer.h"
#include <cstddef>
#include <cstdint>
#include <functional>
#include <memory>
#include <set>
#include <vector>
namespace llvm {
enum class DebugCompressionType;
namespace objcopy {
namespace elf {
class SectionBase;
class Section;
class OwnedDataSection;
class StringTableSection;
class SymbolTableSection;
class RelocationSection;
class DynamicRelocationSection;
class GnuDebugLinkSection;
class GroupSection;
class SectionIndexSection;
class CompressedSection;
class DecompressedSection;
class Segment;
class Object;
struct Symbol;
class SectionTableRef {
MutableArrayRef<std::unique_ptr<SectionBase>> Sections;
public:
using iterator = pointee_iterator<std::unique_ptr<SectionBase> *>;
explicit SectionTableRef(MutableArrayRef<std::unique_ptr<SectionBase>> Secs)
: Sections(Secs) {}
SectionTableRef(const SectionTableRef &) = default;
iterator begin() const { return iterator(Sections.data()); }
iterator end() const { return iterator(Sections.data() + Sections.size()); }
size_t size() const { return Sections.size(); }
Expected<SectionBase *> getSection(uint32_t Index, Twine ErrMsg);
template <class T>
Expected<T *> getSectionOfType(uint32_t Index, Twine IndexErrMsg,
Twine TypeErrMsg);
};
enum ElfType { ELFT_ELF32LE, ELFT_ELF64LE, ELFT_ELF32BE, ELFT_ELF64BE };
class SectionVisitor {
public:
virtual ~SectionVisitor() = default;
virtual Error visit(const Section &Sec) = 0;
virtual Error visit(const OwnedDataSection &Sec) = 0;
virtual Error visit(const StringTableSection &Sec) = 0;
virtual Error visit(const SymbolTableSection &Sec) = 0;
virtual Error visit(const RelocationSection &Sec) = 0;
virtual Error visit(const DynamicRelocationSection &Sec) = 0;
virtual Error visit(const GnuDebugLinkSection &Sec) = 0;
virtual Error visit(const GroupSection &Sec) = 0;
virtual Error visit(const SectionIndexSection &Sec) = 0;
virtual Error visit(const CompressedSection &Sec) = 0;
virtual Error visit(const DecompressedSection &Sec) = 0;
};
class MutableSectionVisitor {
public:
virtual ~MutableSectionVisitor() = default;
virtual Error visit(Section &Sec) = 0;
virtual Error visit(OwnedDataSection &Sec) = 0;
virtual Error visit(StringTableSection &Sec) = 0;
virtual Error visit(SymbolTableSection &Sec) = 0;
virtual Error visit(RelocationSection &Sec) = 0;
virtual Error visit(DynamicRelocationSection &Sec) = 0;
virtual Error visit(GnuDebugLinkSection &Sec) = 0;
virtual Error visit(GroupSection &Sec) = 0;
virtual Error visit(SectionIndexSection &Sec) = 0;
virtual Error visit(CompressedSection &Sec) = 0;
virtual Error visit(DecompressedSection &Sec) = 0;
};
class SectionWriter : public SectionVisitor {
protected:
Buffer &Out;
public:
virtual ~SectionWriter() = default;
Error visit(const Section &Sec) override;
Error visit(const OwnedDataSection &Sec) override;
Error visit(const StringTableSection &Sec) override;
Error visit(const DynamicRelocationSection &Sec) override;
virtual Error visit(const SymbolTableSection &Sec) override = 0;
virtual Error visit(const RelocationSection &Sec) override = 0;
virtual Error visit(const GnuDebugLinkSection &Sec) override = 0;
virtual Error visit(const GroupSection &Sec) override = 0;
virtual Error visit(const SectionIndexSection &Sec) override = 0;
virtual Error visit(const CompressedSection &Sec) override = 0;
virtual Error visit(const DecompressedSection &Sec) override = 0;
explicit SectionWriter(Buffer &Buf) : Out(Buf) {}
};
template <class ELFT> class ELFSectionWriter : public SectionWriter {
private:
using Elf_Word = typename ELFT::Word;
using Elf_Rel = typename ELFT::Rel;
using Elf_Rela = typename ELFT::Rela;
using Elf_Sym = typename ELFT::Sym;
public:
virtual ~ELFSectionWriter() {}
Error visit(const SymbolTableSection &Sec) override;
Error visit(const RelocationSection &Sec) override;
Error visit(const GnuDebugLinkSection &Sec) override;
Error visit(const GroupSection &Sec) override;
Error visit(const SectionIndexSection &Sec) override;
Error visit(const CompressedSection &Sec) override;
Error visit(const DecompressedSection &Sec) override;
explicit ELFSectionWriter(Buffer &Buf) : SectionWriter(Buf) {}
};
template <class ELFT> class ELFSectionSizer : public MutableSectionVisitor {
private:
using Elf_Rel = typename ELFT::Rel;
using Elf_Rela = typename ELFT::Rela;
using Elf_Sym = typename ELFT::Sym;
using Elf_Word = typename ELFT::Word;
using Elf_Xword = typename ELFT::Xword;
public:
Error visit(Section &Sec) override;
Error visit(OwnedDataSection &Sec) override;
Error visit(StringTableSection &Sec) override;
Error visit(DynamicRelocationSection &Sec) override;
Error visit(SymbolTableSection &Sec) override;
Error visit(RelocationSection &Sec) override;
Error visit(GnuDebugLinkSection &Sec) override;
Error visit(GroupSection &Sec) override;
Error visit(SectionIndexSection &Sec) override;
Error visit(CompressedSection &Sec) override;
Error visit(DecompressedSection &Sec) override;
};
#define MAKE_SEC_WRITER_FRIEND \
friend class SectionWriter; \
friend class IHexSectionWriterBase; \
friend class IHexSectionWriter; \
template <class ELFT> friend class ELFSectionWriter; \
template <class ELFT> friend class ELFSectionSizer;
class BinarySectionWriter : public SectionWriter {
public:
virtual ~BinarySectionWriter() {}
Error visit(const SymbolTableSection &Sec) override;
Error visit(const RelocationSection &Sec) override;
Error visit(const GnuDebugLinkSection &Sec) override;
Error visit(const GroupSection &Sec) override;
Error visit(const SectionIndexSection &Sec) override;
Error visit(const CompressedSection &Sec) override;
Error visit(const DecompressedSection &Sec) override;
explicit BinarySectionWriter(Buffer &Buf) : SectionWriter(Buf) {}
};
using IHexLineData = SmallVector<char, 64>;
struct IHexRecord {
// Memory address of the record.
uint16_t Addr;
// Record type (see below).
uint16_t Type;
// Record data in hexadecimal form.
StringRef HexData;
// Helper method to get file length of the record
// including newline character
static size_t getLength(size_t DataSize) {
// :LLAAAATT[DD...DD]CC'
return DataSize * 2 + 11;
}
// Gets length of line in a file (getLength + CRLF).
static size_t getLineLength(size_t DataSize) {
return getLength(DataSize) + 2;
}
// Given type, address and data returns line which can
// be written to output file.
static IHexLineData getLine(uint8_t Type, uint16_t Addr,
ArrayRef<uint8_t> Data);
// Parses the line and returns record if possible.
// Line should be trimmed from whitespace characters.
static Expected<IHexRecord> parse(StringRef Line);
// Calculates checksum of stringified record representation
// S must NOT contain leading ':' and trailing whitespace
// characters
static uint8_t getChecksum(StringRef S);
enum Type {
// Contains data and a 16-bit starting address for the data.
// The byte count specifies number of data bytes in the record.
Data = 0,
// Must occur exactly once per file in the last line of the file.
// The data field is empty (thus byte count is 00) and the address
// field is typically 0000.
EndOfFile = 1,
// The data field contains a 16-bit segment base address (thus byte
// count is always 02) compatible with 80x86 real mode addressing.
// The address field (typically 0000) is ignored. The segment address
// from the most recent 02 record is multiplied by 16 and added to each
// subsequent data record address to form the physical starting address
// for the data. This allows addressing up to one megabyte of address
// space.
SegmentAddr = 2,
// or 80x86 processors, specifies the initial content of the CS:IP
// registers. The address field is 0000, the byte count is always 04,
// the first two data bytes are the CS value, the latter two are the
// IP value.
StartAddr80x86 = 3,
// Allows for 32 bit addressing (up to 4GiB). The record's address field
// is ignored (typically 0000) and its byte count is always 02. The two
// data bytes (big endian) specify the upper 16 bits of the 32 bit
// absolute address for all subsequent type 00 records
ExtendedAddr = 4,
// The address field is 0000 (not used) and the byte count is always 04.
// The four data bytes represent a 32-bit address value. In the case of
// 80386 and higher CPUs, this address is loaded into the EIP register.
StartAddr = 5,
// We have no other valid types
InvalidType = 6
};
};
// Base class for IHexSectionWriter. This class implements writing algorithm,
// but doesn't actually write records. It is used for output buffer size
// calculation in IHexWriter::finalize.
class IHexSectionWriterBase : public BinarySectionWriter {
// 20-bit segment address
uint32_t SegmentAddr = 0;
// Extended linear address
uint32_t BaseAddr = 0;
// Write segment address corresponding to 'Addr'
uint64_t writeSegmentAddr(uint64_t Addr);
// Write extended linear (base) address corresponding to 'Addr'
uint64_t writeBaseAddr(uint64_t Addr);
protected:
// Offset in the output buffer
uint64_t Offset = 0;
void writeSection(const SectionBase *Sec, ArrayRef<uint8_t> Data);
virtual void writeData(uint8_t Type, uint16_t Addr, ArrayRef<uint8_t> Data);
public:
explicit IHexSectionWriterBase(Buffer &Buf) : BinarySectionWriter(Buf) {}
uint64_t getBufferOffset() const { return Offset; }
Error visit(const Section &Sec) final;
Error visit(const OwnedDataSection &Sec) final;
Error visit(const StringTableSection &Sec) override;
Error visit(const DynamicRelocationSection &Sec) final;
using BinarySectionWriter::visit;
};
// Real IHEX section writer
class IHexSectionWriter : public IHexSectionWriterBase {
public:
IHexSectionWriter(Buffer &Buf) : IHexSectionWriterBase(Buf) {}
void writeData(uint8_t Type, uint16_t Addr, ArrayRef<uint8_t> Data) override;
Error visit(const StringTableSection &Sec) override;
};
class Writer {
protected:
Object &Obj;
Buffer &Buf;
public:
virtual ~Writer();
virtual Error finalize() = 0;
virtual Error write() = 0;
Writer(Object &O, Buffer &B) : Obj(O), Buf(B) {}
};
template <class ELFT> class ELFWriter : public Writer {
private:
using Elf_Addr = typename ELFT::Addr;
using Elf_Shdr = typename ELFT::Shdr;
using Elf_Phdr = typename ELFT::Phdr;
using Elf_Ehdr = typename ELFT::Ehdr;
void initEhdrSegment();
void writeEhdr();
void writePhdr(const Segment &Seg);
void writeShdr(const SectionBase &Sec);
void writePhdrs();
void writeShdrs();
Error writeSectionData();
void writeSegmentData();
void assignOffsets();
std::unique_ptr<ELFSectionWriter<ELFT>> SecWriter;
size_t totalSize() const;
public:
virtual ~ELFWriter() {}
bool WriteSectionHeaders;
// For --only-keep-debug, select an alternative section/segment layout
// algorithm.
bool OnlyKeepDebug;
Error finalize() override;
Error write() override;
ELFWriter(Object &Obj, Buffer &Buf, bool WSH, bool OnlyKeepDebug);
};
class BinaryWriter : public Writer {
private:
std::unique_ptr<BinarySectionWriter> SecWriter;
uint64_t TotalSize = 0;
public:
~BinaryWriter() {}
Error finalize() override;
Error write() override;
BinaryWriter(Object &Obj, Buffer &Buf) : Writer(Obj, Buf) {}
};
class IHexWriter : public Writer {
struct SectionCompare {
bool operator()(const SectionBase *Lhs, const SectionBase *Rhs) const;
};
std::set<const SectionBase *, SectionCompare> Sections;
size_t TotalSize = 0;
Error checkSection(const SectionBase &Sec);
uint64_t writeEntryPointRecord(uint8_t *Buf);
uint64_t writeEndOfFileRecord(uint8_t *Buf);
public:
~IHexWriter() {}
Error finalize() override;
Error write() override;
IHexWriter(Object &Obj, Buffer &Buf) : Writer(Obj, Buf) {}
};
class SectionBase {
public:
std::string Name;
Segment *ParentSegment = nullptr;
uint64_t HeaderOffset = 0;
uint32_t Index = 0;
uint32_t OriginalIndex = 0;
uint64_t OriginalFlags = 0;
uint64_t OriginalType = ELF::SHT_NULL;
uint64_t OriginalOffset = std::numeric_limits<uint64_t>::max();
uint64_t Addr = 0;
uint64_t Align = 1;
uint32_t EntrySize = 0;
uint64_t Flags = 0;
uint64_t Info = 0;
uint64_t Link = ELF::SHN_UNDEF;
uint64_t NameIndex = 0;
uint64_t Offset = 0;
uint64_t Size = 0;
uint64_t Type = ELF::SHT_NULL;
ArrayRef<uint8_t> OriginalData;
bool HasSymbol = false;
SectionBase() = default;
SectionBase(const SectionBase &) = default;
virtual ~SectionBase() = default;
virtual Error initialize(SectionTableRef SecTable);
virtual void finalize();
// Remove references to these sections. The list of sections must be sorted.
virtual Error
removeSectionReferences(bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove);
virtual Error removeSymbols(function_ref<bool(const Symbol &)> ToRemove);
virtual Error accept(SectionVisitor &Visitor) const = 0;
virtual Error accept(MutableSectionVisitor &Visitor) = 0;
virtual void markSymbols();
virtual void
replaceSectionReferences(const DenseMap<SectionBase *, SectionBase *> &);
// Notify the section that it is subject to removal.
virtual void onRemove();
};
class Segment {
private:
struct SectionCompare {
bool operator()(const SectionBase *Lhs, const SectionBase *Rhs) const {
// Some sections might have the same address if one of them is empty. To
// fix this we can use the lexicographic ordering on ->Addr and the
// original index.
if (Lhs->OriginalOffset == Rhs->OriginalOffset)
return Lhs->OriginalIndex < Rhs->OriginalIndex;
return Lhs->OriginalOffset < Rhs->OriginalOffset;
}
};
public:
uint32_t Type = 0;
uint32_t Flags = 0;
uint64_t Offset = 0;
uint64_t VAddr = 0;
uint64_t PAddr = 0;
uint64_t FileSize = 0;
uint64_t MemSize = 0;
uint64_t Align = 0;
uint32_t Index = 0;
uint64_t OriginalOffset = 0;
Segment *ParentSegment = nullptr;
ArrayRef<uint8_t> Contents;
std::set<const SectionBase *, SectionCompare> Sections;
explicit Segment(ArrayRef<uint8_t> Data) : Contents(Data) {}
Segment() = default;
const SectionBase *firstSection() const {
if (!Sections.empty())
return *Sections.begin();
return nullptr;
}
void removeSection(const SectionBase *Sec) { Sections.erase(Sec); }
void addSection(const SectionBase *Sec) { Sections.insert(Sec); }
ArrayRef<uint8_t> getContents() const { return Contents; }
};
class Section : public SectionBase {
MAKE_SEC_WRITER_FRIEND
ArrayRef<uint8_t> Contents;
SectionBase *LinkSection = nullptr;
public:
explicit Section(ArrayRef<uint8_t> Data) : Contents(Data) {}
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
Error removeSectionReferences(
bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove) override;
Error initialize(SectionTableRef SecTable) override;
void finalize() override;
};
class OwnedDataSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
std::vector<uint8_t> Data;
public:
OwnedDataSection(StringRef SecName, ArrayRef<uint8_t> Data)
: Data(std::begin(Data), std::end(Data)) {
Name = SecName.str();
Type = OriginalType = ELF::SHT_PROGBITS;
Size = Data.size();
OriginalOffset = std::numeric_limits<uint64_t>::max();
}
OwnedDataSection(const Twine &SecName, uint64_t SecAddr, uint64_t SecFlags,
uint64_t SecOff) {
Name = SecName.str();
Type = OriginalType = ELF::SHT_PROGBITS;
Addr = SecAddr;
Flags = OriginalFlags = SecFlags;
OriginalOffset = SecOff;
}
void appendHexData(StringRef HexData);
Error accept(SectionVisitor &Sec) const override;
Error accept(MutableSectionVisitor &Visitor) override;
};
class CompressedSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
DebugCompressionType CompressionType;
uint64_t DecompressedSize;
uint64_t DecompressedAlign;
SmallVector<char, 128> CompressedData;
public:
static Expected<CompressedSection>
create(const SectionBase &Sec, DebugCompressionType CompressionType);
static Expected<CompressedSection> create(ArrayRef<uint8_t> CompressedData,
uint64_t DecompressedSize,
uint64_t DecompressedAlign);
uint64_t getDecompressedSize() const { return DecompressedSize; }
uint64_t getDecompressedAlign() const { return DecompressedAlign; }
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
static bool classof(const SectionBase *S) {
return (S->OriginalFlags & ELF::SHF_COMPRESSED) ||
(StringRef(S->Name).startswith(".zdebug"));
}
private:
CompressedSection(const SectionBase &Sec,
DebugCompressionType CompressionType, Error &Err);
CompressedSection(ArrayRef<uint8_t> CompressedData, uint64_t DecompressedSize,
uint64_t DecompressedAlign);
};
class DecompressedSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
public:
explicit DecompressedSection(const CompressedSection &Sec)
: SectionBase(Sec) {
Size = Sec.getDecompressedSize();
Align = Sec.getDecompressedAlign();
Flags = OriginalFlags = (Flags & ~ELF::SHF_COMPRESSED);
if (StringRef(Name).startswith(".zdebug"))
Name = "." + Name.substr(2);
}
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
};
// There are two types of string tables that can exist, dynamic and not dynamic.
// In the dynamic case the string table is allocated. Changing a dynamic string
// table would mean altering virtual addresses and thus the memory image. So
// dynamic string tables should not have an interface to modify them or
// reconstruct them. This type lets us reconstruct a string table. To avoid
// this class being used for dynamic string tables (which has happened) the
// classof method checks that the particular instance is not allocated. This
// then agrees with the makeSection method used to construct most sections.
class StringTableSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
StringTableBuilder StrTabBuilder;
public:
StringTableSection() : StrTabBuilder(StringTableBuilder::ELF) {
Type = OriginalType = ELF::SHT_STRTAB;
}
void addString(StringRef Name);
uint32_t findIndex(StringRef Name) const;
void prepareForLayout();
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
static bool classof(const SectionBase *S) {
if (S->OriginalFlags & ELF::SHF_ALLOC)
return false;
return S->OriginalType == ELF::SHT_STRTAB;
}
};
// Symbols have a st_shndx field that normally stores an index but occasionally
// stores a different special value. This enum keeps track of what the st_shndx
// field means. Most of the values are just copies of the special SHN_* values.
// SYMBOL_SIMPLE_INDEX means that the st_shndx is just an index of a section.
enum SymbolShndxType {
SYMBOL_SIMPLE_INDEX = 0,
SYMBOL_ABS = ELF::SHN_ABS,
SYMBOL_COMMON = ELF::SHN_COMMON,
SYMBOL_LOPROC = ELF::SHN_LOPROC,
SYMBOL_AMDGPU_LDS = ELF::SHN_AMDGPU_LDS,
SYMBOL_HEXAGON_SCOMMON = ELF::SHN_HEXAGON_SCOMMON,
SYMBOL_HEXAGON_SCOMMON_2 = ELF::SHN_HEXAGON_SCOMMON_2,
SYMBOL_HEXAGON_SCOMMON_4 = ELF::SHN_HEXAGON_SCOMMON_4,
SYMBOL_HEXAGON_SCOMMON_8 = ELF::SHN_HEXAGON_SCOMMON_8,
SYMBOL_HIPROC = ELF::SHN_HIPROC,
SYMBOL_LOOS = ELF::SHN_LOOS,
SYMBOL_HIOS = ELF::SHN_HIOS,
SYMBOL_XINDEX = ELF::SHN_XINDEX,
};
struct Symbol {
uint8_t Binding;
SectionBase *DefinedIn = nullptr;
SymbolShndxType ShndxType;
uint32_t Index;
std::string Name;
uint32_t NameIndex;
uint64_t Size;
uint8_t Type;
uint64_t Value;
uint8_t Visibility;
bool Referenced = false;
uint16_t getShndx() const;
bool isCommon() const;
};
class SectionIndexSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
private:
std::vector<uint32_t> Indexes;
SymbolTableSection *Symbols = nullptr;
public:
virtual ~SectionIndexSection() {}
void addIndex(uint32_t Index) {
assert(Size > 0);
Indexes.push_back(Index);
}
void reserve(size_t NumSymbols) {
Indexes.reserve(NumSymbols);
Size = NumSymbols * 4;
}
void setSymTab(SymbolTableSection *SymTab) { Symbols = SymTab; }
Error initialize(SectionTableRef SecTable) override;
void finalize() override;
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
SectionIndexSection() {
Name = ".symtab_shndx";
Align = 4;
EntrySize = 4;
Type = OriginalType = ELF::SHT_SYMTAB_SHNDX;
}
};
class SymbolTableSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
void setStrTab(StringTableSection *StrTab) { SymbolNames = StrTab; }
void assignIndices();
protected:
std::vector<std::unique_ptr<Symbol>> Symbols;
StringTableSection *SymbolNames = nullptr;
SectionIndexSection *SectionIndexTable = nullptr;
using SymPtr = std::unique_ptr<Symbol>;
public:
SymbolTableSection() { Type = OriginalType = ELF::SHT_SYMTAB; }
void addSymbol(Twine Name, uint8_t Bind, uint8_t Type, SectionBase *DefinedIn,
uint64_t Value, uint8_t Visibility, uint16_t Shndx,
uint64_t SymbolSize);
void prepareForLayout();
// An 'empty' symbol table still contains a null symbol.
bool empty() const { return Symbols.size() == 1; }
void setShndxTable(SectionIndexSection *ShndxTable) {
SectionIndexTable = ShndxTable;
}
const SectionIndexSection *getShndxTable() const { return SectionIndexTable; }
void fillShndxTable();
const SectionBase *getStrTab() const { return SymbolNames; }
Expected<const Symbol *> getSymbolByIndex(uint32_t Index) const;
Expected<Symbol *> getSymbolByIndex(uint32_t Index);
void updateSymbols(function_ref<void(Symbol &)> Callable);
Error removeSectionReferences(
bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove) override;
Error initialize(SectionTableRef SecTable) override;
void finalize() override;
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
Error removeSymbols(function_ref<bool(const Symbol &)> ToRemove) override;
void replaceSectionReferences(
const DenseMap<SectionBase *, SectionBase *> &FromTo) override;
static bool classof(const SectionBase *S) {
return S->OriginalType == ELF::SHT_SYMTAB;
}
};
struct Relocation {
Symbol *RelocSymbol = nullptr;
uint64_t Offset;
uint64_t Addend;
uint32_t Type;
};
// All relocation sections denote relocations to apply to another section.
// However, some relocation sections use a dynamic symbol table and others use
// a regular symbol table. Because the types of the two symbol tables differ in
// our system (because they should behave differently) we can't uniformly
// represent all relocations with the same base class if we expose an interface
// that mentions the symbol table type. So we split the two base types into two
// different classes, one which handles the section the relocation is applied to
// and another which handles the symbol table type. The symbol table type is
// taken as a type parameter to the class (see RelocSectionWithSymtabBase).
class RelocationSectionBase : public SectionBase {
protected:
SectionBase *SecToApplyRel = nullptr;
public:
const SectionBase *getSection() const { return SecToApplyRel; }
void setSection(SectionBase *Sec) { SecToApplyRel = Sec; }
static bool classof(const SectionBase *S) {
return S->OriginalType == ELF::SHT_REL || S->OriginalType == ELF::SHT_RELA;
}
};
// Takes the symbol table type to use as a parameter so that we can deduplicate
// that code between the two symbol table types.
template <class SymTabType>
class RelocSectionWithSymtabBase : public RelocationSectionBase {
void setSymTab(SymTabType *SymTab) { Symbols = SymTab; }
protected:
RelocSectionWithSymtabBase() = default;
SymTabType *Symbols = nullptr;
public:
Error initialize(SectionTableRef SecTable) override;
void finalize() override;
};
class RelocationSection
: public RelocSectionWithSymtabBase<SymbolTableSection> {
MAKE_SEC_WRITER_FRIEND
std::vector<Relocation> Relocations;
public:
void addRelocation(Relocation Rel) { Relocations.push_back(Rel); }
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
Error removeSectionReferences(
bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove) override;
Error removeSymbols(function_ref<bool(const Symbol &)> ToRemove) override;
void markSymbols() override;
void replaceSectionReferences(
const DenseMap<SectionBase *, SectionBase *> &FromTo) override;
static bool classof(const SectionBase *S) {
if (S->OriginalFlags & ELF::SHF_ALLOC)
return false;
return S->OriginalType == ELF::SHT_REL || S->OriginalType == ELF::SHT_RELA;
}
};
// TODO: The way stripping and groups interact is complicated
// and still needs to be worked on.
class GroupSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
const SymbolTableSection *SymTab = nullptr;
Symbol *Sym = nullptr;
ELF::Elf32_Word FlagWord;
SmallVector<SectionBase *, 3> GroupMembers;
public:
// TODO: Contents is present in several classes of the hierarchy.
// This needs to be refactored to avoid duplication.
ArrayRef<uint8_t> Contents;
explicit GroupSection(ArrayRef<uint8_t> Data) : Contents(Data) {}
void setSymTab(const SymbolTableSection *SymTabSec) { SymTab = SymTabSec; }
void setSymbol(Symbol *S) { Sym = S; }
void setFlagWord(ELF::Elf32_Word W) { FlagWord = W; }
void addMember(SectionBase *Sec) { GroupMembers.push_back(Sec); }
Error accept(SectionVisitor &) const override;
Error accept(MutableSectionVisitor &Visitor) override;
void finalize() override;
Error removeSectionReferences(
bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove) override;
Error removeSymbols(function_ref<bool(const Symbol &)> ToRemove) override;
void markSymbols() override;
void replaceSectionReferences(
const DenseMap<SectionBase *, SectionBase *> &FromTo) override;
void onRemove() override;
static bool classof(const SectionBase *S) {
return S->OriginalType == ELF::SHT_GROUP;
}
};
class DynamicSymbolTableSection : public Section {
public:
explicit DynamicSymbolTableSection(ArrayRef<uint8_t> Data) : Section(Data) {}
static bool classof(const SectionBase *S) {
return S->OriginalType == ELF::SHT_DYNSYM;
}
};
class DynamicSection : public Section {
public:
explicit DynamicSection(ArrayRef<uint8_t> Data) : Section(Data) {}
static bool classof(const SectionBase *S) {
return S->OriginalType == ELF::SHT_DYNAMIC;
}
};
class DynamicRelocationSection
: public RelocSectionWithSymtabBase<DynamicSymbolTableSection> {
MAKE_SEC_WRITER_FRIEND
private:
ArrayRef<uint8_t> Contents;
public:
explicit DynamicRelocationSection(ArrayRef<uint8_t> Data) : Contents(Data) {}
Error accept(SectionVisitor &) const override;
Error accept(MutableSectionVisitor &Visitor) override;
Error removeSectionReferences(
bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove) override;
static bool classof(const SectionBase *S) {
if (!(S->OriginalFlags & ELF::SHF_ALLOC))
return false;
return S->OriginalType == ELF::SHT_REL || S->OriginalType == ELF::SHT_RELA;
}
};
class GnuDebugLinkSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
private:
StringRef FileName;
uint32_t CRC32;
void init(StringRef File);
public:
// If we add this section from an external source we can use this ctor.
explicit GnuDebugLinkSection(StringRef File, uint32_t PrecomputedCRC);
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
};
class Reader {
public:
virtual ~Reader();
virtual Expected<std::unique_ptr<Object>> create(bool EnsureSymtab) const = 0;
};
using object::Binary;
using object::ELFFile;
using object::ELFObjectFile;
using object::OwningBinary;
class BasicELFBuilder {
protected:
std::unique_ptr<Object> Obj;
void initFileHeader();
void initHeaderSegment();
StringTableSection *addStrTab();
SymbolTableSection *addSymTab(StringTableSection *StrTab);
Error initSections();
public:
BasicELFBuilder() : Obj(std::make_unique<Object>()) {}
};
class BinaryELFBuilder : public BasicELFBuilder {
MemoryBuffer *MemBuf;
uint8_t NewSymbolVisibility;
void addData(SymbolTableSection *SymTab);
public:
BinaryELFBuilder(MemoryBuffer *MB, uint8_t NewSymbolVisibility)
: BasicELFBuilder(), MemBuf(MB),
NewSymbolVisibility(NewSymbolVisibility) {}
Expected<std::unique_ptr<Object>> build();
};
class IHexELFBuilder : public BasicELFBuilder {
const std::vector<IHexRecord> &Records;
void addDataSections();
public:
IHexELFBuilder(const std::vector<IHexRecord> &Records)
: BasicELFBuilder(), Records(Records) {}
Expected<std::unique_ptr<Object>> build();
};
template <class ELFT> class ELFBuilder {
private:
using Elf_Addr = typename ELFT::Addr;
using Elf_Shdr = typename ELFT::Shdr;
using Elf_Word = typename ELFT::Word;
const ELFFile<ELFT> &ElfFile;
Object &Obj;
size_t EhdrOffset = 0;
Optional<StringRef> ExtractPartition;
void setParentSegment(Segment &Child);
Error readProgramHeaders(const ELFFile<ELFT> &HeadersFile);
Error initGroupSection(GroupSection *GroupSec);
Error initSymbolTable(SymbolTableSection *SymTab);
Error readSectionHeaders();
Error readSections(bool EnsureSymtab);
Error findEhdrOffset();
Expected<SectionBase &> makeSection(const Elf_Shdr &Shdr);
public:
ELFBuilder(const ELFObjectFile<ELFT> &ElfObj, Object &Obj,
Optional<StringRef> ExtractPartition)
: ElfFile(ElfObj.getELFFile()), Obj(Obj),
ExtractPartition(ExtractPartition) {}
Error build(bool EnsureSymtab);
};
class BinaryReader : public Reader {
MemoryBuffer *MemBuf;
uint8_t NewSymbolVisibility;
public:
BinaryReader(MemoryBuffer *MB, const uint8_t NewSymbolVisibility)
: MemBuf(MB), NewSymbolVisibility(NewSymbolVisibility) {}
Expected<std::unique_ptr<Object>> create(bool EnsureSymtab) const override;
};
class IHexReader : public Reader {
MemoryBuffer *MemBuf;
Expected<std::vector<IHexRecord>> parse() const;
Error parseError(size_t LineNo, Error E) const {
return LineNo == -1U
? createFileError(MemBuf->getBufferIdentifier(), std::move(E))
: createFileError(MemBuf->getBufferIdentifier(), LineNo,
std::move(E));
}
template <typename... Ts>
Error parseError(size_t LineNo, char const *Fmt, const Ts &... Vals) const {
Error E = createStringError(errc::invalid_argument, Fmt, Vals...);
return parseError(LineNo, std::move(E));
}
public:
IHexReader(MemoryBuffer *MB) : MemBuf(MB) {}
Expected<std::unique_ptr<Object>> create(bool EnsureSymtab) const override;
};
class ELFReader : public Reader {
Binary *Bin;
Optional<StringRef> ExtractPartition;
public:
Expected<std::unique_ptr<Object>> create(bool EnsureSymtab) const override;
explicit ELFReader(Binary *B, Optional<StringRef> ExtractPartition)
: Bin(B), ExtractPartition(ExtractPartition) {}
};
class Object {
private:
using SecPtr = std::unique_ptr<SectionBase>;
using SegPtr = std::unique_ptr<Segment>;
std::vector<SecPtr> Sections;
std::vector<SegPtr> Segments;
std::vector<SecPtr> RemovedSections;
static bool sectionIsAlloc(const SectionBase &Sec) {
return Sec.Flags & ELF::SHF_ALLOC;
};
public:
template <class T>
using Range = iterator_range<
pointee_iterator<typename std::vector<std::unique_ptr<T>>::iterator>>;
template <class T>
using ConstRange = iterator_range<pointee_iterator<
typename std::vector<std::unique_ptr<T>>::const_iterator>>;
// It is often the case that the ELF header and the program header table are
// not present in any segment. This could be a problem during file layout,
// because other segments may get assigned an offset where either of the
// two should reside, which will effectively corrupt the resulting binary.
// Other than that we use these segments to track program header offsets
// when they may not follow the ELF header.
Segment ElfHdrSegment;
Segment ProgramHdrSegment;
uint8_t OSABI;
uint8_t ABIVersion;
uint64_t Entry;
uint64_t SHOff;
uint32_t Type;
uint32_t Machine;
uint32_t Version;
uint32_t Flags;
bool HadShdrs = true;
bool MustBeRelocatable = false;
StringTableSection *SectionNames = nullptr;
SymbolTableSection *SymbolTable = nullptr;
SectionIndexSection *SectionIndexTable = nullptr;
void sortSections();
SectionTableRef sections() { return SectionTableRef(Sections); }
ConstRange<SectionBase> sections() const {
return make_pointee_range(Sections);
}
iterator_range<
filter_iterator<pointee_iterator<std::vector<SecPtr>::const_iterator>,
decltype(&sectionIsAlloc)>>
allocSections() const {
return make_filter_range(make_pointee_range(Sections), sectionIsAlloc);
}
SectionBase *findSection(StringRef Name) {
auto SecIt =
find_if(Sections, [&](const SecPtr &Sec) { return Sec->Name == Name; });
return SecIt == Sections.end() ? nullptr : SecIt->get();
}
SectionTableRef removedSections() { return SectionTableRef(RemovedSections); }
Range<Segment> segments() { return make_pointee_range(Segments); }
ConstRange<Segment> segments() const { return make_pointee_range(Segments); }
Error removeSections(bool AllowBrokenLinks,
std::function<bool(const SectionBase &)> ToRemove);
Error removeSymbols(function_ref<bool(const Symbol &)> ToRemove);
template <class T, class... Ts> T &addSection(Ts &&... Args) {
auto Sec = std::make_unique<T>(std::forward<Ts>(Args)...);
auto Ptr = Sec.get();
MustBeRelocatable |= isa<RelocationSection>(*Ptr);
Sections.emplace_back(std::move(Sec));
Ptr->Index = Sections.size();
return *Ptr;
}
Error addNewSymbolTable();
Segment &addSegment(ArrayRef<uint8_t> Data) {
Segments.emplace_back(std::make_unique<Segment>(Data));
return *Segments.back();
}
bool isRelocatable() const {
return (Type != ELF::ET_DYN && Type != ELF::ET_EXEC) || MustBeRelocatable;
}
};
} // end namespace elf
} // end namespace objcopy
} // end namespace llvm
#endif // LLVM_TOOLS_OBJCOPY_OBJECT_H