llvm-for-llvmta/tools/clang/test/SemaCXX/rounding-math.cpp

79 lines
2.0 KiB
C++

// RUN: %clang_cc1 -triple x86_64-linux -verify=norounding -Wno-unknown-pragmas %s
// RUN: %clang_cc1 -triple x86_64-linux -verify=rounding %s -frounding-math -Wno-unknown-pragmas
// rounding-no-diagnostics
#define fold(x) (__builtin_constant_p(x) ? (x) : (x))
constexpr double a = 1.0 / 3.0;
constexpr int f(int n) { return int(n * (1.0 / 3.0)); }
using T = int[f(3)];
using T = int[1];
enum Enum { enum_a = f(3) };
struct Bitfield {
unsigned int n : 1;
unsigned int m : f(3);
};
void f(Bitfield &b) {
b.n = int(6 * (1.0 / 3.0)); // norounding-warning {{changes value from 2 to 0}}
}
const int k = 3 * (1.0 / 3.0);
static_assert(k == 1, "");
void g() {
// FIXME: Constant-evaluating this initializer is surprising, and violates
// the recommended practice in C++ [expr.const]p12:
//
// Implementations should provide consistent results of floating-point
// evaluations, irrespective of whether the evaluation is performed during
// translation or during program execution.
const int k = 3 * (1.0 / 3.0);
static_assert(k == 1, "");
}
int *h() {
return new int[int(-3 * (1.0 / 3.0))]; // norounding-error {{too large}}
}
// nextUp(1.F) == 0x1.000002p0F
static_assert(1.0F + 0x0.000001p0F == 0x1.0p0F, "");
char Arr01[1 + (1.0F + 0x0.000001p0F > 1.0F)];
static_assert(sizeof(Arr01) == 1, "");
struct S1 {
int : (1.0F + 0x0.000001p0F > 1.0F);
int f;
};
static_assert(sizeof(S1) == sizeof(int), "");
#pragma STDC FENV_ROUND FE_UPWARD
static_assert(1.0F + 0x0.000001p0F == 0x1.000002p0F, "");
char Arr01u[1 + (1.0F + 0x0.000001p0F > 1.0F)];
static_assert(sizeof(Arr01u) == 2, "");
struct S1u {
int : (1.0F + 0x0.000001p0F > 1.0F);
int f;
};
static_assert(sizeof(S1u) > sizeof(int), "");
#pragma STDC FENV_ROUND FE_DOWNWARD
static_assert(1.0F + 0x0.000001p0F == 1.0F, "");
char Arr01d[1 + (1.0F + 0x0.000001p0F > 1.0F)];
static_assert(sizeof(Arr01d) == 1, "");
struct S1d {
int : (1.0F + 0x0.000001p0F > 1.0F);
int f;
};
static_assert(sizeof(S1d) == sizeof(int), "");