15163 lines
606 KiB
C++
15163 lines
606 KiB
C++
//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides Sema routines for C++ overloading.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DependenceFlags.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/TypeOrdering.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/DiagnosticOptions.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/Overload.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "clang/Sema/TemplateDeduction.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include <algorithm>
|
|
#include <cstdlib>
|
|
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
using AllowedExplicit = Sema::AllowedExplicit;
|
|
|
|
static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
|
|
return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
|
|
return P->hasAttr<PassObjectSizeAttr>();
|
|
});
|
|
}
|
|
|
|
/// A convenience routine for creating a decayed reference to a function.
|
|
static ExprResult
|
|
CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
|
|
const Expr *Base, bool HadMultipleCandidates,
|
|
SourceLocation Loc = SourceLocation(),
|
|
const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
|
|
if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
|
|
return ExprError();
|
|
// If FoundDecl is different from Fn (such as if one is a template
|
|
// and the other a specialization), make sure DiagnoseUseOfDecl is
|
|
// called on both.
|
|
// FIXME: This would be more comprehensively addressed by modifying
|
|
// DiagnoseUseOfDecl to accept both the FoundDecl and the decl
|
|
// being used.
|
|
if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
|
|
return ExprError();
|
|
DeclRefExpr *DRE = new (S.Context)
|
|
DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
|
|
if (HadMultipleCandidates)
|
|
DRE->setHadMultipleCandidates(true);
|
|
|
|
S.MarkDeclRefReferenced(DRE, Base);
|
|
if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
|
|
if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
|
|
S.ResolveExceptionSpec(Loc, FPT);
|
|
DRE->setType(Fn->getType());
|
|
}
|
|
}
|
|
return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
|
|
CK_FunctionToPointerDecay);
|
|
}
|
|
|
|
static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
|
|
bool InOverloadResolution,
|
|
StandardConversionSequence &SCS,
|
|
bool CStyle,
|
|
bool AllowObjCWritebackConversion);
|
|
|
|
static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
|
|
QualType &ToType,
|
|
bool InOverloadResolution,
|
|
StandardConversionSequence &SCS,
|
|
bool CStyle);
|
|
static OverloadingResult
|
|
IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
|
|
UserDefinedConversionSequence& User,
|
|
OverloadCandidateSet& Conversions,
|
|
AllowedExplicit AllowExplicit,
|
|
bool AllowObjCConversionOnExplicit);
|
|
|
|
static ImplicitConversionSequence::CompareKind
|
|
CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2);
|
|
|
|
static ImplicitConversionSequence::CompareKind
|
|
CompareQualificationConversions(Sema &S,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2);
|
|
|
|
static ImplicitConversionSequence::CompareKind
|
|
CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2);
|
|
|
|
/// GetConversionRank - Retrieve the implicit conversion rank
|
|
/// corresponding to the given implicit conversion kind.
|
|
ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
|
|
static const ImplicitConversionRank
|
|
Rank[(int)ICK_Num_Conversion_Kinds] = {
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Promotion,
|
|
ICR_Promotion,
|
|
ICR_Promotion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_OCL_Scalar_Widening,
|
|
ICR_Complex_Real_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Writeback_Conversion,
|
|
ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
|
|
// it was omitted by the patch that added
|
|
// ICK_Zero_Event_Conversion
|
|
ICR_C_Conversion,
|
|
ICR_C_Conversion_Extension
|
|
};
|
|
return Rank[(int)Kind];
|
|
}
|
|
|
|
/// GetImplicitConversionName - Return the name of this kind of
|
|
/// implicit conversion.
|
|
static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
|
|
static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
|
|
"No conversion",
|
|
"Lvalue-to-rvalue",
|
|
"Array-to-pointer",
|
|
"Function-to-pointer",
|
|
"Function pointer conversion",
|
|
"Qualification",
|
|
"Integral promotion",
|
|
"Floating point promotion",
|
|
"Complex promotion",
|
|
"Integral conversion",
|
|
"Floating conversion",
|
|
"Complex conversion",
|
|
"Floating-integral conversion",
|
|
"Pointer conversion",
|
|
"Pointer-to-member conversion",
|
|
"Boolean conversion",
|
|
"Compatible-types conversion",
|
|
"Derived-to-base conversion",
|
|
"Vector conversion",
|
|
"SVE Vector conversion",
|
|
"Vector splat",
|
|
"Complex-real conversion",
|
|
"Block Pointer conversion",
|
|
"Transparent Union Conversion",
|
|
"Writeback conversion",
|
|
"OpenCL Zero Event Conversion",
|
|
"C specific type conversion",
|
|
"Incompatible pointer conversion"
|
|
};
|
|
return Name[Kind];
|
|
}
|
|
|
|
/// StandardConversionSequence - Set the standard conversion
|
|
/// sequence to the identity conversion.
|
|
void StandardConversionSequence::setAsIdentityConversion() {
|
|
First = ICK_Identity;
|
|
Second = ICK_Identity;
|
|
Third = ICK_Identity;
|
|
DeprecatedStringLiteralToCharPtr = false;
|
|
QualificationIncludesObjCLifetime = false;
|
|
ReferenceBinding = false;
|
|
DirectBinding = false;
|
|
IsLvalueReference = true;
|
|
BindsToFunctionLvalue = false;
|
|
BindsToRvalue = false;
|
|
BindsImplicitObjectArgumentWithoutRefQualifier = false;
|
|
ObjCLifetimeConversionBinding = false;
|
|
CopyConstructor = nullptr;
|
|
}
|
|
|
|
/// getRank - Retrieve the rank of this standard conversion sequence
|
|
/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
|
|
/// implicit conversions.
|
|
ImplicitConversionRank StandardConversionSequence::getRank() const {
|
|
ImplicitConversionRank Rank = ICR_Exact_Match;
|
|
if (GetConversionRank(First) > Rank)
|
|
Rank = GetConversionRank(First);
|
|
if (GetConversionRank(Second) > Rank)
|
|
Rank = GetConversionRank(Second);
|
|
if (GetConversionRank(Third) > Rank)
|
|
Rank = GetConversionRank(Third);
|
|
return Rank;
|
|
}
|
|
|
|
/// isPointerConversionToBool - Determines whether this conversion is
|
|
/// a conversion of a pointer or pointer-to-member to bool. This is
|
|
/// used as part of the ranking of standard conversion sequences
|
|
/// (C++ 13.3.3.2p4).
|
|
bool StandardConversionSequence::isPointerConversionToBool() const {
|
|
// Note that FromType has not necessarily been transformed by the
|
|
// array-to-pointer or function-to-pointer implicit conversions, so
|
|
// check for their presence as well as checking whether FromType is
|
|
// a pointer.
|
|
if (getToType(1)->isBooleanType() &&
|
|
(getFromType()->isPointerType() ||
|
|
getFromType()->isMemberPointerType() ||
|
|
getFromType()->isObjCObjectPointerType() ||
|
|
getFromType()->isBlockPointerType() ||
|
|
First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isPointerConversionToVoidPointer - Determines whether this
|
|
/// conversion is a conversion of a pointer to a void pointer. This is
|
|
/// used as part of the ranking of standard conversion sequences (C++
|
|
/// 13.3.3.2p4).
|
|
bool
|
|
StandardConversionSequence::
|
|
isPointerConversionToVoidPointer(ASTContext& Context) const {
|
|
QualType FromType = getFromType();
|
|
QualType ToType = getToType(1);
|
|
|
|
// Note that FromType has not necessarily been transformed by the
|
|
// array-to-pointer implicit conversion, so check for its presence
|
|
// and redo the conversion to get a pointer.
|
|
if (First == ICK_Array_To_Pointer)
|
|
FromType = Context.getArrayDecayedType(FromType);
|
|
|
|
if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
|
|
if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
|
|
return ToPtrType->getPointeeType()->isVoidType();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Skip any implicit casts which could be either part of a narrowing conversion
|
|
/// or after one in an implicit conversion.
|
|
static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
|
|
const Expr *Converted) {
|
|
// We can have cleanups wrapping the converted expression; these need to be
|
|
// preserved so that destructors run if necessary.
|
|
if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
|
|
Expr *Inner =
|
|
const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
|
|
return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
|
|
EWC->getObjects());
|
|
}
|
|
|
|
while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
|
|
switch (ICE->getCastKind()) {
|
|
case CK_NoOp:
|
|
case CK_IntegralCast:
|
|
case CK_IntegralToBoolean:
|
|
case CK_IntegralToFloating:
|
|
case CK_BooleanToSignedIntegral:
|
|
case CK_FloatingToIntegral:
|
|
case CK_FloatingToBoolean:
|
|
case CK_FloatingCast:
|
|
Converted = ICE->getSubExpr();
|
|
continue;
|
|
|
|
default:
|
|
return Converted;
|
|
}
|
|
}
|
|
|
|
return Converted;
|
|
}
|
|
|
|
/// Check if this standard conversion sequence represents a narrowing
|
|
/// conversion, according to C++11 [dcl.init.list]p7.
|
|
///
|
|
/// \param Ctx The AST context.
|
|
/// \param Converted The result of applying this standard conversion sequence.
|
|
/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
|
|
/// value of the expression prior to the narrowing conversion.
|
|
/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
|
|
/// type of the expression prior to the narrowing conversion.
|
|
/// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
|
|
/// from floating point types to integral types should be ignored.
|
|
NarrowingKind StandardConversionSequence::getNarrowingKind(
|
|
ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
|
|
QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
|
|
assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
|
|
|
|
// C++11 [dcl.init.list]p7:
|
|
// A narrowing conversion is an implicit conversion ...
|
|
QualType FromType = getToType(0);
|
|
QualType ToType = getToType(1);
|
|
|
|
// A conversion to an enumeration type is narrowing if the conversion to
|
|
// the underlying type is narrowing. This only arises for expressions of
|
|
// the form 'Enum{init}'.
|
|
if (auto *ET = ToType->getAs<EnumType>())
|
|
ToType = ET->getDecl()->getIntegerType();
|
|
|
|
switch (Second) {
|
|
// 'bool' is an integral type; dispatch to the right place to handle it.
|
|
case ICK_Boolean_Conversion:
|
|
if (FromType->isRealFloatingType())
|
|
goto FloatingIntegralConversion;
|
|
if (FromType->isIntegralOrUnscopedEnumerationType())
|
|
goto IntegralConversion;
|
|
// -- from a pointer type or pointer-to-member type to bool, or
|
|
return NK_Type_Narrowing;
|
|
|
|
// -- from a floating-point type to an integer type, or
|
|
//
|
|
// -- from an integer type or unscoped enumeration type to a floating-point
|
|
// type, except where the source is a constant expression and the actual
|
|
// value after conversion will fit into the target type and will produce
|
|
// the original value when converted back to the original type, or
|
|
case ICK_Floating_Integral:
|
|
FloatingIntegralConversion:
|
|
if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
|
|
return NK_Type_Narrowing;
|
|
} else if (FromType->isIntegralOrUnscopedEnumerationType() &&
|
|
ToType->isRealFloatingType()) {
|
|
if (IgnoreFloatToIntegralConversion)
|
|
return NK_Not_Narrowing;
|
|
const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
|
|
assert(Initializer && "Unknown conversion expression");
|
|
|
|
// If it's value-dependent, we can't tell whether it's narrowing.
|
|
if (Initializer->isValueDependent())
|
|
return NK_Dependent_Narrowing;
|
|
|
|
if (Optional<llvm::APSInt> IntConstantValue =
|
|
Initializer->getIntegerConstantExpr(Ctx)) {
|
|
// Convert the integer to the floating type.
|
|
llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
|
|
Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(),
|
|
llvm::APFloat::rmNearestTiesToEven);
|
|
// And back.
|
|
llvm::APSInt ConvertedValue = *IntConstantValue;
|
|
bool ignored;
|
|
Result.convertToInteger(ConvertedValue,
|
|
llvm::APFloat::rmTowardZero, &ignored);
|
|
// If the resulting value is different, this was a narrowing conversion.
|
|
if (*IntConstantValue != ConvertedValue) {
|
|
ConstantValue = APValue(*IntConstantValue);
|
|
ConstantType = Initializer->getType();
|
|
return NK_Constant_Narrowing;
|
|
}
|
|
} else {
|
|
// Variables are always narrowings.
|
|
return NK_Variable_Narrowing;
|
|
}
|
|
}
|
|
return NK_Not_Narrowing;
|
|
|
|
// -- from long double to double or float, or from double to float, except
|
|
// where the source is a constant expression and the actual value after
|
|
// conversion is within the range of values that can be represented (even
|
|
// if it cannot be represented exactly), or
|
|
case ICK_Floating_Conversion:
|
|
if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
|
|
Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
|
|
// FromType is larger than ToType.
|
|
const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
|
|
|
|
// If it's value-dependent, we can't tell whether it's narrowing.
|
|
if (Initializer->isValueDependent())
|
|
return NK_Dependent_Narrowing;
|
|
|
|
if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
|
|
// Constant!
|
|
assert(ConstantValue.isFloat());
|
|
llvm::APFloat FloatVal = ConstantValue.getFloat();
|
|
// Convert the source value into the target type.
|
|
bool ignored;
|
|
llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
|
|
Ctx.getFloatTypeSemantics(ToType),
|
|
llvm::APFloat::rmNearestTiesToEven, &ignored);
|
|
// If there was no overflow, the source value is within the range of
|
|
// values that can be represented.
|
|
if (ConvertStatus & llvm::APFloat::opOverflow) {
|
|
ConstantType = Initializer->getType();
|
|
return NK_Constant_Narrowing;
|
|
}
|
|
} else {
|
|
return NK_Variable_Narrowing;
|
|
}
|
|
}
|
|
return NK_Not_Narrowing;
|
|
|
|
// -- from an integer type or unscoped enumeration type to an integer type
|
|
// that cannot represent all the values of the original type, except where
|
|
// the source is a constant expression and the actual value after
|
|
// conversion will fit into the target type and will produce the original
|
|
// value when converted back to the original type.
|
|
case ICK_Integral_Conversion:
|
|
IntegralConversion: {
|
|
assert(FromType->isIntegralOrUnscopedEnumerationType());
|
|
assert(ToType->isIntegralOrUnscopedEnumerationType());
|
|
const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
|
|
const unsigned FromWidth = Ctx.getIntWidth(FromType);
|
|
const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
|
|
const unsigned ToWidth = Ctx.getIntWidth(ToType);
|
|
|
|
if (FromWidth > ToWidth ||
|
|
(FromWidth == ToWidth && FromSigned != ToSigned) ||
|
|
(FromSigned && !ToSigned)) {
|
|
// Not all values of FromType can be represented in ToType.
|
|
const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
|
|
|
|
// If it's value-dependent, we can't tell whether it's narrowing.
|
|
if (Initializer->isValueDependent())
|
|
return NK_Dependent_Narrowing;
|
|
|
|
Optional<llvm::APSInt> OptInitializerValue;
|
|
if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) {
|
|
// Such conversions on variables are always narrowing.
|
|
return NK_Variable_Narrowing;
|
|
}
|
|
llvm::APSInt &InitializerValue = *OptInitializerValue;
|
|
bool Narrowing = false;
|
|
if (FromWidth < ToWidth) {
|
|
// Negative -> unsigned is narrowing. Otherwise, more bits is never
|
|
// narrowing.
|
|
if (InitializerValue.isSigned() && InitializerValue.isNegative())
|
|
Narrowing = true;
|
|
} else {
|
|
// Add a bit to the InitializerValue so we don't have to worry about
|
|
// signed vs. unsigned comparisons.
|
|
InitializerValue = InitializerValue.extend(
|
|
InitializerValue.getBitWidth() + 1);
|
|
// Convert the initializer to and from the target width and signed-ness.
|
|
llvm::APSInt ConvertedValue = InitializerValue;
|
|
ConvertedValue = ConvertedValue.trunc(ToWidth);
|
|
ConvertedValue.setIsSigned(ToSigned);
|
|
ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
|
|
ConvertedValue.setIsSigned(InitializerValue.isSigned());
|
|
// If the result is different, this was a narrowing conversion.
|
|
if (ConvertedValue != InitializerValue)
|
|
Narrowing = true;
|
|
}
|
|
if (Narrowing) {
|
|
ConstantType = Initializer->getType();
|
|
ConstantValue = APValue(InitializerValue);
|
|
return NK_Constant_Narrowing;
|
|
}
|
|
}
|
|
return NK_Not_Narrowing;
|
|
}
|
|
|
|
default:
|
|
// Other kinds of conversions are not narrowings.
|
|
return NK_Not_Narrowing;
|
|
}
|
|
}
|
|
|
|
/// dump - Print this standard conversion sequence to standard
|
|
/// error. Useful for debugging overloading issues.
|
|
LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
|
|
raw_ostream &OS = llvm::errs();
|
|
bool PrintedSomething = false;
|
|
if (First != ICK_Identity) {
|
|
OS << GetImplicitConversionName(First);
|
|
PrintedSomething = true;
|
|
}
|
|
|
|
if (Second != ICK_Identity) {
|
|
if (PrintedSomething) {
|
|
OS << " -> ";
|
|
}
|
|
OS << GetImplicitConversionName(Second);
|
|
|
|
if (CopyConstructor) {
|
|
OS << " (by copy constructor)";
|
|
} else if (DirectBinding) {
|
|
OS << " (direct reference binding)";
|
|
} else if (ReferenceBinding) {
|
|
OS << " (reference binding)";
|
|
}
|
|
PrintedSomething = true;
|
|
}
|
|
|
|
if (Third != ICK_Identity) {
|
|
if (PrintedSomething) {
|
|
OS << " -> ";
|
|
}
|
|
OS << GetImplicitConversionName(Third);
|
|
PrintedSomething = true;
|
|
}
|
|
|
|
if (!PrintedSomething) {
|
|
OS << "No conversions required";
|
|
}
|
|
}
|
|
|
|
/// dump - Print this user-defined conversion sequence to standard
|
|
/// error. Useful for debugging overloading issues.
|
|
void UserDefinedConversionSequence::dump() const {
|
|
raw_ostream &OS = llvm::errs();
|
|
if (Before.First || Before.Second || Before.Third) {
|
|
Before.dump();
|
|
OS << " -> ";
|
|
}
|
|
if (ConversionFunction)
|
|
OS << '\'' << *ConversionFunction << '\'';
|
|
else
|
|
OS << "aggregate initialization";
|
|
if (After.First || After.Second || After.Third) {
|
|
OS << " -> ";
|
|
After.dump();
|
|
}
|
|
}
|
|
|
|
/// dump - Print this implicit conversion sequence to standard
|
|
/// error. Useful for debugging overloading issues.
|
|
void ImplicitConversionSequence::dump() const {
|
|
raw_ostream &OS = llvm::errs();
|
|
if (isStdInitializerListElement())
|
|
OS << "Worst std::initializer_list element conversion: ";
|
|
switch (ConversionKind) {
|
|
case StandardConversion:
|
|
OS << "Standard conversion: ";
|
|
Standard.dump();
|
|
break;
|
|
case UserDefinedConversion:
|
|
OS << "User-defined conversion: ";
|
|
UserDefined.dump();
|
|
break;
|
|
case EllipsisConversion:
|
|
OS << "Ellipsis conversion";
|
|
break;
|
|
case AmbiguousConversion:
|
|
OS << "Ambiguous conversion";
|
|
break;
|
|
case BadConversion:
|
|
OS << "Bad conversion";
|
|
break;
|
|
}
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
void AmbiguousConversionSequence::construct() {
|
|
new (&conversions()) ConversionSet();
|
|
}
|
|
|
|
void AmbiguousConversionSequence::destruct() {
|
|
conversions().~ConversionSet();
|
|
}
|
|
|
|
void
|
|
AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
|
|
FromTypePtr = O.FromTypePtr;
|
|
ToTypePtr = O.ToTypePtr;
|
|
new (&conversions()) ConversionSet(O.conversions());
|
|
}
|
|
|
|
namespace {
|
|
// Structure used by DeductionFailureInfo to store
|
|
// template argument information.
|
|
struct DFIArguments {
|
|
TemplateArgument FirstArg;
|
|
TemplateArgument SecondArg;
|
|
};
|
|
// Structure used by DeductionFailureInfo to store
|
|
// template parameter and template argument information.
|
|
struct DFIParamWithArguments : DFIArguments {
|
|
TemplateParameter Param;
|
|
};
|
|
// Structure used by DeductionFailureInfo to store template argument
|
|
// information and the index of the problematic call argument.
|
|
struct DFIDeducedMismatchArgs : DFIArguments {
|
|
TemplateArgumentList *TemplateArgs;
|
|
unsigned CallArgIndex;
|
|
};
|
|
// Structure used by DeductionFailureInfo to store information about
|
|
// unsatisfied constraints.
|
|
struct CNSInfo {
|
|
TemplateArgumentList *TemplateArgs;
|
|
ConstraintSatisfaction Satisfaction;
|
|
};
|
|
}
|
|
|
|
/// Convert from Sema's representation of template deduction information
|
|
/// to the form used in overload-candidate information.
|
|
DeductionFailureInfo
|
|
clang::MakeDeductionFailureInfo(ASTContext &Context,
|
|
Sema::TemplateDeductionResult TDK,
|
|
TemplateDeductionInfo &Info) {
|
|
DeductionFailureInfo Result;
|
|
Result.Result = static_cast<unsigned>(TDK);
|
|
Result.HasDiagnostic = false;
|
|
switch (TDK) {
|
|
case Sema::TDK_Invalid:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_MiscellaneousDeductionFailure:
|
|
case Sema::TDK_CUDATargetMismatch:
|
|
Result.Data = nullptr;
|
|
break;
|
|
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
Result.Data = Info.Param.getOpaqueValue();
|
|
break;
|
|
|
|
case Sema::TDK_DeducedMismatch:
|
|
case Sema::TDK_DeducedMismatchNested: {
|
|
// FIXME: Should allocate from normal heap so that we can free this later.
|
|
auto *Saved = new (Context) DFIDeducedMismatchArgs;
|
|
Saved->FirstArg = Info.FirstArg;
|
|
Saved->SecondArg = Info.SecondArg;
|
|
Saved->TemplateArgs = Info.take();
|
|
Saved->CallArgIndex = Info.CallArgIndex;
|
|
Result.Data = Saved;
|
|
break;
|
|
}
|
|
|
|
case Sema::TDK_NonDeducedMismatch: {
|
|
// FIXME: Should allocate from normal heap so that we can free this later.
|
|
DFIArguments *Saved = new (Context) DFIArguments;
|
|
Saved->FirstArg = Info.FirstArg;
|
|
Saved->SecondArg = Info.SecondArg;
|
|
Result.Data = Saved;
|
|
break;
|
|
}
|
|
|
|
case Sema::TDK_IncompletePack:
|
|
// FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_Underqualified: {
|
|
// FIXME: Should allocate from normal heap so that we can free this later.
|
|
DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
|
|
Saved->Param = Info.Param;
|
|
Saved->FirstArg = Info.FirstArg;
|
|
Saved->SecondArg = Info.SecondArg;
|
|
Result.Data = Saved;
|
|
break;
|
|
}
|
|
|
|
case Sema::TDK_SubstitutionFailure:
|
|
Result.Data = Info.take();
|
|
if (Info.hasSFINAEDiagnostic()) {
|
|
PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
|
|
SourceLocation(), PartialDiagnostic::NullDiagnostic());
|
|
Info.takeSFINAEDiagnostic(*Diag);
|
|
Result.HasDiagnostic = true;
|
|
}
|
|
break;
|
|
|
|
case Sema::TDK_ConstraintsNotSatisfied: {
|
|
CNSInfo *Saved = new (Context) CNSInfo;
|
|
Saved->TemplateArgs = Info.take();
|
|
Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
|
|
Result.Data = Saved;
|
|
break;
|
|
}
|
|
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_NonDependentConversionFailure:
|
|
llvm_unreachable("not a deduction failure");
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
void DeductionFailureInfo::Destroy() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_Invalid:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
case Sema::TDK_CUDATargetMismatch:
|
|
case Sema::TDK_NonDependentConversionFailure:
|
|
break;
|
|
|
|
case Sema::TDK_IncompletePack:
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_Underqualified:
|
|
case Sema::TDK_DeducedMismatch:
|
|
case Sema::TDK_DeducedMismatchNested:
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
// FIXME: Destroy the data?
|
|
Data = nullptr;
|
|
break;
|
|
|
|
case Sema::TDK_SubstitutionFailure:
|
|
// FIXME: Destroy the template argument list?
|
|
Data = nullptr;
|
|
if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
|
|
Diag->~PartialDiagnosticAt();
|
|
HasDiagnostic = false;
|
|
}
|
|
break;
|
|
|
|
case Sema::TDK_ConstraintsNotSatisfied:
|
|
// FIXME: Destroy the template argument list?
|
|
Data = nullptr;
|
|
if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
|
|
Diag->~PartialDiagnosticAt();
|
|
HasDiagnostic = false;
|
|
}
|
|
break;
|
|
|
|
// Unhandled
|
|
case Sema::TDK_MiscellaneousDeductionFailure:
|
|
break;
|
|
}
|
|
}
|
|
|
|
PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
|
|
if (HasDiagnostic)
|
|
return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
|
|
return nullptr;
|
|
}
|
|
|
|
TemplateParameter DeductionFailureInfo::getTemplateParameter() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_Invalid:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_SubstitutionFailure:
|
|
case Sema::TDK_DeducedMismatch:
|
|
case Sema::TDK_DeducedMismatchNested:
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_CUDATargetMismatch:
|
|
case Sema::TDK_NonDependentConversionFailure:
|
|
case Sema::TDK_ConstraintsNotSatisfied:
|
|
return TemplateParameter();
|
|
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
return TemplateParameter::getFromOpaqueValue(Data);
|
|
|
|
case Sema::TDK_IncompletePack:
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_Underqualified:
|
|
return static_cast<DFIParamWithArguments*>(Data)->Param;
|
|
|
|
// Unhandled
|
|
case Sema::TDK_MiscellaneousDeductionFailure:
|
|
break;
|
|
}
|
|
|
|
return TemplateParameter();
|
|
}
|
|
|
|
TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_Invalid:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_IncompletePack:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_Underqualified:
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_CUDATargetMismatch:
|
|
case Sema::TDK_NonDependentConversionFailure:
|
|
return nullptr;
|
|
|
|
case Sema::TDK_DeducedMismatch:
|
|
case Sema::TDK_DeducedMismatchNested:
|
|
return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
|
|
|
|
case Sema::TDK_SubstitutionFailure:
|
|
return static_cast<TemplateArgumentList*>(Data);
|
|
|
|
case Sema::TDK_ConstraintsNotSatisfied:
|
|
return static_cast<CNSInfo*>(Data)->TemplateArgs;
|
|
|
|
// Unhandled
|
|
case Sema::TDK_MiscellaneousDeductionFailure:
|
|
break;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const TemplateArgument *DeductionFailureInfo::getFirstArg() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_Invalid:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
case Sema::TDK_SubstitutionFailure:
|
|
case Sema::TDK_CUDATargetMismatch:
|
|
case Sema::TDK_NonDependentConversionFailure:
|
|
case Sema::TDK_ConstraintsNotSatisfied:
|
|
return nullptr;
|
|
|
|
case Sema::TDK_IncompletePack:
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_Underqualified:
|
|
case Sema::TDK_DeducedMismatch:
|
|
case Sema::TDK_DeducedMismatchNested:
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
return &static_cast<DFIArguments*>(Data)->FirstArg;
|
|
|
|
// Unhandled
|
|
case Sema::TDK_MiscellaneousDeductionFailure:
|
|
break;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const TemplateArgument *DeductionFailureInfo::getSecondArg() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_Invalid:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_IncompletePack:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
case Sema::TDK_SubstitutionFailure:
|
|
case Sema::TDK_CUDATargetMismatch:
|
|
case Sema::TDK_NonDependentConversionFailure:
|
|
case Sema::TDK_ConstraintsNotSatisfied:
|
|
return nullptr;
|
|
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_Underqualified:
|
|
case Sema::TDK_DeducedMismatch:
|
|
case Sema::TDK_DeducedMismatchNested:
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
return &static_cast<DFIArguments*>(Data)->SecondArg;
|
|
|
|
// Unhandled
|
|
case Sema::TDK_MiscellaneousDeductionFailure:
|
|
break;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_DeducedMismatch:
|
|
case Sema::TDK_DeducedMismatchNested:
|
|
return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
|
|
|
|
default:
|
|
return llvm::None;
|
|
}
|
|
}
|
|
|
|
bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
|
|
OverloadedOperatorKind Op) {
|
|
if (!AllowRewrittenCandidates)
|
|
return false;
|
|
return Op == OO_EqualEqual || Op == OO_Spaceship;
|
|
}
|
|
|
|
bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
|
|
ASTContext &Ctx, const FunctionDecl *FD) {
|
|
if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
|
|
return false;
|
|
// Don't bother adding a reversed candidate that can never be a better
|
|
// match than the non-reversed version.
|
|
return FD->getNumParams() != 2 ||
|
|
!Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
|
|
FD->getParamDecl(1)->getType()) ||
|
|
FD->hasAttr<EnableIfAttr>();
|
|
}
|
|
|
|
void OverloadCandidateSet::destroyCandidates() {
|
|
for (iterator i = begin(), e = end(); i != e; ++i) {
|
|
for (auto &C : i->Conversions)
|
|
C.~ImplicitConversionSequence();
|
|
if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
|
|
i->DeductionFailure.Destroy();
|
|
}
|
|
}
|
|
|
|
void OverloadCandidateSet::clear(CandidateSetKind CSK) {
|
|
destroyCandidates();
|
|
SlabAllocator.Reset();
|
|
NumInlineBytesUsed = 0;
|
|
Candidates.clear();
|
|
Functions.clear();
|
|
Kind = CSK;
|
|
}
|
|
|
|
namespace {
|
|
class UnbridgedCastsSet {
|
|
struct Entry {
|
|
Expr **Addr;
|
|
Expr *Saved;
|
|
};
|
|
SmallVector<Entry, 2> Entries;
|
|
|
|
public:
|
|
void save(Sema &S, Expr *&E) {
|
|
assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
|
|
Entry entry = { &E, E };
|
|
Entries.push_back(entry);
|
|
E = S.stripARCUnbridgedCast(E);
|
|
}
|
|
|
|
void restore() {
|
|
for (SmallVectorImpl<Entry>::iterator
|
|
i = Entries.begin(), e = Entries.end(); i != e; ++i)
|
|
*i->Addr = i->Saved;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// checkPlaceholderForOverload - Do any interesting placeholder-like
|
|
/// preprocessing on the given expression.
|
|
///
|
|
/// \param unbridgedCasts a collection to which to add unbridged casts;
|
|
/// without this, they will be immediately diagnosed as errors
|
|
///
|
|
/// Return true on unrecoverable error.
|
|
static bool
|
|
checkPlaceholderForOverload(Sema &S, Expr *&E,
|
|
UnbridgedCastsSet *unbridgedCasts = nullptr) {
|
|
if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
|
|
// We can't handle overloaded expressions here because overload
|
|
// resolution might reasonably tweak them.
|
|
if (placeholder->getKind() == BuiltinType::Overload) return false;
|
|
|
|
// If the context potentially accepts unbridged ARC casts, strip
|
|
// the unbridged cast and add it to the collection for later restoration.
|
|
if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
|
|
unbridgedCasts) {
|
|
unbridgedCasts->save(S, E);
|
|
return false;
|
|
}
|
|
|
|
// Go ahead and check everything else.
|
|
ExprResult result = S.CheckPlaceholderExpr(E);
|
|
if (result.isInvalid())
|
|
return true;
|
|
|
|
E = result.get();
|
|
return false;
|
|
}
|
|
|
|
// Nothing to do.
|
|
return false;
|
|
}
|
|
|
|
/// checkArgPlaceholdersForOverload - Check a set of call operands for
|
|
/// placeholders.
|
|
static bool checkArgPlaceholdersForOverload(Sema &S,
|
|
MultiExprArg Args,
|
|
UnbridgedCastsSet &unbridged) {
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
if (checkPlaceholderForOverload(S, Args[i], &unbridged))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine whether the given New declaration is an overload of the
|
|
/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
|
|
/// New and Old cannot be overloaded, e.g., if New has the same signature as
|
|
/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
|
|
/// functions (or function templates) at all. When it does return Ovl_Match or
|
|
/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
|
|
/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
|
|
/// declaration.
|
|
///
|
|
/// Example: Given the following input:
|
|
///
|
|
/// void f(int, float); // #1
|
|
/// void f(int, int); // #2
|
|
/// int f(int, int); // #3
|
|
///
|
|
/// When we process #1, there is no previous declaration of "f", so IsOverload
|
|
/// will not be used.
|
|
///
|
|
/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
|
|
/// the parameter types, we see that #1 and #2 are overloaded (since they have
|
|
/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
|
|
/// unchanged.
|
|
///
|
|
/// When we process #3, Old is an overload set containing #1 and #2. We compare
|
|
/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
|
|
/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
|
|
/// functions are not part of the signature), IsOverload returns Ovl_Match and
|
|
/// MatchedDecl will be set to point to the FunctionDecl for #2.
|
|
///
|
|
/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
|
|
/// by a using declaration. The rules for whether to hide shadow declarations
|
|
/// ignore some properties which otherwise figure into a function template's
|
|
/// signature.
|
|
Sema::OverloadKind
|
|
Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
|
|
NamedDecl *&Match, bool NewIsUsingDecl) {
|
|
for (LookupResult::iterator I = Old.begin(), E = Old.end();
|
|
I != E; ++I) {
|
|
NamedDecl *OldD = *I;
|
|
|
|
bool OldIsUsingDecl = false;
|
|
if (isa<UsingShadowDecl>(OldD)) {
|
|
OldIsUsingDecl = true;
|
|
|
|
// We can always introduce two using declarations into the same
|
|
// context, even if they have identical signatures.
|
|
if (NewIsUsingDecl) continue;
|
|
|
|
OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
|
|
}
|
|
|
|
// A using-declaration does not conflict with another declaration
|
|
// if one of them is hidden.
|
|
if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
|
|
continue;
|
|
|
|
// If either declaration was introduced by a using declaration,
|
|
// we'll need to use slightly different rules for matching.
|
|
// Essentially, these rules are the normal rules, except that
|
|
// function templates hide function templates with different
|
|
// return types or template parameter lists.
|
|
bool UseMemberUsingDeclRules =
|
|
(OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
|
|
!New->getFriendObjectKind();
|
|
|
|
if (FunctionDecl *OldF = OldD->getAsFunction()) {
|
|
if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
|
|
if (UseMemberUsingDeclRules && OldIsUsingDecl) {
|
|
HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
|
|
continue;
|
|
}
|
|
|
|
if (!isa<FunctionTemplateDecl>(OldD) &&
|
|
!shouldLinkPossiblyHiddenDecl(*I, New))
|
|
continue;
|
|
|
|
Match = *I;
|
|
return Ovl_Match;
|
|
}
|
|
|
|
// Builtins that have custom typechecking or have a reference should
|
|
// not be overloadable or redeclarable.
|
|
if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
|
|
Match = *I;
|
|
return Ovl_NonFunction;
|
|
}
|
|
} else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
|
|
// We can overload with these, which can show up when doing
|
|
// redeclaration checks for UsingDecls.
|
|
assert(Old.getLookupKind() == LookupUsingDeclName);
|
|
} else if (isa<TagDecl>(OldD)) {
|
|
// We can always overload with tags by hiding them.
|
|
} else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
|
|
// Optimistically assume that an unresolved using decl will
|
|
// overload; if it doesn't, we'll have to diagnose during
|
|
// template instantiation.
|
|
//
|
|
// Exception: if the scope is dependent and this is not a class
|
|
// member, the using declaration can only introduce an enumerator.
|
|
if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
|
|
Match = *I;
|
|
return Ovl_NonFunction;
|
|
}
|
|
} else {
|
|
// (C++ 13p1):
|
|
// Only function declarations can be overloaded; object and type
|
|
// declarations cannot be overloaded.
|
|
Match = *I;
|
|
return Ovl_NonFunction;
|
|
}
|
|
}
|
|
|
|
// C++ [temp.friend]p1:
|
|
// For a friend function declaration that is not a template declaration:
|
|
// -- if the name of the friend is a qualified or unqualified template-id,
|
|
// [...], otherwise
|
|
// -- if the name of the friend is a qualified-id and a matching
|
|
// non-template function is found in the specified class or namespace,
|
|
// the friend declaration refers to that function, otherwise,
|
|
// -- if the name of the friend is a qualified-id and a matching function
|
|
// template is found in the specified class or namespace, the friend
|
|
// declaration refers to the deduced specialization of that function
|
|
// template, otherwise
|
|
// -- the name shall be an unqualified-id [...]
|
|
// If we get here for a qualified friend declaration, we've just reached the
|
|
// third bullet. If the type of the friend is dependent, skip this lookup
|
|
// until instantiation.
|
|
if (New->getFriendObjectKind() && New->getQualifier() &&
|
|
!New->getDescribedFunctionTemplate() &&
|
|
!New->getDependentSpecializationInfo() &&
|
|
!New->getType()->isDependentType()) {
|
|
LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
|
|
TemplateSpecResult.addAllDecls(Old);
|
|
if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
|
|
/*QualifiedFriend*/true)) {
|
|
New->setInvalidDecl();
|
|
return Ovl_Overload;
|
|
}
|
|
|
|
Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
|
|
return Ovl_Match;
|
|
}
|
|
|
|
return Ovl_Overload;
|
|
}
|
|
|
|
bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
|
|
bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
|
|
bool ConsiderRequiresClauses) {
|
|
// C++ [basic.start.main]p2: This function shall not be overloaded.
|
|
if (New->isMain())
|
|
return false;
|
|
|
|
// MSVCRT user defined entry points cannot be overloaded.
|
|
if (New->isMSVCRTEntryPoint())
|
|
return false;
|
|
|
|
FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
|
|
FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
|
|
|
|
// C++ [temp.fct]p2:
|
|
// A function template can be overloaded with other function templates
|
|
// and with normal (non-template) functions.
|
|
if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
|
|
return true;
|
|
|
|
// Is the function New an overload of the function Old?
|
|
QualType OldQType = Context.getCanonicalType(Old->getType());
|
|
QualType NewQType = Context.getCanonicalType(New->getType());
|
|
|
|
// Compare the signatures (C++ 1.3.10) of the two functions to
|
|
// determine whether they are overloads. If we find any mismatch
|
|
// in the signature, they are overloads.
|
|
|
|
// If either of these functions is a K&R-style function (no
|
|
// prototype), then we consider them to have matching signatures.
|
|
if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
|
|
isa<FunctionNoProtoType>(NewQType.getTypePtr()))
|
|
return false;
|
|
|
|
const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
|
|
const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
|
|
|
|
// The signature of a function includes the types of its
|
|
// parameters (C++ 1.3.10), which includes the presence or absence
|
|
// of the ellipsis; see C++ DR 357).
|
|
if (OldQType != NewQType &&
|
|
(OldType->getNumParams() != NewType->getNumParams() ||
|
|
OldType->isVariadic() != NewType->isVariadic() ||
|
|
!FunctionParamTypesAreEqual(OldType, NewType)))
|
|
return true;
|
|
|
|
// C++ [temp.over.link]p4:
|
|
// The signature of a function template consists of its function
|
|
// signature, its return type and its template parameter list. The names
|
|
// of the template parameters are significant only for establishing the
|
|
// relationship between the template parameters and the rest of the
|
|
// signature.
|
|
//
|
|
// We check the return type and template parameter lists for function
|
|
// templates first; the remaining checks follow.
|
|
//
|
|
// However, we don't consider either of these when deciding whether
|
|
// a member introduced by a shadow declaration is hidden.
|
|
if (!UseMemberUsingDeclRules && NewTemplate &&
|
|
(!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
|
|
OldTemplate->getTemplateParameters(),
|
|
false, TPL_TemplateMatch) ||
|
|
!Context.hasSameType(Old->getDeclaredReturnType(),
|
|
New->getDeclaredReturnType())))
|
|
return true;
|
|
|
|
// If the function is a class member, its signature includes the
|
|
// cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
|
|
//
|
|
// As part of this, also check whether one of the member functions
|
|
// is static, in which case they are not overloads (C++
|
|
// 13.1p2). While not part of the definition of the signature,
|
|
// this check is important to determine whether these functions
|
|
// can be overloaded.
|
|
CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
|
|
CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
|
|
if (OldMethod && NewMethod &&
|
|
!OldMethod->isStatic() && !NewMethod->isStatic()) {
|
|
if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
|
|
if (!UseMemberUsingDeclRules &&
|
|
(OldMethod->getRefQualifier() == RQ_None ||
|
|
NewMethod->getRefQualifier() == RQ_None)) {
|
|
// C++0x [over.load]p2:
|
|
// - Member function declarations with the same name and the same
|
|
// parameter-type-list as well as member function template
|
|
// declarations with the same name, the same parameter-type-list, and
|
|
// the same template parameter lists cannot be overloaded if any of
|
|
// them, but not all, have a ref-qualifier (8.3.5).
|
|
Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
|
|
<< NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
|
|
Diag(OldMethod->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// We may not have applied the implicit const for a constexpr member
|
|
// function yet (because we haven't yet resolved whether this is a static
|
|
// or non-static member function). Add it now, on the assumption that this
|
|
// is a redeclaration of OldMethod.
|
|
auto OldQuals = OldMethod->getMethodQualifiers();
|
|
auto NewQuals = NewMethod->getMethodQualifiers();
|
|
if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
|
|
!isa<CXXConstructorDecl>(NewMethod))
|
|
NewQuals.addConst();
|
|
// We do not allow overloading based off of '__restrict'.
|
|
OldQuals.removeRestrict();
|
|
NewQuals.removeRestrict();
|
|
if (OldQuals != NewQuals)
|
|
return true;
|
|
}
|
|
|
|
// Though pass_object_size is placed on parameters and takes an argument, we
|
|
// consider it to be a function-level modifier for the sake of function
|
|
// identity. Either the function has one or more parameters with
|
|
// pass_object_size or it doesn't.
|
|
if (functionHasPassObjectSizeParams(New) !=
|
|
functionHasPassObjectSizeParams(Old))
|
|
return true;
|
|
|
|
// enable_if attributes are an order-sensitive part of the signature.
|
|
for (specific_attr_iterator<EnableIfAttr>
|
|
NewI = New->specific_attr_begin<EnableIfAttr>(),
|
|
NewE = New->specific_attr_end<EnableIfAttr>(),
|
|
OldI = Old->specific_attr_begin<EnableIfAttr>(),
|
|
OldE = Old->specific_attr_end<EnableIfAttr>();
|
|
NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
|
|
if (NewI == NewE || OldI == OldE)
|
|
return true;
|
|
llvm::FoldingSetNodeID NewID, OldID;
|
|
NewI->getCond()->Profile(NewID, Context, true);
|
|
OldI->getCond()->Profile(OldID, Context, true);
|
|
if (NewID != OldID)
|
|
return true;
|
|
}
|
|
|
|
if (getLangOpts().CUDA && ConsiderCudaAttrs) {
|
|
// Don't allow overloading of destructors. (In theory we could, but it
|
|
// would be a giant change to clang.)
|
|
if (!isa<CXXDestructorDecl>(New)) {
|
|
CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
|
|
OldTarget = IdentifyCUDATarget(Old);
|
|
if (NewTarget != CFT_InvalidTarget) {
|
|
assert((OldTarget != CFT_InvalidTarget) &&
|
|
"Unexpected invalid target.");
|
|
|
|
// Allow overloading of functions with same signature and different CUDA
|
|
// target attributes.
|
|
if (NewTarget != OldTarget)
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ConsiderRequiresClauses) {
|
|
Expr *NewRC = New->getTrailingRequiresClause(),
|
|
*OldRC = Old->getTrailingRequiresClause();
|
|
if ((NewRC != nullptr) != (OldRC != nullptr))
|
|
// RC are most certainly different - these are overloads.
|
|
return true;
|
|
|
|
if (NewRC) {
|
|
llvm::FoldingSetNodeID NewID, OldID;
|
|
NewRC->Profile(NewID, Context, /*Canonical=*/true);
|
|
OldRC->Profile(OldID, Context, /*Canonical=*/true);
|
|
if (NewID != OldID)
|
|
// RCs are not equivalent - these are overloads.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// The signatures match; this is not an overload.
|
|
return false;
|
|
}
|
|
|
|
/// Tries a user-defined conversion from From to ToType.
|
|
///
|
|
/// Produces an implicit conversion sequence for when a standard conversion
|
|
/// is not an option. See TryImplicitConversion for more information.
|
|
static ImplicitConversionSequence
|
|
TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
AllowedExplicit AllowExplicit,
|
|
bool InOverloadResolution,
|
|
bool CStyle,
|
|
bool AllowObjCWritebackConversion,
|
|
bool AllowObjCConversionOnExplicit) {
|
|
ImplicitConversionSequence ICS;
|
|
|
|
if (SuppressUserConversions) {
|
|
// We're not in the case above, so there is no conversion that
|
|
// we can perform.
|
|
ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
|
|
return ICS;
|
|
}
|
|
|
|
// Attempt user-defined conversion.
|
|
OverloadCandidateSet Conversions(From->getExprLoc(),
|
|
OverloadCandidateSet::CSK_Normal);
|
|
switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
|
|
Conversions, AllowExplicit,
|
|
AllowObjCConversionOnExplicit)) {
|
|
case OR_Success:
|
|
case OR_Deleted:
|
|
ICS.setUserDefined();
|
|
// C++ [over.ics.user]p4:
|
|
// A conversion of an expression of class type to the same class
|
|
// type is given Exact Match rank, and a conversion of an
|
|
// expression of class type to a base class of that type is
|
|
// given Conversion rank, in spite of the fact that a copy
|
|
// constructor (i.e., a user-defined conversion function) is
|
|
// called for those cases.
|
|
if (CXXConstructorDecl *Constructor
|
|
= dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
|
|
QualType FromCanon
|
|
= S.Context.getCanonicalType(From->getType().getUnqualifiedType());
|
|
QualType ToCanon
|
|
= S.Context.getCanonicalType(ToType).getUnqualifiedType();
|
|
if (Constructor->isCopyConstructor() &&
|
|
(FromCanon == ToCanon ||
|
|
S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
|
|
// Turn this into a "standard" conversion sequence, so that it
|
|
// gets ranked with standard conversion sequences.
|
|
DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
|
|
ICS.setStandard();
|
|
ICS.Standard.setAsIdentityConversion();
|
|
ICS.Standard.setFromType(From->getType());
|
|
ICS.Standard.setAllToTypes(ToType);
|
|
ICS.Standard.CopyConstructor = Constructor;
|
|
ICS.Standard.FoundCopyConstructor = Found;
|
|
if (ToCanon != FromCanon)
|
|
ICS.Standard.Second = ICK_Derived_To_Base;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case OR_Ambiguous:
|
|
ICS.setAmbiguous();
|
|
ICS.Ambiguous.setFromType(From->getType());
|
|
ICS.Ambiguous.setToType(ToType);
|
|
for (OverloadCandidateSet::iterator Cand = Conversions.begin();
|
|
Cand != Conversions.end(); ++Cand)
|
|
if (Cand->Best)
|
|
ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
|
|
break;
|
|
|
|
// Fall through.
|
|
case OR_No_Viable_Function:
|
|
ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
|
|
break;
|
|
}
|
|
|
|
return ICS;
|
|
}
|
|
|
|
/// TryImplicitConversion - Attempt to perform an implicit conversion
|
|
/// from the given expression (Expr) to the given type (ToType). This
|
|
/// function returns an implicit conversion sequence that can be used
|
|
/// to perform the initialization. Given
|
|
///
|
|
/// void f(float f);
|
|
/// void g(int i) { f(i); }
|
|
///
|
|
/// this routine would produce an implicit conversion sequence to
|
|
/// describe the initialization of f from i, which will be a standard
|
|
/// conversion sequence containing an lvalue-to-rvalue conversion (C++
|
|
/// 4.1) followed by a floating-integral conversion (C++ 4.9).
|
|
//
|
|
/// Note that this routine only determines how the conversion can be
|
|
/// performed; it does not actually perform the conversion. As such,
|
|
/// it will not produce any diagnostics if no conversion is available,
|
|
/// but will instead return an implicit conversion sequence of kind
|
|
/// "BadConversion".
|
|
///
|
|
/// If @p SuppressUserConversions, then user-defined conversions are
|
|
/// not permitted.
|
|
/// If @p AllowExplicit, then explicit user-defined conversions are
|
|
/// permitted.
|
|
///
|
|
/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
|
|
/// writeback conversion, which allows __autoreleasing id* parameters to
|
|
/// be initialized with __strong id* or __weak id* arguments.
|
|
static ImplicitConversionSequence
|
|
TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
AllowedExplicit AllowExplicit,
|
|
bool InOverloadResolution,
|
|
bool CStyle,
|
|
bool AllowObjCWritebackConversion,
|
|
bool AllowObjCConversionOnExplicit) {
|
|
ImplicitConversionSequence ICS;
|
|
if (IsStandardConversion(S, From, ToType, InOverloadResolution,
|
|
ICS.Standard, CStyle, AllowObjCWritebackConversion)){
|
|
ICS.setStandard();
|
|
return ICS;
|
|
}
|
|
|
|
if (!S.getLangOpts().CPlusPlus) {
|
|
ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
|
|
return ICS;
|
|
}
|
|
|
|
// C++ [over.ics.user]p4:
|
|
// A conversion of an expression of class type to the same class
|
|
// type is given Exact Match rank, and a conversion of an
|
|
// expression of class type to a base class of that type is
|
|
// given Conversion rank, in spite of the fact that a copy/move
|
|
// constructor (i.e., a user-defined conversion function) is
|
|
// called for those cases.
|
|
QualType FromType = From->getType();
|
|
if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
|
|
(S.Context.hasSameUnqualifiedType(FromType, ToType) ||
|
|
S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
|
|
ICS.setStandard();
|
|
ICS.Standard.setAsIdentityConversion();
|
|
ICS.Standard.setFromType(FromType);
|
|
ICS.Standard.setAllToTypes(ToType);
|
|
|
|
// We don't actually check at this point whether there is a valid
|
|
// copy/move constructor, since overloading just assumes that it
|
|
// exists. When we actually perform initialization, we'll find the
|
|
// appropriate constructor to copy the returned object, if needed.
|
|
ICS.Standard.CopyConstructor = nullptr;
|
|
|
|
// Determine whether this is considered a derived-to-base conversion.
|
|
if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
|
|
ICS.Standard.Second = ICK_Derived_To_Base;
|
|
|
|
return ICS;
|
|
}
|
|
|
|
return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
|
|
AllowExplicit, InOverloadResolution, CStyle,
|
|
AllowObjCWritebackConversion,
|
|
AllowObjCConversionOnExplicit);
|
|
}
|
|
|
|
ImplicitConversionSequence
|
|
Sema::TryImplicitConversion(Expr *From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
AllowedExplicit AllowExplicit,
|
|
bool InOverloadResolution,
|
|
bool CStyle,
|
|
bool AllowObjCWritebackConversion) {
|
|
return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions,
|
|
AllowExplicit, InOverloadResolution, CStyle,
|
|
AllowObjCWritebackConversion,
|
|
/*AllowObjCConversionOnExplicit=*/false);
|
|
}
|
|
|
|
/// PerformImplicitConversion - Perform an implicit conversion of the
|
|
/// expression From to the type ToType. Returns the
|
|
/// converted expression. Flavor is the kind of conversion we're
|
|
/// performing, used in the error message. If @p AllowExplicit,
|
|
/// explicit user-defined conversions are permitted.
|
|
ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType,
|
|
AssignmentAction Action,
|
|
bool AllowExplicit) {
|
|
if (checkPlaceholderForOverload(*this, From))
|
|
return ExprError();
|
|
|
|
// Objective-C ARC: Determine whether we will allow the writeback conversion.
|
|
bool AllowObjCWritebackConversion
|
|
= getLangOpts().ObjCAutoRefCount &&
|
|
(Action == AA_Passing || Action == AA_Sending);
|
|
if (getLangOpts().ObjC)
|
|
CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
|
|
From->getType(), From);
|
|
ImplicitConversionSequence ICS = ::TryImplicitConversion(
|
|
*this, From, ToType,
|
|
/*SuppressUserConversions=*/false,
|
|
AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None,
|
|
/*InOverloadResolution=*/false,
|
|
/*CStyle=*/false, AllowObjCWritebackConversion,
|
|
/*AllowObjCConversionOnExplicit=*/false);
|
|
return PerformImplicitConversion(From, ToType, ICS, Action);
|
|
}
|
|
|
|
/// Determine whether the conversion from FromType to ToType is a valid
|
|
/// conversion that strips "noexcept" or "noreturn" off the nested function
|
|
/// type.
|
|
bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
|
|
QualType &ResultTy) {
|
|
if (Context.hasSameUnqualifiedType(FromType, ToType))
|
|
return false;
|
|
|
|
// Permit the conversion F(t __attribute__((noreturn))) -> F(t)
|
|
// or F(t noexcept) -> F(t)
|
|
// where F adds one of the following at most once:
|
|
// - a pointer
|
|
// - a member pointer
|
|
// - a block pointer
|
|
// Changes here need matching changes in FindCompositePointerType.
|
|
CanQualType CanTo = Context.getCanonicalType(ToType);
|
|
CanQualType CanFrom = Context.getCanonicalType(FromType);
|
|
Type::TypeClass TyClass = CanTo->getTypeClass();
|
|
if (TyClass != CanFrom->getTypeClass()) return false;
|
|
if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
|
|
if (TyClass == Type::Pointer) {
|
|
CanTo = CanTo.castAs<PointerType>()->getPointeeType();
|
|
CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
|
|
} else if (TyClass == Type::BlockPointer) {
|
|
CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
|
|
CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
|
|
} else if (TyClass == Type::MemberPointer) {
|
|
auto ToMPT = CanTo.castAs<MemberPointerType>();
|
|
auto FromMPT = CanFrom.castAs<MemberPointerType>();
|
|
// A function pointer conversion cannot change the class of the function.
|
|
if (ToMPT->getClass() != FromMPT->getClass())
|
|
return false;
|
|
CanTo = ToMPT->getPointeeType();
|
|
CanFrom = FromMPT->getPointeeType();
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
TyClass = CanTo->getTypeClass();
|
|
if (TyClass != CanFrom->getTypeClass()) return false;
|
|
if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
|
|
return false;
|
|
}
|
|
|
|
const auto *FromFn = cast<FunctionType>(CanFrom);
|
|
FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
|
|
|
|
const auto *ToFn = cast<FunctionType>(CanTo);
|
|
FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
|
|
|
|
bool Changed = false;
|
|
|
|
// Drop 'noreturn' if not present in target type.
|
|
if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
|
|
FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
|
|
Changed = true;
|
|
}
|
|
|
|
// Drop 'noexcept' if not present in target type.
|
|
if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
|
|
const auto *ToFPT = cast<FunctionProtoType>(ToFn);
|
|
if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
|
|
FromFn = cast<FunctionType>(
|
|
Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
|
|
EST_None)
|
|
.getTypePtr());
|
|
Changed = true;
|
|
}
|
|
|
|
// Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
|
|
// only if the ExtParameterInfo lists of the two function prototypes can be
|
|
// merged and the merged list is identical to ToFPT's ExtParameterInfo list.
|
|
SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
|
|
bool CanUseToFPT, CanUseFromFPT;
|
|
if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
|
|
CanUseFromFPT, NewParamInfos) &&
|
|
CanUseToFPT && !CanUseFromFPT) {
|
|
FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
|
|
ExtInfo.ExtParameterInfos =
|
|
NewParamInfos.empty() ? nullptr : NewParamInfos.data();
|
|
QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
|
|
FromFPT->getParamTypes(), ExtInfo);
|
|
FromFn = QT->getAs<FunctionType>();
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
if (!Changed)
|
|
return false;
|
|
|
|
assert(QualType(FromFn, 0).isCanonical());
|
|
if (QualType(FromFn, 0) != CanTo) return false;
|
|
|
|
ResultTy = ToType;
|
|
return true;
|
|
}
|
|
|
|
/// Determine whether the conversion from FromType to ToType is a valid
|
|
/// vector conversion.
|
|
///
|
|
/// \param ICK Will be set to the vector conversion kind, if this is a vector
|
|
/// conversion.
|
|
static bool IsVectorConversion(Sema &S, QualType FromType,
|
|
QualType ToType, ImplicitConversionKind &ICK) {
|
|
// We need at least one of these types to be a vector type to have a vector
|
|
// conversion.
|
|
if (!ToType->isVectorType() && !FromType->isVectorType())
|
|
return false;
|
|
|
|
// Identical types require no conversions.
|
|
if (S.Context.hasSameUnqualifiedType(FromType, ToType))
|
|
return false;
|
|
|
|
// There are no conversions between extended vector types, only identity.
|
|
if (ToType->isExtVectorType()) {
|
|
// There are no conversions between extended vector types other than the
|
|
// identity conversion.
|
|
if (FromType->isExtVectorType())
|
|
return false;
|
|
|
|
// Vector splat from any arithmetic type to a vector.
|
|
if (FromType->isArithmeticType()) {
|
|
ICK = ICK_Vector_Splat;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType())
|
|
if (S.Context.areCompatibleSveTypes(FromType, ToType) ||
|
|
S.Context.areLaxCompatibleSveTypes(FromType, ToType)) {
|
|
ICK = ICK_SVE_Vector_Conversion;
|
|
return true;
|
|
}
|
|
|
|
// We can perform the conversion between vector types in the following cases:
|
|
// 1)vector types are equivalent AltiVec and GCC vector types
|
|
// 2)lax vector conversions are permitted and the vector types are of the
|
|
// same size
|
|
// 3)the destination type does not have the ARM MVE strict-polymorphism
|
|
// attribute, which inhibits lax vector conversion for overload resolution
|
|
// only
|
|
if (ToType->isVectorType() && FromType->isVectorType()) {
|
|
if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
|
|
(S.isLaxVectorConversion(FromType, ToType) &&
|
|
!ToType->hasAttr(attr::ArmMveStrictPolymorphism))) {
|
|
ICK = ICK_Vector_Conversion;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
|
|
bool InOverloadResolution,
|
|
StandardConversionSequence &SCS,
|
|
bool CStyle);
|
|
|
|
/// IsStandardConversion - Determines whether there is a standard
|
|
/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
|
|
/// expression From to the type ToType. Standard conversion sequences
|
|
/// only consider non-class types; for conversions that involve class
|
|
/// types, use TryImplicitConversion. If a conversion exists, SCS will
|
|
/// contain the standard conversion sequence required to perform this
|
|
/// conversion and this routine will return true. Otherwise, this
|
|
/// routine will return false and the value of SCS is unspecified.
|
|
static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
|
|
bool InOverloadResolution,
|
|
StandardConversionSequence &SCS,
|
|
bool CStyle,
|
|
bool AllowObjCWritebackConversion) {
|
|
QualType FromType = From->getType();
|
|
|
|
// Standard conversions (C++ [conv])
|
|
SCS.setAsIdentityConversion();
|
|
SCS.IncompatibleObjC = false;
|
|
SCS.setFromType(FromType);
|
|
SCS.CopyConstructor = nullptr;
|
|
|
|
// There are no standard conversions for class types in C++, so
|
|
// abort early. When overloading in C, however, we do permit them.
|
|
if (S.getLangOpts().CPlusPlus &&
|
|
(FromType->isRecordType() || ToType->isRecordType()))
|
|
return false;
|
|
|
|
// The first conversion can be an lvalue-to-rvalue conversion,
|
|
// array-to-pointer conversion, or function-to-pointer conversion
|
|
// (C++ 4p1).
|
|
|
|
if (FromType == S.Context.OverloadTy) {
|
|
DeclAccessPair AccessPair;
|
|
if (FunctionDecl *Fn
|
|
= S.ResolveAddressOfOverloadedFunction(From, ToType, false,
|
|
AccessPair)) {
|
|
// We were able to resolve the address of the overloaded function,
|
|
// so we can convert to the type of that function.
|
|
FromType = Fn->getType();
|
|
SCS.setFromType(FromType);
|
|
|
|
// we can sometimes resolve &foo<int> regardless of ToType, so check
|
|
// if the type matches (identity) or we are converting to bool
|
|
if (!S.Context.hasSameUnqualifiedType(
|
|
S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
|
|
QualType resultTy;
|
|
// if the function type matches except for [[noreturn]], it's ok
|
|
if (!S.IsFunctionConversion(FromType,
|
|
S.ExtractUnqualifiedFunctionType(ToType), resultTy))
|
|
// otherwise, only a boolean conversion is standard
|
|
if (!ToType->isBooleanType())
|
|
return false;
|
|
}
|
|
|
|
// Check if the "from" expression is taking the address of an overloaded
|
|
// function and recompute the FromType accordingly. Take advantage of the
|
|
// fact that non-static member functions *must* have such an address-of
|
|
// expression.
|
|
CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
|
|
if (Method && !Method->isStatic()) {
|
|
assert(isa<UnaryOperator>(From->IgnoreParens()) &&
|
|
"Non-unary operator on non-static member address");
|
|
assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
|
|
== UO_AddrOf &&
|
|
"Non-address-of operator on non-static member address");
|
|
const Type *ClassType
|
|
= S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
|
|
FromType = S.Context.getMemberPointerType(FromType, ClassType);
|
|
} else if (isa<UnaryOperator>(From->IgnoreParens())) {
|
|
assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
|
|
UO_AddrOf &&
|
|
"Non-address-of operator for overloaded function expression");
|
|
FromType = S.Context.getPointerType(FromType);
|
|
}
|
|
|
|
// Check that we've computed the proper type after overload resolution.
|
|
// FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
|
|
// be calling it from within an NDEBUG block.
|
|
assert(S.Context.hasSameType(
|
|
FromType,
|
|
S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
// Lvalue-to-rvalue conversion (C++11 4.1):
|
|
// A glvalue (3.10) of a non-function, non-array type T can
|
|
// be converted to a prvalue.
|
|
bool argIsLValue = From->isGLValue();
|
|
if (argIsLValue &&
|
|
!FromType->isFunctionType() && !FromType->isArrayType() &&
|
|
S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
|
|
SCS.First = ICK_Lvalue_To_Rvalue;
|
|
|
|
// C11 6.3.2.1p2:
|
|
// ... if the lvalue has atomic type, the value has the non-atomic version
|
|
// of the type of the lvalue ...
|
|
if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
|
|
FromType = Atomic->getValueType();
|
|
|
|
// If T is a non-class type, the type of the rvalue is the
|
|
// cv-unqualified version of T. Otherwise, the type of the rvalue
|
|
// is T (C++ 4.1p1). C++ can't get here with class types; in C, we
|
|
// just strip the qualifiers because they don't matter.
|
|
FromType = FromType.getUnqualifiedType();
|
|
} else if (FromType->isArrayType()) {
|
|
// Array-to-pointer conversion (C++ 4.2)
|
|
SCS.First = ICK_Array_To_Pointer;
|
|
|
|
// An lvalue or rvalue of type "array of N T" or "array of unknown
|
|
// bound of T" can be converted to an rvalue of type "pointer to
|
|
// T" (C++ 4.2p1).
|
|
FromType = S.Context.getArrayDecayedType(FromType);
|
|
|
|
if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
|
|
// This conversion is deprecated in C++03 (D.4)
|
|
SCS.DeprecatedStringLiteralToCharPtr = true;
|
|
|
|
// For the purpose of ranking in overload resolution
|
|
// (13.3.3.1.1), this conversion is considered an
|
|
// array-to-pointer conversion followed by a qualification
|
|
// conversion (4.4). (C++ 4.2p2)
|
|
SCS.Second = ICK_Identity;
|
|
SCS.Third = ICK_Qualification;
|
|
SCS.QualificationIncludesObjCLifetime = false;
|
|
SCS.setAllToTypes(FromType);
|
|
return true;
|
|
}
|
|
} else if (FromType->isFunctionType() && argIsLValue) {
|
|
// Function-to-pointer conversion (C++ 4.3).
|
|
SCS.First = ICK_Function_To_Pointer;
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
|
|
if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
|
|
if (!S.checkAddressOfFunctionIsAvailable(FD))
|
|
return false;
|
|
|
|
// An lvalue of function type T can be converted to an rvalue of
|
|
// type "pointer to T." The result is a pointer to the
|
|
// function. (C++ 4.3p1).
|
|
FromType = S.Context.getPointerType(FromType);
|
|
} else {
|
|
// We don't require any conversions for the first step.
|
|
SCS.First = ICK_Identity;
|
|
}
|
|
SCS.setToType(0, FromType);
|
|
|
|
// The second conversion can be an integral promotion, floating
|
|
// point promotion, integral conversion, floating point conversion,
|
|
// floating-integral conversion, pointer conversion,
|
|
// pointer-to-member conversion, or boolean conversion (C++ 4p1).
|
|
// For overloading in C, this can also be a "compatible-type"
|
|
// conversion.
|
|
bool IncompatibleObjC = false;
|
|
ImplicitConversionKind SecondICK = ICK_Identity;
|
|
if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
|
|
// The unqualified versions of the types are the same: there's no
|
|
// conversion to do.
|
|
SCS.Second = ICK_Identity;
|
|
} else if (S.IsIntegralPromotion(From, FromType, ToType)) {
|
|
// Integral promotion (C++ 4.5).
|
|
SCS.Second = ICK_Integral_Promotion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (S.IsFloatingPointPromotion(FromType, ToType)) {
|
|
// Floating point promotion (C++ 4.6).
|
|
SCS.Second = ICK_Floating_Promotion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (S.IsComplexPromotion(FromType, ToType)) {
|
|
// Complex promotion (Clang extension)
|
|
SCS.Second = ICK_Complex_Promotion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (ToType->isBooleanType() &&
|
|
(FromType->isArithmeticType() ||
|
|
FromType->isAnyPointerType() ||
|
|
FromType->isBlockPointerType() ||
|
|
FromType->isMemberPointerType())) {
|
|
// Boolean conversions (C++ 4.12).
|
|
SCS.Second = ICK_Boolean_Conversion;
|
|
FromType = S.Context.BoolTy;
|
|
} else if (FromType->isIntegralOrUnscopedEnumerationType() &&
|
|
ToType->isIntegralType(S.Context)) {
|
|
// Integral conversions (C++ 4.7).
|
|
SCS.Second = ICK_Integral_Conversion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
|
|
// Complex conversions (C99 6.3.1.6)
|
|
SCS.Second = ICK_Complex_Conversion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
|
|
(ToType->isAnyComplexType() && FromType->isArithmeticType())) {
|
|
// Complex-real conversions (C99 6.3.1.7)
|
|
SCS.Second = ICK_Complex_Real;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
|
|
// FIXME: disable conversions between long double and __float128 if
|
|
// their representation is different until there is back end support
|
|
// We of course allow this conversion if long double is really double.
|
|
|
|
// Conversions between bfloat and other floats are not permitted.
|
|
if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty)
|
|
return false;
|
|
if (&S.Context.getFloatTypeSemantics(FromType) !=
|
|
&S.Context.getFloatTypeSemantics(ToType)) {
|
|
bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
|
|
ToType == S.Context.LongDoubleTy) ||
|
|
(FromType == S.Context.LongDoubleTy &&
|
|
ToType == S.Context.Float128Ty));
|
|
if (Float128AndLongDouble &&
|
|
(&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
|
|
&llvm::APFloat::PPCDoubleDouble()))
|
|
return false;
|
|
}
|
|
// Floating point conversions (C++ 4.8).
|
|
SCS.Second = ICK_Floating_Conversion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if ((FromType->isRealFloatingType() &&
|
|
ToType->isIntegralType(S.Context)) ||
|
|
(FromType->isIntegralOrUnscopedEnumerationType() &&
|
|
ToType->isRealFloatingType())) {
|
|
// Conversions between bfloat and int are not permitted.
|
|
if (FromType->isBFloat16Type() || ToType->isBFloat16Type())
|
|
return false;
|
|
|
|
// Floating-integral conversions (C++ 4.9).
|
|
SCS.Second = ICK_Floating_Integral;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
|
|
SCS.Second = ICK_Block_Pointer_Conversion;
|
|
} else if (AllowObjCWritebackConversion &&
|
|
S.isObjCWritebackConversion(FromType, ToType, FromType)) {
|
|
SCS.Second = ICK_Writeback_Conversion;
|
|
} else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
|
|
FromType, IncompatibleObjC)) {
|
|
// Pointer conversions (C++ 4.10).
|
|
SCS.Second = ICK_Pointer_Conversion;
|
|
SCS.IncompatibleObjC = IncompatibleObjC;
|
|
FromType = FromType.getUnqualifiedType();
|
|
} else if (S.IsMemberPointerConversion(From, FromType, ToType,
|
|
InOverloadResolution, FromType)) {
|
|
// Pointer to member conversions (4.11).
|
|
SCS.Second = ICK_Pointer_Member;
|
|
} else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
|
|
SCS.Second = SecondICK;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (!S.getLangOpts().CPlusPlus &&
|
|
S.Context.typesAreCompatible(ToType, FromType)) {
|
|
// Compatible conversions (Clang extension for C function overloading)
|
|
SCS.Second = ICK_Compatible_Conversion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (IsTransparentUnionStandardConversion(S, From, ToType,
|
|
InOverloadResolution,
|
|
SCS, CStyle)) {
|
|
SCS.Second = ICK_TransparentUnionConversion;
|
|
FromType = ToType;
|
|
} else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
|
|
CStyle)) {
|
|
// tryAtomicConversion has updated the standard conversion sequence
|
|
// appropriately.
|
|
return true;
|
|
} else if (ToType->isEventT() &&
|
|
From->isIntegerConstantExpr(S.getASTContext()) &&
|
|
From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
|
|
SCS.Second = ICK_Zero_Event_Conversion;
|
|
FromType = ToType;
|
|
} else if (ToType->isQueueT() &&
|
|
From->isIntegerConstantExpr(S.getASTContext()) &&
|
|
(From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
|
|
SCS.Second = ICK_Zero_Queue_Conversion;
|
|
FromType = ToType;
|
|
} else if (ToType->isSamplerT() &&
|
|
From->isIntegerConstantExpr(S.getASTContext())) {
|
|
SCS.Second = ICK_Compatible_Conversion;
|
|
FromType = ToType;
|
|
} else {
|
|
// No second conversion required.
|
|
SCS.Second = ICK_Identity;
|
|
}
|
|
SCS.setToType(1, FromType);
|
|
|
|
// The third conversion can be a function pointer conversion or a
|
|
// qualification conversion (C++ [conv.fctptr], [conv.qual]).
|
|
bool ObjCLifetimeConversion;
|
|
if (S.IsFunctionConversion(FromType, ToType, FromType)) {
|
|
// Function pointer conversions (removing 'noexcept') including removal of
|
|
// 'noreturn' (Clang extension).
|
|
SCS.Third = ICK_Function_Conversion;
|
|
} else if (S.IsQualificationConversion(FromType, ToType, CStyle,
|
|
ObjCLifetimeConversion)) {
|
|
SCS.Third = ICK_Qualification;
|
|
SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
|
|
FromType = ToType;
|
|
} else {
|
|
// No conversion required
|
|
SCS.Third = ICK_Identity;
|
|
}
|
|
|
|
// C++ [over.best.ics]p6:
|
|
// [...] Any difference in top-level cv-qualification is
|
|
// subsumed by the initialization itself and does not constitute
|
|
// a conversion. [...]
|
|
QualType CanonFrom = S.Context.getCanonicalType(FromType);
|
|
QualType CanonTo = S.Context.getCanonicalType(ToType);
|
|
if (CanonFrom.getLocalUnqualifiedType()
|
|
== CanonTo.getLocalUnqualifiedType() &&
|
|
CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
|
|
FromType = ToType;
|
|
CanonFrom = CanonTo;
|
|
}
|
|
|
|
SCS.setToType(2, FromType);
|
|
|
|
if (CanonFrom == CanonTo)
|
|
return true;
|
|
|
|
// If we have not converted the argument type to the parameter type,
|
|
// this is a bad conversion sequence, unless we're resolving an overload in C.
|
|
if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
|
|
return false;
|
|
|
|
ExprResult ER = ExprResult{From};
|
|
Sema::AssignConvertType Conv =
|
|
S.CheckSingleAssignmentConstraints(ToType, ER,
|
|
/*Diagnose=*/false,
|
|
/*DiagnoseCFAudited=*/false,
|
|
/*ConvertRHS=*/false);
|
|
ImplicitConversionKind SecondConv;
|
|
switch (Conv) {
|
|
case Sema::Compatible:
|
|
SecondConv = ICK_C_Only_Conversion;
|
|
break;
|
|
// For our purposes, discarding qualifiers is just as bad as using an
|
|
// incompatible pointer. Note that an IncompatiblePointer conversion can drop
|
|
// qualifiers, as well.
|
|
case Sema::CompatiblePointerDiscardsQualifiers:
|
|
case Sema::IncompatiblePointer:
|
|
case Sema::IncompatiblePointerSign:
|
|
SecondConv = ICK_Incompatible_Pointer_Conversion;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
// First can only be an lvalue conversion, so we pretend that this was the
|
|
// second conversion. First should already be valid from earlier in the
|
|
// function.
|
|
SCS.Second = SecondConv;
|
|
SCS.setToType(1, ToType);
|
|
|
|
// Third is Identity, because Second should rank us worse than any other
|
|
// conversion. This could also be ICK_Qualification, but it's simpler to just
|
|
// lump everything in with the second conversion, and we don't gain anything
|
|
// from making this ICK_Qualification.
|
|
SCS.Third = ICK_Identity;
|
|
SCS.setToType(2, ToType);
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
IsTransparentUnionStandardConversion(Sema &S, Expr* From,
|
|
QualType &ToType,
|
|
bool InOverloadResolution,
|
|
StandardConversionSequence &SCS,
|
|
bool CStyle) {
|
|
|
|
const RecordType *UT = ToType->getAsUnionType();
|
|
if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
|
|
return false;
|
|
// The field to initialize within the transparent union.
|
|
RecordDecl *UD = UT->getDecl();
|
|
// It's compatible if the expression matches any of the fields.
|
|
for (const auto *it : UD->fields()) {
|
|
if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
|
|
CStyle, /*AllowObjCWritebackConversion=*/false)) {
|
|
ToType = it->getType();
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// IsIntegralPromotion - Determines whether the conversion from the
|
|
/// expression From (whose potentially-adjusted type is FromType) to
|
|
/// ToType is an integral promotion (C++ 4.5). If so, returns true and
|
|
/// sets PromotedType to the promoted type.
|
|
bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
|
|
const BuiltinType *To = ToType->getAs<BuiltinType>();
|
|
// All integers are built-in.
|
|
if (!To) {
|
|
return false;
|
|
}
|
|
|
|
// An rvalue of type char, signed char, unsigned char, short int, or
|
|
// unsigned short int can be converted to an rvalue of type int if
|
|
// int can represent all the values of the source type; otherwise,
|
|
// the source rvalue can be converted to an rvalue of type unsigned
|
|
// int (C++ 4.5p1).
|
|
if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
|
|
!FromType->isEnumeralType()) {
|
|
if (// We can promote any signed, promotable integer type to an int
|
|
(FromType->isSignedIntegerType() ||
|
|
// We can promote any unsigned integer type whose size is
|
|
// less than int to an int.
|
|
Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
|
|
return To->getKind() == BuiltinType::Int;
|
|
}
|
|
|
|
return To->getKind() == BuiltinType::UInt;
|
|
}
|
|
|
|
// C++11 [conv.prom]p3:
|
|
// A prvalue of an unscoped enumeration type whose underlying type is not
|
|
// fixed (7.2) can be converted to an rvalue a prvalue of the first of the
|
|
// following types that can represent all the values of the enumeration
|
|
// (i.e., the values in the range bmin to bmax as described in 7.2): int,
|
|
// unsigned int, long int, unsigned long int, long long int, or unsigned
|
|
// long long int. If none of the types in that list can represent all the
|
|
// values of the enumeration, an rvalue a prvalue of an unscoped enumeration
|
|
// type can be converted to an rvalue a prvalue of the extended integer type
|
|
// with lowest integer conversion rank (4.13) greater than the rank of long
|
|
// long in which all the values of the enumeration can be represented. If
|
|
// there are two such extended types, the signed one is chosen.
|
|
// C++11 [conv.prom]p4:
|
|
// A prvalue of an unscoped enumeration type whose underlying type is fixed
|
|
// can be converted to a prvalue of its underlying type. Moreover, if
|
|
// integral promotion can be applied to its underlying type, a prvalue of an
|
|
// unscoped enumeration type whose underlying type is fixed can also be
|
|
// converted to a prvalue of the promoted underlying type.
|
|
if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
|
|
// C++0x 7.2p9: Note that this implicit enum to int conversion is not
|
|
// provided for a scoped enumeration.
|
|
if (FromEnumType->getDecl()->isScoped())
|
|
return false;
|
|
|
|
// We can perform an integral promotion to the underlying type of the enum,
|
|
// even if that's not the promoted type. Note that the check for promoting
|
|
// the underlying type is based on the type alone, and does not consider
|
|
// the bitfield-ness of the actual source expression.
|
|
if (FromEnumType->getDecl()->isFixed()) {
|
|
QualType Underlying = FromEnumType->getDecl()->getIntegerType();
|
|
return Context.hasSameUnqualifiedType(Underlying, ToType) ||
|
|
IsIntegralPromotion(nullptr, Underlying, ToType);
|
|
}
|
|
|
|
// We have already pre-calculated the promotion type, so this is trivial.
|
|
if (ToType->isIntegerType() &&
|
|
isCompleteType(From->getBeginLoc(), FromType))
|
|
return Context.hasSameUnqualifiedType(
|
|
ToType, FromEnumType->getDecl()->getPromotionType());
|
|
|
|
// C++ [conv.prom]p5:
|
|
// If the bit-field has an enumerated type, it is treated as any other
|
|
// value of that type for promotion purposes.
|
|
//
|
|
// ... so do not fall through into the bit-field checks below in C++.
|
|
if (getLangOpts().CPlusPlus)
|
|
return false;
|
|
}
|
|
|
|
// C++0x [conv.prom]p2:
|
|
// A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
|
|
// to an rvalue a prvalue of the first of the following types that can
|
|
// represent all the values of its underlying type: int, unsigned int,
|
|
// long int, unsigned long int, long long int, or unsigned long long int.
|
|
// If none of the types in that list can represent all the values of its
|
|
// underlying type, an rvalue a prvalue of type char16_t, char32_t,
|
|
// or wchar_t can be converted to an rvalue a prvalue of its underlying
|
|
// type.
|
|
if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
|
|
ToType->isIntegerType()) {
|
|
// Determine whether the type we're converting from is signed or
|
|
// unsigned.
|
|
bool FromIsSigned = FromType->isSignedIntegerType();
|
|
uint64_t FromSize = Context.getTypeSize(FromType);
|
|
|
|
// The types we'll try to promote to, in the appropriate
|
|
// order. Try each of these types.
|
|
QualType PromoteTypes[6] = {
|
|
Context.IntTy, Context.UnsignedIntTy,
|
|
Context.LongTy, Context.UnsignedLongTy ,
|
|
Context.LongLongTy, Context.UnsignedLongLongTy
|
|
};
|
|
for (int Idx = 0; Idx < 6; ++Idx) {
|
|
uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
|
|
if (FromSize < ToSize ||
|
|
(FromSize == ToSize &&
|
|
FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
|
|
// We found the type that we can promote to. If this is the
|
|
// type we wanted, we have a promotion. Otherwise, no
|
|
// promotion.
|
|
return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// An rvalue for an integral bit-field (9.6) can be converted to an
|
|
// rvalue of type int if int can represent all the values of the
|
|
// bit-field; otherwise, it can be converted to unsigned int if
|
|
// unsigned int can represent all the values of the bit-field. If
|
|
// the bit-field is larger yet, no integral promotion applies to
|
|
// it. If the bit-field has an enumerated type, it is treated as any
|
|
// other value of that type for promotion purposes (C++ 4.5p3).
|
|
// FIXME: We should delay checking of bit-fields until we actually perform the
|
|
// conversion.
|
|
//
|
|
// FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
|
|
// promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
|
|
// bit-fields and those whose underlying type is larger than int) for GCC
|
|
// compatibility.
|
|
if (From) {
|
|
if (FieldDecl *MemberDecl = From->getSourceBitField()) {
|
|
Optional<llvm::APSInt> BitWidth;
|
|
if (FromType->isIntegralType(Context) &&
|
|
(BitWidth =
|
|
MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) {
|
|
llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned());
|
|
ToSize = Context.getTypeSize(ToType);
|
|
|
|
// Are we promoting to an int from a bitfield that fits in an int?
|
|
if (*BitWidth < ToSize ||
|
|
(FromType->isSignedIntegerType() && *BitWidth <= ToSize)) {
|
|
return To->getKind() == BuiltinType::Int;
|
|
}
|
|
|
|
// Are we promoting to an unsigned int from an unsigned bitfield
|
|
// that fits into an unsigned int?
|
|
if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) {
|
|
return To->getKind() == BuiltinType::UInt;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// An rvalue of type bool can be converted to an rvalue of type int,
|
|
// with false becoming zero and true becoming one (C++ 4.5p4).
|
|
if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// IsFloatingPointPromotion - Determines whether the conversion from
|
|
/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
|
|
/// returns true and sets PromotedType to the promoted type.
|
|
bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
|
|
if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
|
|
if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
|
|
/// An rvalue of type float can be converted to an rvalue of type
|
|
/// double. (C++ 4.6p1).
|
|
if (FromBuiltin->getKind() == BuiltinType::Float &&
|
|
ToBuiltin->getKind() == BuiltinType::Double)
|
|
return true;
|
|
|
|
// C99 6.3.1.5p1:
|
|
// When a float is promoted to double or long double, or a
|
|
// double is promoted to long double [...].
|
|
if (!getLangOpts().CPlusPlus &&
|
|
(FromBuiltin->getKind() == BuiltinType::Float ||
|
|
FromBuiltin->getKind() == BuiltinType::Double) &&
|
|
(ToBuiltin->getKind() == BuiltinType::LongDouble ||
|
|
ToBuiltin->getKind() == BuiltinType::Float128))
|
|
return true;
|
|
|
|
// Half can be promoted to float.
|
|
if (!getLangOpts().NativeHalfType &&
|
|
FromBuiltin->getKind() == BuiltinType::Half &&
|
|
ToBuiltin->getKind() == BuiltinType::Float)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine if a conversion is a complex promotion.
|
|
///
|
|
/// A complex promotion is defined as a complex -> complex conversion
|
|
/// where the conversion between the underlying real types is a
|
|
/// floating-point or integral promotion.
|
|
bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
|
|
const ComplexType *FromComplex = FromType->getAs<ComplexType>();
|
|
if (!FromComplex)
|
|
return false;
|
|
|
|
const ComplexType *ToComplex = ToType->getAs<ComplexType>();
|
|
if (!ToComplex)
|
|
return false;
|
|
|
|
return IsFloatingPointPromotion(FromComplex->getElementType(),
|
|
ToComplex->getElementType()) ||
|
|
IsIntegralPromotion(nullptr, FromComplex->getElementType(),
|
|
ToComplex->getElementType());
|
|
}
|
|
|
|
/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
|
|
/// the pointer type FromPtr to a pointer to type ToPointee, with the
|
|
/// same type qualifiers as FromPtr has on its pointee type. ToType,
|
|
/// if non-empty, will be a pointer to ToType that may or may not have
|
|
/// the right set of qualifiers on its pointee.
|
|
///
|
|
static QualType
|
|
BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
|
|
QualType ToPointee, QualType ToType,
|
|
ASTContext &Context,
|
|
bool StripObjCLifetime = false) {
|
|
assert((FromPtr->getTypeClass() == Type::Pointer ||
|
|
FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
|
|
"Invalid similarly-qualified pointer type");
|
|
|
|
/// Conversions to 'id' subsume cv-qualifier conversions.
|
|
if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
|
|
return ToType.getUnqualifiedType();
|
|
|
|
QualType CanonFromPointee
|
|
= Context.getCanonicalType(FromPtr->getPointeeType());
|
|
QualType CanonToPointee = Context.getCanonicalType(ToPointee);
|
|
Qualifiers Quals = CanonFromPointee.getQualifiers();
|
|
|
|
if (StripObjCLifetime)
|
|
Quals.removeObjCLifetime();
|
|
|
|
// Exact qualifier match -> return the pointer type we're converting to.
|
|
if (CanonToPointee.getLocalQualifiers() == Quals) {
|
|
// ToType is exactly what we need. Return it.
|
|
if (!ToType.isNull())
|
|
return ToType.getUnqualifiedType();
|
|
|
|
// Build a pointer to ToPointee. It has the right qualifiers
|
|
// already.
|
|
if (isa<ObjCObjectPointerType>(ToType))
|
|
return Context.getObjCObjectPointerType(ToPointee);
|
|
return Context.getPointerType(ToPointee);
|
|
}
|
|
|
|
// Just build a canonical type that has the right qualifiers.
|
|
QualType QualifiedCanonToPointee
|
|
= Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
|
|
|
|
if (isa<ObjCObjectPointerType>(ToType))
|
|
return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
|
|
return Context.getPointerType(QualifiedCanonToPointee);
|
|
}
|
|
|
|
static bool isNullPointerConstantForConversion(Expr *Expr,
|
|
bool InOverloadResolution,
|
|
ASTContext &Context) {
|
|
// Handle value-dependent integral null pointer constants correctly.
|
|
// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
|
|
if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
|
|
Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
|
|
return !InOverloadResolution;
|
|
|
|
return Expr->isNullPointerConstant(Context,
|
|
InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
|
|
: Expr::NPC_ValueDependentIsNull);
|
|
}
|
|
|
|
/// IsPointerConversion - Determines whether the conversion of the
|
|
/// expression From, which has the (possibly adjusted) type FromType,
|
|
/// can be converted to the type ToType via a pointer conversion (C++
|
|
/// 4.10). If so, returns true and places the converted type (that
|
|
/// might differ from ToType in its cv-qualifiers at some level) into
|
|
/// ConvertedType.
|
|
///
|
|
/// This routine also supports conversions to and from block pointers
|
|
/// and conversions with Objective-C's 'id', 'id<protocols...>', and
|
|
/// pointers to interfaces. FIXME: Once we've determined the
|
|
/// appropriate overloading rules for Objective-C, we may want to
|
|
/// split the Objective-C checks into a different routine; however,
|
|
/// GCC seems to consider all of these conversions to be pointer
|
|
/// conversions, so for now they live here. IncompatibleObjC will be
|
|
/// set if the conversion is an allowed Objective-C conversion that
|
|
/// should result in a warning.
|
|
bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
|
|
bool InOverloadResolution,
|
|
QualType& ConvertedType,
|
|
bool &IncompatibleObjC) {
|
|
IncompatibleObjC = false;
|
|
if (isObjCPointerConversion(FromType, ToType, ConvertedType,
|
|
IncompatibleObjC))
|
|
return true;
|
|
|
|
// Conversion from a null pointer constant to any Objective-C pointer type.
|
|
if (ToType->isObjCObjectPointerType() &&
|
|
isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
// Blocks: Block pointers can be converted to void*.
|
|
if (FromType->isBlockPointerType() && ToType->isPointerType() &&
|
|
ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
// Blocks: A null pointer constant can be converted to a block
|
|
// pointer type.
|
|
if (ToType->isBlockPointerType() &&
|
|
isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
// If the left-hand-side is nullptr_t, the right side can be a null
|
|
// pointer constant.
|
|
if (ToType->isNullPtrType() &&
|
|
isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
const PointerType* ToTypePtr = ToType->getAs<PointerType>();
|
|
if (!ToTypePtr)
|
|
return false;
|
|
|
|
// A null pointer constant can be converted to a pointer type (C++ 4.10p1).
|
|
if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
// Beyond this point, both types need to be pointers
|
|
// , including objective-c pointers.
|
|
QualType ToPointeeType = ToTypePtr->getPointeeType();
|
|
if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
|
|
!getLangOpts().ObjCAutoRefCount) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(
|
|
FromType->getAs<ObjCObjectPointerType>(),
|
|
ToPointeeType,
|
|
ToType, Context);
|
|
return true;
|
|
}
|
|
const PointerType *FromTypePtr = FromType->getAs<PointerType>();
|
|
if (!FromTypePtr)
|
|
return false;
|
|
|
|
QualType FromPointeeType = FromTypePtr->getPointeeType();
|
|
|
|
// If the unqualified pointee types are the same, this can't be a
|
|
// pointer conversion, so don't do all of the work below.
|
|
if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
|
|
return false;
|
|
|
|
// An rvalue of type "pointer to cv T," where T is an object type,
|
|
// can be converted to an rvalue of type "pointer to cv void" (C++
|
|
// 4.10p2).
|
|
if (FromPointeeType->isIncompleteOrObjectType() &&
|
|
ToPointeeType->isVoidType()) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
|
|
ToPointeeType,
|
|
ToType, Context,
|
|
/*StripObjCLifetime=*/true);
|
|
return true;
|
|
}
|
|
|
|
// MSVC allows implicit function to void* type conversion.
|
|
if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
|
|
ToPointeeType->isVoidType()) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
|
|
ToPointeeType,
|
|
ToType, Context);
|
|
return true;
|
|
}
|
|
|
|
// When we're overloading in C, we allow a special kind of pointer
|
|
// conversion for compatible-but-not-identical pointee types.
|
|
if (!getLangOpts().CPlusPlus &&
|
|
Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
|
|
ToPointeeType,
|
|
ToType, Context);
|
|
return true;
|
|
}
|
|
|
|
// C++ [conv.ptr]p3:
|
|
//
|
|
// An rvalue of type "pointer to cv D," where D is a class type,
|
|
// can be converted to an rvalue of type "pointer to cv B," where
|
|
// B is a base class (clause 10) of D. If B is an inaccessible
|
|
// (clause 11) or ambiguous (10.2) base class of D, a program that
|
|
// necessitates this conversion is ill-formed. The result of the
|
|
// conversion is a pointer to the base class sub-object of the
|
|
// derived class object. The null pointer value is converted to
|
|
// the null pointer value of the destination type.
|
|
//
|
|
// Note that we do not check for ambiguity or inaccessibility
|
|
// here. That is handled by CheckPointerConversion.
|
|
if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
|
|
ToPointeeType->isRecordType() &&
|
|
!Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
|
|
IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
|
|
ToPointeeType,
|
|
ToType, Context);
|
|
return true;
|
|
}
|
|
|
|
if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
|
|
Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
|
|
ToPointeeType,
|
|
ToType, Context);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Adopt the given qualifiers for the given type.
|
|
static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
|
|
Qualifiers TQs = T.getQualifiers();
|
|
|
|
// Check whether qualifiers already match.
|
|
if (TQs == Qs)
|
|
return T;
|
|
|
|
if (Qs.compatiblyIncludes(TQs))
|
|
return Context.getQualifiedType(T, Qs);
|
|
|
|
return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
|
|
}
|
|
|
|
/// isObjCPointerConversion - Determines whether this is an
|
|
/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
|
|
/// with the same arguments and return values.
|
|
bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
|
|
QualType& ConvertedType,
|
|
bool &IncompatibleObjC) {
|
|
if (!getLangOpts().ObjC)
|
|
return false;
|
|
|
|
// The set of qualifiers on the type we're converting from.
|
|
Qualifiers FromQualifiers = FromType.getQualifiers();
|
|
|
|
// First, we handle all conversions on ObjC object pointer types.
|
|
const ObjCObjectPointerType* ToObjCPtr =
|
|
ToType->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType *FromObjCPtr =
|
|
FromType->getAs<ObjCObjectPointerType>();
|
|
|
|
if (ToObjCPtr && FromObjCPtr) {
|
|
// If the pointee types are the same (ignoring qualifications),
|
|
// then this is not a pointer conversion.
|
|
if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
|
|
FromObjCPtr->getPointeeType()))
|
|
return false;
|
|
|
|
// Conversion between Objective-C pointers.
|
|
if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
|
|
const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
|
|
const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
|
|
if (getLangOpts().CPlusPlus && LHS && RHS &&
|
|
!ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
|
|
FromObjCPtr->getPointeeType()))
|
|
return false;
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
|
|
ToObjCPtr->getPointeeType(),
|
|
ToType, Context);
|
|
ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
|
|
return true;
|
|
}
|
|
|
|
if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
|
|
// Okay: this is some kind of implicit downcast of Objective-C
|
|
// interfaces, which is permitted. However, we're going to
|
|
// complain about it.
|
|
IncompatibleObjC = true;
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
|
|
ToObjCPtr->getPointeeType(),
|
|
ToType, Context);
|
|
ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
|
|
return true;
|
|
}
|
|
}
|
|
// Beyond this point, both types need to be C pointers or block pointers.
|
|
QualType ToPointeeType;
|
|
if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
|
|
ToPointeeType = ToCPtr->getPointeeType();
|
|
else if (const BlockPointerType *ToBlockPtr =
|
|
ToType->getAs<BlockPointerType>()) {
|
|
// Objective C++: We're able to convert from a pointer to any object
|
|
// to a block pointer type.
|
|
if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
|
|
ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
|
|
return true;
|
|
}
|
|
ToPointeeType = ToBlockPtr->getPointeeType();
|
|
}
|
|
else if (FromType->getAs<BlockPointerType>() &&
|
|
ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
|
|
// Objective C++: We're able to convert from a block pointer type to a
|
|
// pointer to any object.
|
|
ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
|
|
return true;
|
|
}
|
|
else
|
|
return false;
|
|
|
|
QualType FromPointeeType;
|
|
if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
|
|
FromPointeeType = FromCPtr->getPointeeType();
|
|
else if (const BlockPointerType *FromBlockPtr =
|
|
FromType->getAs<BlockPointerType>())
|
|
FromPointeeType = FromBlockPtr->getPointeeType();
|
|
else
|
|
return false;
|
|
|
|
// If we have pointers to pointers, recursively check whether this
|
|
// is an Objective-C conversion.
|
|
if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
|
|
isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
|
|
IncompatibleObjC)) {
|
|
// We always complain about this conversion.
|
|
IncompatibleObjC = true;
|
|
ConvertedType = Context.getPointerType(ConvertedType);
|
|
ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
|
|
return true;
|
|
}
|
|
// Allow conversion of pointee being objective-c pointer to another one;
|
|
// as in I* to id.
|
|
if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
|
|
ToPointeeType->getAs<ObjCObjectPointerType>() &&
|
|
isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
|
|
IncompatibleObjC)) {
|
|
|
|
ConvertedType = Context.getPointerType(ConvertedType);
|
|
ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
|
|
return true;
|
|
}
|
|
|
|
// If we have pointers to functions or blocks, check whether the only
|
|
// differences in the argument and result types are in Objective-C
|
|
// pointer conversions. If so, we permit the conversion (but
|
|
// complain about it).
|
|
const FunctionProtoType *FromFunctionType
|
|
= FromPointeeType->getAs<FunctionProtoType>();
|
|
const FunctionProtoType *ToFunctionType
|
|
= ToPointeeType->getAs<FunctionProtoType>();
|
|
if (FromFunctionType && ToFunctionType) {
|
|
// If the function types are exactly the same, this isn't an
|
|
// Objective-C pointer conversion.
|
|
if (Context.getCanonicalType(FromPointeeType)
|
|
== Context.getCanonicalType(ToPointeeType))
|
|
return false;
|
|
|
|
// Perform the quick checks that will tell us whether these
|
|
// function types are obviously different.
|
|
if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
|
|
FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
|
|
FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
|
|
return false;
|
|
|
|
bool HasObjCConversion = false;
|
|
if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
|
|
Context.getCanonicalType(ToFunctionType->getReturnType())) {
|
|
// Okay, the types match exactly. Nothing to do.
|
|
} else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
|
|
ToFunctionType->getReturnType(),
|
|
ConvertedType, IncompatibleObjC)) {
|
|
// Okay, we have an Objective-C pointer conversion.
|
|
HasObjCConversion = true;
|
|
} else {
|
|
// Function types are too different. Abort.
|
|
return false;
|
|
}
|
|
|
|
// Check argument types.
|
|
for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
|
|
ArgIdx != NumArgs; ++ArgIdx) {
|
|
QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
|
|
QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
|
|
if (Context.getCanonicalType(FromArgType)
|
|
== Context.getCanonicalType(ToArgType)) {
|
|
// Okay, the types match exactly. Nothing to do.
|
|
} else if (isObjCPointerConversion(FromArgType, ToArgType,
|
|
ConvertedType, IncompatibleObjC)) {
|
|
// Okay, we have an Objective-C pointer conversion.
|
|
HasObjCConversion = true;
|
|
} else {
|
|
// Argument types are too different. Abort.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (HasObjCConversion) {
|
|
// We had an Objective-C conversion. Allow this pointer
|
|
// conversion, but complain about it.
|
|
ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
|
|
IncompatibleObjC = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine whether this is an Objective-C writeback conversion,
|
|
/// used for parameter passing when performing automatic reference counting.
|
|
///
|
|
/// \param FromType The type we're converting form.
|
|
///
|
|
/// \param ToType The type we're converting to.
|
|
///
|
|
/// \param ConvertedType The type that will be produced after applying
|
|
/// this conversion.
|
|
bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
|
|
QualType &ConvertedType) {
|
|
if (!getLangOpts().ObjCAutoRefCount ||
|
|
Context.hasSameUnqualifiedType(FromType, ToType))
|
|
return false;
|
|
|
|
// Parameter must be a pointer to __autoreleasing (with no other qualifiers).
|
|
QualType ToPointee;
|
|
if (const PointerType *ToPointer = ToType->getAs<PointerType>())
|
|
ToPointee = ToPointer->getPointeeType();
|
|
else
|
|
return false;
|
|
|
|
Qualifiers ToQuals = ToPointee.getQualifiers();
|
|
if (!ToPointee->isObjCLifetimeType() ||
|
|
ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
|
|
!ToQuals.withoutObjCLifetime().empty())
|
|
return false;
|
|
|
|
// Argument must be a pointer to __strong to __weak.
|
|
QualType FromPointee;
|
|
if (const PointerType *FromPointer = FromType->getAs<PointerType>())
|
|
FromPointee = FromPointer->getPointeeType();
|
|
else
|
|
return false;
|
|
|
|
Qualifiers FromQuals = FromPointee.getQualifiers();
|
|
if (!FromPointee->isObjCLifetimeType() ||
|
|
(FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
|
|
FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
|
|
return false;
|
|
|
|
// Make sure that we have compatible qualifiers.
|
|
FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
|
|
if (!ToQuals.compatiblyIncludes(FromQuals))
|
|
return false;
|
|
|
|
// Remove qualifiers from the pointee type we're converting from; they
|
|
// aren't used in the compatibility check belong, and we'll be adding back
|
|
// qualifiers (with __autoreleasing) if the compatibility check succeeds.
|
|
FromPointee = FromPointee.getUnqualifiedType();
|
|
|
|
// The unqualified form of the pointee types must be compatible.
|
|
ToPointee = ToPointee.getUnqualifiedType();
|
|
bool IncompatibleObjC;
|
|
if (Context.typesAreCompatible(FromPointee, ToPointee))
|
|
FromPointee = ToPointee;
|
|
else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
|
|
IncompatibleObjC))
|
|
return false;
|
|
|
|
/// Construct the type we're converting to, which is a pointer to
|
|
/// __autoreleasing pointee.
|
|
FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
|
|
ConvertedType = Context.getPointerType(FromPointee);
|
|
return true;
|
|
}
|
|
|
|
bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
|
|
QualType& ConvertedType) {
|
|
QualType ToPointeeType;
|
|
if (const BlockPointerType *ToBlockPtr =
|
|
ToType->getAs<BlockPointerType>())
|
|
ToPointeeType = ToBlockPtr->getPointeeType();
|
|
else
|
|
return false;
|
|
|
|
QualType FromPointeeType;
|
|
if (const BlockPointerType *FromBlockPtr =
|
|
FromType->getAs<BlockPointerType>())
|
|
FromPointeeType = FromBlockPtr->getPointeeType();
|
|
else
|
|
return false;
|
|
// We have pointer to blocks, check whether the only
|
|
// differences in the argument and result types are in Objective-C
|
|
// pointer conversions. If so, we permit the conversion.
|
|
|
|
const FunctionProtoType *FromFunctionType
|
|
= FromPointeeType->getAs<FunctionProtoType>();
|
|
const FunctionProtoType *ToFunctionType
|
|
= ToPointeeType->getAs<FunctionProtoType>();
|
|
|
|
if (!FromFunctionType || !ToFunctionType)
|
|
return false;
|
|
|
|
if (Context.hasSameType(FromPointeeType, ToPointeeType))
|
|
return true;
|
|
|
|
// Perform the quick checks that will tell us whether these
|
|
// function types are obviously different.
|
|
if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
|
|
FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
|
|
return false;
|
|
|
|
FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
|
|
FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
|
|
if (FromEInfo != ToEInfo)
|
|
return false;
|
|
|
|
bool IncompatibleObjC = false;
|
|
if (Context.hasSameType(FromFunctionType->getReturnType(),
|
|
ToFunctionType->getReturnType())) {
|
|
// Okay, the types match exactly. Nothing to do.
|
|
} else {
|
|
QualType RHS = FromFunctionType->getReturnType();
|
|
QualType LHS = ToFunctionType->getReturnType();
|
|
if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
|
|
!RHS.hasQualifiers() && LHS.hasQualifiers())
|
|
LHS = LHS.getUnqualifiedType();
|
|
|
|
if (Context.hasSameType(RHS,LHS)) {
|
|
// OK exact match.
|
|
} else if (isObjCPointerConversion(RHS, LHS,
|
|
ConvertedType, IncompatibleObjC)) {
|
|
if (IncompatibleObjC)
|
|
return false;
|
|
// Okay, we have an Objective-C pointer conversion.
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Check argument types.
|
|
for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
|
|
ArgIdx != NumArgs; ++ArgIdx) {
|
|
IncompatibleObjC = false;
|
|
QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
|
|
QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
|
|
if (Context.hasSameType(FromArgType, ToArgType)) {
|
|
// Okay, the types match exactly. Nothing to do.
|
|
} else if (isObjCPointerConversion(ToArgType, FromArgType,
|
|
ConvertedType, IncompatibleObjC)) {
|
|
if (IncompatibleObjC)
|
|
return false;
|
|
// Okay, we have an Objective-C pointer conversion.
|
|
} else
|
|
// Argument types are too different. Abort.
|
|
return false;
|
|
}
|
|
|
|
SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
|
|
bool CanUseToFPT, CanUseFromFPT;
|
|
if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
|
|
CanUseToFPT, CanUseFromFPT,
|
|
NewParamInfos))
|
|
return false;
|
|
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
enum {
|
|
ft_default,
|
|
ft_different_class,
|
|
ft_parameter_arity,
|
|
ft_parameter_mismatch,
|
|
ft_return_type,
|
|
ft_qualifer_mismatch,
|
|
ft_noexcept
|
|
};
|
|
|
|
/// Attempts to get the FunctionProtoType from a Type. Handles
|
|
/// MemberFunctionPointers properly.
|
|
static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
|
|
if (auto *FPT = FromType->getAs<FunctionProtoType>())
|
|
return FPT;
|
|
|
|
if (auto *MPT = FromType->getAs<MemberPointerType>())
|
|
return MPT->getPointeeType()->getAs<FunctionProtoType>();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
|
|
/// function types. Catches different number of parameter, mismatch in
|
|
/// parameter types, and different return types.
|
|
void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
|
|
QualType FromType, QualType ToType) {
|
|
// If either type is not valid, include no extra info.
|
|
if (FromType.isNull() || ToType.isNull()) {
|
|
PDiag << ft_default;
|
|
return;
|
|
}
|
|
|
|
// Get the function type from the pointers.
|
|
if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
|
|
const auto *FromMember = FromType->castAs<MemberPointerType>(),
|
|
*ToMember = ToType->castAs<MemberPointerType>();
|
|
if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
|
|
PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
|
|
<< QualType(FromMember->getClass(), 0);
|
|
return;
|
|
}
|
|
FromType = FromMember->getPointeeType();
|
|
ToType = ToMember->getPointeeType();
|
|
}
|
|
|
|
if (FromType->isPointerType())
|
|
FromType = FromType->getPointeeType();
|
|
if (ToType->isPointerType())
|
|
ToType = ToType->getPointeeType();
|
|
|
|
// Remove references.
|
|
FromType = FromType.getNonReferenceType();
|
|
ToType = ToType.getNonReferenceType();
|
|
|
|
// Don't print extra info for non-specialized template functions.
|
|
if (FromType->isInstantiationDependentType() &&
|
|
!FromType->getAs<TemplateSpecializationType>()) {
|
|
PDiag << ft_default;
|
|
return;
|
|
}
|
|
|
|
// No extra info for same types.
|
|
if (Context.hasSameType(FromType, ToType)) {
|
|
PDiag << ft_default;
|
|
return;
|
|
}
|
|
|
|
const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
|
|
*ToFunction = tryGetFunctionProtoType(ToType);
|
|
|
|
// Both types need to be function types.
|
|
if (!FromFunction || !ToFunction) {
|
|
PDiag << ft_default;
|
|
return;
|
|
}
|
|
|
|
if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
|
|
PDiag << ft_parameter_arity << ToFunction->getNumParams()
|
|
<< FromFunction->getNumParams();
|
|
return;
|
|
}
|
|
|
|
// Handle different parameter types.
|
|
unsigned ArgPos;
|
|
if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
|
|
PDiag << ft_parameter_mismatch << ArgPos + 1
|
|
<< ToFunction->getParamType(ArgPos)
|
|
<< FromFunction->getParamType(ArgPos);
|
|
return;
|
|
}
|
|
|
|
// Handle different return type.
|
|
if (!Context.hasSameType(FromFunction->getReturnType(),
|
|
ToFunction->getReturnType())) {
|
|
PDiag << ft_return_type << ToFunction->getReturnType()
|
|
<< FromFunction->getReturnType();
|
|
return;
|
|
}
|
|
|
|
if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
|
|
PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
|
|
<< FromFunction->getMethodQuals();
|
|
return;
|
|
}
|
|
|
|
// Handle exception specification differences on canonical type (in C++17
|
|
// onwards).
|
|
if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
|
|
->isNothrow() !=
|
|
cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
|
|
->isNothrow()) {
|
|
PDiag << ft_noexcept;
|
|
return;
|
|
}
|
|
|
|
// Unable to find a difference, so add no extra info.
|
|
PDiag << ft_default;
|
|
}
|
|
|
|
/// FunctionParamTypesAreEqual - This routine checks two function proto types
|
|
/// for equality of their argument types. Caller has already checked that
|
|
/// they have same number of arguments. If the parameters are different,
|
|
/// ArgPos will have the parameter index of the first different parameter.
|
|
bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
|
|
const FunctionProtoType *NewType,
|
|
unsigned *ArgPos) {
|
|
for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
|
|
N = NewType->param_type_begin(),
|
|
E = OldType->param_type_end();
|
|
O && (O != E); ++O, ++N) {
|
|
// Ignore address spaces in pointee type. This is to disallow overloading
|
|
// on __ptr32/__ptr64 address spaces.
|
|
QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType());
|
|
QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType());
|
|
|
|
if (!Context.hasSameType(Old, New)) {
|
|
if (ArgPos)
|
|
*ArgPos = O - OldType->param_type_begin();
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// CheckPointerConversion - Check the pointer conversion from the
|
|
/// expression From to the type ToType. This routine checks for
|
|
/// ambiguous or inaccessible derived-to-base pointer
|
|
/// conversions for which IsPointerConversion has already returned
|
|
/// true. It returns true and produces a diagnostic if there was an
|
|
/// error, or returns false otherwise.
|
|
bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
|
|
CastKind &Kind,
|
|
CXXCastPath& BasePath,
|
|
bool IgnoreBaseAccess,
|
|
bool Diagnose) {
|
|
QualType FromType = From->getType();
|
|
bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
|
|
|
|
Kind = CK_BitCast;
|
|
|
|
if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
|
|
From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
|
|
Expr::NPCK_ZeroExpression) {
|
|
if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
|
|
DiagRuntimeBehavior(From->getExprLoc(), From,
|
|
PDiag(diag::warn_impcast_bool_to_null_pointer)
|
|
<< ToType << From->getSourceRange());
|
|
else if (!isUnevaluatedContext())
|
|
Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
|
|
<< ToType << From->getSourceRange();
|
|
}
|
|
if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
|
|
if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
|
|
QualType FromPointeeType = FromPtrType->getPointeeType(),
|
|
ToPointeeType = ToPtrType->getPointeeType();
|
|
|
|
if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
|
|
!Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
|
|
// We must have a derived-to-base conversion. Check an
|
|
// ambiguous or inaccessible conversion.
|
|
unsigned InaccessibleID = 0;
|
|
unsigned AmbiguousID = 0;
|
|
if (Diagnose) {
|
|
InaccessibleID = diag::err_upcast_to_inaccessible_base;
|
|
AmbiguousID = diag::err_ambiguous_derived_to_base_conv;
|
|
}
|
|
if (CheckDerivedToBaseConversion(
|
|
FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID,
|
|
From->getExprLoc(), From->getSourceRange(), DeclarationName(),
|
|
&BasePath, IgnoreBaseAccess))
|
|
return true;
|
|
|
|
// The conversion was successful.
|
|
Kind = CK_DerivedToBase;
|
|
}
|
|
|
|
if (Diagnose && !IsCStyleOrFunctionalCast &&
|
|
FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
|
|
assert(getLangOpts().MSVCCompat &&
|
|
"this should only be possible with MSVCCompat!");
|
|
Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
|
|
<< From->getSourceRange();
|
|
}
|
|
}
|
|
} else if (const ObjCObjectPointerType *ToPtrType =
|
|
ToType->getAs<ObjCObjectPointerType>()) {
|
|
if (const ObjCObjectPointerType *FromPtrType =
|
|
FromType->getAs<ObjCObjectPointerType>()) {
|
|
// Objective-C++ conversions are always okay.
|
|
// FIXME: We should have a different class of conversions for the
|
|
// Objective-C++ implicit conversions.
|
|
if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
|
|
return false;
|
|
} else if (FromType->isBlockPointerType()) {
|
|
Kind = CK_BlockPointerToObjCPointerCast;
|
|
} else {
|
|
Kind = CK_CPointerToObjCPointerCast;
|
|
}
|
|
} else if (ToType->isBlockPointerType()) {
|
|
if (!FromType->isBlockPointerType())
|
|
Kind = CK_AnyPointerToBlockPointerCast;
|
|
}
|
|
|
|
// We shouldn't fall into this case unless it's valid for other
|
|
// reasons.
|
|
if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
|
|
Kind = CK_NullToPointer;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// IsMemberPointerConversion - Determines whether the conversion of the
|
|
/// expression From, which has the (possibly adjusted) type FromType, can be
|
|
/// converted to the type ToType via a member pointer conversion (C++ 4.11).
|
|
/// If so, returns true and places the converted type (that might differ from
|
|
/// ToType in its cv-qualifiers at some level) into ConvertedType.
|
|
bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
|
|
QualType ToType,
|
|
bool InOverloadResolution,
|
|
QualType &ConvertedType) {
|
|
const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
|
|
if (!ToTypePtr)
|
|
return false;
|
|
|
|
// A null pointer constant can be converted to a member pointer (C++ 4.11p1)
|
|
if (From->isNullPointerConstant(Context,
|
|
InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
|
|
: Expr::NPC_ValueDependentIsNull)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, both types have to be member pointers.
|
|
const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
|
|
if (!FromTypePtr)
|
|
return false;
|
|
|
|
// A pointer to member of B can be converted to a pointer to member of D,
|
|
// where D is derived from B (C++ 4.11p2).
|
|
QualType FromClass(FromTypePtr->getClass(), 0);
|
|
QualType ToClass(ToTypePtr->getClass(), 0);
|
|
|
|
if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
|
|
IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
|
|
ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
|
|
ToClass.getTypePtr());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CheckMemberPointerConversion - Check the member pointer conversion from the
|
|
/// expression From to the type ToType. This routine checks for ambiguous or
|
|
/// virtual or inaccessible base-to-derived member pointer conversions
|
|
/// for which IsMemberPointerConversion has already returned true. It returns
|
|
/// true and produces a diagnostic if there was an error, or returns false
|
|
/// otherwise.
|
|
bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
|
|
CastKind &Kind,
|
|
CXXCastPath &BasePath,
|
|
bool IgnoreBaseAccess) {
|
|
QualType FromType = From->getType();
|
|
const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
|
|
if (!FromPtrType) {
|
|
// This must be a null pointer to member pointer conversion
|
|
assert(From->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull) &&
|
|
"Expr must be null pointer constant!");
|
|
Kind = CK_NullToMemberPointer;
|
|
return false;
|
|
}
|
|
|
|
const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
|
|
assert(ToPtrType && "No member pointer cast has a target type "
|
|
"that is not a member pointer.");
|
|
|
|
QualType FromClass = QualType(FromPtrType->getClass(), 0);
|
|
QualType ToClass = QualType(ToPtrType->getClass(), 0);
|
|
|
|
// FIXME: What about dependent types?
|
|
assert(FromClass->isRecordType() && "Pointer into non-class.");
|
|
assert(ToClass->isRecordType() && "Pointer into non-class.");
|
|
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
|
/*DetectVirtual=*/true);
|
|
bool DerivationOkay =
|
|
IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
|
|
assert(DerivationOkay &&
|
|
"Should not have been called if derivation isn't OK.");
|
|
(void)DerivationOkay;
|
|
|
|
if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
|
|
getUnqualifiedType())) {
|
|
std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
|
|
Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
|
|
<< 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
if (const RecordType *VBase = Paths.getDetectedVirtual()) {
|
|
Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
|
|
<< FromClass << ToClass << QualType(VBase, 0)
|
|
<< From->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
if (!IgnoreBaseAccess)
|
|
CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
|
|
Paths.front(),
|
|
diag::err_downcast_from_inaccessible_base);
|
|
|
|
// Must be a base to derived member conversion.
|
|
BuildBasePathArray(Paths, BasePath);
|
|
Kind = CK_BaseToDerivedMemberPointer;
|
|
return false;
|
|
}
|
|
|
|
/// Determine whether the lifetime conversion between the two given
|
|
/// qualifiers sets is nontrivial.
|
|
static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
|
|
Qualifiers ToQuals) {
|
|
// Converting anything to const __unsafe_unretained is trivial.
|
|
if (ToQuals.hasConst() &&
|
|
ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Perform a single iteration of the loop for checking if a qualification
|
|
/// conversion is valid.
|
|
///
|
|
/// Specifically, check whether any change between the qualifiers of \p
|
|
/// FromType and \p ToType is permissible, given knowledge about whether every
|
|
/// outer layer is const-qualified.
|
|
static bool isQualificationConversionStep(QualType FromType, QualType ToType,
|
|
bool CStyle, bool IsTopLevel,
|
|
bool &PreviousToQualsIncludeConst,
|
|
bool &ObjCLifetimeConversion) {
|
|
Qualifiers FromQuals = FromType.getQualifiers();
|
|
Qualifiers ToQuals = ToType.getQualifiers();
|
|
|
|
// Ignore __unaligned qualifier if this type is void.
|
|
if (ToType.getUnqualifiedType()->isVoidType())
|
|
FromQuals.removeUnaligned();
|
|
|
|
// Objective-C ARC:
|
|
// Check Objective-C lifetime conversions.
|
|
if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
|
|
if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
|
|
if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
|
|
ObjCLifetimeConversion = true;
|
|
FromQuals.removeObjCLifetime();
|
|
ToQuals.removeObjCLifetime();
|
|
} else {
|
|
// Qualification conversions cannot cast between different
|
|
// Objective-C lifetime qualifiers.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Allow addition/removal of GC attributes but not changing GC attributes.
|
|
if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
|
|
(!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
|
|
FromQuals.removeObjCGCAttr();
|
|
ToQuals.removeObjCGCAttr();
|
|
}
|
|
|
|
// -- for every j > 0, if const is in cv 1,j then const is in cv
|
|
// 2,j, and similarly for volatile.
|
|
if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
|
|
return false;
|
|
|
|
// If address spaces mismatch:
|
|
// - in top level it is only valid to convert to addr space that is a
|
|
// superset in all cases apart from C-style casts where we allow
|
|
// conversions between overlapping address spaces.
|
|
// - in non-top levels it is not a valid conversion.
|
|
if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() &&
|
|
(!IsTopLevel ||
|
|
!(ToQuals.isAddressSpaceSupersetOf(FromQuals) ||
|
|
(CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals)))))
|
|
return false;
|
|
|
|
// -- if the cv 1,j and cv 2,j are different, then const is in
|
|
// every cv for 0 < k < j.
|
|
if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() &&
|
|
!PreviousToQualsIncludeConst)
|
|
return false;
|
|
|
|
// Keep track of whether all prior cv-qualifiers in the "to" type
|
|
// include const.
|
|
PreviousToQualsIncludeConst =
|
|
PreviousToQualsIncludeConst && ToQuals.hasConst();
|
|
return true;
|
|
}
|
|
|
|
/// IsQualificationConversion - Determines whether the conversion from
|
|
/// an rvalue of type FromType to ToType is a qualification conversion
|
|
/// (C++ 4.4).
|
|
///
|
|
/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
|
|
/// when the qualification conversion involves a change in the Objective-C
|
|
/// object lifetime.
|
|
bool
|
|
Sema::IsQualificationConversion(QualType FromType, QualType ToType,
|
|
bool CStyle, bool &ObjCLifetimeConversion) {
|
|
FromType = Context.getCanonicalType(FromType);
|
|
ToType = Context.getCanonicalType(ToType);
|
|
ObjCLifetimeConversion = false;
|
|
|
|
// If FromType and ToType are the same type, this is not a
|
|
// qualification conversion.
|
|
if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
|
|
return false;
|
|
|
|
// (C++ 4.4p4):
|
|
// A conversion can add cv-qualifiers at levels other than the first
|
|
// in multi-level pointers, subject to the following rules: [...]
|
|
bool PreviousToQualsIncludeConst = true;
|
|
bool UnwrappedAnyPointer = false;
|
|
while (Context.UnwrapSimilarTypes(FromType, ToType)) {
|
|
if (!isQualificationConversionStep(
|
|
FromType, ToType, CStyle, !UnwrappedAnyPointer,
|
|
PreviousToQualsIncludeConst, ObjCLifetimeConversion))
|
|
return false;
|
|
UnwrappedAnyPointer = true;
|
|
}
|
|
|
|
// We are left with FromType and ToType being the pointee types
|
|
// after unwrapping the original FromType and ToType the same number
|
|
// of times. If we unwrapped any pointers, and if FromType and
|
|
// ToType have the same unqualified type (since we checked
|
|
// qualifiers above), then this is a qualification conversion.
|
|
return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
|
|
}
|
|
|
|
/// - Determine whether this is a conversion from a scalar type to an
|
|
/// atomic type.
|
|
///
|
|
/// If successful, updates \c SCS's second and third steps in the conversion
|
|
/// sequence to finish the conversion.
|
|
static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
|
|
bool InOverloadResolution,
|
|
StandardConversionSequence &SCS,
|
|
bool CStyle) {
|
|
const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
|
|
if (!ToAtomic)
|
|
return false;
|
|
|
|
StandardConversionSequence InnerSCS;
|
|
if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
|
|
InOverloadResolution, InnerSCS,
|
|
CStyle, /*AllowObjCWritebackConversion=*/false))
|
|
return false;
|
|
|
|
SCS.Second = InnerSCS.Second;
|
|
SCS.setToType(1, InnerSCS.getToType(1));
|
|
SCS.Third = InnerSCS.Third;
|
|
SCS.QualificationIncludesObjCLifetime
|
|
= InnerSCS.QualificationIncludesObjCLifetime;
|
|
SCS.setToType(2, InnerSCS.getToType(2));
|
|
return true;
|
|
}
|
|
|
|
static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
|
|
CXXConstructorDecl *Constructor,
|
|
QualType Type) {
|
|
const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>();
|
|
if (CtorType->getNumParams() > 0) {
|
|
QualType FirstArg = CtorType->getParamType(0);
|
|
if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static OverloadingResult
|
|
IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
|
|
CXXRecordDecl *To,
|
|
UserDefinedConversionSequence &User,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool AllowExplicit) {
|
|
CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
|
|
for (auto *D : S.LookupConstructors(To)) {
|
|
auto Info = getConstructorInfo(D);
|
|
if (!Info)
|
|
continue;
|
|
|
|
bool Usable = !Info.Constructor->isInvalidDecl() &&
|
|
S.isInitListConstructor(Info.Constructor);
|
|
if (Usable) {
|
|
// If the first argument is (a reference to) the target type,
|
|
// suppress conversions.
|
|
bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
|
|
S.Context, Info.Constructor, ToType);
|
|
if (Info.ConstructorTmpl)
|
|
S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
|
|
/*ExplicitArgs*/ nullptr, From,
|
|
CandidateSet, SuppressUserConversions,
|
|
/*PartialOverloading*/ false,
|
|
AllowExplicit);
|
|
else
|
|
S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
|
|
CandidateSet, SuppressUserConversions,
|
|
/*PartialOverloading*/ false, AllowExplicit);
|
|
}
|
|
}
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (auto Result =
|
|
CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
|
|
case OR_Deleted:
|
|
case OR_Success: {
|
|
// Record the standard conversion we used and the conversion function.
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
|
|
QualType ThisType = Constructor->getThisType();
|
|
// Initializer lists don't have conversions as such.
|
|
User.Before.setAsIdentityConversion();
|
|
User.HadMultipleCandidates = HadMultipleCandidates;
|
|
User.ConversionFunction = Constructor;
|
|
User.FoundConversionFunction = Best->FoundDecl;
|
|
User.After.setAsIdentityConversion();
|
|
User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
|
|
User.After.setAllToTypes(ToType);
|
|
return Result;
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
return OR_No_Viable_Function;
|
|
case OR_Ambiguous:
|
|
return OR_Ambiguous;
|
|
}
|
|
|
|
llvm_unreachable("Invalid OverloadResult!");
|
|
}
|
|
|
|
/// Determines whether there is a user-defined conversion sequence
|
|
/// (C++ [over.ics.user]) that converts expression From to the type
|
|
/// ToType. If such a conversion exists, User will contain the
|
|
/// user-defined conversion sequence that performs such a conversion
|
|
/// and this routine will return true. Otherwise, this routine returns
|
|
/// false and User is unspecified.
|
|
///
|
|
/// \param AllowExplicit true if the conversion should consider C++0x
|
|
/// "explicit" conversion functions as well as non-explicit conversion
|
|
/// functions (C++0x [class.conv.fct]p2).
|
|
///
|
|
/// \param AllowObjCConversionOnExplicit true if the conversion should
|
|
/// allow an extra Objective-C pointer conversion on uses of explicit
|
|
/// constructors. Requires \c AllowExplicit to also be set.
|
|
static OverloadingResult
|
|
IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
|
|
UserDefinedConversionSequence &User,
|
|
OverloadCandidateSet &CandidateSet,
|
|
AllowedExplicit AllowExplicit,
|
|
bool AllowObjCConversionOnExplicit) {
|
|
assert(AllowExplicit != AllowedExplicit::None ||
|
|
!AllowObjCConversionOnExplicit);
|
|
CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
|
|
|
|
// Whether we will only visit constructors.
|
|
bool ConstructorsOnly = false;
|
|
|
|
// If the type we are conversion to is a class type, enumerate its
|
|
// constructors.
|
|
if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
|
|
// C++ [over.match.ctor]p1:
|
|
// When objects of class type are direct-initialized (8.5), or
|
|
// copy-initialized from an expression of the same or a
|
|
// derived class type (8.5), overload resolution selects the
|
|
// constructor. [...] For copy-initialization, the candidate
|
|
// functions are all the converting constructors (12.3.1) of
|
|
// that class. The argument list is the expression-list within
|
|
// the parentheses of the initializer.
|
|
if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
|
|
(From->getType()->getAs<RecordType>() &&
|
|
S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
|
|
ConstructorsOnly = true;
|
|
|
|
if (!S.isCompleteType(From->getExprLoc(), ToType)) {
|
|
// We're not going to find any constructors.
|
|
} else if (CXXRecordDecl *ToRecordDecl
|
|
= dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
|
|
|
|
Expr **Args = &From;
|
|
unsigned NumArgs = 1;
|
|
bool ListInitializing = false;
|
|
if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
|
|
// But first, see if there is an init-list-constructor that will work.
|
|
OverloadingResult Result = IsInitializerListConstructorConversion(
|
|
S, From, ToType, ToRecordDecl, User, CandidateSet,
|
|
AllowExplicit == AllowedExplicit::All);
|
|
if (Result != OR_No_Viable_Function)
|
|
return Result;
|
|
// Never mind.
|
|
CandidateSet.clear(
|
|
OverloadCandidateSet::CSK_InitByUserDefinedConversion);
|
|
|
|
// If we're list-initializing, we pass the individual elements as
|
|
// arguments, not the entire list.
|
|
Args = InitList->getInits();
|
|
NumArgs = InitList->getNumInits();
|
|
ListInitializing = true;
|
|
}
|
|
|
|
for (auto *D : S.LookupConstructors(ToRecordDecl)) {
|
|
auto Info = getConstructorInfo(D);
|
|
if (!Info)
|
|
continue;
|
|
|
|
bool Usable = !Info.Constructor->isInvalidDecl();
|
|
if (!ListInitializing)
|
|
Usable = Usable && Info.Constructor->isConvertingConstructor(
|
|
/*AllowExplicit*/ true);
|
|
if (Usable) {
|
|
bool SuppressUserConversions = !ConstructorsOnly;
|
|
if (SuppressUserConversions && ListInitializing) {
|
|
SuppressUserConversions = false;
|
|
if (NumArgs == 1) {
|
|
// If the first argument is (a reference to) the target type,
|
|
// suppress conversions.
|
|
SuppressUserConversions = isFirstArgumentCompatibleWithType(
|
|
S.Context, Info.Constructor, ToType);
|
|
}
|
|
}
|
|
if (Info.ConstructorTmpl)
|
|
S.AddTemplateOverloadCandidate(
|
|
Info.ConstructorTmpl, Info.FoundDecl,
|
|
/*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
|
|
CandidateSet, SuppressUserConversions,
|
|
/*PartialOverloading*/ false,
|
|
AllowExplicit == AllowedExplicit::All);
|
|
else
|
|
// Allow one user-defined conversion when user specifies a
|
|
// From->ToType conversion via an static cast (c-style, etc).
|
|
S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
|
|
llvm::makeArrayRef(Args, NumArgs),
|
|
CandidateSet, SuppressUserConversions,
|
|
/*PartialOverloading*/ false,
|
|
AllowExplicit == AllowedExplicit::All);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Enumerate conversion functions, if we're allowed to.
|
|
if (ConstructorsOnly || isa<InitListExpr>(From)) {
|
|
} else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
|
|
// No conversion functions from incomplete types.
|
|
} else if (const RecordType *FromRecordType =
|
|
From->getType()->getAs<RecordType>()) {
|
|
if (CXXRecordDecl *FromRecordDecl
|
|
= dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
|
|
// Add all of the conversion functions as candidates.
|
|
const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
|
|
for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
|
|
DeclAccessPair FoundDecl = I.getPair();
|
|
NamedDecl *D = FoundDecl.getDecl();
|
|
CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
CXXConversionDecl *Conv;
|
|
FunctionTemplateDecl *ConvTemplate;
|
|
if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
|
|
Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
|
|
else
|
|
Conv = cast<CXXConversionDecl>(D);
|
|
|
|
if (ConvTemplate)
|
|
S.AddTemplateConversionCandidate(
|
|
ConvTemplate, FoundDecl, ActingContext, From, ToType,
|
|
CandidateSet, AllowObjCConversionOnExplicit,
|
|
AllowExplicit != AllowedExplicit::None);
|
|
else
|
|
S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType,
|
|
CandidateSet, AllowObjCConversionOnExplicit,
|
|
AllowExplicit != AllowedExplicit::None);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (auto Result =
|
|
CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
|
|
case OR_Success:
|
|
case OR_Deleted:
|
|
// Record the standard conversion we used and the conversion function.
|
|
if (CXXConstructorDecl *Constructor
|
|
= dyn_cast<CXXConstructorDecl>(Best->Function)) {
|
|
// C++ [over.ics.user]p1:
|
|
// If the user-defined conversion is specified by a
|
|
// constructor (12.3.1), the initial standard conversion
|
|
// sequence converts the source type to the type required by
|
|
// the argument of the constructor.
|
|
//
|
|
QualType ThisType = Constructor->getThisType();
|
|
if (isa<InitListExpr>(From)) {
|
|
// Initializer lists don't have conversions as such.
|
|
User.Before.setAsIdentityConversion();
|
|
} else {
|
|
if (Best->Conversions[0].isEllipsis())
|
|
User.EllipsisConversion = true;
|
|
else {
|
|
User.Before = Best->Conversions[0].Standard;
|
|
User.EllipsisConversion = false;
|
|
}
|
|
}
|
|
User.HadMultipleCandidates = HadMultipleCandidates;
|
|
User.ConversionFunction = Constructor;
|
|
User.FoundConversionFunction = Best->FoundDecl;
|
|
User.After.setAsIdentityConversion();
|
|
User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
|
|
User.After.setAllToTypes(ToType);
|
|
return Result;
|
|
}
|
|
if (CXXConversionDecl *Conversion
|
|
= dyn_cast<CXXConversionDecl>(Best->Function)) {
|
|
// C++ [over.ics.user]p1:
|
|
//
|
|
// [...] If the user-defined conversion is specified by a
|
|
// conversion function (12.3.2), the initial standard
|
|
// conversion sequence converts the source type to the
|
|
// implicit object parameter of the conversion function.
|
|
User.Before = Best->Conversions[0].Standard;
|
|
User.HadMultipleCandidates = HadMultipleCandidates;
|
|
User.ConversionFunction = Conversion;
|
|
User.FoundConversionFunction = Best->FoundDecl;
|
|
User.EllipsisConversion = false;
|
|
|
|
// C++ [over.ics.user]p2:
|
|
// The second standard conversion sequence converts the
|
|
// result of the user-defined conversion to the target type
|
|
// for the sequence. Since an implicit conversion sequence
|
|
// is an initialization, the special rules for
|
|
// initialization by user-defined conversion apply when
|
|
// selecting the best user-defined conversion for a
|
|
// user-defined conversion sequence (see 13.3.3 and
|
|
// 13.3.3.1).
|
|
User.After = Best->FinalConversion;
|
|
return Result;
|
|
}
|
|
llvm_unreachable("Not a constructor or conversion function?");
|
|
|
|
case OR_No_Viable_Function:
|
|
return OR_No_Viable_Function;
|
|
|
|
case OR_Ambiguous:
|
|
return OR_Ambiguous;
|
|
}
|
|
|
|
llvm_unreachable("Invalid OverloadResult!");
|
|
}
|
|
|
|
bool
|
|
Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
|
|
ImplicitConversionSequence ICS;
|
|
OverloadCandidateSet CandidateSet(From->getExprLoc(),
|
|
OverloadCandidateSet::CSK_Normal);
|
|
OverloadingResult OvResult =
|
|
IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
|
|
CandidateSet, AllowedExplicit::None, false);
|
|
|
|
if (!(OvResult == OR_Ambiguous ||
|
|
(OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
|
|
return false;
|
|
|
|
auto Cands = CandidateSet.CompleteCandidates(
|
|
*this,
|
|
OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
|
|
From);
|
|
if (OvResult == OR_Ambiguous)
|
|
Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
|
|
<< From->getType() << ToType << From->getSourceRange();
|
|
else { // OR_No_Viable_Function && !CandidateSet.empty()
|
|
if (!RequireCompleteType(From->getBeginLoc(), ToType,
|
|
diag::err_typecheck_nonviable_condition_incomplete,
|
|
From->getType(), From->getSourceRange()))
|
|
Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
|
|
<< false << From->getType() << From->getSourceRange() << ToType;
|
|
}
|
|
|
|
CandidateSet.NoteCandidates(
|
|
*this, From, Cands);
|
|
return true;
|
|
}
|
|
|
|
// Helper for compareConversionFunctions that gets the FunctionType that the
|
|
// conversion-operator return value 'points' to, or nullptr.
|
|
static const FunctionType *
|
|
getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) {
|
|
const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>();
|
|
const PointerType *RetPtrTy =
|
|
ConvFuncTy->getReturnType()->getAs<PointerType>();
|
|
|
|
if (!RetPtrTy)
|
|
return nullptr;
|
|
|
|
return RetPtrTy->getPointeeType()->getAs<FunctionType>();
|
|
}
|
|
|
|
/// Compare the user-defined conversion functions or constructors
|
|
/// of two user-defined conversion sequences to determine whether any ordering
|
|
/// is possible.
|
|
static ImplicitConversionSequence::CompareKind
|
|
compareConversionFunctions(Sema &S, FunctionDecl *Function1,
|
|
FunctionDecl *Function2) {
|
|
CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
|
|
CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2);
|
|
if (!Conv1 || !Conv2)
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda())
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// Objective-C++:
|
|
// If both conversion functions are implicitly-declared conversions from
|
|
// a lambda closure type to a function pointer and a block pointer,
|
|
// respectively, always prefer the conversion to a function pointer,
|
|
// because the function pointer is more lightweight and is more likely
|
|
// to keep code working.
|
|
if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) {
|
|
bool Block1 = Conv1->getConversionType()->isBlockPointerType();
|
|
bool Block2 = Conv2->getConversionType()->isBlockPointerType();
|
|
if (Block1 != Block2)
|
|
return Block1 ? ImplicitConversionSequence::Worse
|
|
: ImplicitConversionSequence::Better;
|
|
}
|
|
|
|
// In order to support multiple calling conventions for the lambda conversion
|
|
// operator (such as when the free and member function calling convention is
|
|
// different), prefer the 'free' mechanism, followed by the calling-convention
|
|
// of operator(). The latter is in place to support the MSVC-like solution of
|
|
// defining ALL of the possible conversions in regards to calling-convention.
|
|
const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1);
|
|
const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2);
|
|
|
|
if (Conv1FuncRet && Conv2FuncRet &&
|
|
Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) {
|
|
CallingConv Conv1CC = Conv1FuncRet->getCallConv();
|
|
CallingConv Conv2CC = Conv2FuncRet->getCallConv();
|
|
|
|
CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator();
|
|
const FunctionProtoType *CallOpProto =
|
|
CallOp->getType()->getAs<FunctionProtoType>();
|
|
|
|
CallingConv CallOpCC =
|
|
CallOp->getType()->getAs<FunctionType>()->getCallConv();
|
|
CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
|
|
CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
|
|
CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
|
|
CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
|
|
|
|
CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC};
|
|
for (CallingConv CC : PrefOrder) {
|
|
if (Conv1CC == CC)
|
|
return ImplicitConversionSequence::Better;
|
|
if (Conv2CC == CC)
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
static bool hasDeprecatedStringLiteralToCharPtrConversion(
|
|
const ImplicitConversionSequence &ICS) {
|
|
return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
|
|
(ICS.isUserDefined() &&
|
|
ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
|
|
}
|
|
|
|
/// CompareImplicitConversionSequences - Compare two implicit
|
|
/// conversion sequences to determine whether one is better than the
|
|
/// other or if they are indistinguishable (C++ 13.3.3.2).
|
|
static ImplicitConversionSequence::CompareKind
|
|
CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
|
|
const ImplicitConversionSequence& ICS1,
|
|
const ImplicitConversionSequence& ICS2)
|
|
{
|
|
// (C++ 13.3.3.2p2): When comparing the basic forms of implicit
|
|
// conversion sequences (as defined in 13.3.3.1)
|
|
// -- a standard conversion sequence (13.3.3.1.1) is a better
|
|
// conversion sequence than a user-defined conversion sequence or
|
|
// an ellipsis conversion sequence, and
|
|
// -- a user-defined conversion sequence (13.3.3.1.2) is a better
|
|
// conversion sequence than an ellipsis conversion sequence
|
|
// (13.3.3.1.3).
|
|
//
|
|
// C++0x [over.best.ics]p10:
|
|
// For the purpose of ranking implicit conversion sequences as
|
|
// described in 13.3.3.2, the ambiguous conversion sequence is
|
|
// treated as a user-defined sequence that is indistinguishable
|
|
// from any other user-defined conversion sequence.
|
|
|
|
// String literal to 'char *' conversion has been deprecated in C++03. It has
|
|
// been removed from C++11. We still accept this conversion, if it happens at
|
|
// the best viable function. Otherwise, this conversion is considered worse
|
|
// than ellipsis conversion. Consider this as an extension; this is not in the
|
|
// standard. For example:
|
|
//
|
|
// int &f(...); // #1
|
|
// void f(char*); // #2
|
|
// void g() { int &r = f("foo"); }
|
|
//
|
|
// In C++03, we pick #2 as the best viable function.
|
|
// In C++11, we pick #1 as the best viable function, because ellipsis
|
|
// conversion is better than string-literal to char* conversion (since there
|
|
// is no such conversion in C++11). If there was no #1 at all or #1 couldn't
|
|
// convert arguments, #2 would be the best viable function in C++11.
|
|
// If the best viable function has this conversion, a warning will be issued
|
|
// in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
|
|
|
|
if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
|
|
hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
|
|
hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
|
|
return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
|
|
? ImplicitConversionSequence::Worse
|
|
: ImplicitConversionSequence::Better;
|
|
|
|
if (ICS1.getKindRank() < ICS2.getKindRank())
|
|
return ImplicitConversionSequence::Better;
|
|
if (ICS2.getKindRank() < ICS1.getKindRank())
|
|
return ImplicitConversionSequence::Worse;
|
|
|
|
// The following checks require both conversion sequences to be of
|
|
// the same kind.
|
|
if (ICS1.getKind() != ICS2.getKind())
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
ImplicitConversionSequence::CompareKind Result =
|
|
ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// Two implicit conversion sequences of the same form are
|
|
// indistinguishable conversion sequences unless one of the
|
|
// following rules apply: (C++ 13.3.3.2p3):
|
|
|
|
// List-initialization sequence L1 is a better conversion sequence than
|
|
// list-initialization sequence L2 if:
|
|
// - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
|
|
// if not that,
|
|
// - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
|
|
// and N1 is smaller than N2.,
|
|
// even if one of the other rules in this paragraph would otherwise apply.
|
|
if (!ICS1.isBad()) {
|
|
if (ICS1.isStdInitializerListElement() &&
|
|
!ICS2.isStdInitializerListElement())
|
|
return ImplicitConversionSequence::Better;
|
|
if (!ICS1.isStdInitializerListElement() &&
|
|
ICS2.isStdInitializerListElement())
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
|
|
if (ICS1.isStandard())
|
|
// Standard conversion sequence S1 is a better conversion sequence than
|
|
// standard conversion sequence S2 if [...]
|
|
Result = CompareStandardConversionSequences(S, Loc,
|
|
ICS1.Standard, ICS2.Standard);
|
|
else if (ICS1.isUserDefined()) {
|
|
// User-defined conversion sequence U1 is a better conversion
|
|
// sequence than another user-defined conversion sequence U2 if
|
|
// they contain the same user-defined conversion function or
|
|
// constructor and if the second standard conversion sequence of
|
|
// U1 is better than the second standard conversion sequence of
|
|
// U2 (C++ 13.3.3.2p3).
|
|
if (ICS1.UserDefined.ConversionFunction ==
|
|
ICS2.UserDefined.ConversionFunction)
|
|
Result = CompareStandardConversionSequences(S, Loc,
|
|
ICS1.UserDefined.After,
|
|
ICS2.UserDefined.After);
|
|
else
|
|
Result = compareConversionFunctions(S,
|
|
ICS1.UserDefined.ConversionFunction,
|
|
ICS2.UserDefined.ConversionFunction);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
// Per 13.3.3.2p3, compare the given standard conversion sequences to
|
|
// determine if one is a proper subset of the other.
|
|
static ImplicitConversionSequence::CompareKind
|
|
compareStandardConversionSubsets(ASTContext &Context,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2) {
|
|
ImplicitConversionSequence::CompareKind Result
|
|
= ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// the identity conversion sequence is considered to be a subsequence of
|
|
// any non-identity conversion sequence
|
|
if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
|
|
return ImplicitConversionSequence::Better;
|
|
else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
|
|
return ImplicitConversionSequence::Worse;
|
|
|
|
if (SCS1.Second != SCS2.Second) {
|
|
if (SCS1.Second == ICK_Identity)
|
|
Result = ImplicitConversionSequence::Better;
|
|
else if (SCS2.Second == ICK_Identity)
|
|
Result = ImplicitConversionSequence::Worse;
|
|
else
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
} else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
if (SCS1.Third == SCS2.Third) {
|
|
return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
|
|
: ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
if (SCS1.Third == ICK_Identity)
|
|
return Result == ImplicitConversionSequence::Worse
|
|
? ImplicitConversionSequence::Indistinguishable
|
|
: ImplicitConversionSequence::Better;
|
|
|
|
if (SCS2.Third == ICK_Identity)
|
|
return Result == ImplicitConversionSequence::Better
|
|
? ImplicitConversionSequence::Indistinguishable
|
|
: ImplicitConversionSequence::Worse;
|
|
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
/// Determine whether one of the given reference bindings is better
|
|
/// than the other based on what kind of bindings they are.
|
|
static bool
|
|
isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
|
|
const StandardConversionSequence &SCS2) {
|
|
// C++0x [over.ics.rank]p3b4:
|
|
// -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
|
|
// implicit object parameter of a non-static member function declared
|
|
// without a ref-qualifier, and *either* S1 binds an rvalue reference
|
|
// to an rvalue and S2 binds an lvalue reference *or S1 binds an
|
|
// lvalue reference to a function lvalue and S2 binds an rvalue
|
|
// reference*.
|
|
//
|
|
// FIXME: Rvalue references. We're going rogue with the above edits,
|
|
// because the semantics in the current C++0x working paper (N3225 at the
|
|
// time of this writing) break the standard definition of std::forward
|
|
// and std::reference_wrapper when dealing with references to functions.
|
|
// Proposed wording changes submitted to CWG for consideration.
|
|
if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
|
|
SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
|
|
return false;
|
|
|
|
return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
|
|
SCS2.IsLvalueReference) ||
|
|
(SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
|
|
!SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
|
|
}
|
|
|
|
enum class FixedEnumPromotion {
|
|
None,
|
|
ToUnderlyingType,
|
|
ToPromotedUnderlyingType
|
|
};
|
|
|
|
/// Returns kind of fixed enum promotion the \a SCS uses.
|
|
static FixedEnumPromotion
|
|
getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
|
|
|
|
if (SCS.Second != ICK_Integral_Promotion)
|
|
return FixedEnumPromotion::None;
|
|
|
|
QualType FromType = SCS.getFromType();
|
|
if (!FromType->isEnumeralType())
|
|
return FixedEnumPromotion::None;
|
|
|
|
EnumDecl *Enum = FromType->getAs<EnumType>()->getDecl();
|
|
if (!Enum->isFixed())
|
|
return FixedEnumPromotion::None;
|
|
|
|
QualType UnderlyingType = Enum->getIntegerType();
|
|
if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
|
|
return FixedEnumPromotion::ToUnderlyingType;
|
|
|
|
return FixedEnumPromotion::ToPromotedUnderlyingType;
|
|
}
|
|
|
|
/// CompareStandardConversionSequences - Compare two standard
|
|
/// conversion sequences to determine whether one is better than the
|
|
/// other or if they are indistinguishable (C++ 13.3.3.2p3).
|
|
static ImplicitConversionSequence::CompareKind
|
|
CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2)
|
|
{
|
|
// Standard conversion sequence S1 is a better conversion sequence
|
|
// than standard conversion sequence S2 if (C++ 13.3.3.2p3):
|
|
|
|
// -- S1 is a proper subsequence of S2 (comparing the conversion
|
|
// sequences in the canonical form defined by 13.3.3.1.1,
|
|
// excluding any Lvalue Transformation; the identity conversion
|
|
// sequence is considered to be a subsequence of any
|
|
// non-identity conversion sequence) or, if not that,
|
|
if (ImplicitConversionSequence::CompareKind CK
|
|
= compareStandardConversionSubsets(S.Context, SCS1, SCS2))
|
|
return CK;
|
|
|
|
// -- the rank of S1 is better than the rank of S2 (by the rules
|
|
// defined below), or, if not that,
|
|
ImplicitConversionRank Rank1 = SCS1.getRank();
|
|
ImplicitConversionRank Rank2 = SCS2.getRank();
|
|
if (Rank1 < Rank2)
|
|
return ImplicitConversionSequence::Better;
|
|
else if (Rank2 < Rank1)
|
|
return ImplicitConversionSequence::Worse;
|
|
|
|
// (C++ 13.3.3.2p4): Two conversion sequences with the same rank
|
|
// are indistinguishable unless one of the following rules
|
|
// applies:
|
|
|
|
// A conversion that is not a conversion of a pointer, or
|
|
// pointer to member, to bool is better than another conversion
|
|
// that is such a conversion.
|
|
if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
|
|
return SCS2.isPointerConversionToBool()
|
|
? ImplicitConversionSequence::Better
|
|
: ImplicitConversionSequence::Worse;
|
|
|
|
// C++14 [over.ics.rank]p4b2:
|
|
// This is retroactively applied to C++11 by CWG 1601.
|
|
//
|
|
// A conversion that promotes an enumeration whose underlying type is fixed
|
|
// to its underlying type is better than one that promotes to the promoted
|
|
// underlying type, if the two are different.
|
|
FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
|
|
FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
|
|
if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
|
|
FEP1 != FEP2)
|
|
return FEP1 == FixedEnumPromotion::ToUnderlyingType
|
|
? ImplicitConversionSequence::Better
|
|
: ImplicitConversionSequence::Worse;
|
|
|
|
// C++ [over.ics.rank]p4b2:
|
|
//
|
|
// If class B is derived directly or indirectly from class A,
|
|
// conversion of B* to A* is better than conversion of B* to
|
|
// void*, and conversion of A* to void* is better than conversion
|
|
// of B* to void*.
|
|
bool SCS1ConvertsToVoid
|
|
= SCS1.isPointerConversionToVoidPointer(S.Context);
|
|
bool SCS2ConvertsToVoid
|
|
= SCS2.isPointerConversionToVoidPointer(S.Context);
|
|
if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
|
|
// Exactly one of the conversion sequences is a conversion to
|
|
// a void pointer; it's the worse conversion.
|
|
return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
|
|
: ImplicitConversionSequence::Worse;
|
|
} else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
|
|
// Neither conversion sequence converts to a void pointer; compare
|
|
// their derived-to-base conversions.
|
|
if (ImplicitConversionSequence::CompareKind DerivedCK
|
|
= CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
|
|
return DerivedCK;
|
|
} else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
|
|
!S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
|
|
// Both conversion sequences are conversions to void
|
|
// pointers. Compare the source types to determine if there's an
|
|
// inheritance relationship in their sources.
|
|
QualType FromType1 = SCS1.getFromType();
|
|
QualType FromType2 = SCS2.getFromType();
|
|
|
|
// Adjust the types we're converting from via the array-to-pointer
|
|
// conversion, if we need to.
|
|
if (SCS1.First == ICK_Array_To_Pointer)
|
|
FromType1 = S.Context.getArrayDecayedType(FromType1);
|
|
if (SCS2.First == ICK_Array_To_Pointer)
|
|
FromType2 = S.Context.getArrayDecayedType(FromType2);
|
|
|
|
QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
|
|
QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
|
|
|
|
if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
|
|
return ImplicitConversionSequence::Worse;
|
|
|
|
// Objective-C++: If one interface is more specific than the
|
|
// other, it is the better one.
|
|
const ObjCObjectPointerType* FromObjCPtr1
|
|
= FromType1->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType* FromObjCPtr2
|
|
= FromType2->getAs<ObjCObjectPointerType>();
|
|
if (FromObjCPtr1 && FromObjCPtr2) {
|
|
bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
|
|
FromObjCPtr2);
|
|
bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
|
|
FromObjCPtr1);
|
|
if (AssignLeft != AssignRight) {
|
|
return AssignLeft? ImplicitConversionSequence::Better
|
|
: ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
|
|
// Check for a better reference binding based on the kind of bindings.
|
|
if (isBetterReferenceBindingKind(SCS1, SCS2))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (isBetterReferenceBindingKind(SCS2, SCS1))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
|
|
// Compare based on qualification conversions (C++ 13.3.3.2p3,
|
|
// bullet 3).
|
|
if (ImplicitConversionSequence::CompareKind QualCK
|
|
= CompareQualificationConversions(S, SCS1, SCS2))
|
|
return QualCK;
|
|
|
|
if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
|
|
// C++ [over.ics.rank]p3b4:
|
|
// -- S1 and S2 are reference bindings (8.5.3), and the types to
|
|
// which the references refer are the same type except for
|
|
// top-level cv-qualifiers, and the type to which the reference
|
|
// initialized by S2 refers is more cv-qualified than the type
|
|
// to which the reference initialized by S1 refers.
|
|
QualType T1 = SCS1.getToType(2);
|
|
QualType T2 = SCS2.getToType(2);
|
|
T1 = S.Context.getCanonicalType(T1);
|
|
T2 = S.Context.getCanonicalType(T2);
|
|
Qualifiers T1Quals, T2Quals;
|
|
QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
|
|
QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
|
|
if (UnqualT1 == UnqualT2) {
|
|
// Objective-C++ ARC: If the references refer to objects with different
|
|
// lifetimes, prefer bindings that don't change lifetime.
|
|
if (SCS1.ObjCLifetimeConversionBinding !=
|
|
SCS2.ObjCLifetimeConversionBinding) {
|
|
return SCS1.ObjCLifetimeConversionBinding
|
|
? ImplicitConversionSequence::Worse
|
|
: ImplicitConversionSequence::Better;
|
|
}
|
|
|
|
// If the type is an array type, promote the element qualifiers to the
|
|
// type for comparison.
|
|
if (isa<ArrayType>(T1) && T1Quals)
|
|
T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
|
|
if (isa<ArrayType>(T2) && T2Quals)
|
|
T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
|
|
if (T2.isMoreQualifiedThan(T1))
|
|
return ImplicitConversionSequence::Better;
|
|
if (T1.isMoreQualifiedThan(T2))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
|
|
// In Microsoft mode, prefer an integral conversion to a
|
|
// floating-to-integral conversion if the integral conversion
|
|
// is between types of the same size.
|
|
// For example:
|
|
// void f(float);
|
|
// void f(int);
|
|
// int main {
|
|
// long a;
|
|
// f(a);
|
|
// }
|
|
// Here, MSVC will call f(int) instead of generating a compile error
|
|
// as clang will do in standard mode.
|
|
if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
|
|
SCS2.Second == ICK_Floating_Integral &&
|
|
S.Context.getTypeSize(SCS1.getFromType()) ==
|
|
S.Context.getTypeSize(SCS1.getToType(2)))
|
|
return ImplicitConversionSequence::Better;
|
|
|
|
// Prefer a compatible vector conversion over a lax vector conversion
|
|
// For example:
|
|
//
|
|
// typedef float __v4sf __attribute__((__vector_size__(16)));
|
|
// void f(vector float);
|
|
// void f(vector signed int);
|
|
// int main() {
|
|
// __v4sf a;
|
|
// f(a);
|
|
// }
|
|
// Here, we'd like to choose f(vector float) and not
|
|
// report an ambiguous call error
|
|
if (SCS1.Second == ICK_Vector_Conversion &&
|
|
SCS2.Second == ICK_Vector_Conversion) {
|
|
bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
|
|
SCS1.getFromType(), SCS1.getToType(2));
|
|
bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
|
|
SCS2.getFromType(), SCS2.getToType(2));
|
|
|
|
if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
|
|
return SCS1IsCompatibleVectorConversion
|
|
? ImplicitConversionSequence::Better
|
|
: ImplicitConversionSequence::Worse;
|
|
}
|
|
|
|
if (SCS1.Second == ICK_SVE_Vector_Conversion &&
|
|
SCS2.Second == ICK_SVE_Vector_Conversion) {
|
|
bool SCS1IsCompatibleSVEVectorConversion =
|
|
S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2));
|
|
bool SCS2IsCompatibleSVEVectorConversion =
|
|
S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2));
|
|
|
|
if (SCS1IsCompatibleSVEVectorConversion !=
|
|
SCS2IsCompatibleSVEVectorConversion)
|
|
return SCS1IsCompatibleSVEVectorConversion
|
|
? ImplicitConversionSequence::Better
|
|
: ImplicitConversionSequence::Worse;
|
|
}
|
|
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
/// CompareQualificationConversions - Compares two standard conversion
|
|
/// sequences to determine whether they can be ranked based on their
|
|
/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
|
|
static ImplicitConversionSequence::CompareKind
|
|
CompareQualificationConversions(Sema &S,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2) {
|
|
// C++ 13.3.3.2p3:
|
|
// -- S1 and S2 differ only in their qualification conversion and
|
|
// yield similar types T1 and T2 (C++ 4.4), respectively, and the
|
|
// cv-qualification signature of type T1 is a proper subset of
|
|
// the cv-qualification signature of type T2, and S1 is not the
|
|
// deprecated string literal array-to-pointer conversion (4.2).
|
|
if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
|
|
SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// FIXME: the example in the standard doesn't use a qualification
|
|
// conversion (!)
|
|
QualType T1 = SCS1.getToType(2);
|
|
QualType T2 = SCS2.getToType(2);
|
|
T1 = S.Context.getCanonicalType(T1);
|
|
T2 = S.Context.getCanonicalType(T2);
|
|
assert(!T1->isReferenceType() && !T2->isReferenceType());
|
|
Qualifiers T1Quals, T2Quals;
|
|
QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
|
|
QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
|
|
|
|
// If the types are the same, we won't learn anything by unwrapping
|
|
// them.
|
|
if (UnqualT1 == UnqualT2)
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
ImplicitConversionSequence::CompareKind Result
|
|
= ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// Objective-C++ ARC:
|
|
// Prefer qualification conversions not involving a change in lifetime
|
|
// to qualification conversions that do not change lifetime.
|
|
if (SCS1.QualificationIncludesObjCLifetime !=
|
|
SCS2.QualificationIncludesObjCLifetime) {
|
|
Result = SCS1.QualificationIncludesObjCLifetime
|
|
? ImplicitConversionSequence::Worse
|
|
: ImplicitConversionSequence::Better;
|
|
}
|
|
|
|
while (S.Context.UnwrapSimilarTypes(T1, T2)) {
|
|
// Within each iteration of the loop, we check the qualifiers to
|
|
// determine if this still looks like a qualification
|
|
// conversion. Then, if all is well, we unwrap one more level of
|
|
// pointers or pointers-to-members and do it all again
|
|
// until there are no more pointers or pointers-to-members left
|
|
// to unwrap. This essentially mimics what
|
|
// IsQualificationConversion does, but here we're checking for a
|
|
// strict subset of qualifiers.
|
|
if (T1.getQualifiers().withoutObjCLifetime() ==
|
|
T2.getQualifiers().withoutObjCLifetime())
|
|
// The qualifiers are the same, so this doesn't tell us anything
|
|
// about how the sequences rank.
|
|
// ObjC ownership quals are omitted above as they interfere with
|
|
// the ARC overload rule.
|
|
;
|
|
else if (T2.isMoreQualifiedThan(T1)) {
|
|
// T1 has fewer qualifiers, so it could be the better sequence.
|
|
if (Result == ImplicitConversionSequence::Worse)
|
|
// Neither has qualifiers that are a subset of the other's
|
|
// qualifiers.
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
Result = ImplicitConversionSequence::Better;
|
|
} else if (T1.isMoreQualifiedThan(T2)) {
|
|
// T2 has fewer qualifiers, so it could be the better sequence.
|
|
if (Result == ImplicitConversionSequence::Better)
|
|
// Neither has qualifiers that are a subset of the other's
|
|
// qualifiers.
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
Result = ImplicitConversionSequence::Worse;
|
|
} else {
|
|
// Qualifiers are disjoint.
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
// If the types after this point are equivalent, we're done.
|
|
if (S.Context.hasSameUnqualifiedType(T1, T2))
|
|
break;
|
|
}
|
|
|
|
// Check that the winning standard conversion sequence isn't using
|
|
// the deprecated string literal array to pointer conversion.
|
|
switch (Result) {
|
|
case ImplicitConversionSequence::Better:
|
|
if (SCS1.DeprecatedStringLiteralToCharPtr)
|
|
Result = ImplicitConversionSequence::Indistinguishable;
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Indistinguishable:
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Worse:
|
|
if (SCS2.DeprecatedStringLiteralToCharPtr)
|
|
Result = ImplicitConversionSequence::Indistinguishable;
|
|
break;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// CompareDerivedToBaseConversions - Compares two standard conversion
|
|
/// sequences to determine whether they can be ranked based on their
|
|
/// various kinds of derived-to-base conversions (C++
|
|
/// [over.ics.rank]p4b3). As part of these checks, we also look at
|
|
/// conversions between Objective-C interface types.
|
|
static ImplicitConversionSequence::CompareKind
|
|
CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2) {
|
|
QualType FromType1 = SCS1.getFromType();
|
|
QualType ToType1 = SCS1.getToType(1);
|
|
QualType FromType2 = SCS2.getFromType();
|
|
QualType ToType2 = SCS2.getToType(1);
|
|
|
|
// Adjust the types we're converting from via the array-to-pointer
|
|
// conversion, if we need to.
|
|
if (SCS1.First == ICK_Array_To_Pointer)
|
|
FromType1 = S.Context.getArrayDecayedType(FromType1);
|
|
if (SCS2.First == ICK_Array_To_Pointer)
|
|
FromType2 = S.Context.getArrayDecayedType(FromType2);
|
|
|
|
// Canonicalize all of the types.
|
|
FromType1 = S.Context.getCanonicalType(FromType1);
|
|
ToType1 = S.Context.getCanonicalType(ToType1);
|
|
FromType2 = S.Context.getCanonicalType(FromType2);
|
|
ToType2 = S.Context.getCanonicalType(ToType2);
|
|
|
|
// C++ [over.ics.rank]p4b3:
|
|
//
|
|
// If class B is derived directly or indirectly from class A and
|
|
// class C is derived directly or indirectly from B,
|
|
//
|
|
// Compare based on pointer conversions.
|
|
if (SCS1.Second == ICK_Pointer_Conversion &&
|
|
SCS2.Second == ICK_Pointer_Conversion &&
|
|
/*FIXME: Remove if Objective-C id conversions get their own rank*/
|
|
FromType1->isPointerType() && FromType2->isPointerType() &&
|
|
ToType1->isPointerType() && ToType2->isPointerType()) {
|
|
QualType FromPointee1 =
|
|
FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
|
|
QualType ToPointee1 =
|
|
ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
|
|
QualType FromPointee2 =
|
|
FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
|
|
QualType ToPointee2 =
|
|
ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
|
|
|
|
// -- conversion of C* to B* is better than conversion of C* to A*,
|
|
if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
|
|
if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
|
|
// -- conversion of B* to A* is better than conversion of C* to A*,
|
|
if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
|
|
if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
} else if (SCS1.Second == ICK_Pointer_Conversion &&
|
|
SCS2.Second == ICK_Pointer_Conversion) {
|
|
const ObjCObjectPointerType *FromPtr1
|
|
= FromType1->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType *FromPtr2
|
|
= FromType2->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType *ToPtr1
|
|
= ToType1->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType *ToPtr2
|
|
= ToType2->getAs<ObjCObjectPointerType>();
|
|
|
|
if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
|
|
// Apply the same conversion ranking rules for Objective-C pointer types
|
|
// that we do for C++ pointers to class types. However, we employ the
|
|
// Objective-C pseudo-subtyping relationship used for assignment of
|
|
// Objective-C pointer types.
|
|
bool FromAssignLeft
|
|
= S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
|
|
bool FromAssignRight
|
|
= S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
|
|
bool ToAssignLeft
|
|
= S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
|
|
bool ToAssignRight
|
|
= S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
|
|
|
|
// A conversion to an a non-id object pointer type or qualified 'id'
|
|
// type is better than a conversion to 'id'.
|
|
if (ToPtr1->isObjCIdType() &&
|
|
(ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
|
|
return ImplicitConversionSequence::Worse;
|
|
if (ToPtr2->isObjCIdType() &&
|
|
(ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
|
|
return ImplicitConversionSequence::Better;
|
|
|
|
// A conversion to a non-id object pointer type is better than a
|
|
// conversion to a qualified 'id' type
|
|
if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
|
|
return ImplicitConversionSequence::Worse;
|
|
if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
|
|
return ImplicitConversionSequence::Better;
|
|
|
|
// A conversion to an a non-Class object pointer type or qualified 'Class'
|
|
// type is better than a conversion to 'Class'.
|
|
if (ToPtr1->isObjCClassType() &&
|
|
(ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
|
|
return ImplicitConversionSequence::Worse;
|
|
if (ToPtr2->isObjCClassType() &&
|
|
(ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
|
|
return ImplicitConversionSequence::Better;
|
|
|
|
// A conversion to a non-Class object pointer type is better than a
|
|
// conversion to a qualified 'Class' type.
|
|
if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
|
|
return ImplicitConversionSequence::Worse;
|
|
if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
|
|
return ImplicitConversionSequence::Better;
|
|
|
|
// -- "conversion of C* to B* is better than conversion of C* to A*,"
|
|
if (S.Context.hasSameType(FromType1, FromType2) &&
|
|
!FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
|
|
(ToAssignLeft != ToAssignRight)) {
|
|
if (FromPtr1->isSpecialized()) {
|
|
// "conversion of B<A> * to B * is better than conversion of B * to
|
|
// C *.
|
|
bool IsFirstSame =
|
|
FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
|
|
bool IsSecondSame =
|
|
FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
|
|
if (IsFirstSame) {
|
|
if (!IsSecondSame)
|
|
return ImplicitConversionSequence::Better;
|
|
} else if (IsSecondSame)
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
return ToAssignLeft? ImplicitConversionSequence::Worse
|
|
: ImplicitConversionSequence::Better;
|
|
}
|
|
|
|
// -- "conversion of B* to A* is better than conversion of C* to A*,"
|
|
if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
|
|
(FromAssignLeft != FromAssignRight))
|
|
return FromAssignLeft? ImplicitConversionSequence::Better
|
|
: ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
|
|
// Ranking of member-pointer types.
|
|
if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
|
|
FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
|
|
ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
|
|
const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>();
|
|
const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>();
|
|
const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>();
|
|
const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>();
|
|
const Type *FromPointeeType1 = FromMemPointer1->getClass();
|
|
const Type *ToPointeeType1 = ToMemPointer1->getClass();
|
|
const Type *FromPointeeType2 = FromMemPointer2->getClass();
|
|
const Type *ToPointeeType2 = ToMemPointer2->getClass();
|
|
QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
|
|
QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
|
|
QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
|
|
QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
|
|
// conversion of A::* to B::* is better than conversion of A::* to C::*,
|
|
if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
|
|
if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
|
|
return ImplicitConversionSequence::Worse;
|
|
else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
|
|
return ImplicitConversionSequence::Better;
|
|
}
|
|
// conversion of B::* to C::* is better than conversion of A::* to C::*
|
|
if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
|
|
if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
|
|
if (SCS1.Second == ICK_Derived_To_Base) {
|
|
// -- conversion of C to B is better than conversion of C to A,
|
|
// -- binding of an expression of type C to a reference of type
|
|
// B& is better than binding an expression of type C to a
|
|
// reference of type A&,
|
|
if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
|
|
!S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
|
|
if (S.IsDerivedFrom(Loc, ToType1, ToType2))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
|
|
// -- conversion of B to A is better than conversion of C to A.
|
|
// -- binding of an expression of type B to a reference of type
|
|
// A& is better than binding an expression of type C to a
|
|
// reference of type A&,
|
|
if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
|
|
S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
|
|
if (S.IsDerivedFrom(Loc, FromType2, FromType1))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
/// Determine whether the given type is valid, e.g., it is not an invalid
|
|
/// C++ class.
|
|
static bool isTypeValid(QualType T) {
|
|
if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
|
|
return !Record->isInvalidDecl();
|
|
|
|
return true;
|
|
}
|
|
|
|
static QualType withoutUnaligned(ASTContext &Ctx, QualType T) {
|
|
if (!T.getQualifiers().hasUnaligned())
|
|
return T;
|
|
|
|
Qualifiers Q;
|
|
T = Ctx.getUnqualifiedArrayType(T, Q);
|
|
Q.removeUnaligned();
|
|
return Ctx.getQualifiedType(T, Q);
|
|
}
|
|
|
|
/// CompareReferenceRelationship - Compare the two types T1 and T2 to
|
|
/// determine whether they are reference-compatible,
|
|
/// reference-related, or incompatible, for use in C++ initialization by
|
|
/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
|
|
/// type, and the first type (T1) is the pointee type of the reference
|
|
/// type being initialized.
|
|
Sema::ReferenceCompareResult
|
|
Sema::CompareReferenceRelationship(SourceLocation Loc,
|
|
QualType OrigT1, QualType OrigT2,
|
|
ReferenceConversions *ConvOut) {
|
|
assert(!OrigT1->isReferenceType() &&
|
|
"T1 must be the pointee type of the reference type");
|
|
assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
|
|
|
|
QualType T1 = Context.getCanonicalType(OrigT1);
|
|
QualType T2 = Context.getCanonicalType(OrigT2);
|
|
Qualifiers T1Quals, T2Quals;
|
|
QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
|
|
QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
|
|
|
|
ReferenceConversions ConvTmp;
|
|
ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp;
|
|
Conv = ReferenceConversions();
|
|
|
|
// C++2a [dcl.init.ref]p4:
|
|
// Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
|
|
// reference-related to "cv2 T2" if T1 is similar to T2, or
|
|
// T1 is a base class of T2.
|
|
// "cv1 T1" is reference-compatible with "cv2 T2" if
|
|
// a prvalue of type "pointer to cv2 T2" can be converted to the type
|
|
// "pointer to cv1 T1" via a standard conversion sequence.
|
|
|
|
// Check for standard conversions we can apply to pointers: derived-to-base
|
|
// conversions, ObjC pointer conversions, and function pointer conversions.
|
|
// (Qualification conversions are checked last.)
|
|
QualType ConvertedT2;
|
|
if (UnqualT1 == UnqualT2) {
|
|
// Nothing to do.
|
|
} else if (isCompleteType(Loc, OrigT2) &&
|
|
isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
|
|
IsDerivedFrom(Loc, UnqualT2, UnqualT1))
|
|
Conv |= ReferenceConversions::DerivedToBase;
|
|
else if (UnqualT1->isObjCObjectOrInterfaceType() &&
|
|
UnqualT2->isObjCObjectOrInterfaceType() &&
|
|
Context.canBindObjCObjectType(UnqualT1, UnqualT2))
|
|
Conv |= ReferenceConversions::ObjC;
|
|
else if (UnqualT2->isFunctionType() &&
|
|
IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
|
|
Conv |= ReferenceConversions::Function;
|
|
// No need to check qualifiers; function types don't have them.
|
|
return Ref_Compatible;
|
|
}
|
|
bool ConvertedReferent = Conv != 0;
|
|
|
|
// We can have a qualification conversion. Compute whether the types are
|
|
// similar at the same time.
|
|
bool PreviousToQualsIncludeConst = true;
|
|
bool TopLevel = true;
|
|
do {
|
|
if (T1 == T2)
|
|
break;
|
|
|
|
// We will need a qualification conversion.
|
|
Conv |= ReferenceConversions::Qualification;
|
|
|
|
// Track whether we performed a qualification conversion anywhere other
|
|
// than the top level. This matters for ranking reference bindings in
|
|
// overload resolution.
|
|
if (!TopLevel)
|
|
Conv |= ReferenceConversions::NestedQualification;
|
|
|
|
// MS compiler ignores __unaligned qualifier for references; do the same.
|
|
T1 = withoutUnaligned(Context, T1);
|
|
T2 = withoutUnaligned(Context, T2);
|
|
|
|
// If we find a qualifier mismatch, the types are not reference-compatible,
|
|
// but are still be reference-related if they're similar.
|
|
bool ObjCLifetimeConversion = false;
|
|
if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel,
|
|
PreviousToQualsIncludeConst,
|
|
ObjCLifetimeConversion))
|
|
return (ConvertedReferent || Context.hasSimilarType(T1, T2))
|
|
? Ref_Related
|
|
: Ref_Incompatible;
|
|
|
|
// FIXME: Should we track this for any level other than the first?
|
|
if (ObjCLifetimeConversion)
|
|
Conv |= ReferenceConversions::ObjCLifetime;
|
|
|
|
TopLevel = false;
|
|
} while (Context.UnwrapSimilarTypes(T1, T2));
|
|
|
|
// At this point, if the types are reference-related, we must either have the
|
|
// same inner type (ignoring qualifiers), or must have already worked out how
|
|
// to convert the referent.
|
|
return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2))
|
|
? Ref_Compatible
|
|
: Ref_Incompatible;
|
|
}
|
|
|
|
/// Look for a user-defined conversion to a value reference-compatible
|
|
/// with DeclType. Return true if something definite is found.
|
|
static bool
|
|
FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
|
|
QualType DeclType, SourceLocation DeclLoc,
|
|
Expr *Init, QualType T2, bool AllowRvalues,
|
|
bool AllowExplicit) {
|
|
assert(T2->isRecordType() && "Can only find conversions of record types.");
|
|
auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
|
|
|
|
OverloadCandidateSet CandidateSet(
|
|
DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
|
|
const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
|
|
for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
FunctionTemplateDecl *ConvTemplate
|
|
= dyn_cast<FunctionTemplateDecl>(D);
|
|
CXXConversionDecl *Conv;
|
|
if (ConvTemplate)
|
|
Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
|
|
else
|
|
Conv = cast<CXXConversionDecl>(D);
|
|
|
|
if (AllowRvalues) {
|
|
// If we are initializing an rvalue reference, don't permit conversion
|
|
// functions that return lvalues.
|
|
if (!ConvTemplate && DeclType->isRValueReferenceType()) {
|
|
const ReferenceType *RefType
|
|
= Conv->getConversionType()->getAs<LValueReferenceType>();
|
|
if (RefType && !RefType->getPointeeType()->isFunctionType())
|
|
continue;
|
|
}
|
|
|
|
if (!ConvTemplate &&
|
|
S.CompareReferenceRelationship(
|
|
DeclLoc,
|
|
Conv->getConversionType()
|
|
.getNonReferenceType()
|
|
.getUnqualifiedType(),
|
|
DeclType.getNonReferenceType().getUnqualifiedType()) ==
|
|
Sema::Ref_Incompatible)
|
|
continue;
|
|
} else {
|
|
// If the conversion function doesn't return a reference type,
|
|
// it can't be considered for this conversion. An rvalue reference
|
|
// is only acceptable if its referencee is a function type.
|
|
|
|
const ReferenceType *RefType =
|
|
Conv->getConversionType()->getAs<ReferenceType>();
|
|
if (!RefType ||
|
|
(!RefType->isLValueReferenceType() &&
|
|
!RefType->getPointeeType()->isFunctionType()))
|
|
continue;
|
|
}
|
|
|
|
if (ConvTemplate)
|
|
S.AddTemplateConversionCandidate(
|
|
ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
|
|
/*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
|
|
else
|
|
S.AddConversionCandidate(
|
|
Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
|
|
/*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
|
|
}
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
|
|
case OR_Success:
|
|
// C++ [over.ics.ref]p1:
|
|
//
|
|
// [...] If the parameter binds directly to the result of
|
|
// applying a conversion function to the argument
|
|
// expression, the implicit conversion sequence is a
|
|
// user-defined conversion sequence (13.3.3.1.2), with the
|
|
// second standard conversion sequence either an identity
|
|
// conversion or, if the conversion function returns an
|
|
// entity of a type that is a derived class of the parameter
|
|
// type, a derived-to-base Conversion.
|
|
if (!Best->FinalConversion.DirectBinding)
|
|
return false;
|
|
|
|
ICS.setUserDefined();
|
|
ICS.UserDefined.Before = Best->Conversions[0].Standard;
|
|
ICS.UserDefined.After = Best->FinalConversion;
|
|
ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
|
|
ICS.UserDefined.ConversionFunction = Best->Function;
|
|
ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
|
|
ICS.UserDefined.EllipsisConversion = false;
|
|
assert(ICS.UserDefined.After.ReferenceBinding &&
|
|
ICS.UserDefined.After.DirectBinding &&
|
|
"Expected a direct reference binding!");
|
|
return true;
|
|
|
|
case OR_Ambiguous:
|
|
ICS.setAmbiguous();
|
|
for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
|
|
Cand != CandidateSet.end(); ++Cand)
|
|
if (Cand->Best)
|
|
ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
|
|
return true;
|
|
|
|
case OR_No_Viable_Function:
|
|
case OR_Deleted:
|
|
// There was no suitable conversion, or we found a deleted
|
|
// conversion; continue with other checks.
|
|
return false;
|
|
}
|
|
|
|
llvm_unreachable("Invalid OverloadResult!");
|
|
}
|
|
|
|
/// Compute an implicit conversion sequence for reference
|
|
/// initialization.
|
|
static ImplicitConversionSequence
|
|
TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
|
|
SourceLocation DeclLoc,
|
|
bool SuppressUserConversions,
|
|
bool AllowExplicit) {
|
|
assert(DeclType->isReferenceType() && "Reference init needs a reference");
|
|
|
|
// Most paths end in a failed conversion.
|
|
ImplicitConversionSequence ICS;
|
|
ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
|
|
|
|
QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
|
|
QualType T2 = Init->getType();
|
|
|
|
// If the initializer is the address of an overloaded function, try
|
|
// to resolve the overloaded function. If all goes well, T2 is the
|
|
// type of the resulting function.
|
|
if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
|
|
DeclAccessPair Found;
|
|
if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
|
|
false, Found))
|
|
T2 = Fn->getType();
|
|
}
|
|
|
|
// Compute some basic properties of the types and the initializer.
|
|
bool isRValRef = DeclType->isRValueReferenceType();
|
|
Expr::Classification InitCategory = Init->Classify(S.Context);
|
|
|
|
Sema::ReferenceConversions RefConv;
|
|
Sema::ReferenceCompareResult RefRelationship =
|
|
S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);
|
|
|
|
auto SetAsReferenceBinding = [&](bool BindsDirectly) {
|
|
ICS.setStandard();
|
|
ICS.Standard.First = ICK_Identity;
|
|
// FIXME: A reference binding can be a function conversion too. We should
|
|
// consider that when ordering reference-to-function bindings.
|
|
ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
|
|
? ICK_Derived_To_Base
|
|
: (RefConv & Sema::ReferenceConversions::ObjC)
|
|
? ICK_Compatible_Conversion
|
|
: ICK_Identity;
|
|
// FIXME: As a speculative fix to a defect introduced by CWG2352, we rank
|
|
// a reference binding that performs a non-top-level qualification
|
|
// conversion as a qualification conversion, not as an identity conversion.
|
|
ICS.Standard.Third = (RefConv &
|
|
Sema::ReferenceConversions::NestedQualification)
|
|
? ICK_Qualification
|
|
: ICK_Identity;
|
|
ICS.Standard.setFromType(T2);
|
|
ICS.Standard.setToType(0, T2);
|
|
ICS.Standard.setToType(1, T1);
|
|
ICS.Standard.setToType(2, T1);
|
|
ICS.Standard.ReferenceBinding = true;
|
|
ICS.Standard.DirectBinding = BindsDirectly;
|
|
ICS.Standard.IsLvalueReference = !isRValRef;
|
|
ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
|
|
ICS.Standard.BindsToRvalue = InitCategory.isRValue();
|
|
ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
|
|
ICS.Standard.ObjCLifetimeConversionBinding =
|
|
(RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
|
|
ICS.Standard.CopyConstructor = nullptr;
|
|
ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
|
|
};
|
|
|
|
// C++0x [dcl.init.ref]p5:
|
|
// A reference to type "cv1 T1" is initialized by an expression
|
|
// of type "cv2 T2" as follows:
|
|
|
|
// -- If reference is an lvalue reference and the initializer expression
|
|
if (!isRValRef) {
|
|
// -- is an lvalue (but is not a bit-field), and "cv1 T1" is
|
|
// reference-compatible with "cv2 T2," or
|
|
//
|
|
// Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
|
|
if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
|
|
// C++ [over.ics.ref]p1:
|
|
// When a parameter of reference type binds directly (8.5.3)
|
|
// to an argument expression, the implicit conversion sequence
|
|
// is the identity conversion, unless the argument expression
|
|
// has a type that is a derived class of the parameter type,
|
|
// in which case the implicit conversion sequence is a
|
|
// derived-to-base Conversion (13.3.3.1).
|
|
SetAsReferenceBinding(/*BindsDirectly=*/true);
|
|
|
|
// Nothing more to do: the inaccessibility/ambiguity check for
|
|
// derived-to-base conversions is suppressed when we're
|
|
// computing the implicit conversion sequence (C++
|
|
// [over.best.ics]p2).
|
|
return ICS;
|
|
}
|
|
|
|
// -- has a class type (i.e., T2 is a class type), where T1 is
|
|
// not reference-related to T2, and can be implicitly
|
|
// converted to an lvalue of type "cv3 T3," where "cv1 T1"
|
|
// is reference-compatible with "cv3 T3" 92) (this
|
|
// conversion is selected by enumerating the applicable
|
|
// conversion functions (13.3.1.6) and choosing the best
|
|
// one through overload resolution (13.3)),
|
|
if (!SuppressUserConversions && T2->isRecordType() &&
|
|
S.isCompleteType(DeclLoc, T2) &&
|
|
RefRelationship == Sema::Ref_Incompatible) {
|
|
if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
|
|
Init, T2, /*AllowRvalues=*/false,
|
|
AllowExplicit))
|
|
return ICS;
|
|
}
|
|
}
|
|
|
|
// -- Otherwise, the reference shall be an lvalue reference to a
|
|
// non-volatile const type (i.e., cv1 shall be const), or the reference
|
|
// shall be an rvalue reference.
|
|
if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) {
|
|
if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible)
|
|
ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
|
|
return ICS;
|
|
}
|
|
|
|
// -- If the initializer expression
|
|
//
|
|
// -- is an xvalue, class prvalue, array prvalue or function
|
|
// lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
|
|
if (RefRelationship == Sema::Ref_Compatible &&
|
|
(InitCategory.isXValue() ||
|
|
(InitCategory.isPRValue() &&
|
|
(T2->isRecordType() || T2->isArrayType())) ||
|
|
(InitCategory.isLValue() && T2->isFunctionType()))) {
|
|
// In C++11, this is always a direct binding. In C++98/03, it's a direct
|
|
// binding unless we're binding to a class prvalue.
|
|
// Note: Although xvalues wouldn't normally show up in C++98/03 code, we
|
|
// allow the use of rvalue references in C++98/03 for the benefit of
|
|
// standard library implementors; therefore, we need the xvalue check here.
|
|
SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
|
|
!(InitCategory.isPRValue() || T2->isRecordType()));
|
|
return ICS;
|
|
}
|
|
|
|
// -- has a class type (i.e., T2 is a class type), where T1 is not
|
|
// reference-related to T2, and can be implicitly converted to
|
|
// an xvalue, class prvalue, or function lvalue of type
|
|
// "cv3 T3", where "cv1 T1" is reference-compatible with
|
|
// "cv3 T3",
|
|
//
|
|
// then the reference is bound to the value of the initializer
|
|
// expression in the first case and to the result of the conversion
|
|
// in the second case (or, in either case, to an appropriate base
|
|
// class subobject).
|
|
if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
|
|
T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
|
|
FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
|
|
Init, T2, /*AllowRvalues=*/true,
|
|
AllowExplicit)) {
|
|
// In the second case, if the reference is an rvalue reference
|
|
// and the second standard conversion sequence of the
|
|
// user-defined conversion sequence includes an lvalue-to-rvalue
|
|
// conversion, the program is ill-formed.
|
|
if (ICS.isUserDefined() && isRValRef &&
|
|
ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
|
|
ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
|
|
|
|
return ICS;
|
|
}
|
|
|
|
// A temporary of function type cannot be created; don't even try.
|
|
if (T1->isFunctionType())
|
|
return ICS;
|
|
|
|
// -- Otherwise, a temporary of type "cv1 T1" is created and
|
|
// initialized from the initializer expression using the
|
|
// rules for a non-reference copy initialization (8.5). The
|
|
// reference is then bound to the temporary. If T1 is
|
|
// reference-related to T2, cv1 must be the same
|
|
// cv-qualification as, or greater cv-qualification than,
|
|
// cv2; otherwise, the program is ill-formed.
|
|
if (RefRelationship == Sema::Ref_Related) {
|
|
// If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
|
|
// we would be reference-compatible or reference-compatible with
|
|
// added qualification. But that wasn't the case, so the reference
|
|
// initialization fails.
|
|
//
|
|
// Note that we only want to check address spaces and cvr-qualifiers here.
|
|
// ObjC GC, lifetime and unaligned qualifiers aren't important.
|
|
Qualifiers T1Quals = T1.getQualifiers();
|
|
Qualifiers T2Quals = T2.getQualifiers();
|
|
T1Quals.removeObjCGCAttr();
|
|
T1Quals.removeObjCLifetime();
|
|
T2Quals.removeObjCGCAttr();
|
|
T2Quals.removeObjCLifetime();
|
|
// MS compiler ignores __unaligned qualifier for references; do the same.
|
|
T1Quals.removeUnaligned();
|
|
T2Quals.removeUnaligned();
|
|
if (!T1Quals.compatiblyIncludes(T2Quals))
|
|
return ICS;
|
|
}
|
|
|
|
// If at least one of the types is a class type, the types are not
|
|
// related, and we aren't allowed any user conversions, the
|
|
// reference binding fails. This case is important for breaking
|
|
// recursion, since TryImplicitConversion below will attempt to
|
|
// create a temporary through the use of a copy constructor.
|
|
if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
|
|
(T1->isRecordType() || T2->isRecordType()))
|
|
return ICS;
|
|
|
|
// If T1 is reference-related to T2 and the reference is an rvalue
|
|
// reference, the initializer expression shall not be an lvalue.
|
|
if (RefRelationship >= Sema::Ref_Related && isRValRef &&
|
|
Init->Classify(S.Context).isLValue()) {
|
|
ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType);
|
|
return ICS;
|
|
}
|
|
|
|
// C++ [over.ics.ref]p2:
|
|
// When a parameter of reference type is not bound directly to
|
|
// an argument expression, the conversion sequence is the one
|
|
// required to convert the argument expression to the
|
|
// underlying type of the reference according to
|
|
// 13.3.3.1. Conceptually, this conversion sequence corresponds
|
|
// to copy-initializing a temporary of the underlying type with
|
|
// the argument expression. Any difference in top-level
|
|
// cv-qualification is subsumed by the initialization itself
|
|
// and does not constitute a conversion.
|
|
ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
|
|
AllowedExplicit::None,
|
|
/*InOverloadResolution=*/false,
|
|
/*CStyle=*/false,
|
|
/*AllowObjCWritebackConversion=*/false,
|
|
/*AllowObjCConversionOnExplicit=*/false);
|
|
|
|
// Of course, that's still a reference binding.
|
|
if (ICS.isStandard()) {
|
|
ICS.Standard.ReferenceBinding = true;
|
|
ICS.Standard.IsLvalueReference = !isRValRef;
|
|
ICS.Standard.BindsToFunctionLvalue = false;
|
|
ICS.Standard.BindsToRvalue = true;
|
|
ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
|
|
ICS.Standard.ObjCLifetimeConversionBinding = false;
|
|
} else if (ICS.isUserDefined()) {
|
|
const ReferenceType *LValRefType =
|
|
ICS.UserDefined.ConversionFunction->getReturnType()
|
|
->getAs<LValueReferenceType>();
|
|
|
|
// C++ [over.ics.ref]p3:
|
|
// Except for an implicit object parameter, for which see 13.3.1, a
|
|
// standard conversion sequence cannot be formed if it requires [...]
|
|
// binding an rvalue reference to an lvalue other than a function
|
|
// lvalue.
|
|
// Note that the function case is not possible here.
|
|
if (isRValRef && LValRefType) {
|
|
ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
|
|
return ICS;
|
|
}
|
|
|
|
ICS.UserDefined.After.ReferenceBinding = true;
|
|
ICS.UserDefined.After.IsLvalueReference = !isRValRef;
|
|
ICS.UserDefined.After.BindsToFunctionLvalue = false;
|
|
ICS.UserDefined.After.BindsToRvalue = !LValRefType;
|
|
ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
|
|
ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
|
|
}
|
|
|
|
return ICS;
|
|
}
|
|
|
|
static ImplicitConversionSequence
|
|
TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
bool InOverloadResolution,
|
|
bool AllowObjCWritebackConversion,
|
|
bool AllowExplicit = false);
|
|
|
|
/// TryListConversion - Try to copy-initialize a value of type ToType from the
|
|
/// initializer list From.
|
|
static ImplicitConversionSequence
|
|
TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
bool InOverloadResolution,
|
|
bool AllowObjCWritebackConversion) {
|
|
// C++11 [over.ics.list]p1:
|
|
// When an argument is an initializer list, it is not an expression and
|
|
// special rules apply for converting it to a parameter type.
|
|
|
|
ImplicitConversionSequence Result;
|
|
Result.setBad(BadConversionSequence::no_conversion, From, ToType);
|
|
|
|
// We need a complete type for what follows. Incomplete types can never be
|
|
// initialized from init lists.
|
|
if (!S.isCompleteType(From->getBeginLoc(), ToType))
|
|
return Result;
|
|
|
|
// Per DR1467:
|
|
// If the parameter type is a class X and the initializer list has a single
|
|
// element of type cv U, where U is X or a class derived from X, the
|
|
// implicit conversion sequence is the one required to convert the element
|
|
// to the parameter type.
|
|
//
|
|
// Otherwise, if the parameter type is a character array [... ]
|
|
// and the initializer list has a single element that is an
|
|
// appropriately-typed string literal (8.5.2 [dcl.init.string]), the
|
|
// implicit conversion sequence is the identity conversion.
|
|
if (From->getNumInits() == 1) {
|
|
if (ToType->isRecordType()) {
|
|
QualType InitType = From->getInit(0)->getType();
|
|
if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
|
|
S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
|
|
return TryCopyInitialization(S, From->getInit(0), ToType,
|
|
SuppressUserConversions,
|
|
InOverloadResolution,
|
|
AllowObjCWritebackConversion);
|
|
}
|
|
|
|
if (const auto *AT = S.Context.getAsArrayType(ToType)) {
|
|
if (S.IsStringInit(From->getInit(0), AT)) {
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeParameter(S.Context, ToType,
|
|
/*Consumed=*/false);
|
|
if (S.CanPerformCopyInitialization(Entity, From)) {
|
|
Result.setStandard();
|
|
Result.Standard.setAsIdentityConversion();
|
|
Result.Standard.setFromType(ToType);
|
|
Result.Standard.setAllToTypes(ToType);
|
|
return Result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
|
|
// C++11 [over.ics.list]p2:
|
|
// If the parameter type is std::initializer_list<X> or "array of X" and
|
|
// all the elements can be implicitly converted to X, the implicit
|
|
// conversion sequence is the worst conversion necessary to convert an
|
|
// element of the list to X.
|
|
//
|
|
// C++14 [over.ics.list]p3:
|
|
// Otherwise, if the parameter type is "array of N X", if the initializer
|
|
// list has exactly N elements or if it has fewer than N elements and X is
|
|
// default-constructible, and if all the elements of the initializer list
|
|
// can be implicitly converted to X, the implicit conversion sequence is
|
|
// the worst conversion necessary to convert an element of the list to X.
|
|
//
|
|
// FIXME: We're missing a lot of these checks.
|
|
bool toStdInitializerList = false;
|
|
QualType X;
|
|
if (ToType->isArrayType())
|
|
X = S.Context.getAsArrayType(ToType)->getElementType();
|
|
else
|
|
toStdInitializerList = S.isStdInitializerList(ToType, &X);
|
|
if (!X.isNull()) {
|
|
for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
|
|
Expr *Init = From->getInit(i);
|
|
ImplicitConversionSequence ICS =
|
|
TryCopyInitialization(S, Init, X, SuppressUserConversions,
|
|
InOverloadResolution,
|
|
AllowObjCWritebackConversion);
|
|
// If a single element isn't convertible, fail.
|
|
if (ICS.isBad()) {
|
|
Result = ICS;
|
|
break;
|
|
}
|
|
// Otherwise, look for the worst conversion.
|
|
if (Result.isBad() || CompareImplicitConversionSequences(
|
|
S, From->getBeginLoc(), ICS, Result) ==
|
|
ImplicitConversionSequence::Worse)
|
|
Result = ICS;
|
|
}
|
|
|
|
// For an empty list, we won't have computed any conversion sequence.
|
|
// Introduce the identity conversion sequence.
|
|
if (From->getNumInits() == 0) {
|
|
Result.setStandard();
|
|
Result.Standard.setAsIdentityConversion();
|
|
Result.Standard.setFromType(ToType);
|
|
Result.Standard.setAllToTypes(ToType);
|
|
}
|
|
|
|
Result.setStdInitializerListElement(toStdInitializerList);
|
|
return Result;
|
|
}
|
|
|
|
// C++14 [over.ics.list]p4:
|
|
// C++11 [over.ics.list]p3:
|
|
// Otherwise, if the parameter is a non-aggregate class X and overload
|
|
// resolution chooses a single best constructor [...] the implicit
|
|
// conversion sequence is a user-defined conversion sequence. If multiple
|
|
// constructors are viable but none is better than the others, the
|
|
// implicit conversion sequence is a user-defined conversion sequence.
|
|
if (ToType->isRecordType() && !ToType->isAggregateType()) {
|
|
// This function can deal with initializer lists.
|
|
return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
|
|
AllowedExplicit::None,
|
|
InOverloadResolution, /*CStyle=*/false,
|
|
AllowObjCWritebackConversion,
|
|
/*AllowObjCConversionOnExplicit=*/false);
|
|
}
|
|
|
|
// C++14 [over.ics.list]p5:
|
|
// C++11 [over.ics.list]p4:
|
|
// Otherwise, if the parameter has an aggregate type which can be
|
|
// initialized from the initializer list [...] the implicit conversion
|
|
// sequence is a user-defined conversion sequence.
|
|
if (ToType->isAggregateType()) {
|
|
// Type is an aggregate, argument is an init list. At this point it comes
|
|
// down to checking whether the initialization works.
|
|
// FIXME: Find out whether this parameter is consumed or not.
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeParameter(S.Context, ToType,
|
|
/*Consumed=*/false);
|
|
if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
|
|
From)) {
|
|
Result.setUserDefined();
|
|
Result.UserDefined.Before.setAsIdentityConversion();
|
|
// Initializer lists don't have a type.
|
|
Result.UserDefined.Before.setFromType(QualType());
|
|
Result.UserDefined.Before.setAllToTypes(QualType());
|
|
|
|
Result.UserDefined.After.setAsIdentityConversion();
|
|
Result.UserDefined.After.setFromType(ToType);
|
|
Result.UserDefined.After.setAllToTypes(ToType);
|
|
Result.UserDefined.ConversionFunction = nullptr;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// C++14 [over.ics.list]p6:
|
|
// C++11 [over.ics.list]p5:
|
|
// Otherwise, if the parameter is a reference, see 13.3.3.1.4.
|
|
if (ToType->isReferenceType()) {
|
|
// The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
|
|
// mention initializer lists in any way. So we go by what list-
|
|
// initialization would do and try to extrapolate from that.
|
|
|
|
QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
|
|
|
|
// If the initializer list has a single element that is reference-related
|
|
// to the parameter type, we initialize the reference from that.
|
|
if (From->getNumInits() == 1) {
|
|
Expr *Init = From->getInit(0);
|
|
|
|
QualType T2 = Init->getType();
|
|
|
|
// If the initializer is the address of an overloaded function, try
|
|
// to resolve the overloaded function. If all goes well, T2 is the
|
|
// type of the resulting function.
|
|
if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
|
|
DeclAccessPair Found;
|
|
if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
|
|
Init, ToType, false, Found))
|
|
T2 = Fn->getType();
|
|
}
|
|
|
|
// Compute some basic properties of the types and the initializer.
|
|
Sema::ReferenceCompareResult RefRelationship =
|
|
S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2);
|
|
|
|
if (RefRelationship >= Sema::Ref_Related) {
|
|
return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
|
|
SuppressUserConversions,
|
|
/*AllowExplicit=*/false);
|
|
}
|
|
}
|
|
|
|
// Otherwise, we bind the reference to a temporary created from the
|
|
// initializer list.
|
|
Result = TryListConversion(S, From, T1, SuppressUserConversions,
|
|
InOverloadResolution,
|
|
AllowObjCWritebackConversion);
|
|
if (Result.isFailure())
|
|
return Result;
|
|
assert(!Result.isEllipsis() &&
|
|
"Sub-initialization cannot result in ellipsis conversion.");
|
|
|
|
// Can we even bind to a temporary?
|
|
if (ToType->isRValueReferenceType() ||
|
|
(T1.isConstQualified() && !T1.isVolatileQualified())) {
|
|
StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
|
|
Result.UserDefined.After;
|
|
SCS.ReferenceBinding = true;
|
|
SCS.IsLvalueReference = ToType->isLValueReferenceType();
|
|
SCS.BindsToRvalue = true;
|
|
SCS.BindsToFunctionLvalue = false;
|
|
SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
|
|
SCS.ObjCLifetimeConversionBinding = false;
|
|
} else
|
|
Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
|
|
From, ToType);
|
|
return Result;
|
|
}
|
|
|
|
// C++14 [over.ics.list]p7:
|
|
// C++11 [over.ics.list]p6:
|
|
// Otherwise, if the parameter type is not a class:
|
|
if (!ToType->isRecordType()) {
|
|
// - if the initializer list has one element that is not itself an
|
|
// initializer list, the implicit conversion sequence is the one
|
|
// required to convert the element to the parameter type.
|
|
unsigned NumInits = From->getNumInits();
|
|
if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
|
|
Result = TryCopyInitialization(S, From->getInit(0), ToType,
|
|
SuppressUserConversions,
|
|
InOverloadResolution,
|
|
AllowObjCWritebackConversion);
|
|
// - if the initializer list has no elements, the implicit conversion
|
|
// sequence is the identity conversion.
|
|
else if (NumInits == 0) {
|
|
Result.setStandard();
|
|
Result.Standard.setAsIdentityConversion();
|
|
Result.Standard.setFromType(ToType);
|
|
Result.Standard.setAllToTypes(ToType);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// C++14 [over.ics.list]p8:
|
|
// C++11 [over.ics.list]p7:
|
|
// In all cases other than those enumerated above, no conversion is possible
|
|
return Result;
|
|
}
|
|
|
|
/// TryCopyInitialization - Try to copy-initialize a value of type
|
|
/// ToType from the expression From. Return the implicit conversion
|
|
/// sequence required to pass this argument, which may be a bad
|
|
/// conversion sequence (meaning that the argument cannot be passed to
|
|
/// a parameter of this type). If @p SuppressUserConversions, then we
|
|
/// do not permit any user-defined conversion sequences.
|
|
static ImplicitConversionSequence
|
|
TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
bool InOverloadResolution,
|
|
bool AllowObjCWritebackConversion,
|
|
bool AllowExplicit) {
|
|
if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
|
|
return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
|
|
InOverloadResolution,AllowObjCWritebackConversion);
|
|
|
|
if (ToType->isReferenceType())
|
|
return TryReferenceInit(S, From, ToType,
|
|
/*FIXME:*/ From->getBeginLoc(),
|
|
SuppressUserConversions, AllowExplicit);
|
|
|
|
return TryImplicitConversion(S, From, ToType,
|
|
SuppressUserConversions,
|
|
AllowedExplicit::None,
|
|
InOverloadResolution,
|
|
/*CStyle=*/false,
|
|
AllowObjCWritebackConversion,
|
|
/*AllowObjCConversionOnExplicit=*/false);
|
|
}
|
|
|
|
static bool TryCopyInitialization(const CanQualType FromQTy,
|
|
const CanQualType ToQTy,
|
|
Sema &S,
|
|
SourceLocation Loc,
|
|
ExprValueKind FromVK) {
|
|
OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
|
|
ImplicitConversionSequence ICS =
|
|
TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
|
|
|
|
return !ICS.isBad();
|
|
}
|
|
|
|
/// TryObjectArgumentInitialization - Try to initialize the object
|
|
/// parameter of the given member function (@c Method) from the
|
|
/// expression @p From.
|
|
static ImplicitConversionSequence
|
|
TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
|
|
Expr::Classification FromClassification,
|
|
CXXMethodDecl *Method,
|
|
CXXRecordDecl *ActingContext) {
|
|
QualType ClassType = S.Context.getTypeDeclType(ActingContext);
|
|
// [class.dtor]p2: A destructor can be invoked for a const, volatile or
|
|
// const volatile object.
|
|
Qualifiers Quals = Method->getMethodQualifiers();
|
|
if (isa<CXXDestructorDecl>(Method)) {
|
|
Quals.addConst();
|
|
Quals.addVolatile();
|
|
}
|
|
|
|
QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
|
|
|
|
// Set up the conversion sequence as a "bad" conversion, to allow us
|
|
// to exit early.
|
|
ImplicitConversionSequence ICS;
|
|
|
|
// We need to have an object of class type.
|
|
if (const PointerType *PT = FromType->getAs<PointerType>()) {
|
|
FromType = PT->getPointeeType();
|
|
|
|
// When we had a pointer, it's implicitly dereferenced, so we
|
|
// better have an lvalue.
|
|
assert(FromClassification.isLValue());
|
|
}
|
|
|
|
assert(FromType->isRecordType());
|
|
|
|
// C++0x [over.match.funcs]p4:
|
|
// For non-static member functions, the type of the implicit object
|
|
// parameter is
|
|
//
|
|
// - "lvalue reference to cv X" for functions declared without a
|
|
// ref-qualifier or with the & ref-qualifier
|
|
// - "rvalue reference to cv X" for functions declared with the &&
|
|
// ref-qualifier
|
|
//
|
|
// where X is the class of which the function is a member and cv is the
|
|
// cv-qualification on the member function declaration.
|
|
//
|
|
// However, when finding an implicit conversion sequence for the argument, we
|
|
// are not allowed to perform user-defined conversions
|
|
// (C++ [over.match.funcs]p5). We perform a simplified version of
|
|
// reference binding here, that allows class rvalues to bind to
|
|
// non-constant references.
|
|
|
|
// First check the qualifiers.
|
|
QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
|
|
if (ImplicitParamType.getCVRQualifiers()
|
|
!= FromTypeCanon.getLocalCVRQualifiers() &&
|
|
!ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
|
|
ICS.setBad(BadConversionSequence::bad_qualifiers,
|
|
FromType, ImplicitParamType);
|
|
return ICS;
|
|
}
|
|
|
|
if (FromTypeCanon.hasAddressSpace()) {
|
|
Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
|
|
Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
|
|
if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
|
|
ICS.setBad(BadConversionSequence::bad_qualifiers,
|
|
FromType, ImplicitParamType);
|
|
return ICS;
|
|
}
|
|
}
|
|
|
|
// Check that we have either the same type or a derived type. It
|
|
// affects the conversion rank.
|
|
QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
|
|
ImplicitConversionKind SecondKind;
|
|
if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
|
|
SecondKind = ICK_Identity;
|
|
} else if (S.IsDerivedFrom(Loc, FromType, ClassType))
|
|
SecondKind = ICK_Derived_To_Base;
|
|
else {
|
|
ICS.setBad(BadConversionSequence::unrelated_class,
|
|
FromType, ImplicitParamType);
|
|
return ICS;
|
|
}
|
|
|
|
// Check the ref-qualifier.
|
|
switch (Method->getRefQualifier()) {
|
|
case RQ_None:
|
|
// Do nothing; we don't care about lvalueness or rvalueness.
|
|
break;
|
|
|
|
case RQ_LValue:
|
|
if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
|
|
// non-const lvalue reference cannot bind to an rvalue
|
|
ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
|
|
ImplicitParamType);
|
|
return ICS;
|
|
}
|
|
break;
|
|
|
|
case RQ_RValue:
|
|
if (!FromClassification.isRValue()) {
|
|
// rvalue reference cannot bind to an lvalue
|
|
ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
|
|
ImplicitParamType);
|
|
return ICS;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Success. Mark this as a reference binding.
|
|
ICS.setStandard();
|
|
ICS.Standard.setAsIdentityConversion();
|
|
ICS.Standard.Second = SecondKind;
|
|
ICS.Standard.setFromType(FromType);
|
|
ICS.Standard.setAllToTypes(ImplicitParamType);
|
|
ICS.Standard.ReferenceBinding = true;
|
|
ICS.Standard.DirectBinding = true;
|
|
ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
|
|
ICS.Standard.BindsToFunctionLvalue = false;
|
|
ICS.Standard.BindsToRvalue = FromClassification.isRValue();
|
|
ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
|
|
= (Method->getRefQualifier() == RQ_None);
|
|
return ICS;
|
|
}
|
|
|
|
/// PerformObjectArgumentInitialization - Perform initialization of
|
|
/// the implicit object parameter for the given Method with the given
|
|
/// expression.
|
|
ExprResult
|
|
Sema::PerformObjectArgumentInitialization(Expr *From,
|
|
NestedNameSpecifier *Qualifier,
|
|
NamedDecl *FoundDecl,
|
|
CXXMethodDecl *Method) {
|
|
QualType FromRecordType, DestType;
|
|
QualType ImplicitParamRecordType =
|
|
Method->getThisType()->castAs<PointerType>()->getPointeeType();
|
|
|
|
Expr::Classification FromClassification;
|
|
if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
|
|
FromRecordType = PT->getPointeeType();
|
|
DestType = Method->getThisType();
|
|
FromClassification = Expr::Classification::makeSimpleLValue();
|
|
} else {
|
|
FromRecordType = From->getType();
|
|
DestType = ImplicitParamRecordType;
|
|
FromClassification = From->Classify(Context);
|
|
|
|
// When performing member access on an rvalue, materialize a temporary.
|
|
if (From->isRValue()) {
|
|
From = CreateMaterializeTemporaryExpr(FromRecordType, From,
|
|
Method->getRefQualifier() !=
|
|
RefQualifierKind::RQ_RValue);
|
|
}
|
|
}
|
|
|
|
// Note that we always use the true parent context when performing
|
|
// the actual argument initialization.
|
|
ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
|
|
*this, From->getBeginLoc(), From->getType(), FromClassification, Method,
|
|
Method->getParent());
|
|
if (ICS.isBad()) {
|
|
switch (ICS.Bad.Kind) {
|
|
case BadConversionSequence::bad_qualifiers: {
|
|
Qualifiers FromQs = FromRecordType.getQualifiers();
|
|
Qualifiers ToQs = DestType.getQualifiers();
|
|
unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
|
|
if (CVR) {
|
|
Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
|
|
<< Method->getDeclName() << FromRecordType << (CVR - 1)
|
|
<< From->getSourceRange();
|
|
Diag(Method->getLocation(), diag::note_previous_decl)
|
|
<< Method->getDeclName();
|
|
return ExprError();
|
|
}
|
|
break;
|
|
}
|
|
|
|
case BadConversionSequence::lvalue_ref_to_rvalue:
|
|
case BadConversionSequence::rvalue_ref_to_lvalue: {
|
|
bool IsRValueQualified =
|
|
Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
|
|
Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
|
|
<< Method->getDeclName() << FromClassification.isRValue()
|
|
<< IsRValueQualified;
|
|
Diag(Method->getLocation(), diag::note_previous_decl)
|
|
<< Method->getDeclName();
|
|
return ExprError();
|
|
}
|
|
|
|
case BadConversionSequence::no_conversion:
|
|
case BadConversionSequence::unrelated_class:
|
|
break;
|
|
}
|
|
|
|
return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
|
|
<< ImplicitParamRecordType << FromRecordType
|
|
<< From->getSourceRange();
|
|
}
|
|
|
|
if (ICS.Standard.Second == ICK_Derived_To_Base) {
|
|
ExprResult FromRes =
|
|
PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
|
|
if (FromRes.isInvalid())
|
|
return ExprError();
|
|
From = FromRes.get();
|
|
}
|
|
|
|
if (!Context.hasSameType(From->getType(), DestType)) {
|
|
CastKind CK;
|
|
QualType PteeTy = DestType->getPointeeType();
|
|
LangAS DestAS =
|
|
PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace();
|
|
if (FromRecordType.getAddressSpace() != DestAS)
|
|
CK = CK_AddressSpaceConversion;
|
|
else
|
|
CK = CK_NoOp;
|
|
From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
|
|
}
|
|
return From;
|
|
}
|
|
|
|
/// TryContextuallyConvertToBool - Attempt to contextually convert the
|
|
/// expression From to bool (C++0x [conv]p3).
|
|
static ImplicitConversionSequence
|
|
TryContextuallyConvertToBool(Sema &S, Expr *From) {
|
|
// C++ [dcl.init]/17.8:
|
|
// - Otherwise, if the initialization is direct-initialization, the source
|
|
// type is std::nullptr_t, and the destination type is bool, the initial
|
|
// value of the object being initialized is false.
|
|
if (From->getType()->isNullPtrType())
|
|
return ImplicitConversionSequence::getNullptrToBool(From->getType(),
|
|
S.Context.BoolTy,
|
|
From->isGLValue());
|
|
|
|
// All other direct-initialization of bool is equivalent to an implicit
|
|
// conversion to bool in which explicit conversions are permitted.
|
|
return TryImplicitConversion(S, From, S.Context.BoolTy,
|
|
/*SuppressUserConversions=*/false,
|
|
AllowedExplicit::Conversions,
|
|
/*InOverloadResolution=*/false,
|
|
/*CStyle=*/false,
|
|
/*AllowObjCWritebackConversion=*/false,
|
|
/*AllowObjCConversionOnExplicit=*/false);
|
|
}
|
|
|
|
/// PerformContextuallyConvertToBool - Perform a contextual conversion
|
|
/// of the expression From to bool (C++0x [conv]p3).
|
|
ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
|
|
if (checkPlaceholderForOverload(*this, From))
|
|
return ExprError();
|
|
|
|
ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
|
|
if (!ICS.isBad())
|
|
return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
|
|
|
|
if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
|
|
return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
|
|
<< From->getType() << From->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
/// Check that the specified conversion is permitted in a converted constant
|
|
/// expression, according to C++11 [expr.const]p3. Return true if the conversion
|
|
/// is acceptable.
|
|
static bool CheckConvertedConstantConversions(Sema &S,
|
|
StandardConversionSequence &SCS) {
|
|
// Since we know that the target type is an integral or unscoped enumeration
|
|
// type, most conversion kinds are impossible. All possible First and Third
|
|
// conversions are fine.
|
|
switch (SCS.Second) {
|
|
case ICK_Identity:
|
|
case ICK_Integral_Promotion:
|
|
case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
|
|
case ICK_Zero_Queue_Conversion:
|
|
return true;
|
|
|
|
case ICK_Boolean_Conversion:
|
|
// Conversion from an integral or unscoped enumeration type to bool is
|
|
// classified as ICK_Boolean_Conversion, but it's also arguably an integral
|
|
// conversion, so we allow it in a converted constant expression.
|
|
//
|
|
// FIXME: Per core issue 1407, we should not allow this, but that breaks
|
|
// a lot of popular code. We should at least add a warning for this
|
|
// (non-conforming) extension.
|
|
return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
|
|
SCS.getToType(2)->isBooleanType();
|
|
|
|
case ICK_Pointer_Conversion:
|
|
case ICK_Pointer_Member:
|
|
// C++1z: null pointer conversions and null member pointer conversions are
|
|
// only permitted if the source type is std::nullptr_t.
|
|
return SCS.getFromType()->isNullPtrType();
|
|
|
|
case ICK_Floating_Promotion:
|
|
case ICK_Complex_Promotion:
|
|
case ICK_Floating_Conversion:
|
|
case ICK_Complex_Conversion:
|
|
case ICK_Floating_Integral:
|
|
case ICK_Compatible_Conversion:
|
|
case ICK_Derived_To_Base:
|
|
case ICK_Vector_Conversion:
|
|
case ICK_SVE_Vector_Conversion:
|
|
case ICK_Vector_Splat:
|
|
case ICK_Complex_Real:
|
|
case ICK_Block_Pointer_Conversion:
|
|
case ICK_TransparentUnionConversion:
|
|
case ICK_Writeback_Conversion:
|
|
case ICK_Zero_Event_Conversion:
|
|
case ICK_C_Only_Conversion:
|
|
case ICK_Incompatible_Pointer_Conversion:
|
|
return false;
|
|
|
|
case ICK_Lvalue_To_Rvalue:
|
|
case ICK_Array_To_Pointer:
|
|
case ICK_Function_To_Pointer:
|
|
llvm_unreachable("found a first conversion kind in Second");
|
|
|
|
case ICK_Function_Conversion:
|
|
case ICK_Qualification:
|
|
llvm_unreachable("found a third conversion kind in Second");
|
|
|
|
case ICK_Num_Conversion_Kinds:
|
|
break;
|
|
}
|
|
|
|
llvm_unreachable("unknown conversion kind");
|
|
}
|
|
|
|
/// CheckConvertedConstantExpression - Check that the expression From is a
|
|
/// converted constant expression of type T, perform the conversion and produce
|
|
/// the converted expression, per C++11 [expr.const]p3.
|
|
static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
|
|
QualType T, APValue &Value,
|
|
Sema::CCEKind CCE,
|
|
bool RequireInt,
|
|
NamedDecl *Dest) {
|
|
assert(S.getLangOpts().CPlusPlus11 &&
|
|
"converted constant expression outside C++11");
|
|
|
|
if (checkPlaceholderForOverload(S, From))
|
|
return ExprError();
|
|
|
|
// C++1z [expr.const]p3:
|
|
// A converted constant expression of type T is an expression,
|
|
// implicitly converted to type T, where the converted
|
|
// expression is a constant expression and the implicit conversion
|
|
// sequence contains only [... list of conversions ...].
|
|
// C++1z [stmt.if]p2:
|
|
// If the if statement is of the form if constexpr, the value of the
|
|
// condition shall be a contextually converted constant expression of type
|
|
// bool.
|
|
ImplicitConversionSequence ICS =
|
|
CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool
|
|
? TryContextuallyConvertToBool(S, From)
|
|
: TryCopyInitialization(S, From, T,
|
|
/*SuppressUserConversions=*/false,
|
|
/*InOverloadResolution=*/false,
|
|
/*AllowObjCWritebackConversion=*/false,
|
|
/*AllowExplicit=*/false);
|
|
StandardConversionSequence *SCS = nullptr;
|
|
switch (ICS.getKind()) {
|
|
case ImplicitConversionSequence::StandardConversion:
|
|
SCS = &ICS.Standard;
|
|
break;
|
|
case ImplicitConversionSequence::UserDefinedConversion:
|
|
if (T->isRecordType())
|
|
SCS = &ICS.UserDefined.Before;
|
|
else
|
|
SCS = &ICS.UserDefined.After;
|
|
break;
|
|
case ImplicitConversionSequence::AmbiguousConversion:
|
|
case ImplicitConversionSequence::BadConversion:
|
|
if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
|
|
return S.Diag(From->getBeginLoc(),
|
|
diag::err_typecheck_converted_constant_expression)
|
|
<< From->getType() << From->getSourceRange() << T;
|
|
return ExprError();
|
|
|
|
case ImplicitConversionSequence::EllipsisConversion:
|
|
llvm_unreachable("ellipsis conversion in converted constant expression");
|
|
}
|
|
|
|
// Check that we would only use permitted conversions.
|
|
if (!CheckConvertedConstantConversions(S, *SCS)) {
|
|
return S.Diag(From->getBeginLoc(),
|
|
diag::err_typecheck_converted_constant_expression_disallowed)
|
|
<< From->getType() << From->getSourceRange() << T;
|
|
}
|
|
// [...] and where the reference binding (if any) binds directly.
|
|
if (SCS->ReferenceBinding && !SCS->DirectBinding) {
|
|
return S.Diag(From->getBeginLoc(),
|
|
diag::err_typecheck_converted_constant_expression_indirect)
|
|
<< From->getType() << From->getSourceRange() << T;
|
|
}
|
|
|
|
// Usually we can simply apply the ImplicitConversionSequence we formed
|
|
// earlier, but that's not guaranteed to work when initializing an object of
|
|
// class type.
|
|
ExprResult Result;
|
|
if (T->isRecordType()) {
|
|
assert(CCE == Sema::CCEK_TemplateArg &&
|
|
"unexpected class type converted constant expr");
|
|
Result = S.PerformCopyInitialization(
|
|
InitializedEntity::InitializeTemplateParameter(
|
|
T, cast<NonTypeTemplateParmDecl>(Dest)),
|
|
SourceLocation(), From);
|
|
} else {
|
|
Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
|
|
}
|
|
if (Result.isInvalid())
|
|
return Result;
|
|
|
|
// C++2a [intro.execution]p5:
|
|
// A full-expression is [...] a constant-expression [...]
|
|
Result =
|
|
S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
|
|
/*DiscardedValue=*/false, /*IsConstexpr=*/true);
|
|
if (Result.isInvalid())
|
|
return Result;
|
|
|
|
// Check for a narrowing implicit conversion.
|
|
bool ReturnPreNarrowingValue = false;
|
|
APValue PreNarrowingValue;
|
|
QualType PreNarrowingType;
|
|
switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
|
|
PreNarrowingType)) {
|
|
case NK_Dependent_Narrowing:
|
|
// Implicit conversion to a narrower type, but the expression is
|
|
// value-dependent so we can't tell whether it's actually narrowing.
|
|
case NK_Variable_Narrowing:
|
|
// Implicit conversion to a narrower type, and the value is not a constant
|
|
// expression. We'll diagnose this in a moment.
|
|
case NK_Not_Narrowing:
|
|
break;
|
|
|
|
case NK_Constant_Narrowing:
|
|
if (CCE == Sema::CCEK_ArrayBound &&
|
|
PreNarrowingType->isIntegralOrEnumerationType() &&
|
|
PreNarrowingValue.isInt()) {
|
|
// Don't diagnose array bound narrowing here; we produce more precise
|
|
// errors by allowing the un-narrowed value through.
|
|
ReturnPreNarrowingValue = true;
|
|
break;
|
|
}
|
|
S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
|
|
<< CCE << /*Constant*/ 1
|
|
<< PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
|
|
break;
|
|
|
|
case NK_Type_Narrowing:
|
|
// FIXME: It would be better to diagnose that the expression is not a
|
|
// constant expression.
|
|
S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
|
|
<< CCE << /*Constant*/ 0 << From->getType() << T;
|
|
break;
|
|
}
|
|
|
|
if (Result.get()->isValueDependent()) {
|
|
Value = APValue();
|
|
return Result;
|
|
}
|
|
|
|
// Check the expression is a constant expression.
|
|
SmallVector<PartialDiagnosticAt, 8> Notes;
|
|
Expr::EvalResult Eval;
|
|
Eval.Diag = &Notes;
|
|
|
|
ConstantExprKind Kind;
|
|
if (CCE == Sema::CCEK_TemplateArg && T->isRecordType())
|
|
Kind = ConstantExprKind::ClassTemplateArgument;
|
|
else if (CCE == Sema::CCEK_TemplateArg)
|
|
Kind = ConstantExprKind::NonClassTemplateArgument;
|
|
else
|
|
Kind = ConstantExprKind::Normal;
|
|
|
|
if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) ||
|
|
(RequireInt && !Eval.Val.isInt())) {
|
|
// The expression can't be folded, so we can't keep it at this position in
|
|
// the AST.
|
|
Result = ExprError();
|
|
} else {
|
|
Value = Eval.Val;
|
|
|
|
if (Notes.empty()) {
|
|
// It's a constant expression.
|
|
Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value);
|
|
if (ReturnPreNarrowingValue)
|
|
Value = std::move(PreNarrowingValue);
|
|
return E;
|
|
}
|
|
}
|
|
|
|
// It's not a constant expression. Produce an appropriate diagnostic.
|
|
if (Notes.size() == 1 &&
|
|
Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) {
|
|
S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
|
|
} else if (!Notes.empty() && Notes[0].second.getDiagID() ==
|
|
diag::note_constexpr_invalid_template_arg) {
|
|
Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg);
|
|
for (unsigned I = 0; I < Notes.size(); ++I)
|
|
S.Diag(Notes[I].first, Notes[I].second);
|
|
} else {
|
|
S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
|
|
<< CCE << From->getSourceRange();
|
|
for (unsigned I = 0; I < Notes.size(); ++I)
|
|
S.Diag(Notes[I].first, Notes[I].second);
|
|
}
|
|
return ExprError();
|
|
}
|
|
|
|
ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
|
|
APValue &Value, CCEKind CCE,
|
|
NamedDecl *Dest) {
|
|
return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false,
|
|
Dest);
|
|
}
|
|
|
|
ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
|
|
llvm::APSInt &Value,
|
|
CCEKind CCE) {
|
|
assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
|
|
|
|
APValue V;
|
|
auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true,
|
|
/*Dest=*/nullptr);
|
|
if (!R.isInvalid() && !R.get()->isValueDependent())
|
|
Value = V.getInt();
|
|
return R;
|
|
}
|
|
|
|
|
|
/// dropPointerConversions - If the given standard conversion sequence
|
|
/// involves any pointer conversions, remove them. This may change
|
|
/// the result type of the conversion sequence.
|
|
static void dropPointerConversion(StandardConversionSequence &SCS) {
|
|
if (SCS.Second == ICK_Pointer_Conversion) {
|
|
SCS.Second = ICK_Identity;
|
|
SCS.Third = ICK_Identity;
|
|
SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
|
|
}
|
|
}
|
|
|
|
/// TryContextuallyConvertToObjCPointer - Attempt to contextually
|
|
/// convert the expression From to an Objective-C pointer type.
|
|
static ImplicitConversionSequence
|
|
TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
|
|
// Do an implicit conversion to 'id'.
|
|
QualType Ty = S.Context.getObjCIdType();
|
|
ImplicitConversionSequence ICS
|
|
= TryImplicitConversion(S, From, Ty,
|
|
// FIXME: Are these flags correct?
|
|
/*SuppressUserConversions=*/false,
|
|
AllowedExplicit::Conversions,
|
|
/*InOverloadResolution=*/false,
|
|
/*CStyle=*/false,
|
|
/*AllowObjCWritebackConversion=*/false,
|
|
/*AllowObjCConversionOnExplicit=*/true);
|
|
|
|
// Strip off any final conversions to 'id'.
|
|
switch (ICS.getKind()) {
|
|
case ImplicitConversionSequence::BadConversion:
|
|
case ImplicitConversionSequence::AmbiguousConversion:
|
|
case ImplicitConversionSequence::EllipsisConversion:
|
|
break;
|
|
|
|
case ImplicitConversionSequence::UserDefinedConversion:
|
|
dropPointerConversion(ICS.UserDefined.After);
|
|
break;
|
|
|
|
case ImplicitConversionSequence::StandardConversion:
|
|
dropPointerConversion(ICS.Standard);
|
|
break;
|
|
}
|
|
|
|
return ICS;
|
|
}
|
|
|
|
/// PerformContextuallyConvertToObjCPointer - Perform a contextual
|
|
/// conversion of the expression From to an Objective-C pointer type.
|
|
/// Returns a valid but null ExprResult if no conversion sequence exists.
|
|
ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
|
|
if (checkPlaceholderForOverload(*this, From))
|
|
return ExprError();
|
|
|
|
QualType Ty = Context.getObjCIdType();
|
|
ImplicitConversionSequence ICS =
|
|
TryContextuallyConvertToObjCPointer(*this, From);
|
|
if (!ICS.isBad())
|
|
return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
|
|
return ExprResult();
|
|
}
|
|
|
|
/// Determine whether the provided type is an integral type, or an enumeration
|
|
/// type of a permitted flavor.
|
|
bool Sema::ICEConvertDiagnoser::match(QualType T) {
|
|
return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
|
|
: T->isIntegralOrUnscopedEnumerationType();
|
|
}
|
|
|
|
static ExprResult
|
|
diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
|
|
Sema::ContextualImplicitConverter &Converter,
|
|
QualType T, UnresolvedSetImpl &ViableConversions) {
|
|
|
|
if (Converter.Suppress)
|
|
return ExprError();
|
|
|
|
Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
|
|
for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
|
|
CXXConversionDecl *Conv =
|
|
cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
|
|
QualType ConvTy = Conv->getConversionType().getNonReferenceType();
|
|
Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
|
|
}
|
|
return From;
|
|
}
|
|
|
|
static bool
|
|
diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
|
|
Sema::ContextualImplicitConverter &Converter,
|
|
QualType T, bool HadMultipleCandidates,
|
|
UnresolvedSetImpl &ExplicitConversions) {
|
|
if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
|
|
DeclAccessPair Found = ExplicitConversions[0];
|
|
CXXConversionDecl *Conversion =
|
|
cast<CXXConversionDecl>(Found->getUnderlyingDecl());
|
|
|
|
// The user probably meant to invoke the given explicit
|
|
// conversion; use it.
|
|
QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
|
|
std::string TypeStr;
|
|
ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
|
|
|
|
Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
|
|
<< FixItHint::CreateInsertion(From->getBeginLoc(),
|
|
"static_cast<" + TypeStr + ">(")
|
|
<< FixItHint::CreateInsertion(
|
|
SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
|
|
Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
|
|
|
|
// If we aren't in a SFINAE context, build a call to the
|
|
// explicit conversion function.
|
|
if (SemaRef.isSFINAEContext())
|
|
return true;
|
|
|
|
SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
|
|
ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
|
|
HadMultipleCandidates);
|
|
if (Result.isInvalid())
|
|
return true;
|
|
// Record usage of conversion in an implicit cast.
|
|
From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
|
|
CK_UserDefinedConversion, Result.get(),
|
|
nullptr, Result.get()->getValueKind(),
|
|
SemaRef.CurFPFeatureOverrides());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
|
|
Sema::ContextualImplicitConverter &Converter,
|
|
QualType T, bool HadMultipleCandidates,
|
|
DeclAccessPair &Found) {
|
|
CXXConversionDecl *Conversion =
|
|
cast<CXXConversionDecl>(Found->getUnderlyingDecl());
|
|
SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
|
|
|
|
QualType ToType = Conversion->getConversionType().getNonReferenceType();
|
|
if (!Converter.SuppressConversion) {
|
|
if (SemaRef.isSFINAEContext())
|
|
return true;
|
|
|
|
Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
|
|
<< From->getSourceRange();
|
|
}
|
|
|
|
ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
|
|
HadMultipleCandidates);
|
|
if (Result.isInvalid())
|
|
return true;
|
|
// Record usage of conversion in an implicit cast.
|
|
From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
|
|
CK_UserDefinedConversion, Result.get(),
|
|
nullptr, Result.get()->getValueKind(),
|
|
SemaRef.CurFPFeatureOverrides());
|
|
return false;
|
|
}
|
|
|
|
static ExprResult finishContextualImplicitConversion(
|
|
Sema &SemaRef, SourceLocation Loc, Expr *From,
|
|
Sema::ContextualImplicitConverter &Converter) {
|
|
if (!Converter.match(From->getType()) && !Converter.Suppress)
|
|
Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
|
|
<< From->getSourceRange();
|
|
|
|
return SemaRef.DefaultLvalueConversion(From);
|
|
}
|
|
|
|
static void
|
|
collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
|
|
UnresolvedSetImpl &ViableConversions,
|
|
OverloadCandidateSet &CandidateSet) {
|
|
for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
|
|
DeclAccessPair FoundDecl = ViableConversions[I];
|
|
NamedDecl *D = FoundDecl.getDecl();
|
|
CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
CXXConversionDecl *Conv;
|
|
FunctionTemplateDecl *ConvTemplate;
|
|
if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
|
|
Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
|
|
else
|
|
Conv = cast<CXXConversionDecl>(D);
|
|
|
|
if (ConvTemplate)
|
|
SemaRef.AddTemplateConversionCandidate(
|
|
ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
|
|
/*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
|
|
else
|
|
SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
|
|
ToType, CandidateSet,
|
|
/*AllowObjCConversionOnExplicit=*/false,
|
|
/*AllowExplicit*/ true);
|
|
}
|
|
}
|
|
|
|
/// Attempt to convert the given expression to a type which is accepted
|
|
/// by the given converter.
|
|
///
|
|
/// This routine will attempt to convert an expression of class type to a
|
|
/// type accepted by the specified converter. In C++11 and before, the class
|
|
/// must have a single non-explicit conversion function converting to a matching
|
|
/// type. In C++1y, there can be multiple such conversion functions, but only
|
|
/// one target type.
|
|
///
|
|
/// \param Loc The source location of the construct that requires the
|
|
/// conversion.
|
|
///
|
|
/// \param From The expression we're converting from.
|
|
///
|
|
/// \param Converter Used to control and diagnose the conversion process.
|
|
///
|
|
/// \returns The expression, converted to an integral or enumeration type if
|
|
/// successful.
|
|
ExprResult Sema::PerformContextualImplicitConversion(
|
|
SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
|
|
// We can't perform any more checking for type-dependent expressions.
|
|
if (From->isTypeDependent())
|
|
return From;
|
|
|
|
// Process placeholders immediately.
|
|
if (From->hasPlaceholderType()) {
|
|
ExprResult result = CheckPlaceholderExpr(From);
|
|
if (result.isInvalid())
|
|
return result;
|
|
From = result.get();
|
|
}
|
|
|
|
// If the expression already has a matching type, we're golden.
|
|
QualType T = From->getType();
|
|
if (Converter.match(T))
|
|
return DefaultLvalueConversion(From);
|
|
|
|
// FIXME: Check for missing '()' if T is a function type?
|
|
|
|
// We can only perform contextual implicit conversions on objects of class
|
|
// type.
|
|
const RecordType *RecordTy = T->getAs<RecordType>();
|
|
if (!RecordTy || !getLangOpts().CPlusPlus) {
|
|
if (!Converter.Suppress)
|
|
Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
|
|
return From;
|
|
}
|
|
|
|
// We must have a complete class type.
|
|
struct TypeDiagnoserPartialDiag : TypeDiagnoser {
|
|
ContextualImplicitConverter &Converter;
|
|
Expr *From;
|
|
|
|
TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
|
|
: Converter(Converter), From(From) {}
|
|
|
|
void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
|
|
Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
|
|
}
|
|
} IncompleteDiagnoser(Converter, From);
|
|
|
|
if (Converter.Suppress ? !isCompleteType(Loc, T)
|
|
: RequireCompleteType(Loc, T, IncompleteDiagnoser))
|
|
return From;
|
|
|
|
// Look for a conversion to an integral or enumeration type.
|
|
UnresolvedSet<4>
|
|
ViableConversions; // These are *potentially* viable in C++1y.
|
|
UnresolvedSet<4> ExplicitConversions;
|
|
const auto &Conversions =
|
|
cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
|
|
|
|
bool HadMultipleCandidates =
|
|
(std::distance(Conversions.begin(), Conversions.end()) > 1);
|
|
|
|
// To check that there is only one target type, in C++1y:
|
|
QualType ToType;
|
|
bool HasUniqueTargetType = true;
|
|
|
|
// Collect explicit or viable (potentially in C++1y) conversions.
|
|
for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
|
|
NamedDecl *D = (*I)->getUnderlyingDecl();
|
|
CXXConversionDecl *Conversion;
|
|
FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
|
|
if (ConvTemplate) {
|
|
if (getLangOpts().CPlusPlus14)
|
|
Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
|
|
else
|
|
continue; // C++11 does not consider conversion operator templates(?).
|
|
} else
|
|
Conversion = cast<CXXConversionDecl>(D);
|
|
|
|
assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
|
|
"Conversion operator templates are considered potentially "
|
|
"viable in C++1y");
|
|
|
|
QualType CurToType = Conversion->getConversionType().getNonReferenceType();
|
|
if (Converter.match(CurToType) || ConvTemplate) {
|
|
|
|
if (Conversion->isExplicit()) {
|
|
// FIXME: For C++1y, do we need this restriction?
|
|
// cf. diagnoseNoViableConversion()
|
|
if (!ConvTemplate)
|
|
ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
|
|
} else {
|
|
if (!ConvTemplate && getLangOpts().CPlusPlus14) {
|
|
if (ToType.isNull())
|
|
ToType = CurToType.getUnqualifiedType();
|
|
else if (HasUniqueTargetType &&
|
|
(CurToType.getUnqualifiedType() != ToType))
|
|
HasUniqueTargetType = false;
|
|
}
|
|
ViableConversions.addDecl(I.getDecl(), I.getAccess());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus14) {
|
|
// C++1y [conv]p6:
|
|
// ... An expression e of class type E appearing in such a context
|
|
// is said to be contextually implicitly converted to a specified
|
|
// type T and is well-formed if and only if e can be implicitly
|
|
// converted to a type T that is determined as follows: E is searched
|
|
// for conversion functions whose return type is cv T or reference to
|
|
// cv T such that T is allowed by the context. There shall be
|
|
// exactly one such T.
|
|
|
|
// If no unique T is found:
|
|
if (ToType.isNull()) {
|
|
if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
|
|
HadMultipleCandidates,
|
|
ExplicitConversions))
|
|
return ExprError();
|
|
return finishContextualImplicitConversion(*this, Loc, From, Converter);
|
|
}
|
|
|
|
// If more than one unique Ts are found:
|
|
if (!HasUniqueTargetType)
|
|
return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
|
|
ViableConversions);
|
|
|
|
// If one unique T is found:
|
|
// First, build a candidate set from the previously recorded
|
|
// potentially viable conversions.
|
|
OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
|
|
collectViableConversionCandidates(*this, From, ToType, ViableConversions,
|
|
CandidateSet);
|
|
|
|
// Then, perform overload resolution over the candidate set.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
|
|
case OR_Success: {
|
|
// Apply this conversion.
|
|
DeclAccessPair Found =
|
|
DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
|
|
if (recordConversion(*this, Loc, From, Converter, T,
|
|
HadMultipleCandidates, Found))
|
|
return ExprError();
|
|
break;
|
|
}
|
|
case OR_Ambiguous:
|
|
return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
|
|
ViableConversions);
|
|
case OR_No_Viable_Function:
|
|
if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
|
|
HadMultipleCandidates,
|
|
ExplicitConversions))
|
|
return ExprError();
|
|
LLVM_FALLTHROUGH;
|
|
case OR_Deleted:
|
|
// We'll complain below about a non-integral condition type.
|
|
break;
|
|
}
|
|
} else {
|
|
switch (ViableConversions.size()) {
|
|
case 0: {
|
|
if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
|
|
HadMultipleCandidates,
|
|
ExplicitConversions))
|
|
return ExprError();
|
|
|
|
// We'll complain below about a non-integral condition type.
|
|
break;
|
|
}
|
|
case 1: {
|
|
// Apply this conversion.
|
|
DeclAccessPair Found = ViableConversions[0];
|
|
if (recordConversion(*this, Loc, From, Converter, T,
|
|
HadMultipleCandidates, Found))
|
|
return ExprError();
|
|
break;
|
|
}
|
|
default:
|
|
return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
|
|
ViableConversions);
|
|
}
|
|
}
|
|
|
|
return finishContextualImplicitConversion(*this, Loc, From, Converter);
|
|
}
|
|
|
|
/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
|
|
/// an acceptable non-member overloaded operator for a call whose
|
|
/// arguments have types T1 (and, if non-empty, T2). This routine
|
|
/// implements the check in C++ [over.match.oper]p3b2 concerning
|
|
/// enumeration types.
|
|
static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
|
|
FunctionDecl *Fn,
|
|
ArrayRef<Expr *> Args) {
|
|
QualType T1 = Args[0]->getType();
|
|
QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
|
|
|
|
if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
|
|
return true;
|
|
|
|
if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
|
|
return true;
|
|
|
|
const auto *Proto = Fn->getType()->castAs<FunctionProtoType>();
|
|
if (Proto->getNumParams() < 1)
|
|
return false;
|
|
|
|
if (T1->isEnumeralType()) {
|
|
QualType ArgType = Proto->getParamType(0).getNonReferenceType();
|
|
if (Context.hasSameUnqualifiedType(T1, ArgType))
|
|
return true;
|
|
}
|
|
|
|
if (Proto->getNumParams() < 2)
|
|
return false;
|
|
|
|
if (!T2.isNull() && T2->isEnumeralType()) {
|
|
QualType ArgType = Proto->getParamType(1).getNonReferenceType();
|
|
if (Context.hasSameUnqualifiedType(T2, ArgType))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// AddOverloadCandidate - Adds the given function to the set of
|
|
/// candidate functions, using the given function call arguments. If
|
|
/// @p SuppressUserConversions, then don't allow user-defined
|
|
/// conversions via constructors or conversion operators.
|
|
///
|
|
/// \param PartialOverloading true if we are performing "partial" overloading
|
|
/// based on an incomplete set of function arguments. This feature is used by
|
|
/// code completion.
|
|
void Sema::AddOverloadCandidate(
|
|
FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
|
|
bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
|
|
ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions,
|
|
OverloadCandidateParamOrder PO) {
|
|
const FunctionProtoType *Proto
|
|
= dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
|
|
assert(Proto && "Functions without a prototype cannot be overloaded");
|
|
assert(!Function->getDescribedFunctionTemplate() &&
|
|
"Use AddTemplateOverloadCandidate for function templates");
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
|
|
if (!isa<CXXConstructorDecl>(Method)) {
|
|
// If we get here, it's because we're calling a member function
|
|
// that is named without a member access expression (e.g.,
|
|
// "this->f") that was either written explicitly or created
|
|
// implicitly. This can happen with a qualified call to a member
|
|
// function, e.g., X::f(). We use an empty type for the implied
|
|
// object argument (C++ [over.call.func]p3), and the acting context
|
|
// is irrelevant.
|
|
AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
|
|
Expr::Classification::makeSimpleLValue(), Args,
|
|
CandidateSet, SuppressUserConversions,
|
|
PartialOverloading, EarlyConversions, PO);
|
|
return;
|
|
}
|
|
// We treat a constructor like a non-member function, since its object
|
|
// argument doesn't participate in overload resolution.
|
|
}
|
|
|
|
if (!CandidateSet.isNewCandidate(Function, PO))
|
|
return;
|
|
|
|
// C++11 [class.copy]p11: [DR1402]
|
|
// A defaulted move constructor that is defined as deleted is ignored by
|
|
// overload resolution.
|
|
CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
|
|
if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
|
|
Constructor->isMoveConstructor())
|
|
return;
|
|
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
|
|
// C++ [over.match.oper]p3:
|
|
// if no operand has a class type, only those non-member functions in the
|
|
// lookup set that have a first parameter of type T1 or "reference to
|
|
// (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
|
|
// is a right operand) a second parameter of type T2 or "reference to
|
|
// (possibly cv-qualified) T2", when T2 is an enumeration type, are
|
|
// candidate functions.
|
|
if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
|
|
!IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
|
|
return;
|
|
|
|
// Add this candidate
|
|
OverloadCandidate &Candidate =
|
|
CandidateSet.addCandidate(Args.size(), EarlyConversions);
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = Function;
|
|
Candidate.Viable = true;
|
|
Candidate.RewriteKind =
|
|
CandidateSet.getRewriteInfo().getRewriteKind(Function, PO);
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IsADLCandidate = IsADLCandidate;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.ExplicitCallArguments = Args.size();
|
|
|
|
// Explicit functions are not actually candidates at all if we're not
|
|
// allowing them in this context, but keep them around so we can point
|
|
// to them in diagnostics.
|
|
if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_explicit;
|
|
return;
|
|
}
|
|
|
|
if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
|
|
!Function->getAttr<TargetAttr>()->isDefaultVersion()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_non_default_multiversion_function;
|
|
return;
|
|
}
|
|
|
|
if (Constructor) {
|
|
// C++ [class.copy]p3:
|
|
// A member function template is never instantiated to perform the copy
|
|
// of a class object to an object of its class type.
|
|
QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
|
|
if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
|
|
(Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
|
|
IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
|
|
ClassType))) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_illegal_constructor;
|
|
return;
|
|
}
|
|
|
|
// C++ [over.match.funcs]p8: (proposed DR resolution)
|
|
// A constructor inherited from class type C that has a first parameter
|
|
// of type "reference to P" (including such a constructor instantiated
|
|
// from a template) is excluded from the set of candidate functions when
|
|
// constructing an object of type cv D if the argument list has exactly
|
|
// one argument and D is reference-related to P and P is reference-related
|
|
// to C.
|
|
auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
|
|
if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
|
|
Constructor->getParamDecl(0)->getType()->isReferenceType()) {
|
|
QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
|
|
QualType C = Context.getRecordType(Constructor->getParent());
|
|
QualType D = Context.getRecordType(Shadow->getParent());
|
|
SourceLocation Loc = Args.front()->getExprLoc();
|
|
if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
|
|
(Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_inhctor_slice;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Check that the constructor is capable of constructing an object in the
|
|
// destination address space.
|
|
if (!Qualifiers::isAddressSpaceSupersetOf(
|
|
Constructor->getMethodQualifiers().getAddressSpace(),
|
|
CandidateSet.getDestAS())) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
|
|
}
|
|
}
|
|
|
|
unsigned NumParams = Proto->getNumParams();
|
|
|
|
// (C++ 13.3.2p2): A candidate function having fewer than m
|
|
// parameters is viable only if it has an ellipsis in its parameter
|
|
// list (8.3.5).
|
|
if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
|
|
!Proto->isVariadic()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_many_arguments;
|
|
return;
|
|
}
|
|
|
|
// (C++ 13.3.2p2): A candidate function having more than m parameters
|
|
// is viable only if the (m+1)st parameter has a default argument
|
|
// (8.3.6). For the purposes of overload resolution, the
|
|
// parameter list is truncated on the right, so that there are
|
|
// exactly m parameters.
|
|
unsigned MinRequiredArgs = Function->getMinRequiredArguments();
|
|
if (Args.size() < MinRequiredArgs && !PartialOverloading) {
|
|
// Not enough arguments.
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_few_arguments;
|
|
return;
|
|
}
|
|
|
|
// (CUDA B.1): Check for invalid calls between targets.
|
|
if (getLangOpts().CUDA)
|
|
if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
|
|
// Skip the check for callers that are implicit members, because in this
|
|
// case we may not yet know what the member's target is; the target is
|
|
// inferred for the member automatically, based on the bases and fields of
|
|
// the class.
|
|
if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_target;
|
|
return;
|
|
}
|
|
|
|
if (Function->getTrailingRequiresClause()) {
|
|
ConstraintSatisfaction Satisfaction;
|
|
if (CheckFunctionConstraints(Function, Satisfaction) ||
|
|
!Satisfaction.IsSatisfied) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Determine the implicit conversion sequences for each of the
|
|
// arguments.
|
|
for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
|
|
unsigned ConvIdx =
|
|
PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx;
|
|
if (Candidate.Conversions[ConvIdx].isInitialized()) {
|
|
// We already formed a conversion sequence for this parameter during
|
|
// template argument deduction.
|
|
} else if (ArgIdx < NumParams) {
|
|
// (C++ 13.3.2p3): for F to be a viable function, there shall
|
|
// exist for each argument an implicit conversion sequence
|
|
// (13.3.3.1) that converts that argument to the corresponding
|
|
// parameter of F.
|
|
QualType ParamType = Proto->getParamType(ArgIdx);
|
|
Candidate.Conversions[ConvIdx] = TryCopyInitialization(
|
|
*this, Args[ArgIdx], ParamType, SuppressUserConversions,
|
|
/*InOverloadResolution=*/true,
|
|
/*AllowObjCWritebackConversion=*/
|
|
getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
|
|
if (Candidate.Conversions[ConvIdx].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
return;
|
|
}
|
|
} else {
|
|
// (C++ 13.3.2p2): For the purposes of overload resolution, any
|
|
// argument for which there is no corresponding parameter is
|
|
// considered to ""match the ellipsis" (C+ 13.3.3.1.3).
|
|
Candidate.Conversions[ConvIdx].setEllipsis();
|
|
}
|
|
}
|
|
|
|
if (EnableIfAttr *FailedAttr =
|
|
CheckEnableIf(Function, CandidateSet.getLocation(), Args)) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_enable_if;
|
|
Candidate.DeductionFailure.Data = FailedAttr;
|
|
return;
|
|
}
|
|
|
|
if (LangOpts.OpenCL && isOpenCLDisabledDecl(Function)) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_ext_disabled;
|
|
return;
|
|
}
|
|
}
|
|
|
|
ObjCMethodDecl *
|
|
Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
|
|
SmallVectorImpl<ObjCMethodDecl *> &Methods) {
|
|
if (Methods.size() <= 1)
|
|
return nullptr;
|
|
|
|
for (unsigned b = 0, e = Methods.size(); b < e; b++) {
|
|
bool Match = true;
|
|
ObjCMethodDecl *Method = Methods[b];
|
|
unsigned NumNamedArgs = Sel.getNumArgs();
|
|
// Method might have more arguments than selector indicates. This is due
|
|
// to addition of c-style arguments in method.
|
|
if (Method->param_size() > NumNamedArgs)
|
|
NumNamedArgs = Method->param_size();
|
|
if (Args.size() < NumNamedArgs)
|
|
continue;
|
|
|
|
for (unsigned i = 0; i < NumNamedArgs; i++) {
|
|
// We can't do any type-checking on a type-dependent argument.
|
|
if (Args[i]->isTypeDependent()) {
|
|
Match = false;
|
|
break;
|
|
}
|
|
|
|
ParmVarDecl *param = Method->parameters()[i];
|
|
Expr *argExpr = Args[i];
|
|
assert(argExpr && "SelectBestMethod(): missing expression");
|
|
|
|
// Strip the unbridged-cast placeholder expression off unless it's
|
|
// a consumed argument.
|
|
if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
|
|
!param->hasAttr<CFConsumedAttr>())
|
|
argExpr = stripARCUnbridgedCast(argExpr);
|
|
|
|
// If the parameter is __unknown_anytype, move on to the next method.
|
|
if (param->getType() == Context.UnknownAnyTy) {
|
|
Match = false;
|
|
break;
|
|
}
|
|
|
|
ImplicitConversionSequence ConversionState
|
|
= TryCopyInitialization(*this, argExpr, param->getType(),
|
|
/*SuppressUserConversions*/false,
|
|
/*InOverloadResolution=*/true,
|
|
/*AllowObjCWritebackConversion=*/
|
|
getLangOpts().ObjCAutoRefCount,
|
|
/*AllowExplicit*/false);
|
|
// This function looks for a reasonably-exact match, so we consider
|
|
// incompatible pointer conversions to be a failure here.
|
|
if (ConversionState.isBad() ||
|
|
(ConversionState.isStandard() &&
|
|
ConversionState.Standard.Second ==
|
|
ICK_Incompatible_Pointer_Conversion)) {
|
|
Match = false;
|
|
break;
|
|
}
|
|
}
|
|
// Promote additional arguments to variadic methods.
|
|
if (Match && Method->isVariadic()) {
|
|
for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
|
|
if (Args[i]->isTypeDependent()) {
|
|
Match = false;
|
|
break;
|
|
}
|
|
ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
|
|
nullptr);
|
|
if (Arg.isInvalid()) {
|
|
Match = false;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// Check for extra arguments to non-variadic methods.
|
|
if (Args.size() != NumNamedArgs)
|
|
Match = false;
|
|
else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
|
|
// Special case when selectors have no argument. In this case, select
|
|
// one with the most general result type of 'id'.
|
|
for (unsigned b = 0, e = Methods.size(); b < e; b++) {
|
|
QualType ReturnT = Methods[b]->getReturnType();
|
|
if (ReturnT->isObjCIdType())
|
|
return Methods[b];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Match)
|
|
return Method;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static bool convertArgsForAvailabilityChecks(
|
|
Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc,
|
|
ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis,
|
|
Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) {
|
|
if (ThisArg) {
|
|
CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
|
|
assert(!isa<CXXConstructorDecl>(Method) &&
|
|
"Shouldn't have `this` for ctors!");
|
|
assert(!Method->isStatic() && "Shouldn't have `this` for static methods!");
|
|
ExprResult R = S.PerformObjectArgumentInitialization(
|
|
ThisArg, /*Qualifier=*/nullptr, Method, Method);
|
|
if (R.isInvalid())
|
|
return false;
|
|
ConvertedThis = R.get();
|
|
} else {
|
|
if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
|
|
(void)MD;
|
|
assert((MissingImplicitThis || MD->isStatic() ||
|
|
isa<CXXConstructorDecl>(MD)) &&
|
|
"Expected `this` for non-ctor instance methods");
|
|
}
|
|
ConvertedThis = nullptr;
|
|
}
|
|
|
|
// Ignore any variadic arguments. Converting them is pointless, since the
|
|
// user can't refer to them in the function condition.
|
|
unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
|
|
|
|
// Convert the arguments.
|
|
for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
|
|
ExprResult R;
|
|
R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
|
|
S.Context, Function->getParamDecl(I)),
|
|
SourceLocation(), Args[I]);
|
|
|
|
if (R.isInvalid())
|
|
return false;
|
|
|
|
ConvertedArgs.push_back(R.get());
|
|
}
|
|
|
|
if (Trap.hasErrorOccurred())
|
|
return false;
|
|
|
|
// Push default arguments if needed.
|
|
if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
|
|
for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
|
|
ParmVarDecl *P = Function->getParamDecl(i);
|
|
if (!P->hasDefaultArg())
|
|
return false;
|
|
ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P);
|
|
if (R.isInvalid())
|
|
return false;
|
|
ConvertedArgs.push_back(R.get());
|
|
}
|
|
|
|
if (Trap.hasErrorOccurred())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function,
|
|
SourceLocation CallLoc,
|
|
ArrayRef<Expr *> Args,
|
|
bool MissingImplicitThis) {
|
|
auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
|
|
if (EnableIfAttrs.begin() == EnableIfAttrs.end())
|
|
return nullptr;
|
|
|
|
SFINAETrap Trap(*this);
|
|
SmallVector<Expr *, 16> ConvertedArgs;
|
|
// FIXME: We should look into making enable_if late-parsed.
|
|
Expr *DiscardedThis;
|
|
if (!convertArgsForAvailabilityChecks(
|
|
*this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap,
|
|
/*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
|
|
return *EnableIfAttrs.begin();
|
|
|
|
for (auto *EIA : EnableIfAttrs) {
|
|
APValue Result;
|
|
// FIXME: This doesn't consider value-dependent cases, because doing so is
|
|
// very difficult. Ideally, we should handle them more gracefully.
|
|
if (EIA->getCond()->isValueDependent() ||
|
|
!EIA->getCond()->EvaluateWithSubstitution(
|
|
Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
|
|
return EIA;
|
|
|
|
if (!Result.isInt() || !Result.getInt().getBoolValue())
|
|
return EIA;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename CheckFn>
|
|
static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
|
|
bool ArgDependent, SourceLocation Loc,
|
|
CheckFn &&IsSuccessful) {
|
|
SmallVector<const DiagnoseIfAttr *, 8> Attrs;
|
|
for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
|
|
if (ArgDependent == DIA->getArgDependent())
|
|
Attrs.push_back(DIA);
|
|
}
|
|
|
|
// Common case: No diagnose_if attributes, so we can quit early.
|
|
if (Attrs.empty())
|
|
return false;
|
|
|
|
auto WarningBegin = std::stable_partition(
|
|
Attrs.begin(), Attrs.end(),
|
|
[](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
|
|
|
|
// Note that diagnose_if attributes are late-parsed, so they appear in the
|
|
// correct order (unlike enable_if attributes).
|
|
auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
|
|
IsSuccessful);
|
|
if (ErrAttr != WarningBegin) {
|
|
const DiagnoseIfAttr *DIA = *ErrAttr;
|
|
S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
|
|
S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
|
|
<< DIA->getParent() << DIA->getCond()->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
|
|
if (IsSuccessful(DIA)) {
|
|
S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
|
|
S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
|
|
<< DIA->getParent() << DIA->getCond()->getSourceRange();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
|
|
const Expr *ThisArg,
|
|
ArrayRef<const Expr *> Args,
|
|
SourceLocation Loc) {
|
|
return diagnoseDiagnoseIfAttrsWith(
|
|
*this, Function, /*ArgDependent=*/true, Loc,
|
|
[&](const DiagnoseIfAttr *DIA) {
|
|
APValue Result;
|
|
// It's sane to use the same Args for any redecl of this function, since
|
|
// EvaluateWithSubstitution only cares about the position of each
|
|
// argument in the arg list, not the ParmVarDecl* it maps to.
|
|
if (!DIA->getCond()->EvaluateWithSubstitution(
|
|
Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
|
|
return false;
|
|
return Result.isInt() && Result.getInt().getBoolValue();
|
|
});
|
|
}
|
|
|
|
bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
|
|
SourceLocation Loc) {
|
|
return diagnoseDiagnoseIfAttrsWith(
|
|
*this, ND, /*ArgDependent=*/false, Loc,
|
|
[&](const DiagnoseIfAttr *DIA) {
|
|
bool Result;
|
|
return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
|
|
Result;
|
|
});
|
|
}
|
|
|
|
/// Add all of the function declarations in the given function set to
|
|
/// the overload candidate set.
|
|
void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
bool SuppressUserConversions,
|
|
bool PartialOverloading,
|
|
bool FirstArgumentIsBase) {
|
|
for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
|
|
NamedDecl *D = F.getDecl()->getUnderlyingDecl();
|
|
ArrayRef<Expr *> FunctionArgs = Args;
|
|
|
|
FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
|
|
FunctionDecl *FD =
|
|
FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
|
|
|
|
if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
|
|
QualType ObjectType;
|
|
Expr::Classification ObjectClassification;
|
|
if (Args.size() > 0) {
|
|
if (Expr *E = Args[0]) {
|
|
// Use the explicit base to restrict the lookup:
|
|
ObjectType = E->getType();
|
|
// Pointers in the object arguments are implicitly dereferenced, so we
|
|
// always classify them as l-values.
|
|
if (!ObjectType.isNull() && ObjectType->isPointerType())
|
|
ObjectClassification = Expr::Classification::makeSimpleLValue();
|
|
else
|
|
ObjectClassification = E->Classify(Context);
|
|
} // .. else there is an implicit base.
|
|
FunctionArgs = Args.slice(1);
|
|
}
|
|
if (FunTmpl) {
|
|
AddMethodTemplateCandidate(
|
|
FunTmpl, F.getPair(),
|
|
cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
|
|
ExplicitTemplateArgs, ObjectType, ObjectClassification,
|
|
FunctionArgs, CandidateSet, SuppressUserConversions,
|
|
PartialOverloading);
|
|
} else {
|
|
AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
|
|
cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
|
|
ObjectClassification, FunctionArgs, CandidateSet,
|
|
SuppressUserConversions, PartialOverloading);
|
|
}
|
|
} else {
|
|
// This branch handles both standalone functions and static methods.
|
|
|
|
// Slice the first argument (which is the base) when we access
|
|
// static method as non-static.
|
|
if (Args.size() > 0 &&
|
|
(!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
|
|
!isa<CXXConstructorDecl>(FD)))) {
|
|
assert(cast<CXXMethodDecl>(FD)->isStatic());
|
|
FunctionArgs = Args.slice(1);
|
|
}
|
|
if (FunTmpl) {
|
|
AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
|
|
ExplicitTemplateArgs, FunctionArgs,
|
|
CandidateSet, SuppressUserConversions,
|
|
PartialOverloading);
|
|
} else {
|
|
AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
|
|
SuppressUserConversions, PartialOverloading);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// AddMethodCandidate - Adds a named decl (which is some kind of
|
|
/// method) as a method candidate to the given overload set.
|
|
void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
|
|
Expr::Classification ObjectClassification,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool SuppressUserConversions,
|
|
OverloadCandidateParamOrder PO) {
|
|
NamedDecl *Decl = FoundDecl.getDecl();
|
|
CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
|
|
|
|
if (isa<UsingShadowDecl>(Decl))
|
|
Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
|
|
|
|
if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
|
|
assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
|
|
"Expected a member function template");
|
|
AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
|
|
/*ExplicitArgs*/ nullptr, ObjectType,
|
|
ObjectClassification, Args, CandidateSet,
|
|
SuppressUserConversions, false, PO);
|
|
} else {
|
|
AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
|
|
ObjectType, ObjectClassification, Args, CandidateSet,
|
|
SuppressUserConversions, false, None, PO);
|
|
}
|
|
}
|
|
|
|
/// AddMethodCandidate - Adds the given C++ member function to the set
|
|
/// of candidate functions, using the given function call arguments
|
|
/// and the object argument (@c Object). For example, in a call
|
|
/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
|
|
/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
|
|
/// allow user-defined conversions via constructors or conversion
|
|
/// operators.
|
|
void
|
|
Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext, QualType ObjectType,
|
|
Expr::Classification ObjectClassification,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool SuppressUserConversions,
|
|
bool PartialOverloading,
|
|
ConversionSequenceList EarlyConversions,
|
|
OverloadCandidateParamOrder PO) {
|
|
const FunctionProtoType *Proto
|
|
= dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
|
|
assert(Proto && "Methods without a prototype cannot be overloaded");
|
|
assert(!isa<CXXConstructorDecl>(Method) &&
|
|
"Use AddOverloadCandidate for constructors");
|
|
|
|
if (!CandidateSet.isNewCandidate(Method, PO))
|
|
return;
|
|
|
|
// C++11 [class.copy]p23: [DR1402]
|
|
// A defaulted move assignment operator that is defined as deleted is
|
|
// ignored by overload resolution.
|
|
if (Method->isDefaulted() && Method->isDeleted() &&
|
|
Method->isMoveAssignmentOperator())
|
|
return;
|
|
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
|
|
// Add this candidate
|
|
OverloadCandidate &Candidate =
|
|
CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = Method;
|
|
Candidate.RewriteKind =
|
|
CandidateSet.getRewriteInfo().getRewriteKind(Method, PO);
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.ExplicitCallArguments = Args.size();
|
|
|
|
unsigned NumParams = Proto->getNumParams();
|
|
|
|
// (C++ 13.3.2p2): A candidate function having fewer than m
|
|
// parameters is viable only if it has an ellipsis in its parameter
|
|
// list (8.3.5).
|
|
if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
|
|
!Proto->isVariadic()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_many_arguments;
|
|
return;
|
|
}
|
|
|
|
// (C++ 13.3.2p2): A candidate function having more than m parameters
|
|
// is viable only if the (m+1)st parameter has a default argument
|
|
// (8.3.6). For the purposes of overload resolution, the
|
|
// parameter list is truncated on the right, so that there are
|
|
// exactly m parameters.
|
|
unsigned MinRequiredArgs = Method->getMinRequiredArguments();
|
|
if (Args.size() < MinRequiredArgs && !PartialOverloading) {
|
|
// Not enough arguments.
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_few_arguments;
|
|
return;
|
|
}
|
|
|
|
Candidate.Viable = true;
|
|
|
|
if (Method->isStatic() || ObjectType.isNull())
|
|
// The implicit object argument is ignored.
|
|
Candidate.IgnoreObjectArgument = true;
|
|
else {
|
|
unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
|
|
// Determine the implicit conversion sequence for the object
|
|
// parameter.
|
|
Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization(
|
|
*this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
|
|
Method, ActingContext);
|
|
if (Candidate.Conversions[ConvIdx].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// (CUDA B.1): Check for invalid calls between targets.
|
|
if (getLangOpts().CUDA)
|
|
if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
|
|
if (!IsAllowedCUDACall(Caller, Method)) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_target;
|
|
return;
|
|
}
|
|
|
|
if (Method->getTrailingRequiresClause()) {
|
|
ConstraintSatisfaction Satisfaction;
|
|
if (CheckFunctionConstraints(Method, Satisfaction) ||
|
|
!Satisfaction.IsSatisfied) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Determine the implicit conversion sequences for each of the
|
|
// arguments.
|
|
for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
|
|
unsigned ConvIdx =
|
|
PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1);
|
|
if (Candidate.Conversions[ConvIdx].isInitialized()) {
|
|
// We already formed a conversion sequence for this parameter during
|
|
// template argument deduction.
|
|
} else if (ArgIdx < NumParams) {
|
|
// (C++ 13.3.2p3): for F to be a viable function, there shall
|
|
// exist for each argument an implicit conversion sequence
|
|
// (13.3.3.1) that converts that argument to the corresponding
|
|
// parameter of F.
|
|
QualType ParamType = Proto->getParamType(ArgIdx);
|
|
Candidate.Conversions[ConvIdx]
|
|
= TryCopyInitialization(*this, Args[ArgIdx], ParamType,
|
|
SuppressUserConversions,
|
|
/*InOverloadResolution=*/true,
|
|
/*AllowObjCWritebackConversion=*/
|
|
getLangOpts().ObjCAutoRefCount);
|
|
if (Candidate.Conversions[ConvIdx].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
return;
|
|
}
|
|
} else {
|
|
// (C++ 13.3.2p2): For the purposes of overload resolution, any
|
|
// argument for which there is no corresponding parameter is
|
|
// considered to "match the ellipsis" (C+ 13.3.3.1.3).
|
|
Candidate.Conversions[ConvIdx].setEllipsis();
|
|
}
|
|
}
|
|
|
|
if (EnableIfAttr *FailedAttr =
|
|
CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_enable_if;
|
|
Candidate.DeductionFailure.Data = FailedAttr;
|
|
return;
|
|
}
|
|
|
|
if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
|
|
!Method->getAttr<TargetAttr>()->isDefaultVersion()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_non_default_multiversion_function;
|
|
}
|
|
}
|
|
|
|
/// Add a C++ member function template as a candidate to the candidate
|
|
/// set, using template argument deduction to produce an appropriate member
|
|
/// function template specialization.
|
|
void Sema::AddMethodTemplateCandidate(
|
|
FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
|
|
Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
|
|
bool PartialOverloading, OverloadCandidateParamOrder PO) {
|
|
if (!CandidateSet.isNewCandidate(MethodTmpl, PO))
|
|
return;
|
|
|
|
// C++ [over.match.funcs]p7:
|
|
// In each case where a candidate is a function template, candidate
|
|
// function template specializations are generated using template argument
|
|
// deduction (14.8.3, 14.8.2). Those candidates are then handled as
|
|
// candidate functions in the usual way.113) A given name can refer to one
|
|
// or more function templates and also to a set of overloaded non-template
|
|
// functions. In such a case, the candidate functions generated from each
|
|
// function template are combined with the set of non-template candidate
|
|
// functions.
|
|
TemplateDeductionInfo Info(CandidateSet.getLocation());
|
|
FunctionDecl *Specialization = nullptr;
|
|
ConversionSequenceList Conversions;
|
|
if (TemplateDeductionResult Result = DeduceTemplateArguments(
|
|
MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
|
|
PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
|
|
return CheckNonDependentConversions(
|
|
MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
|
|
SuppressUserConversions, ActingContext, ObjectType,
|
|
ObjectClassification, PO);
|
|
})) {
|
|
OverloadCandidate &Candidate =
|
|
CandidateSet.addCandidate(Conversions.size(), Conversions);
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = MethodTmpl->getTemplatedDecl();
|
|
Candidate.Viable = false;
|
|
Candidate.RewriteKind =
|
|
CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument =
|
|
cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
|
|
ObjectType.isNull();
|
|
Candidate.ExplicitCallArguments = Args.size();
|
|
if (Result == TDK_NonDependentConversionFailure)
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
else {
|
|
Candidate.FailureKind = ovl_fail_bad_deduction;
|
|
Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
|
|
Info);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Add the function template specialization produced by template argument
|
|
// deduction as a candidate.
|
|
assert(Specialization && "Missing member function template specialization?");
|
|
assert(isa<CXXMethodDecl>(Specialization) &&
|
|
"Specialization is not a member function?");
|
|
AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
|
|
ActingContext, ObjectType, ObjectClassification, Args,
|
|
CandidateSet, SuppressUserConversions, PartialOverloading,
|
|
Conversions, PO);
|
|
}
|
|
|
|
/// Determine whether a given function template has a simple explicit specifier
|
|
/// or a non-value-dependent explicit-specification that evaluates to true.
|
|
static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) {
|
|
return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit();
|
|
}
|
|
|
|
/// Add a C++ function template specialization as a candidate
|
|
/// in the candidate set, using template argument deduction to produce
|
|
/// an appropriate function template specialization.
|
|
void Sema::AddTemplateOverloadCandidate(
|
|
FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
|
|
bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate,
|
|
OverloadCandidateParamOrder PO) {
|
|
if (!CandidateSet.isNewCandidate(FunctionTemplate, PO))
|
|
return;
|
|
|
|
// If the function template has a non-dependent explicit specification,
|
|
// exclude it now if appropriate; we are not permitted to perform deduction
|
|
// and substitution in this case.
|
|
if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
|
|
OverloadCandidate &Candidate = CandidateSet.addCandidate();
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = FunctionTemplate->getTemplatedDecl();
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_explicit;
|
|
return;
|
|
}
|
|
|
|
// C++ [over.match.funcs]p7:
|
|
// In each case where a candidate is a function template, candidate
|
|
// function template specializations are generated using template argument
|
|
// deduction (14.8.3, 14.8.2). Those candidates are then handled as
|
|
// candidate functions in the usual way.113) A given name can refer to one
|
|
// or more function templates and also to a set of overloaded non-template
|
|
// functions. In such a case, the candidate functions generated from each
|
|
// function template are combined with the set of non-template candidate
|
|
// functions.
|
|
TemplateDeductionInfo Info(CandidateSet.getLocation());
|
|
FunctionDecl *Specialization = nullptr;
|
|
ConversionSequenceList Conversions;
|
|
if (TemplateDeductionResult Result = DeduceTemplateArguments(
|
|
FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
|
|
PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
|
|
return CheckNonDependentConversions(
|
|
FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions,
|
|
SuppressUserConversions, nullptr, QualType(), {}, PO);
|
|
})) {
|
|
OverloadCandidate &Candidate =
|
|
CandidateSet.addCandidate(Conversions.size(), Conversions);
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = FunctionTemplate->getTemplatedDecl();
|
|
Candidate.Viable = false;
|
|
Candidate.RewriteKind =
|
|
CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IsADLCandidate = IsADLCandidate;
|
|
// Ignore the object argument if there is one, since we don't have an object
|
|
// type.
|
|
Candidate.IgnoreObjectArgument =
|
|
isa<CXXMethodDecl>(Candidate.Function) &&
|
|
!isa<CXXConstructorDecl>(Candidate.Function);
|
|
Candidate.ExplicitCallArguments = Args.size();
|
|
if (Result == TDK_NonDependentConversionFailure)
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
else {
|
|
Candidate.FailureKind = ovl_fail_bad_deduction;
|
|
Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
|
|
Info);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Add the function template specialization produced by template argument
|
|
// deduction as a candidate.
|
|
assert(Specialization && "Missing function template specialization?");
|
|
AddOverloadCandidate(
|
|
Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
|
|
PartialOverloading, AllowExplicit,
|
|
/*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO);
|
|
}
|
|
|
|
/// Check that implicit conversion sequences can be formed for each argument
|
|
/// whose corresponding parameter has a non-dependent type, per DR1391's
|
|
/// [temp.deduct.call]p10.
|
|
bool Sema::CheckNonDependentConversions(
|
|
FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
|
|
ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
|
|
ConversionSequenceList &Conversions, bool SuppressUserConversions,
|
|
CXXRecordDecl *ActingContext, QualType ObjectType,
|
|
Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) {
|
|
// FIXME: The cases in which we allow explicit conversions for constructor
|
|
// arguments never consider calling a constructor template. It's not clear
|
|
// that is correct.
|
|
const bool AllowExplicit = false;
|
|
|
|
auto *FD = FunctionTemplate->getTemplatedDecl();
|
|
auto *Method = dyn_cast<CXXMethodDecl>(FD);
|
|
bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
|
|
unsigned ThisConversions = HasThisConversion ? 1 : 0;
|
|
|
|
Conversions =
|
|
CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
|
|
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
|
|
// For a method call, check the 'this' conversion here too. DR1391 doesn't
|
|
// require that, but this check should never result in a hard error, and
|
|
// overload resolution is permitted to sidestep instantiations.
|
|
if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
|
|
!ObjectType.isNull()) {
|
|
unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
|
|
Conversions[ConvIdx] = TryObjectArgumentInitialization(
|
|
*this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
|
|
Method, ActingContext);
|
|
if (Conversions[ConvIdx].isBad())
|
|
return true;
|
|
}
|
|
|
|
for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
|
|
++I) {
|
|
QualType ParamType = ParamTypes[I];
|
|
if (!ParamType->isDependentType()) {
|
|
unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed
|
|
? 0
|
|
: (ThisConversions + I);
|
|
Conversions[ConvIdx]
|
|
= TryCopyInitialization(*this, Args[I], ParamType,
|
|
SuppressUserConversions,
|
|
/*InOverloadResolution=*/true,
|
|
/*AllowObjCWritebackConversion=*/
|
|
getLangOpts().ObjCAutoRefCount,
|
|
AllowExplicit);
|
|
if (Conversions[ConvIdx].isBad())
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine whether this is an allowable conversion from the result
|
|
/// of an explicit conversion operator to the expected type, per C++
|
|
/// [over.match.conv]p1 and [over.match.ref]p1.
|
|
///
|
|
/// \param ConvType The return type of the conversion function.
|
|
///
|
|
/// \param ToType The type we are converting to.
|
|
///
|
|
/// \param AllowObjCPointerConversion Allow a conversion from one
|
|
/// Objective-C pointer to another.
|
|
///
|
|
/// \returns true if the conversion is allowable, false otherwise.
|
|
static bool isAllowableExplicitConversion(Sema &S,
|
|
QualType ConvType, QualType ToType,
|
|
bool AllowObjCPointerConversion) {
|
|
QualType ToNonRefType = ToType.getNonReferenceType();
|
|
|
|
// Easy case: the types are the same.
|
|
if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
|
|
return true;
|
|
|
|
// Allow qualification conversions.
|
|
bool ObjCLifetimeConversion;
|
|
if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
|
|
ObjCLifetimeConversion))
|
|
return true;
|
|
|
|
// If we're not allowed to consider Objective-C pointer conversions,
|
|
// we're done.
|
|
if (!AllowObjCPointerConversion)
|
|
return false;
|
|
|
|
// Is this an Objective-C pointer conversion?
|
|
bool IncompatibleObjC = false;
|
|
QualType ConvertedType;
|
|
return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
|
|
IncompatibleObjC);
|
|
}
|
|
|
|
/// AddConversionCandidate - Add a C++ conversion function as a
|
|
/// candidate in the candidate set (C++ [over.match.conv],
|
|
/// C++ [over.match.copy]). From is the expression we're converting from,
|
|
/// and ToType is the type that we're eventually trying to convert to
|
|
/// (which may or may not be the same type as the type that the
|
|
/// conversion function produces).
|
|
void Sema::AddConversionCandidate(
|
|
CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
|
|
OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
|
|
bool AllowExplicit, bool AllowResultConversion) {
|
|
assert(!Conversion->getDescribedFunctionTemplate() &&
|
|
"Conversion function templates use AddTemplateConversionCandidate");
|
|
QualType ConvType = Conversion->getConversionType().getNonReferenceType();
|
|
if (!CandidateSet.isNewCandidate(Conversion))
|
|
return;
|
|
|
|
// If the conversion function has an undeduced return type, trigger its
|
|
// deduction now.
|
|
if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
|
|
if (DeduceReturnType(Conversion, From->getExprLoc()))
|
|
return;
|
|
ConvType = Conversion->getConversionType().getNonReferenceType();
|
|
}
|
|
|
|
// If we don't allow any conversion of the result type, ignore conversion
|
|
// functions that don't convert to exactly (possibly cv-qualified) T.
|
|
if (!AllowResultConversion &&
|
|
!Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
|
|
return;
|
|
|
|
// Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
|
|
// operator is only a candidate if its return type is the target type or
|
|
// can be converted to the target type with a qualification conversion.
|
|
//
|
|
// FIXME: Include such functions in the candidate list and explain why we
|
|
// can't select them.
|
|
if (Conversion->isExplicit() &&
|
|
!isAllowableExplicitConversion(*this, ConvType, ToType,
|
|
AllowObjCConversionOnExplicit))
|
|
return;
|
|
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
|
|
// Add this candidate
|
|
OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = Conversion;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.FinalConversion.setAsIdentityConversion();
|
|
Candidate.FinalConversion.setFromType(ConvType);
|
|
Candidate.FinalConversion.setAllToTypes(ToType);
|
|
Candidate.Viable = true;
|
|
Candidate.ExplicitCallArguments = 1;
|
|
|
|
// Explicit functions are not actually candidates at all if we're not
|
|
// allowing them in this context, but keep them around so we can point
|
|
// to them in diagnostics.
|
|
if (!AllowExplicit && Conversion->isExplicit()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_explicit;
|
|
return;
|
|
}
|
|
|
|
// C++ [over.match.funcs]p4:
|
|
// For conversion functions, the function is considered to be a member of
|
|
// the class of the implicit implied object argument for the purpose of
|
|
// defining the type of the implicit object parameter.
|
|
//
|
|
// Determine the implicit conversion sequence for the implicit
|
|
// object parameter.
|
|
QualType ImplicitParamType = From->getType();
|
|
if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
|
|
ImplicitParamType = FromPtrType->getPointeeType();
|
|
CXXRecordDecl *ConversionContext
|
|
= cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl());
|
|
|
|
Candidate.Conversions[0] = TryObjectArgumentInitialization(
|
|
*this, CandidateSet.getLocation(), From->getType(),
|
|
From->Classify(Context), Conversion, ConversionContext);
|
|
|
|
if (Candidate.Conversions[0].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
return;
|
|
}
|
|
|
|
if (Conversion->getTrailingRequiresClause()) {
|
|
ConstraintSatisfaction Satisfaction;
|
|
if (CheckFunctionConstraints(Conversion, Satisfaction) ||
|
|
!Satisfaction.IsSatisfied) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// We won't go through a user-defined type conversion function to convert a
|
|
// derived to base as such conversions are given Conversion Rank. They only
|
|
// go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
|
|
QualType FromCanon
|
|
= Context.getCanonicalType(From->getType().getUnqualifiedType());
|
|
QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
|
|
if (FromCanon == ToCanon ||
|
|
IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_trivial_conversion;
|
|
return;
|
|
}
|
|
|
|
// To determine what the conversion from the result of calling the
|
|
// conversion function to the type we're eventually trying to
|
|
// convert to (ToType), we need to synthesize a call to the
|
|
// conversion function and attempt copy initialization from it. This
|
|
// makes sure that we get the right semantics with respect to
|
|
// lvalues/rvalues and the type. Fortunately, we can allocate this
|
|
// call on the stack and we don't need its arguments to be
|
|
// well-formed.
|
|
DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
|
|
VK_LValue, From->getBeginLoc());
|
|
ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
|
|
Context.getPointerType(Conversion->getType()),
|
|
CK_FunctionToPointerDecay, &ConversionRef,
|
|
VK_RValue, FPOptionsOverride());
|
|
|
|
QualType ConversionType = Conversion->getConversionType();
|
|
if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_final_conversion;
|
|
return;
|
|
}
|
|
|
|
ExprValueKind VK = Expr::getValueKindForType(ConversionType);
|
|
|
|
// Note that it is safe to allocate CallExpr on the stack here because
|
|
// there are 0 arguments (i.e., nothing is allocated using ASTContext's
|
|
// allocator).
|
|
QualType CallResultType = ConversionType.getNonLValueExprType(Context);
|
|
|
|
alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
|
|
CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
|
|
Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
|
|
|
|
ImplicitConversionSequence ICS =
|
|
TryCopyInitialization(*this, TheTemporaryCall, ToType,
|
|
/*SuppressUserConversions=*/true,
|
|
/*InOverloadResolution=*/false,
|
|
/*AllowObjCWritebackConversion=*/false);
|
|
|
|
switch (ICS.getKind()) {
|
|
case ImplicitConversionSequence::StandardConversion:
|
|
Candidate.FinalConversion = ICS.Standard;
|
|
|
|
// C++ [over.ics.user]p3:
|
|
// If the user-defined conversion is specified by a specialization of a
|
|
// conversion function template, the second standard conversion sequence
|
|
// shall have exact match rank.
|
|
if (Conversion->getPrimaryTemplate() &&
|
|
GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
|
|
return;
|
|
}
|
|
|
|
// C++0x [dcl.init.ref]p5:
|
|
// In the second case, if the reference is an rvalue reference and
|
|
// the second standard conversion sequence of the user-defined
|
|
// conversion sequence includes an lvalue-to-rvalue conversion, the
|
|
// program is ill-formed.
|
|
if (ToType->isRValueReferenceType() &&
|
|
ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_final_conversion;
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case ImplicitConversionSequence::BadConversion:
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_final_conversion;
|
|
return;
|
|
|
|
default:
|
|
llvm_unreachable(
|
|
"Can only end up with a standard conversion sequence or failure");
|
|
}
|
|
|
|
if (EnableIfAttr *FailedAttr =
|
|
CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_enable_if;
|
|
Candidate.DeductionFailure.Data = FailedAttr;
|
|
return;
|
|
}
|
|
|
|
if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
|
|
!Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_non_default_multiversion_function;
|
|
}
|
|
}
|
|
|
|
/// Adds a conversion function template specialization
|
|
/// candidate to the overload set, using template argument deduction
|
|
/// to deduce the template arguments of the conversion function
|
|
/// template from the type that we are converting to (C++
|
|
/// [temp.deduct.conv]).
|
|
void Sema::AddTemplateConversionCandidate(
|
|
FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
|
|
OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
|
|
bool AllowExplicit, bool AllowResultConversion) {
|
|
assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
|
|
"Only conversion function templates permitted here");
|
|
|
|
if (!CandidateSet.isNewCandidate(FunctionTemplate))
|
|
return;
|
|
|
|
// If the function template has a non-dependent explicit specification,
|
|
// exclude it now if appropriate; we are not permitted to perform deduction
|
|
// and substitution in this case.
|
|
if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
|
|
OverloadCandidate &Candidate = CandidateSet.addCandidate();
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = FunctionTemplate->getTemplatedDecl();
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_explicit;
|
|
return;
|
|
}
|
|
|
|
TemplateDeductionInfo Info(CandidateSet.getLocation());
|
|
CXXConversionDecl *Specialization = nullptr;
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(FunctionTemplate, ToType,
|
|
Specialization, Info)) {
|
|
OverloadCandidate &Candidate = CandidateSet.addCandidate();
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = FunctionTemplate->getTemplatedDecl();
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_deduction;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.ExplicitCallArguments = 1;
|
|
Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
|
|
Info);
|
|
return;
|
|
}
|
|
|
|
// Add the conversion function template specialization produced by
|
|
// template argument deduction as a candidate.
|
|
assert(Specialization && "Missing function template specialization?");
|
|
AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
|
|
CandidateSet, AllowObjCConversionOnExplicit,
|
|
AllowExplicit, AllowResultConversion);
|
|
}
|
|
|
|
/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
|
|
/// converts the given @c Object to a function pointer via the
|
|
/// conversion function @c Conversion, and then attempts to call it
|
|
/// with the given arguments (C++ [over.call.object]p2-4). Proto is
|
|
/// the type of function that we'll eventually be calling.
|
|
void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
|
|
DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext,
|
|
const FunctionProtoType *Proto,
|
|
Expr *Object,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet& CandidateSet) {
|
|
if (!CandidateSet.isNewCandidate(Conversion))
|
|
return;
|
|
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
|
|
OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = nullptr;
|
|
Candidate.Surrogate = Conversion;
|
|
Candidate.Viable = true;
|
|
Candidate.IsSurrogate = true;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.ExplicitCallArguments = Args.size();
|
|
|
|
// Determine the implicit conversion sequence for the implicit
|
|
// object parameter.
|
|
ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
|
|
*this, CandidateSet.getLocation(), Object->getType(),
|
|
Object->Classify(Context), Conversion, ActingContext);
|
|
if (ObjectInit.isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
Candidate.Conversions[0] = ObjectInit;
|
|
return;
|
|
}
|
|
|
|
// The first conversion is actually a user-defined conversion whose
|
|
// first conversion is ObjectInit's standard conversion (which is
|
|
// effectively a reference binding). Record it as such.
|
|
Candidate.Conversions[0].setUserDefined();
|
|
Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
|
|
Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
|
|
Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
|
|
Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
|
|
Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
|
|
Candidate.Conversions[0].UserDefined.After
|
|
= Candidate.Conversions[0].UserDefined.Before;
|
|
Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
|
|
|
|
// Find the
|
|
unsigned NumParams = Proto->getNumParams();
|
|
|
|
// (C++ 13.3.2p2): A candidate function having fewer than m
|
|
// parameters is viable only if it has an ellipsis in its parameter
|
|
// list (8.3.5).
|
|
if (Args.size() > NumParams && !Proto->isVariadic()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_many_arguments;
|
|
return;
|
|
}
|
|
|
|
// Function types don't have any default arguments, so just check if
|
|
// we have enough arguments.
|
|
if (Args.size() < NumParams) {
|
|
// Not enough arguments.
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_few_arguments;
|
|
return;
|
|
}
|
|
|
|
// Determine the implicit conversion sequences for each of the
|
|
// arguments.
|
|
for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
|
|
if (ArgIdx < NumParams) {
|
|
// (C++ 13.3.2p3): for F to be a viable function, there shall
|
|
// exist for each argument an implicit conversion sequence
|
|
// (13.3.3.1) that converts that argument to the corresponding
|
|
// parameter of F.
|
|
QualType ParamType = Proto->getParamType(ArgIdx);
|
|
Candidate.Conversions[ArgIdx + 1]
|
|
= TryCopyInitialization(*this, Args[ArgIdx], ParamType,
|
|
/*SuppressUserConversions=*/false,
|
|
/*InOverloadResolution=*/false,
|
|
/*AllowObjCWritebackConversion=*/
|
|
getLangOpts().ObjCAutoRefCount);
|
|
if (Candidate.Conversions[ArgIdx + 1].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
return;
|
|
}
|
|
} else {
|
|
// (C++ 13.3.2p2): For the purposes of overload resolution, any
|
|
// argument for which there is no corresponding parameter is
|
|
// considered to ""match the ellipsis" (C+ 13.3.3.1.3).
|
|
Candidate.Conversions[ArgIdx + 1].setEllipsis();
|
|
}
|
|
}
|
|
|
|
if (EnableIfAttr *FailedAttr =
|
|
CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_enable_if;
|
|
Candidate.DeductionFailure.Data = FailedAttr;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// Add all of the non-member operator function declarations in the given
|
|
/// function set to the overload candidate set.
|
|
void Sema::AddNonMemberOperatorCandidates(
|
|
const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs) {
|
|
for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
|
|
NamedDecl *D = F.getDecl()->getUnderlyingDecl();
|
|
ArrayRef<Expr *> FunctionArgs = Args;
|
|
|
|
FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
|
|
FunctionDecl *FD =
|
|
FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
|
|
|
|
// Don't consider rewritten functions if we're not rewriting.
|
|
if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD))
|
|
continue;
|
|
|
|
assert(!isa<CXXMethodDecl>(FD) &&
|
|
"unqualified operator lookup found a member function");
|
|
|
|
if (FunTmpl) {
|
|
AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs,
|
|
FunctionArgs, CandidateSet);
|
|
if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
|
|
AddTemplateOverloadCandidate(
|
|
FunTmpl, F.getPair(), ExplicitTemplateArgs,
|
|
{FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false,
|
|
true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed);
|
|
} else {
|
|
if (ExplicitTemplateArgs)
|
|
continue;
|
|
AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet);
|
|
if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
|
|
AddOverloadCandidate(FD, F.getPair(),
|
|
{FunctionArgs[1], FunctionArgs[0]}, CandidateSet,
|
|
false, false, true, false, ADLCallKind::NotADL,
|
|
None, OverloadCandidateParamOrder::Reversed);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Add overload candidates for overloaded operators that are
|
|
/// member functions.
|
|
///
|
|
/// Add the overloaded operator candidates that are member functions
|
|
/// for the operator Op that was used in an operator expression such
|
|
/// as "x Op y". , Args/NumArgs provides the operator arguments, and
|
|
/// CandidateSet will store the added overload candidates. (C++
|
|
/// [over.match.oper]).
|
|
void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
OverloadCandidateParamOrder PO) {
|
|
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
|
|
|
|
// C++ [over.match.oper]p3:
|
|
// For a unary operator @ with an operand of a type whose
|
|
// cv-unqualified version is T1, and for a binary operator @ with
|
|
// a left operand of a type whose cv-unqualified version is T1 and
|
|
// a right operand of a type whose cv-unqualified version is T2,
|
|
// three sets of candidate functions, designated member
|
|
// candidates, non-member candidates and built-in candidates, are
|
|
// constructed as follows:
|
|
QualType T1 = Args[0]->getType();
|
|
|
|
// -- If T1 is a complete class type or a class currently being
|
|
// defined, the set of member candidates is the result of the
|
|
// qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
|
|
// the set of member candidates is empty.
|
|
if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
|
|
// Complete the type if it can be completed.
|
|
if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
|
|
return;
|
|
// If the type is neither complete nor being defined, bail out now.
|
|
if (!T1Rec->getDecl()->getDefinition())
|
|
return;
|
|
|
|
LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
|
|
LookupQualifiedName(Operators, T1Rec->getDecl());
|
|
Operators.suppressDiagnostics();
|
|
|
|
for (LookupResult::iterator Oper = Operators.begin(),
|
|
OperEnd = Operators.end();
|
|
Oper != OperEnd;
|
|
++Oper)
|
|
AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
|
|
Args[0]->Classify(Context), Args.slice(1),
|
|
CandidateSet, /*SuppressUserConversion=*/false, PO);
|
|
}
|
|
}
|
|
|
|
/// AddBuiltinCandidate - Add a candidate for a built-in
|
|
/// operator. ResultTy and ParamTys are the result and parameter types
|
|
/// of the built-in candidate, respectively. Args and NumArgs are the
|
|
/// arguments being passed to the candidate. IsAssignmentOperator
|
|
/// should be true when this built-in candidate is an assignment
|
|
/// operator. NumContextualBoolArguments is the number of arguments
|
|
/// (at the beginning of the argument list) that will be contextually
|
|
/// converted to bool.
|
|
void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool IsAssignmentOperator,
|
|
unsigned NumContextualBoolArguments) {
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
|
|
// Add this candidate
|
|
OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
|
|
Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
|
|
Candidate.Function = nullptr;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
|
|
|
|
// Determine the implicit conversion sequences for each of the
|
|
// arguments.
|
|
Candidate.Viable = true;
|
|
Candidate.ExplicitCallArguments = Args.size();
|
|
for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
|
|
// C++ [over.match.oper]p4:
|
|
// For the built-in assignment operators, conversions of the
|
|
// left operand are restricted as follows:
|
|
// -- no temporaries are introduced to hold the left operand, and
|
|
// -- no user-defined conversions are applied to the left
|
|
// operand to achieve a type match with the left-most
|
|
// parameter of a built-in candidate.
|
|
//
|
|
// We block these conversions by turning off user-defined
|
|
// conversions, since that is the only way that initialization of
|
|
// a reference to a non-class type can occur from something that
|
|
// is not of the same type.
|
|
if (ArgIdx < NumContextualBoolArguments) {
|
|
assert(ParamTys[ArgIdx] == Context.BoolTy &&
|
|
"Contextual conversion to bool requires bool type");
|
|
Candidate.Conversions[ArgIdx]
|
|
= TryContextuallyConvertToBool(*this, Args[ArgIdx]);
|
|
} else {
|
|
Candidate.Conversions[ArgIdx]
|
|
= TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
|
|
ArgIdx == 0 && IsAssignmentOperator,
|
|
/*InOverloadResolution=*/false,
|
|
/*AllowObjCWritebackConversion=*/
|
|
getLangOpts().ObjCAutoRefCount);
|
|
}
|
|
if (Candidate.Conversions[ArgIdx].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// BuiltinCandidateTypeSet - A set of types that will be used for the
|
|
/// candidate operator functions for built-in operators (C++
|
|
/// [over.built]). The types are separated into pointer types and
|
|
/// enumeration types.
|
|
class BuiltinCandidateTypeSet {
|
|
/// TypeSet - A set of types.
|
|
typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
|
|
llvm::SmallPtrSet<QualType, 8>> TypeSet;
|
|
|
|
/// PointerTypes - The set of pointer types that will be used in the
|
|
/// built-in candidates.
|
|
TypeSet PointerTypes;
|
|
|
|
/// MemberPointerTypes - The set of member pointer types that will be
|
|
/// used in the built-in candidates.
|
|
TypeSet MemberPointerTypes;
|
|
|
|
/// EnumerationTypes - The set of enumeration types that will be
|
|
/// used in the built-in candidates.
|
|
TypeSet EnumerationTypes;
|
|
|
|
/// The set of vector types that will be used in the built-in
|
|
/// candidates.
|
|
TypeSet VectorTypes;
|
|
|
|
/// The set of matrix types that will be used in the built-in
|
|
/// candidates.
|
|
TypeSet MatrixTypes;
|
|
|
|
/// A flag indicating non-record types are viable candidates
|
|
bool HasNonRecordTypes;
|
|
|
|
/// A flag indicating whether either arithmetic or enumeration types
|
|
/// were present in the candidate set.
|
|
bool HasArithmeticOrEnumeralTypes;
|
|
|
|
/// A flag indicating whether the nullptr type was present in the
|
|
/// candidate set.
|
|
bool HasNullPtrType;
|
|
|
|
/// Sema - The semantic analysis instance where we are building the
|
|
/// candidate type set.
|
|
Sema &SemaRef;
|
|
|
|
/// Context - The AST context in which we will build the type sets.
|
|
ASTContext &Context;
|
|
|
|
bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
|
|
const Qualifiers &VisibleQuals);
|
|
bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
|
|
|
|
public:
|
|
/// iterator - Iterates through the types that are part of the set.
|
|
typedef TypeSet::iterator iterator;
|
|
|
|
BuiltinCandidateTypeSet(Sema &SemaRef)
|
|
: HasNonRecordTypes(false),
|
|
HasArithmeticOrEnumeralTypes(false),
|
|
HasNullPtrType(false),
|
|
SemaRef(SemaRef),
|
|
Context(SemaRef.Context) { }
|
|
|
|
void AddTypesConvertedFrom(QualType Ty,
|
|
SourceLocation Loc,
|
|
bool AllowUserConversions,
|
|
bool AllowExplicitConversions,
|
|
const Qualifiers &VisibleTypeConversionsQuals);
|
|
|
|
llvm::iterator_range<iterator> pointer_types() { return PointerTypes; }
|
|
llvm::iterator_range<iterator> member_pointer_types() {
|
|
return MemberPointerTypes;
|
|
}
|
|
llvm::iterator_range<iterator> enumeration_types() {
|
|
return EnumerationTypes;
|
|
}
|
|
llvm::iterator_range<iterator> vector_types() { return VectorTypes; }
|
|
llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; }
|
|
|
|
bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); }
|
|
bool hasNonRecordTypes() { return HasNonRecordTypes; }
|
|
bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
|
|
bool hasNullPtrType() const { return HasNullPtrType; }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
|
|
/// the set of pointer types along with any more-qualified variants of
|
|
/// that type. For example, if @p Ty is "int const *", this routine
|
|
/// will add "int const *", "int const volatile *", "int const
|
|
/// restrict *", and "int const volatile restrict *" to the set of
|
|
/// pointer types. Returns true if the add of @p Ty itself succeeded,
|
|
/// false otherwise.
|
|
///
|
|
/// FIXME: what to do about extended qualifiers?
|
|
bool
|
|
BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
|
|
const Qualifiers &VisibleQuals) {
|
|
|
|
// Insert this type.
|
|
if (!PointerTypes.insert(Ty))
|
|
return false;
|
|
|
|
QualType PointeeTy;
|
|
const PointerType *PointerTy = Ty->getAs<PointerType>();
|
|
bool buildObjCPtr = false;
|
|
if (!PointerTy) {
|
|
const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
|
|
PointeeTy = PTy->getPointeeType();
|
|
buildObjCPtr = true;
|
|
} else {
|
|
PointeeTy = PointerTy->getPointeeType();
|
|
}
|
|
|
|
// Don't add qualified variants of arrays. For one, they're not allowed
|
|
// (the qualifier would sink to the element type), and for another, the
|
|
// only overload situation where it matters is subscript or pointer +- int,
|
|
// and those shouldn't have qualifier variants anyway.
|
|
if (PointeeTy->isArrayType())
|
|
return true;
|
|
|
|
unsigned BaseCVR = PointeeTy.getCVRQualifiers();
|
|
bool hasVolatile = VisibleQuals.hasVolatile();
|
|
bool hasRestrict = VisibleQuals.hasRestrict();
|
|
|
|
// Iterate through all strict supersets of BaseCVR.
|
|
for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
|
|
if ((CVR | BaseCVR) != CVR) continue;
|
|
// Skip over volatile if no volatile found anywhere in the types.
|
|
if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
|
|
|
|
// Skip over restrict if no restrict found anywhere in the types, or if
|
|
// the type cannot be restrict-qualified.
|
|
if ((CVR & Qualifiers::Restrict) &&
|
|
(!hasRestrict ||
|
|
(!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
|
|
continue;
|
|
|
|
// Build qualified pointee type.
|
|
QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
|
|
|
|
// Build qualified pointer type.
|
|
QualType QPointerTy;
|
|
if (!buildObjCPtr)
|
|
QPointerTy = Context.getPointerType(QPointeeTy);
|
|
else
|
|
QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
|
|
|
|
// Insert qualified pointer type.
|
|
PointerTypes.insert(QPointerTy);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
|
|
/// to the set of pointer types along with any more-qualified variants of
|
|
/// that type. For example, if @p Ty is "int const *", this routine
|
|
/// will add "int const *", "int const volatile *", "int const
|
|
/// restrict *", and "int const volatile restrict *" to the set of
|
|
/// pointer types. Returns true if the add of @p Ty itself succeeded,
|
|
/// false otherwise.
|
|
///
|
|
/// FIXME: what to do about extended qualifiers?
|
|
bool
|
|
BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
|
|
QualType Ty) {
|
|
// Insert this type.
|
|
if (!MemberPointerTypes.insert(Ty))
|
|
return false;
|
|
|
|
const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
|
|
assert(PointerTy && "type was not a member pointer type!");
|
|
|
|
QualType PointeeTy = PointerTy->getPointeeType();
|
|
// Don't add qualified variants of arrays. For one, they're not allowed
|
|
// (the qualifier would sink to the element type), and for another, the
|
|
// only overload situation where it matters is subscript or pointer +- int,
|
|
// and those shouldn't have qualifier variants anyway.
|
|
if (PointeeTy->isArrayType())
|
|
return true;
|
|
const Type *ClassTy = PointerTy->getClass();
|
|
|
|
// Iterate through all strict supersets of the pointee type's CVR
|
|
// qualifiers.
|
|
unsigned BaseCVR = PointeeTy.getCVRQualifiers();
|
|
for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
|
|
if ((CVR | BaseCVR) != CVR) continue;
|
|
|
|
QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
|
|
MemberPointerTypes.insert(
|
|
Context.getMemberPointerType(QPointeeTy, ClassTy));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// AddTypesConvertedFrom - Add each of the types to which the type @p
|
|
/// Ty can be implicit converted to the given set of @p Types. We're
|
|
/// primarily interested in pointer types and enumeration types. We also
|
|
/// take member pointer types, for the conditional operator.
|
|
/// AllowUserConversions is true if we should look at the conversion
|
|
/// functions of a class type, and AllowExplicitConversions if we
|
|
/// should also include the explicit conversion functions of a class
|
|
/// type.
|
|
void
|
|
BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
|
|
SourceLocation Loc,
|
|
bool AllowUserConversions,
|
|
bool AllowExplicitConversions,
|
|
const Qualifiers &VisibleQuals) {
|
|
// Only deal with canonical types.
|
|
Ty = Context.getCanonicalType(Ty);
|
|
|
|
// Look through reference types; they aren't part of the type of an
|
|
// expression for the purposes of conversions.
|
|
if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
|
|
Ty = RefTy->getPointeeType();
|
|
|
|
// If we're dealing with an array type, decay to the pointer.
|
|
if (Ty->isArrayType())
|
|
Ty = SemaRef.Context.getArrayDecayedType(Ty);
|
|
|
|
// Otherwise, we don't care about qualifiers on the type.
|
|
Ty = Ty.getLocalUnqualifiedType();
|
|
|
|
// Flag if we ever add a non-record type.
|
|
const RecordType *TyRec = Ty->getAs<RecordType>();
|
|
HasNonRecordTypes = HasNonRecordTypes || !TyRec;
|
|
|
|
// Flag if we encounter an arithmetic type.
|
|
HasArithmeticOrEnumeralTypes =
|
|
HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
|
|
|
|
if (Ty->isObjCIdType() || Ty->isObjCClassType())
|
|
PointerTypes.insert(Ty);
|
|
else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
|
|
// Insert our type, and its more-qualified variants, into the set
|
|
// of types.
|
|
if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
|
|
return;
|
|
} else if (Ty->isMemberPointerType()) {
|
|
// Member pointers are far easier, since the pointee can't be converted.
|
|
if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
|
|
return;
|
|
} else if (Ty->isEnumeralType()) {
|
|
HasArithmeticOrEnumeralTypes = true;
|
|
EnumerationTypes.insert(Ty);
|
|
} else if (Ty->isVectorType()) {
|
|
// We treat vector types as arithmetic types in many contexts as an
|
|
// extension.
|
|
HasArithmeticOrEnumeralTypes = true;
|
|
VectorTypes.insert(Ty);
|
|
} else if (Ty->isMatrixType()) {
|
|
// Similar to vector types, we treat vector types as arithmetic types in
|
|
// many contexts as an extension.
|
|
HasArithmeticOrEnumeralTypes = true;
|
|
MatrixTypes.insert(Ty);
|
|
} else if (Ty->isNullPtrType()) {
|
|
HasNullPtrType = true;
|
|
} else if (AllowUserConversions && TyRec) {
|
|
// No conversion functions in incomplete types.
|
|
if (!SemaRef.isCompleteType(Loc, Ty))
|
|
return;
|
|
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
|
|
for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
// Skip conversion function templates; they don't tell us anything
|
|
// about which builtin types we can convert to.
|
|
if (isa<FunctionTemplateDecl>(D))
|
|
continue;
|
|
|
|
CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
|
|
if (AllowExplicitConversions || !Conv->isExplicit()) {
|
|
AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
|
|
VisibleQuals);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/// Helper function for adjusting address spaces for the pointer or reference
|
|
/// operands of builtin operators depending on the argument.
|
|
static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
|
|
Expr *Arg) {
|
|
return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
|
|
}
|
|
|
|
/// Helper function for AddBuiltinOperatorCandidates() that adds
|
|
/// the volatile- and non-volatile-qualified assignment operators for the
|
|
/// given type to the candidate set.
|
|
static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
|
|
QualType T,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet) {
|
|
QualType ParamTypes[2];
|
|
|
|
// T& operator=(T&, T)
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(
|
|
AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
|
|
ParamTypes[1] = T;
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/true);
|
|
|
|
if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
|
|
// volatile T& operator=(volatile T&, T)
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(
|
|
AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
|
|
Args[0]));
|
|
ParamTypes[1] = T;
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/true);
|
|
}
|
|
}
|
|
|
|
/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
|
|
/// if any, found in visible type conversion functions found in ArgExpr's type.
|
|
static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
|
|
Qualifiers VRQuals;
|
|
const RecordType *TyRec;
|
|
if (const MemberPointerType *RHSMPType =
|
|
ArgExpr->getType()->getAs<MemberPointerType>())
|
|
TyRec = RHSMPType->getClass()->getAs<RecordType>();
|
|
else
|
|
TyRec = ArgExpr->getType()->getAs<RecordType>();
|
|
if (!TyRec) {
|
|
// Just to be safe, assume the worst case.
|
|
VRQuals.addVolatile();
|
|
VRQuals.addRestrict();
|
|
return VRQuals;
|
|
}
|
|
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
|
|
if (!ClassDecl->hasDefinition())
|
|
return VRQuals;
|
|
|
|
for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
|
|
QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
|
|
if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
|
|
CanTy = ResTypeRef->getPointeeType();
|
|
// Need to go down the pointer/mempointer chain and add qualifiers
|
|
// as see them.
|
|
bool done = false;
|
|
while (!done) {
|
|
if (CanTy.isRestrictQualified())
|
|
VRQuals.addRestrict();
|
|
if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
|
|
CanTy = ResTypePtr->getPointeeType();
|
|
else if (const MemberPointerType *ResTypeMPtr =
|
|
CanTy->getAs<MemberPointerType>())
|
|
CanTy = ResTypeMPtr->getPointeeType();
|
|
else
|
|
done = true;
|
|
if (CanTy.isVolatileQualified())
|
|
VRQuals.addVolatile();
|
|
if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
|
|
return VRQuals;
|
|
}
|
|
}
|
|
}
|
|
return VRQuals;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Helper class to manage the addition of builtin operator overload
|
|
/// candidates. It provides shared state and utility methods used throughout
|
|
/// the process, as well as a helper method to add each group of builtin
|
|
/// operator overloads from the standard to a candidate set.
|
|
class BuiltinOperatorOverloadBuilder {
|
|
// Common instance state available to all overload candidate addition methods.
|
|
Sema &S;
|
|
ArrayRef<Expr *> Args;
|
|
Qualifiers VisibleTypeConversionsQuals;
|
|
bool HasArithmeticOrEnumeralCandidateType;
|
|
SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
|
|
OverloadCandidateSet &CandidateSet;
|
|
|
|
static constexpr int ArithmeticTypesCap = 24;
|
|
SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
|
|
|
|
// Define some indices used to iterate over the arithmetic types in
|
|
// ArithmeticTypes. The "promoted arithmetic types" are the arithmetic
|
|
// types are that preserved by promotion (C++ [over.built]p2).
|
|
unsigned FirstIntegralType,
|
|
LastIntegralType;
|
|
unsigned FirstPromotedIntegralType,
|
|
LastPromotedIntegralType;
|
|
unsigned FirstPromotedArithmeticType,
|
|
LastPromotedArithmeticType;
|
|
unsigned NumArithmeticTypes;
|
|
|
|
void InitArithmeticTypes() {
|
|
// Start of promoted types.
|
|
FirstPromotedArithmeticType = 0;
|
|
ArithmeticTypes.push_back(S.Context.FloatTy);
|
|
ArithmeticTypes.push_back(S.Context.DoubleTy);
|
|
ArithmeticTypes.push_back(S.Context.LongDoubleTy);
|
|
if (S.Context.getTargetInfo().hasFloat128Type())
|
|
ArithmeticTypes.push_back(S.Context.Float128Ty);
|
|
|
|
// Start of integral types.
|
|
FirstIntegralType = ArithmeticTypes.size();
|
|
FirstPromotedIntegralType = ArithmeticTypes.size();
|
|
ArithmeticTypes.push_back(S.Context.IntTy);
|
|
ArithmeticTypes.push_back(S.Context.LongTy);
|
|
ArithmeticTypes.push_back(S.Context.LongLongTy);
|
|
if (S.Context.getTargetInfo().hasInt128Type() ||
|
|
(S.Context.getAuxTargetInfo() &&
|
|
S.Context.getAuxTargetInfo()->hasInt128Type()))
|
|
ArithmeticTypes.push_back(S.Context.Int128Ty);
|
|
ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
|
|
ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
|
|
ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
|
|
if (S.Context.getTargetInfo().hasInt128Type() ||
|
|
(S.Context.getAuxTargetInfo() &&
|
|
S.Context.getAuxTargetInfo()->hasInt128Type()))
|
|
ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
|
|
LastPromotedIntegralType = ArithmeticTypes.size();
|
|
LastPromotedArithmeticType = ArithmeticTypes.size();
|
|
// End of promoted types.
|
|
|
|
ArithmeticTypes.push_back(S.Context.BoolTy);
|
|
ArithmeticTypes.push_back(S.Context.CharTy);
|
|
ArithmeticTypes.push_back(S.Context.WCharTy);
|
|
if (S.Context.getLangOpts().Char8)
|
|
ArithmeticTypes.push_back(S.Context.Char8Ty);
|
|
ArithmeticTypes.push_back(S.Context.Char16Ty);
|
|
ArithmeticTypes.push_back(S.Context.Char32Ty);
|
|
ArithmeticTypes.push_back(S.Context.SignedCharTy);
|
|
ArithmeticTypes.push_back(S.Context.ShortTy);
|
|
ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
|
|
ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
|
|
LastIntegralType = ArithmeticTypes.size();
|
|
NumArithmeticTypes = ArithmeticTypes.size();
|
|
// End of integral types.
|
|
// FIXME: What about complex? What about half?
|
|
|
|
assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&
|
|
"Enough inline storage for all arithmetic types.");
|
|
}
|
|
|
|
/// Helper method to factor out the common pattern of adding overloads
|
|
/// for '++' and '--' builtin operators.
|
|
void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
|
|
bool HasVolatile,
|
|
bool HasRestrict) {
|
|
QualType ParamTypes[2] = {
|
|
S.Context.getLValueReferenceType(CandidateTy),
|
|
S.Context.IntTy
|
|
};
|
|
|
|
// Non-volatile version.
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
|
|
// Use a heuristic to reduce number of builtin candidates in the set:
|
|
// add volatile version only if there are conversions to a volatile type.
|
|
if (HasVolatile) {
|
|
ParamTypes[0] =
|
|
S.Context.getLValueReferenceType(
|
|
S.Context.getVolatileType(CandidateTy));
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
}
|
|
|
|
// Add restrict version only if there are conversions to a restrict type
|
|
// and our candidate type is a non-restrict-qualified pointer.
|
|
if (HasRestrict && CandidateTy->isAnyPointerType() &&
|
|
!CandidateTy.isRestrictQualified()) {
|
|
ParamTypes[0]
|
|
= S.Context.getLValueReferenceType(
|
|
S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
|
|
if (HasVolatile) {
|
|
ParamTypes[0]
|
|
= S.Context.getLValueReferenceType(
|
|
S.Context.getCVRQualifiedType(CandidateTy,
|
|
(Qualifiers::Volatile |
|
|
Qualifiers::Restrict)));
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/// Helper to add an overload candidate for a binary builtin with types \p L
|
|
/// and \p R.
|
|
void AddCandidate(QualType L, QualType R) {
|
|
QualType LandR[2] = {L, R};
|
|
S.AddBuiltinCandidate(LandR, Args, CandidateSet);
|
|
}
|
|
|
|
public:
|
|
BuiltinOperatorOverloadBuilder(
|
|
Sema &S, ArrayRef<Expr *> Args,
|
|
Qualifiers VisibleTypeConversionsQuals,
|
|
bool HasArithmeticOrEnumeralCandidateType,
|
|
SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
|
|
OverloadCandidateSet &CandidateSet)
|
|
: S(S), Args(Args),
|
|
VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
|
|
HasArithmeticOrEnumeralCandidateType(
|
|
HasArithmeticOrEnumeralCandidateType),
|
|
CandidateTypes(CandidateTypes),
|
|
CandidateSet(CandidateSet) {
|
|
|
|
InitArithmeticTypes();
|
|
}
|
|
|
|
// Increment is deprecated for bool since C++17.
|
|
//
|
|
// C++ [over.built]p3:
|
|
//
|
|
// For every pair (T, VQ), where T is an arithmetic type other
|
|
// than bool, and VQ is either volatile or empty, there exist
|
|
// candidate operator functions of the form
|
|
//
|
|
// VQ T& operator++(VQ T&);
|
|
// T operator++(VQ T&, int);
|
|
//
|
|
// C++ [over.built]p4:
|
|
//
|
|
// For every pair (T, VQ), where T is an arithmetic type other
|
|
// than bool, and VQ is either volatile or empty, there exist
|
|
// candidate operator functions of the form
|
|
//
|
|
// VQ T& operator--(VQ T&);
|
|
// T operator--(VQ T&, int);
|
|
void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
|
|
const auto TypeOfT = ArithmeticTypes[Arith];
|
|
if (TypeOfT == S.Context.BoolTy) {
|
|
if (Op == OO_MinusMinus)
|
|
continue;
|
|
if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
|
|
continue;
|
|
}
|
|
addPlusPlusMinusMinusStyleOverloads(
|
|
TypeOfT,
|
|
VisibleTypeConversionsQuals.hasVolatile(),
|
|
VisibleTypeConversionsQuals.hasRestrict());
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p5:
|
|
//
|
|
// For every pair (T, VQ), where T is a cv-qualified or
|
|
// cv-unqualified object type, and VQ is either volatile or
|
|
// empty, there exist candidate operator functions of the form
|
|
//
|
|
// T*VQ& operator++(T*VQ&);
|
|
// T*VQ& operator--(T*VQ&);
|
|
// T* operator++(T*VQ&, int);
|
|
// T* operator--(T*VQ&, int);
|
|
void addPlusPlusMinusMinusPointerOverloads() {
|
|
for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
|
|
// Skip pointer types that aren't pointers to object types.
|
|
if (!PtrTy->getPointeeType()->isObjectType())
|
|
continue;
|
|
|
|
addPlusPlusMinusMinusStyleOverloads(
|
|
PtrTy,
|
|
(!PtrTy.isVolatileQualified() &&
|
|
VisibleTypeConversionsQuals.hasVolatile()),
|
|
(!PtrTy.isRestrictQualified() &&
|
|
VisibleTypeConversionsQuals.hasRestrict()));
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p6:
|
|
// For every cv-qualified or cv-unqualified object type T, there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// T& operator*(T*);
|
|
//
|
|
// C++ [over.built]p7:
|
|
// For every function type T that does not have cv-qualifiers or a
|
|
// ref-qualifier, there exist candidate operator functions of the form
|
|
// T& operator*(T*);
|
|
void addUnaryStarPointerOverloads() {
|
|
for (QualType ParamTy : CandidateTypes[0].pointer_types()) {
|
|
QualType PointeeTy = ParamTy->getPointeeType();
|
|
if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
|
|
continue;
|
|
|
|
if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
|
|
if (Proto->getMethodQuals() || Proto->getRefQualifier())
|
|
continue;
|
|
|
|
S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p9:
|
|
// For every promoted arithmetic type T, there exist candidate
|
|
// operator functions of the form
|
|
//
|
|
// T operator+(T);
|
|
// T operator-(T);
|
|
void addUnaryPlusOrMinusArithmeticOverloads() {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (unsigned Arith = FirstPromotedArithmeticType;
|
|
Arith < LastPromotedArithmeticType; ++Arith) {
|
|
QualType ArithTy = ArithmeticTypes[Arith];
|
|
S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
|
|
}
|
|
|
|
// Extension: We also add these operators for vector types.
|
|
for (QualType VecTy : CandidateTypes[0].vector_types())
|
|
S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
|
|
}
|
|
|
|
// C++ [over.built]p8:
|
|
// For every type T, there exist candidate operator functions of
|
|
// the form
|
|
//
|
|
// T* operator+(T*);
|
|
void addUnaryPlusPointerOverloads() {
|
|
for (QualType ParamTy : CandidateTypes[0].pointer_types())
|
|
S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
|
|
}
|
|
|
|
// C++ [over.built]p10:
|
|
// For every promoted integral type T, there exist candidate
|
|
// operator functions of the form
|
|
//
|
|
// T operator~(T);
|
|
void addUnaryTildePromotedIntegralOverloads() {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (unsigned Int = FirstPromotedIntegralType;
|
|
Int < LastPromotedIntegralType; ++Int) {
|
|
QualType IntTy = ArithmeticTypes[Int];
|
|
S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
|
|
}
|
|
|
|
// Extension: We also add this operator for vector types.
|
|
for (QualType VecTy : CandidateTypes[0].vector_types())
|
|
S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
|
|
}
|
|
|
|
// C++ [over.match.oper]p16:
|
|
// For every pointer to member type T or type std::nullptr_t, there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// bool operator==(T,T);
|
|
// bool operator!=(T,T);
|
|
void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
|
|
/// Set of (canonical) types that we've already handled.
|
|
llvm::SmallPtrSet<QualType, 8> AddedTypes;
|
|
|
|
for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
|
|
for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
|
|
// Don't add the same builtin candidate twice.
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
}
|
|
|
|
if (CandidateTypes[ArgIdx].hasNullPtrType()) {
|
|
CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
|
|
if (AddedTypes.insert(NullPtrTy).second) {
|
|
QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p15:
|
|
//
|
|
// For every T, where T is an enumeration type or a pointer type,
|
|
// there exist candidate operator functions of the form
|
|
//
|
|
// bool operator<(T, T);
|
|
// bool operator>(T, T);
|
|
// bool operator<=(T, T);
|
|
// bool operator>=(T, T);
|
|
// bool operator==(T, T);
|
|
// bool operator!=(T, T);
|
|
// R operator<=>(T, T)
|
|
void addGenericBinaryPointerOrEnumeralOverloads() {
|
|
// C++ [over.match.oper]p3:
|
|
// [...]the built-in candidates include all of the candidate operator
|
|
// functions defined in 13.6 that, compared to the given operator, [...]
|
|
// do not have the same parameter-type-list as any non-template non-member
|
|
// candidate.
|
|
//
|
|
// Note that in practice, this only affects enumeration types because there
|
|
// aren't any built-in candidates of record type, and a user-defined operator
|
|
// must have an operand of record or enumeration type. Also, the only other
|
|
// overloaded operator with enumeration arguments, operator=,
|
|
// cannot be overloaded for enumeration types, so this is the only place
|
|
// where we must suppress candidates like this.
|
|
llvm::DenseSet<std::pair<CanQualType, CanQualType> >
|
|
UserDefinedBinaryOperators;
|
|
|
|
for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
|
|
if (!CandidateTypes[ArgIdx].enumeration_types().empty()) {
|
|
for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
|
|
CEnd = CandidateSet.end();
|
|
C != CEnd; ++C) {
|
|
if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
|
|
continue;
|
|
|
|
if (C->Function->isFunctionTemplateSpecialization())
|
|
continue;
|
|
|
|
// We interpret "same parameter-type-list" as applying to the
|
|
// "synthesized candidate, with the order of the two parameters
|
|
// reversed", not to the original function.
|
|
bool Reversed = C->isReversed();
|
|
QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0)
|
|
->getType()
|
|
.getUnqualifiedType();
|
|
QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1)
|
|
->getType()
|
|
.getUnqualifiedType();
|
|
|
|
// Skip if either parameter isn't of enumeral type.
|
|
if (!FirstParamType->isEnumeralType() ||
|
|
!SecondParamType->isEnumeralType())
|
|
continue;
|
|
|
|
// Add this operator to the set of known user-defined operators.
|
|
UserDefinedBinaryOperators.insert(
|
|
std::make_pair(S.Context.getCanonicalType(FirstParamType),
|
|
S.Context.getCanonicalType(SecondParamType)));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Set of (canonical) types that we've already handled.
|
|
llvm::SmallPtrSet<QualType, 8> AddedTypes;
|
|
|
|
for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
|
|
for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
|
|
// Don't add the same builtin candidate twice.
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = {PtrTy, PtrTy};
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
}
|
|
for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
|
|
CanQualType CanonType = S.Context.getCanonicalType(EnumTy);
|
|
|
|
// Don't add the same builtin candidate twice, or if a user defined
|
|
// candidate exists.
|
|
if (!AddedTypes.insert(CanonType).second ||
|
|
UserDefinedBinaryOperators.count(std::make_pair(CanonType,
|
|
CanonType)))
|
|
continue;
|
|
QualType ParamTypes[2] = {EnumTy, EnumTy};
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p13:
|
|
//
|
|
// For every cv-qualified or cv-unqualified object type T
|
|
// there exist candidate operator functions of the form
|
|
//
|
|
// T* operator+(T*, ptrdiff_t);
|
|
// T& operator[](T*, ptrdiff_t); [BELOW]
|
|
// T* operator-(T*, ptrdiff_t);
|
|
// T* operator+(ptrdiff_t, T*);
|
|
// T& operator[](ptrdiff_t, T*); [BELOW]
|
|
//
|
|
// C++ [over.built]p14:
|
|
//
|
|
// For every T, where T is a pointer to object type, there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// ptrdiff_t operator-(T, T);
|
|
void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
|
|
/// Set of (canonical) types that we've already handled.
|
|
llvm::SmallPtrSet<QualType, 8> AddedTypes;
|
|
|
|
for (int Arg = 0; Arg < 2; ++Arg) {
|
|
QualType AsymmetricParamTypes[2] = {
|
|
S.Context.getPointerDiffType(),
|
|
S.Context.getPointerDiffType(),
|
|
};
|
|
for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) {
|
|
QualType PointeeTy = PtrTy->getPointeeType();
|
|
if (!PointeeTy->isObjectType())
|
|
continue;
|
|
|
|
AsymmetricParamTypes[Arg] = PtrTy;
|
|
if (Arg == 0 || Op == OO_Plus) {
|
|
// operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
|
|
// T* operator+(ptrdiff_t, T*);
|
|
S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
|
|
}
|
|
if (Op == OO_Minus) {
|
|
// ptrdiff_t operator-(T, T);
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = {PtrTy, PtrTy};
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p12:
|
|
//
|
|
// For every pair of promoted arithmetic types L and R, there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// LR operator*(L, R);
|
|
// LR operator/(L, R);
|
|
// LR operator+(L, R);
|
|
// LR operator-(L, R);
|
|
// bool operator<(L, R);
|
|
// bool operator>(L, R);
|
|
// bool operator<=(L, R);
|
|
// bool operator>=(L, R);
|
|
// bool operator==(L, R);
|
|
// bool operator!=(L, R);
|
|
//
|
|
// where LR is the result of the usual arithmetic conversions
|
|
// between types L and R.
|
|
//
|
|
// C++ [over.built]p24:
|
|
//
|
|
// For every pair of promoted arithmetic types L and R, there exist
|
|
// candidate operator functions of the form
|
|
//
|
|
// LR operator?(bool, L, R);
|
|
//
|
|
// where LR is the result of the usual arithmetic conversions
|
|
// between types L and R.
|
|
// Our candidates ignore the first parameter.
|
|
void addGenericBinaryArithmeticOverloads() {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (unsigned Left = FirstPromotedArithmeticType;
|
|
Left < LastPromotedArithmeticType; ++Left) {
|
|
for (unsigned Right = FirstPromotedArithmeticType;
|
|
Right < LastPromotedArithmeticType; ++Right) {
|
|
QualType LandR[2] = { ArithmeticTypes[Left],
|
|
ArithmeticTypes[Right] };
|
|
S.AddBuiltinCandidate(LandR, Args, CandidateSet);
|
|
}
|
|
}
|
|
|
|
// Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
|
|
// conditional operator for vector types.
|
|
for (QualType Vec1Ty : CandidateTypes[0].vector_types())
|
|
for (QualType Vec2Ty : CandidateTypes[1].vector_types()) {
|
|
QualType LandR[2] = {Vec1Ty, Vec2Ty};
|
|
S.AddBuiltinCandidate(LandR, Args, CandidateSet);
|
|
}
|
|
}
|
|
|
|
/// Add binary operator overloads for each candidate matrix type M1, M2:
|
|
/// * (M1, M1) -> M1
|
|
/// * (M1, M1.getElementType()) -> M1
|
|
/// * (M2.getElementType(), M2) -> M2
|
|
/// * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0].
|
|
void addMatrixBinaryArithmeticOverloads() {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (QualType M1 : CandidateTypes[0].matrix_types()) {
|
|
AddCandidate(M1, cast<MatrixType>(M1)->getElementType());
|
|
AddCandidate(M1, M1);
|
|
}
|
|
|
|
for (QualType M2 : CandidateTypes[1].matrix_types()) {
|
|
AddCandidate(cast<MatrixType>(M2)->getElementType(), M2);
|
|
if (!CandidateTypes[0].containsMatrixType(M2))
|
|
AddCandidate(M2, M2);
|
|
}
|
|
}
|
|
|
|
// C++2a [over.built]p14:
|
|
//
|
|
// For every integral type T there exists a candidate operator function
|
|
// of the form
|
|
//
|
|
// std::strong_ordering operator<=>(T, T)
|
|
//
|
|
// C++2a [over.built]p15:
|
|
//
|
|
// For every pair of floating-point types L and R, there exists a candidate
|
|
// operator function of the form
|
|
//
|
|
// std::partial_ordering operator<=>(L, R);
|
|
//
|
|
// FIXME: The current specification for integral types doesn't play nice with
|
|
// the direction of p0946r0, which allows mixed integral and unscoped-enum
|
|
// comparisons. Under the current spec this can lead to ambiguity during
|
|
// overload resolution. For example:
|
|
//
|
|
// enum A : int {a};
|
|
// auto x = (a <=> (long)42);
|
|
//
|
|
// error: call is ambiguous for arguments 'A' and 'long'.
|
|
// note: candidate operator<=>(int, int)
|
|
// note: candidate operator<=>(long, long)
|
|
//
|
|
// To avoid this error, this function deviates from the specification and adds
|
|
// the mixed overloads `operator<=>(L, R)` where L and R are promoted
|
|
// arithmetic types (the same as the generic relational overloads).
|
|
//
|
|
// For now this function acts as a placeholder.
|
|
void addThreeWayArithmeticOverloads() {
|
|
addGenericBinaryArithmeticOverloads();
|
|
}
|
|
|
|
// C++ [over.built]p17:
|
|
//
|
|
// For every pair of promoted integral types L and R, there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// LR operator%(L, R);
|
|
// LR operator&(L, R);
|
|
// LR operator^(L, R);
|
|
// LR operator|(L, R);
|
|
// L operator<<(L, R);
|
|
// L operator>>(L, R);
|
|
//
|
|
// where LR is the result of the usual arithmetic conversions
|
|
// between types L and R.
|
|
void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (unsigned Left = FirstPromotedIntegralType;
|
|
Left < LastPromotedIntegralType; ++Left) {
|
|
for (unsigned Right = FirstPromotedIntegralType;
|
|
Right < LastPromotedIntegralType; ++Right) {
|
|
QualType LandR[2] = { ArithmeticTypes[Left],
|
|
ArithmeticTypes[Right] };
|
|
S.AddBuiltinCandidate(LandR, Args, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p20:
|
|
//
|
|
// For every pair (T, VQ), where T is an enumeration or
|
|
// pointer to member type and VQ is either volatile or
|
|
// empty, there exist candidate operator functions of the form
|
|
//
|
|
// VQ T& operator=(VQ T&, T);
|
|
void addAssignmentMemberPointerOrEnumeralOverloads() {
|
|
/// Set of (canonical) types that we've already handled.
|
|
llvm::SmallPtrSet<QualType, 8> AddedTypes;
|
|
|
|
for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
|
|
for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
|
|
continue;
|
|
|
|
AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet);
|
|
}
|
|
|
|
for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
|
|
continue;
|
|
|
|
AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p19:
|
|
//
|
|
// For every pair (T, VQ), where T is any type and VQ is either
|
|
// volatile or empty, there exist candidate operator functions
|
|
// of the form
|
|
//
|
|
// T*VQ& operator=(T*VQ&, T*);
|
|
//
|
|
// C++ [over.built]p21:
|
|
//
|
|
// For every pair (T, VQ), where T is a cv-qualified or
|
|
// cv-unqualified object type and VQ is either volatile or
|
|
// empty, there exist candidate operator functions of the form
|
|
//
|
|
// T*VQ& operator+=(T*VQ&, ptrdiff_t);
|
|
// T*VQ& operator-=(T*VQ&, ptrdiff_t);
|
|
void addAssignmentPointerOverloads(bool isEqualOp) {
|
|
/// Set of (canonical) types that we've already handled.
|
|
llvm::SmallPtrSet<QualType, 8> AddedTypes;
|
|
|
|
for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
|
|
// If this is operator=, keep track of the builtin candidates we added.
|
|
if (isEqualOp)
|
|
AddedTypes.insert(S.Context.getCanonicalType(PtrTy));
|
|
else if (!PtrTy->getPointeeType()->isObjectType())
|
|
continue;
|
|
|
|
// non-volatile version
|
|
QualType ParamTypes[2] = {
|
|
S.Context.getLValueReferenceType(PtrTy),
|
|
isEqualOp ? PtrTy : S.Context.getPointerDiffType(),
|
|
};
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/ isEqualOp);
|
|
|
|
bool NeedVolatile = !PtrTy.isVolatileQualified() &&
|
|
VisibleTypeConversionsQuals.hasVolatile();
|
|
if (NeedVolatile) {
|
|
// volatile version
|
|
ParamTypes[0] =
|
|
S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy));
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/isEqualOp);
|
|
}
|
|
|
|
if (!PtrTy.isRestrictQualified() &&
|
|
VisibleTypeConversionsQuals.hasRestrict()) {
|
|
// restrict version
|
|
ParamTypes[0] =
|
|
S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy));
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/isEqualOp);
|
|
|
|
if (NeedVolatile) {
|
|
// volatile restrict version
|
|
ParamTypes[0] =
|
|
S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
|
|
PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/isEqualOp);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isEqualOp) {
|
|
for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
|
|
// Make sure we don't add the same candidate twice.
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = {
|
|
S.Context.getLValueReferenceType(PtrTy),
|
|
PtrTy,
|
|
};
|
|
|
|
// non-volatile version
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/true);
|
|
|
|
bool NeedVolatile = !PtrTy.isVolatileQualified() &&
|
|
VisibleTypeConversionsQuals.hasVolatile();
|
|
if (NeedVolatile) {
|
|
// volatile version
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(
|
|
S.Context.getVolatileType(PtrTy));
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/true);
|
|
}
|
|
|
|
if (!PtrTy.isRestrictQualified() &&
|
|
VisibleTypeConversionsQuals.hasRestrict()) {
|
|
// restrict version
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(
|
|
S.Context.getRestrictType(PtrTy));
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/true);
|
|
|
|
if (NeedVolatile) {
|
|
// volatile restrict version
|
|
ParamTypes[0] =
|
|
S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
|
|
PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p18:
|
|
//
|
|
// For every triple (L, VQ, R), where L is an arithmetic type,
|
|
// VQ is either volatile or empty, and R is a promoted
|
|
// arithmetic type, there exist candidate operator functions of
|
|
// the form
|
|
//
|
|
// VQ L& operator=(VQ L&, R);
|
|
// VQ L& operator*=(VQ L&, R);
|
|
// VQ L& operator/=(VQ L&, R);
|
|
// VQ L& operator+=(VQ L&, R);
|
|
// VQ L& operator-=(VQ L&, R);
|
|
void addAssignmentArithmeticOverloads(bool isEqualOp) {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
|
|
for (unsigned Right = FirstPromotedArithmeticType;
|
|
Right < LastPromotedArithmeticType; ++Right) {
|
|
QualType ParamTypes[2];
|
|
ParamTypes[1] = ArithmeticTypes[Right];
|
|
auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
|
|
S, ArithmeticTypes[Left], Args[0]);
|
|
// Add this built-in operator as a candidate (VQ is empty).
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/isEqualOp);
|
|
|
|
// Add this built-in operator as a candidate (VQ is 'volatile').
|
|
if (VisibleTypeConversionsQuals.hasVolatile()) {
|
|
ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/isEqualOp);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
|
|
for (QualType Vec1Ty : CandidateTypes[0].vector_types())
|
|
for (QualType Vec2Ty : CandidateTypes[0].vector_types()) {
|
|
QualType ParamTypes[2];
|
|
ParamTypes[1] = Vec2Ty;
|
|
// Add this built-in operator as a candidate (VQ is empty).
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty);
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/isEqualOp);
|
|
|
|
// Add this built-in operator as a candidate (VQ is 'volatile').
|
|
if (VisibleTypeConversionsQuals.hasVolatile()) {
|
|
ParamTypes[0] = S.Context.getVolatileType(Vec1Ty);
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/isEqualOp);
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p22:
|
|
//
|
|
// For every triple (L, VQ, R), where L is an integral type, VQ
|
|
// is either volatile or empty, and R is a promoted integral
|
|
// type, there exist candidate operator functions of the form
|
|
//
|
|
// VQ L& operator%=(VQ L&, R);
|
|
// VQ L& operator<<=(VQ L&, R);
|
|
// VQ L& operator>>=(VQ L&, R);
|
|
// VQ L& operator&=(VQ L&, R);
|
|
// VQ L& operator^=(VQ L&, R);
|
|
// VQ L& operator|=(VQ L&, R);
|
|
void addAssignmentIntegralOverloads() {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
|
|
for (unsigned Right = FirstPromotedIntegralType;
|
|
Right < LastPromotedIntegralType; ++Right) {
|
|
QualType ParamTypes[2];
|
|
ParamTypes[1] = ArithmeticTypes[Right];
|
|
auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
|
|
S, ArithmeticTypes[Left], Args[0]);
|
|
// Add this built-in operator as a candidate (VQ is empty).
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
if (VisibleTypeConversionsQuals.hasVolatile()) {
|
|
// Add this built-in operator as a candidate (VQ is 'volatile').
|
|
ParamTypes[0] = LeftBaseTy;
|
|
ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.operator]p23:
|
|
//
|
|
// There also exist candidate operator functions of the form
|
|
//
|
|
// bool operator!(bool);
|
|
// bool operator&&(bool, bool);
|
|
// bool operator||(bool, bool);
|
|
void addExclaimOverload() {
|
|
QualType ParamTy = S.Context.BoolTy;
|
|
S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/false,
|
|
/*NumContextualBoolArguments=*/1);
|
|
}
|
|
void addAmpAmpOrPipePipeOverload() {
|
|
QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
|
|
/*IsAssignmentOperator=*/false,
|
|
/*NumContextualBoolArguments=*/2);
|
|
}
|
|
|
|
// C++ [over.built]p13:
|
|
//
|
|
// For every cv-qualified or cv-unqualified object type T there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// T* operator+(T*, ptrdiff_t); [ABOVE]
|
|
// T& operator[](T*, ptrdiff_t);
|
|
// T* operator-(T*, ptrdiff_t); [ABOVE]
|
|
// T* operator+(ptrdiff_t, T*); [ABOVE]
|
|
// T& operator[](ptrdiff_t, T*);
|
|
void addSubscriptOverloads() {
|
|
for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
|
|
QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()};
|
|
QualType PointeeType = PtrTy->getPointeeType();
|
|
if (!PointeeType->isObjectType())
|
|
continue;
|
|
|
|
// T& operator[](T*, ptrdiff_t)
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
}
|
|
|
|
for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
|
|
QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy};
|
|
QualType PointeeType = PtrTy->getPointeeType();
|
|
if (!PointeeType->isObjectType())
|
|
continue;
|
|
|
|
// T& operator[](ptrdiff_t, T*)
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p11:
|
|
// For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
|
|
// C1 is the same type as C2 or is a derived class of C2, T is an object
|
|
// type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
|
|
// there exist candidate operator functions of the form
|
|
//
|
|
// CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
|
|
//
|
|
// where CV12 is the union of CV1 and CV2.
|
|
void addArrowStarOverloads() {
|
|
for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
|
|
QualType C1Ty = PtrTy;
|
|
QualType C1;
|
|
QualifierCollector Q1;
|
|
C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
|
|
if (!isa<RecordType>(C1))
|
|
continue;
|
|
// heuristic to reduce number of builtin candidates in the set.
|
|
// Add volatile/restrict version only if there are conversions to a
|
|
// volatile/restrict type.
|
|
if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
|
|
continue;
|
|
if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
|
|
continue;
|
|
for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) {
|
|
const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy);
|
|
QualType C2 = QualType(mptr->getClass(), 0);
|
|
C2 = C2.getUnqualifiedType();
|
|
if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
|
|
break;
|
|
QualType ParamTypes[2] = {PtrTy, MemPtrTy};
|
|
// build CV12 T&
|
|
QualType T = mptr->getPointeeType();
|
|
if (!VisibleTypeConversionsQuals.hasVolatile() &&
|
|
T.isVolatileQualified())
|
|
continue;
|
|
if (!VisibleTypeConversionsQuals.hasRestrict() &&
|
|
T.isRestrictQualified())
|
|
continue;
|
|
T = Q1.apply(S.Context, T);
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note that we don't consider the first argument, since it has been
|
|
// contextually converted to bool long ago. The candidates below are
|
|
// therefore added as binary.
|
|
//
|
|
// C++ [over.built]p25:
|
|
// For every type T, where T is a pointer, pointer-to-member, or scoped
|
|
// enumeration type, there exist candidate operator functions of the form
|
|
//
|
|
// T operator?(bool, T, T);
|
|
//
|
|
void addConditionalOperatorOverloads() {
|
|
/// Set of (canonical) types that we've already handled.
|
|
llvm::SmallPtrSet<QualType, 8> AddedTypes;
|
|
|
|
for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
|
|
for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = {PtrTy, PtrTy};
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
}
|
|
|
|
for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
}
|
|
|
|
if (S.getLangOpts().CPlusPlus11) {
|
|
for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
|
|
if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped())
|
|
continue;
|
|
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = {EnumTy, EnumTy};
|
|
S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// AddBuiltinOperatorCandidates - Add the appropriate built-in
|
|
/// operator overloads to the candidate set (C++ [over.built]), based
|
|
/// on the operator @p Op and the arguments given. For example, if the
|
|
/// operator is a binary '+', this routine might add "int
|
|
/// operator+(int, int)" to cover integer addition.
|
|
void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet) {
|
|
// Find all of the types that the arguments can convert to, but only
|
|
// if the operator we're looking at has built-in operator candidates
|
|
// that make use of these types. Also record whether we encounter non-record
|
|
// candidate types or either arithmetic or enumeral candidate types.
|
|
Qualifiers VisibleTypeConversionsQuals;
|
|
VisibleTypeConversionsQuals.addConst();
|
|
for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
|
|
VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
|
|
|
|
bool HasNonRecordCandidateType = false;
|
|
bool HasArithmeticOrEnumeralCandidateType = false;
|
|
SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
|
|
for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
|
|
CandidateTypes.emplace_back(*this);
|
|
CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
|
|
OpLoc,
|
|
true,
|
|
(Op == OO_Exclaim ||
|
|
Op == OO_AmpAmp ||
|
|
Op == OO_PipePipe),
|
|
VisibleTypeConversionsQuals);
|
|
HasNonRecordCandidateType = HasNonRecordCandidateType ||
|
|
CandidateTypes[ArgIdx].hasNonRecordTypes();
|
|
HasArithmeticOrEnumeralCandidateType =
|
|
HasArithmeticOrEnumeralCandidateType ||
|
|
CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
|
|
}
|
|
|
|
// Exit early when no non-record types have been added to the candidate set
|
|
// for any of the arguments to the operator.
|
|
//
|
|
// We can't exit early for !, ||, or &&, since there we have always have
|
|
// 'bool' overloads.
|
|
if (!HasNonRecordCandidateType &&
|
|
!(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
|
|
return;
|
|
|
|
// Setup an object to manage the common state for building overloads.
|
|
BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
|
|
VisibleTypeConversionsQuals,
|
|
HasArithmeticOrEnumeralCandidateType,
|
|
CandidateTypes, CandidateSet);
|
|
|
|
// Dispatch over the operation to add in only those overloads which apply.
|
|
switch (Op) {
|
|
case OO_None:
|
|
case NUM_OVERLOADED_OPERATORS:
|
|
llvm_unreachable("Expected an overloaded operator");
|
|
|
|
case OO_New:
|
|
case OO_Delete:
|
|
case OO_Array_New:
|
|
case OO_Array_Delete:
|
|
case OO_Call:
|
|
llvm_unreachable(
|
|
"Special operators don't use AddBuiltinOperatorCandidates");
|
|
|
|
case OO_Comma:
|
|
case OO_Arrow:
|
|
case OO_Coawait:
|
|
// C++ [over.match.oper]p3:
|
|
// -- For the operator ',', the unary operator '&', the
|
|
// operator '->', or the operator 'co_await', the
|
|
// built-in candidates set is empty.
|
|
break;
|
|
|
|
case OO_Plus: // '+' is either unary or binary
|
|
if (Args.size() == 1)
|
|
OpBuilder.addUnaryPlusPointerOverloads();
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case OO_Minus: // '-' is either unary or binary
|
|
if (Args.size() == 1) {
|
|
OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
|
|
} else {
|
|
OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
|
|
OpBuilder.addGenericBinaryArithmeticOverloads();
|
|
OpBuilder.addMatrixBinaryArithmeticOverloads();
|
|
}
|
|
break;
|
|
|
|
case OO_Star: // '*' is either unary or binary
|
|
if (Args.size() == 1)
|
|
OpBuilder.addUnaryStarPointerOverloads();
|
|
else {
|
|
OpBuilder.addGenericBinaryArithmeticOverloads();
|
|
OpBuilder.addMatrixBinaryArithmeticOverloads();
|
|
}
|
|
break;
|
|
|
|
case OO_Slash:
|
|
OpBuilder.addGenericBinaryArithmeticOverloads();
|
|
break;
|
|
|
|
case OO_PlusPlus:
|
|
case OO_MinusMinus:
|
|
OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
|
|
OpBuilder.addPlusPlusMinusMinusPointerOverloads();
|
|
break;
|
|
|
|
case OO_EqualEqual:
|
|
case OO_ExclaimEqual:
|
|
OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case OO_Less:
|
|
case OO_Greater:
|
|
case OO_LessEqual:
|
|
case OO_GreaterEqual:
|
|
OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
|
|
OpBuilder.addGenericBinaryArithmeticOverloads();
|
|
break;
|
|
|
|
case OO_Spaceship:
|
|
OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
|
|
OpBuilder.addThreeWayArithmeticOverloads();
|
|
break;
|
|
|
|
case OO_Percent:
|
|
case OO_Caret:
|
|
case OO_Pipe:
|
|
case OO_LessLess:
|
|
case OO_GreaterGreater:
|
|
OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
|
|
break;
|
|
|
|
case OO_Amp: // '&' is either unary or binary
|
|
if (Args.size() == 1)
|
|
// C++ [over.match.oper]p3:
|
|
// -- For the operator ',', the unary operator '&', or the
|
|
// operator '->', the built-in candidates set is empty.
|
|
break;
|
|
|
|
OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
|
|
break;
|
|
|
|
case OO_Tilde:
|
|
OpBuilder.addUnaryTildePromotedIntegralOverloads();
|
|
break;
|
|
|
|
case OO_Equal:
|
|
OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case OO_PlusEqual:
|
|
case OO_MinusEqual:
|
|
OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case OO_StarEqual:
|
|
case OO_SlashEqual:
|
|
OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
|
|
break;
|
|
|
|
case OO_PercentEqual:
|
|
case OO_LessLessEqual:
|
|
case OO_GreaterGreaterEqual:
|
|
case OO_AmpEqual:
|
|
case OO_CaretEqual:
|
|
case OO_PipeEqual:
|
|
OpBuilder.addAssignmentIntegralOverloads();
|
|
break;
|
|
|
|
case OO_Exclaim:
|
|
OpBuilder.addExclaimOverload();
|
|
break;
|
|
|
|
case OO_AmpAmp:
|
|
case OO_PipePipe:
|
|
OpBuilder.addAmpAmpOrPipePipeOverload();
|
|
break;
|
|
|
|
case OO_Subscript:
|
|
OpBuilder.addSubscriptOverloads();
|
|
break;
|
|
|
|
case OO_ArrowStar:
|
|
OpBuilder.addArrowStarOverloads();
|
|
break;
|
|
|
|
case OO_Conditional:
|
|
OpBuilder.addConditionalOperatorOverloads();
|
|
OpBuilder.addGenericBinaryArithmeticOverloads();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Add function candidates found via argument-dependent lookup
|
|
/// to the set of overloading candidates.
|
|
///
|
|
/// This routine performs argument-dependent name lookup based on the
|
|
/// given function name (which may also be an operator name) and adds
|
|
/// all of the overload candidates found by ADL to the overload
|
|
/// candidate set (C++ [basic.lookup.argdep]).
|
|
void
|
|
Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
|
|
SourceLocation Loc,
|
|
ArrayRef<Expr *> Args,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool PartialOverloading) {
|
|
ADLResult Fns;
|
|
|
|
// FIXME: This approach for uniquing ADL results (and removing
|
|
// redundant candidates from the set) relies on pointer-equality,
|
|
// which means we need to key off the canonical decl. However,
|
|
// always going back to the canonical decl might not get us the
|
|
// right set of default arguments. What default arguments are
|
|
// we supposed to consider on ADL candidates, anyway?
|
|
|
|
// FIXME: Pass in the explicit template arguments?
|
|
ArgumentDependentLookup(Name, Loc, Args, Fns);
|
|
|
|
// Erase all of the candidates we already knew about.
|
|
for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
|
|
CandEnd = CandidateSet.end();
|
|
Cand != CandEnd; ++Cand)
|
|
if (Cand->Function) {
|
|
Fns.erase(Cand->Function);
|
|
if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
|
|
Fns.erase(FunTmpl);
|
|
}
|
|
|
|
// For each of the ADL candidates we found, add it to the overload
|
|
// set.
|
|
for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
|
|
DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
|
|
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
|
|
if (ExplicitTemplateArgs)
|
|
continue;
|
|
|
|
AddOverloadCandidate(
|
|
FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false,
|
|
PartialOverloading, /*AllowExplicit=*/true,
|
|
/*AllowExplicitConversions=*/false, ADLCallKind::UsesADL);
|
|
if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) {
|
|
AddOverloadCandidate(
|
|
FD, FoundDecl, {Args[1], Args[0]}, CandidateSet,
|
|
/*SuppressUserConversions=*/false, PartialOverloading,
|
|
/*AllowExplicit=*/true, /*AllowExplicitConversions=*/false,
|
|
ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed);
|
|
}
|
|
} else {
|
|
auto *FTD = cast<FunctionTemplateDecl>(*I);
|
|
AddTemplateOverloadCandidate(
|
|
FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet,
|
|
/*SuppressUserConversions=*/false, PartialOverloading,
|
|
/*AllowExplicit=*/true, ADLCallKind::UsesADL);
|
|
if (CandidateSet.getRewriteInfo().shouldAddReversed(
|
|
Context, FTD->getTemplatedDecl())) {
|
|
AddTemplateOverloadCandidate(
|
|
FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]},
|
|
CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading,
|
|
/*AllowExplicit=*/true, ADLCallKind::UsesADL,
|
|
OverloadCandidateParamOrder::Reversed);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
enum class Comparison { Equal, Better, Worse };
|
|
}
|
|
|
|
/// Compares the enable_if attributes of two FunctionDecls, for the purposes of
|
|
/// overload resolution.
|
|
///
|
|
/// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
|
|
/// Cand1's first N enable_if attributes have precisely the same conditions as
|
|
/// Cand2's first N enable_if attributes (where N = the number of enable_if
|
|
/// attributes on Cand2), and Cand1 has more than N enable_if attributes.
|
|
///
|
|
/// Note that you can have a pair of candidates such that Cand1's enable_if
|
|
/// attributes are worse than Cand2's, and Cand2's enable_if attributes are
|
|
/// worse than Cand1's.
|
|
static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
|
|
const FunctionDecl *Cand2) {
|
|
// Common case: One (or both) decls don't have enable_if attrs.
|
|
bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
|
|
bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
|
|
if (!Cand1Attr || !Cand2Attr) {
|
|
if (Cand1Attr == Cand2Attr)
|
|
return Comparison::Equal;
|
|
return Cand1Attr ? Comparison::Better : Comparison::Worse;
|
|
}
|
|
|
|
auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
|
|
auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
|
|
|
|
llvm::FoldingSetNodeID Cand1ID, Cand2ID;
|
|
for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
|
|
Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
|
|
Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
|
|
|
|
// It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
|
|
// has fewer enable_if attributes than Cand2, and vice versa.
|
|
if (!Cand1A)
|
|
return Comparison::Worse;
|
|
if (!Cand2A)
|
|
return Comparison::Better;
|
|
|
|
Cand1ID.clear();
|
|
Cand2ID.clear();
|
|
|
|
(*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
|
|
(*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
|
|
if (Cand1ID != Cand2ID)
|
|
return Comparison::Worse;
|
|
}
|
|
|
|
return Comparison::Equal;
|
|
}
|
|
|
|
static Comparison
|
|
isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
|
|
const OverloadCandidate &Cand2) {
|
|
if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
|
|
!Cand2.Function->isMultiVersion())
|
|
return Comparison::Equal;
|
|
|
|
// If both are invalid, they are equal. If one of them is invalid, the other
|
|
// is better.
|
|
if (Cand1.Function->isInvalidDecl()) {
|
|
if (Cand2.Function->isInvalidDecl())
|
|
return Comparison::Equal;
|
|
return Comparison::Worse;
|
|
}
|
|
if (Cand2.Function->isInvalidDecl())
|
|
return Comparison::Better;
|
|
|
|
// If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
|
|
// cpu_dispatch, else arbitrarily based on the identifiers.
|
|
bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
|
|
bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
|
|
const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
|
|
const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
|
|
|
|
if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
|
|
return Comparison::Equal;
|
|
|
|
if (Cand1CPUDisp && !Cand2CPUDisp)
|
|
return Comparison::Better;
|
|
if (Cand2CPUDisp && !Cand1CPUDisp)
|
|
return Comparison::Worse;
|
|
|
|
if (Cand1CPUSpec && Cand2CPUSpec) {
|
|
if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
|
|
return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size()
|
|
? Comparison::Better
|
|
: Comparison::Worse;
|
|
|
|
std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
|
|
FirstDiff = std::mismatch(
|
|
Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
|
|
Cand2CPUSpec->cpus_begin(),
|
|
[](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
|
|
return LHS->getName() == RHS->getName();
|
|
});
|
|
|
|
assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&
|
|
"Two different cpu-specific versions should not have the same "
|
|
"identifier list, otherwise they'd be the same decl!");
|
|
return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName()
|
|
? Comparison::Better
|
|
: Comparison::Worse;
|
|
}
|
|
llvm_unreachable("No way to get here unless both had cpu_dispatch");
|
|
}
|
|
|
|
/// Compute the type of the implicit object parameter for the given function,
|
|
/// if any. Returns None if there is no implicit object parameter, and a null
|
|
/// QualType if there is a 'matches anything' implicit object parameter.
|
|
static Optional<QualType> getImplicitObjectParamType(ASTContext &Context,
|
|
const FunctionDecl *F) {
|
|
if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F))
|
|
return llvm::None;
|
|
|
|
auto *M = cast<CXXMethodDecl>(F);
|
|
// Static member functions' object parameters match all types.
|
|
if (M->isStatic())
|
|
return QualType();
|
|
|
|
QualType T = M->getThisObjectType();
|
|
if (M->getRefQualifier() == RQ_RValue)
|
|
return Context.getRValueReferenceType(T);
|
|
return Context.getLValueReferenceType(T);
|
|
}
|
|
|
|
static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1,
|
|
const FunctionDecl *F2, unsigned NumParams) {
|
|
if (declaresSameEntity(F1, F2))
|
|
return true;
|
|
|
|
auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) {
|
|
if (First) {
|
|
if (Optional<QualType> T = getImplicitObjectParamType(Context, F))
|
|
return *T;
|
|
}
|
|
assert(I < F->getNumParams());
|
|
return F->getParamDecl(I++)->getType();
|
|
};
|
|
|
|
unsigned I1 = 0, I2 = 0;
|
|
for (unsigned I = 0; I != NumParams; ++I) {
|
|
QualType T1 = NextParam(F1, I1, I == 0);
|
|
QualType T2 = NextParam(F2, I2, I == 0);
|
|
if (!T1.isNull() && !T1.isNull() && !Context.hasSameUnqualifiedType(T1, T2))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isBetterOverloadCandidate - Determines whether the first overload
|
|
/// candidate is a better candidate than the second (C++ 13.3.3p1).
|
|
bool clang::isBetterOverloadCandidate(
|
|
Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
|
|
SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
|
|
// Define viable functions to be better candidates than non-viable
|
|
// functions.
|
|
if (!Cand2.Viable)
|
|
return Cand1.Viable;
|
|
else if (!Cand1.Viable)
|
|
return false;
|
|
|
|
// [CUDA] A function with 'never' preference is marked not viable, therefore
|
|
// is never shown up here. The worst preference shown up here is 'wrong side',
|
|
// e.g. an H function called by a HD function in device compilation. This is
|
|
// valid AST as long as the HD function is not emitted, e.g. it is an inline
|
|
// function which is called only by an H function. A deferred diagnostic will
|
|
// be triggered if it is emitted. However a wrong-sided function is still
|
|
// a viable candidate here.
|
|
//
|
|
// If Cand1 can be emitted and Cand2 cannot be emitted in the current
|
|
// context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2
|
|
// can be emitted, Cand1 is not better than Cand2. This rule should have
|
|
// precedence over other rules.
|
|
//
|
|
// If both Cand1 and Cand2 can be emitted, or neither can be emitted, then
|
|
// other rules should be used to determine which is better. This is because
|
|
// host/device based overloading resolution is mostly for determining
|
|
// viability of a function. If two functions are both viable, other factors
|
|
// should take precedence in preference, e.g. the standard-defined preferences
|
|
// like argument conversion ranks or enable_if partial-ordering. The
|
|
// preference for pass-object-size parameters is probably most similar to a
|
|
// type-based-overloading decision and so should take priority.
|
|
//
|
|
// If other rules cannot determine which is better, CUDA preference will be
|
|
// used again to determine which is better.
|
|
//
|
|
// TODO: Currently IdentifyCUDAPreference does not return correct values
|
|
// for functions called in global variable initializers due to missing
|
|
// correct context about device/host. Therefore we can only enforce this
|
|
// rule when there is a caller. We should enforce this rule for functions
|
|
// in global variable initializers once proper context is added.
|
|
//
|
|
// TODO: We can only enable the hostness based overloading resolution when
|
|
// -fgpu-exclude-wrong-side-overloads is on since this requires deferring
|
|
// overloading resolution diagnostics.
|
|
if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function &&
|
|
S.getLangOpts().GPUExcludeWrongSideOverloads) {
|
|
if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) {
|
|
bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller);
|
|
bool IsCand1ImplicitHD =
|
|
Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function);
|
|
bool IsCand2ImplicitHD =
|
|
Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function);
|
|
auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function);
|
|
auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function);
|
|
assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never);
|
|
// The implicit HD function may be a function in a system header which
|
|
// is forced by pragma. In device compilation, if we prefer HD candidates
|
|
// over wrong-sided candidates, overloading resolution may change, which
|
|
// may result in non-deferrable diagnostics. As a workaround, we let
|
|
// implicit HD candidates take equal preference as wrong-sided candidates.
|
|
// This will preserve the overloading resolution.
|
|
// TODO: We still need special handling of implicit HD functions since
|
|
// they may incur other diagnostics to be deferred. We should make all
|
|
// host/device related diagnostics deferrable and remove special handling
|
|
// of implicit HD functions.
|
|
auto EmitThreshold =
|
|
(S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD &&
|
|
(IsCand1ImplicitHD || IsCand2ImplicitHD))
|
|
? Sema::CFP_Never
|
|
: Sema::CFP_WrongSide;
|
|
auto Cand1Emittable = P1 > EmitThreshold;
|
|
auto Cand2Emittable = P2 > EmitThreshold;
|
|
if (Cand1Emittable && !Cand2Emittable)
|
|
return true;
|
|
if (!Cand1Emittable && Cand2Emittable)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// C++ [over.match.best]p1:
|
|
//
|
|
// -- if F is a static member function, ICS1(F) is defined such
|
|
// that ICS1(F) is neither better nor worse than ICS1(G) for
|
|
// any function G, and, symmetrically, ICS1(G) is neither
|
|
// better nor worse than ICS1(F).
|
|
unsigned StartArg = 0;
|
|
if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
|
|
StartArg = 1;
|
|
|
|
auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
|
|
// We don't allow incompatible pointer conversions in C++.
|
|
if (!S.getLangOpts().CPlusPlus)
|
|
return ICS.isStandard() &&
|
|
ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
|
|
|
|
// The only ill-formed conversion we allow in C++ is the string literal to
|
|
// char* conversion, which is only considered ill-formed after C++11.
|
|
return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
|
|
hasDeprecatedStringLiteralToCharPtrConversion(ICS);
|
|
};
|
|
|
|
// Define functions that don't require ill-formed conversions for a given
|
|
// argument to be better candidates than functions that do.
|
|
unsigned NumArgs = Cand1.Conversions.size();
|
|
assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
|
|
bool HasBetterConversion = false;
|
|
for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
|
|
bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
|
|
bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
|
|
if (Cand1Bad != Cand2Bad) {
|
|
if (Cand1Bad)
|
|
return false;
|
|
HasBetterConversion = true;
|
|
}
|
|
}
|
|
|
|
if (HasBetterConversion)
|
|
return true;
|
|
|
|
// C++ [over.match.best]p1:
|
|
// A viable function F1 is defined to be a better function than another
|
|
// viable function F2 if for all arguments i, ICSi(F1) is not a worse
|
|
// conversion sequence than ICSi(F2), and then...
|
|
bool HasWorseConversion = false;
|
|
for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
|
|
switch (CompareImplicitConversionSequences(S, Loc,
|
|
Cand1.Conversions[ArgIdx],
|
|
Cand2.Conversions[ArgIdx])) {
|
|
case ImplicitConversionSequence::Better:
|
|
// Cand1 has a better conversion sequence.
|
|
HasBetterConversion = true;
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Worse:
|
|
if (Cand1.Function && Cand2.Function &&
|
|
Cand1.isReversed() != Cand2.isReversed() &&
|
|
haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function,
|
|
NumArgs)) {
|
|
// Work around large-scale breakage caused by considering reversed
|
|
// forms of operator== in C++20:
|
|
//
|
|
// When comparing a function against a reversed function with the same
|
|
// parameter types, if we have a better conversion for one argument and
|
|
// a worse conversion for the other, the implicit conversion sequences
|
|
// are treated as being equally good.
|
|
//
|
|
// This prevents a comparison function from being considered ambiguous
|
|
// with a reversed form that is written in the same way.
|
|
//
|
|
// We diagnose this as an extension from CreateOverloadedBinOp.
|
|
HasWorseConversion = true;
|
|
break;
|
|
}
|
|
|
|
// Cand1 can't be better than Cand2.
|
|
return false;
|
|
|
|
case ImplicitConversionSequence::Indistinguishable:
|
|
// Do nothing.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// -- for some argument j, ICSj(F1) is a better conversion sequence than
|
|
// ICSj(F2), or, if not that,
|
|
if (HasBetterConversion && !HasWorseConversion)
|
|
return true;
|
|
|
|
// -- the context is an initialization by user-defined conversion
|
|
// (see 8.5, 13.3.1.5) and the standard conversion sequence
|
|
// from the return type of F1 to the destination type (i.e.,
|
|
// the type of the entity being initialized) is a better
|
|
// conversion sequence than the standard conversion sequence
|
|
// from the return type of F2 to the destination type.
|
|
if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
|
|
Cand1.Function && Cand2.Function &&
|
|
isa<CXXConversionDecl>(Cand1.Function) &&
|
|
isa<CXXConversionDecl>(Cand2.Function)) {
|
|
// First check whether we prefer one of the conversion functions over the
|
|
// other. This only distinguishes the results in non-standard, extension
|
|
// cases such as the conversion from a lambda closure type to a function
|
|
// pointer or block.
|
|
ImplicitConversionSequence::CompareKind Result =
|
|
compareConversionFunctions(S, Cand1.Function, Cand2.Function);
|
|
if (Result == ImplicitConversionSequence::Indistinguishable)
|
|
Result = CompareStandardConversionSequences(S, Loc,
|
|
Cand1.FinalConversion,
|
|
Cand2.FinalConversion);
|
|
|
|
if (Result != ImplicitConversionSequence::Indistinguishable)
|
|
return Result == ImplicitConversionSequence::Better;
|
|
|
|
// FIXME: Compare kind of reference binding if conversion functions
|
|
// convert to a reference type used in direct reference binding, per
|
|
// C++14 [over.match.best]p1 section 2 bullet 3.
|
|
}
|
|
|
|
// FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
|
|
// as combined with the resolution to CWG issue 243.
|
|
//
|
|
// When the context is initialization by constructor ([over.match.ctor] or
|
|
// either phase of [over.match.list]), a constructor is preferred over
|
|
// a conversion function.
|
|
if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
|
|
Cand1.Function && Cand2.Function &&
|
|
isa<CXXConstructorDecl>(Cand1.Function) !=
|
|
isa<CXXConstructorDecl>(Cand2.Function))
|
|
return isa<CXXConstructorDecl>(Cand1.Function);
|
|
|
|
// -- F1 is a non-template function and F2 is a function template
|
|
// specialization, or, if not that,
|
|
bool Cand1IsSpecialization = Cand1.Function &&
|
|
Cand1.Function->getPrimaryTemplate();
|
|
bool Cand2IsSpecialization = Cand2.Function &&
|
|
Cand2.Function->getPrimaryTemplate();
|
|
if (Cand1IsSpecialization != Cand2IsSpecialization)
|
|
return Cand2IsSpecialization;
|
|
|
|
// -- F1 and F2 are function template specializations, and the function
|
|
// template for F1 is more specialized than the template for F2
|
|
// according to the partial ordering rules described in 14.5.5.2, or,
|
|
// if not that,
|
|
if (Cand1IsSpecialization && Cand2IsSpecialization) {
|
|
if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate(
|
|
Cand1.Function->getPrimaryTemplate(),
|
|
Cand2.Function->getPrimaryTemplate(), Loc,
|
|
isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion
|
|
: TPOC_Call,
|
|
Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments,
|
|
Cand1.isReversed() ^ Cand2.isReversed()))
|
|
return BetterTemplate == Cand1.Function->getPrimaryTemplate();
|
|
}
|
|
|
|
// -— F1 and F2 are non-template functions with the same
|
|
// parameter-type-lists, and F1 is more constrained than F2 [...],
|
|
if (Cand1.Function && Cand2.Function && !Cand1IsSpecialization &&
|
|
!Cand2IsSpecialization && Cand1.Function->hasPrototype() &&
|
|
Cand2.Function->hasPrototype()) {
|
|
auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType());
|
|
auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType());
|
|
if (PT1->getNumParams() == PT2->getNumParams() &&
|
|
PT1->isVariadic() == PT2->isVariadic() &&
|
|
S.FunctionParamTypesAreEqual(PT1, PT2)) {
|
|
Expr *RC1 = Cand1.Function->getTrailingRequiresClause();
|
|
Expr *RC2 = Cand2.Function->getTrailingRequiresClause();
|
|
if (RC1 && RC2) {
|
|
bool AtLeastAsConstrained1, AtLeastAsConstrained2;
|
|
if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function,
|
|
{RC2}, AtLeastAsConstrained1) ||
|
|
S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function,
|
|
{RC1}, AtLeastAsConstrained2))
|
|
return false;
|
|
if (AtLeastAsConstrained1 != AtLeastAsConstrained2)
|
|
return AtLeastAsConstrained1;
|
|
} else if (RC1 || RC2) {
|
|
return RC1 != nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
// -- F1 is a constructor for a class D, F2 is a constructor for a base
|
|
// class B of D, and for all arguments the corresponding parameters of
|
|
// F1 and F2 have the same type.
|
|
// FIXME: Implement the "all parameters have the same type" check.
|
|
bool Cand1IsInherited =
|
|
dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
|
|
bool Cand2IsInherited =
|
|
dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
|
|
if (Cand1IsInherited != Cand2IsInherited)
|
|
return Cand2IsInherited;
|
|
else if (Cand1IsInherited) {
|
|
assert(Cand2IsInherited);
|
|
auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
|
|
auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
|
|
if (Cand1Class->isDerivedFrom(Cand2Class))
|
|
return true;
|
|
if (Cand2Class->isDerivedFrom(Cand1Class))
|
|
return false;
|
|
// Inherited from sibling base classes: still ambiguous.
|
|
}
|
|
|
|
// -- F2 is a rewritten candidate (12.4.1.2) and F1 is not
|
|
// -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate
|
|
// with reversed order of parameters and F1 is not
|
|
//
|
|
// We rank reversed + different operator as worse than just reversed, but
|
|
// that comparison can never happen, because we only consider reversing for
|
|
// the maximally-rewritten operator (== or <=>).
|
|
if (Cand1.RewriteKind != Cand2.RewriteKind)
|
|
return Cand1.RewriteKind < Cand2.RewriteKind;
|
|
|
|
// Check C++17 tie-breakers for deduction guides.
|
|
{
|
|
auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
|
|
auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
|
|
if (Guide1 && Guide2) {
|
|
// -- F1 is generated from a deduction-guide and F2 is not
|
|
if (Guide1->isImplicit() != Guide2->isImplicit())
|
|
return Guide2->isImplicit();
|
|
|
|
// -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
|
|
if (Guide1->isCopyDeductionCandidate())
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Check for enable_if value-based overload resolution.
|
|
if (Cand1.Function && Cand2.Function) {
|
|
Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
|
|
if (Cmp != Comparison::Equal)
|
|
return Cmp == Comparison::Better;
|
|
}
|
|
|
|
bool HasPS1 = Cand1.Function != nullptr &&
|
|
functionHasPassObjectSizeParams(Cand1.Function);
|
|
bool HasPS2 = Cand2.Function != nullptr &&
|
|
functionHasPassObjectSizeParams(Cand2.Function);
|
|
if (HasPS1 != HasPS2 && HasPS1)
|
|
return true;
|
|
|
|
auto MV = isBetterMultiversionCandidate(Cand1, Cand2);
|
|
if (MV == Comparison::Better)
|
|
return true;
|
|
if (MV == Comparison::Worse)
|
|
return false;
|
|
|
|
// If other rules cannot determine which is better, CUDA preference is used
|
|
// to determine which is better.
|
|
if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
|
|
FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
|
|
return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
|
|
S.IdentifyCUDAPreference(Caller, Cand2.Function);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine whether two declarations are "equivalent" for the purposes of
|
|
/// name lookup and overload resolution. This applies when the same internal/no
|
|
/// linkage entity is defined by two modules (probably by textually including
|
|
/// the same header). In such a case, we don't consider the declarations to
|
|
/// declare the same entity, but we also don't want lookups with both
|
|
/// declarations visible to be ambiguous in some cases (this happens when using
|
|
/// a modularized libstdc++).
|
|
bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
|
|
const NamedDecl *B) {
|
|
auto *VA = dyn_cast_or_null<ValueDecl>(A);
|
|
auto *VB = dyn_cast_or_null<ValueDecl>(B);
|
|
if (!VA || !VB)
|
|
return false;
|
|
|
|
// The declarations must be declaring the same name as an internal linkage
|
|
// entity in different modules.
|
|
if (!VA->getDeclContext()->getRedeclContext()->Equals(
|
|
VB->getDeclContext()->getRedeclContext()) ||
|
|
getOwningModule(VA) == getOwningModule(VB) ||
|
|
VA->isExternallyVisible() || VB->isExternallyVisible())
|
|
return false;
|
|
|
|
// Check that the declarations appear to be equivalent.
|
|
//
|
|
// FIXME: Checking the type isn't really enough to resolve the ambiguity.
|
|
// For constants and functions, we should check the initializer or body is
|
|
// the same. For non-constant variables, we shouldn't allow it at all.
|
|
if (Context.hasSameType(VA->getType(), VB->getType()))
|
|
return true;
|
|
|
|
// Enum constants within unnamed enumerations will have different types, but
|
|
// may still be similar enough to be interchangeable for our purposes.
|
|
if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
|
|
if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
|
|
// Only handle anonymous enums. If the enumerations were named and
|
|
// equivalent, they would have been merged to the same type.
|
|
auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
|
|
auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
|
|
if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
|
|
!Context.hasSameType(EnumA->getIntegerType(),
|
|
EnumB->getIntegerType()))
|
|
return false;
|
|
// Allow this only if the value is the same for both enumerators.
|
|
return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
|
|
}
|
|
}
|
|
|
|
// Nothing else is sufficiently similar.
|
|
return false;
|
|
}
|
|
|
|
void Sema::diagnoseEquivalentInternalLinkageDeclarations(
|
|
SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
|
|
assert(D && "Unknown declaration");
|
|
Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
|
|
|
|
Module *M = getOwningModule(D);
|
|
Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
|
|
<< !M << (M ? M->getFullModuleName() : "");
|
|
|
|
for (auto *E : Equiv) {
|
|
Module *M = getOwningModule(E);
|
|
Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
|
|
<< !M << (M ? M->getFullModuleName() : "");
|
|
}
|
|
}
|
|
|
|
/// Computes the best viable function (C++ 13.3.3)
|
|
/// within an overload candidate set.
|
|
///
|
|
/// \param Loc The location of the function name (or operator symbol) for
|
|
/// which overload resolution occurs.
|
|
///
|
|
/// \param Best If overload resolution was successful or found a deleted
|
|
/// function, \p Best points to the candidate function found.
|
|
///
|
|
/// \returns The result of overload resolution.
|
|
OverloadingResult
|
|
OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
|
|
iterator &Best) {
|
|
llvm::SmallVector<OverloadCandidate *, 16> Candidates;
|
|
std::transform(begin(), end(), std::back_inserter(Candidates),
|
|
[](OverloadCandidate &Cand) { return &Cand; });
|
|
|
|
// [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
|
|
// are accepted by both clang and NVCC. However, during a particular
|
|
// compilation mode only one call variant is viable. We need to
|
|
// exclude non-viable overload candidates from consideration based
|
|
// only on their host/device attributes. Specifically, if one
|
|
// candidate call is WrongSide and the other is SameSide, we ignore
|
|
// the WrongSide candidate.
|
|
// We only need to remove wrong-sided candidates here if
|
|
// -fgpu-exclude-wrong-side-overloads is off. When
|
|
// -fgpu-exclude-wrong-side-overloads is on, all candidates are compared
|
|
// uniformly in isBetterOverloadCandidate.
|
|
if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) {
|
|
const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
|
|
bool ContainsSameSideCandidate =
|
|
llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
|
|
// Check viable function only.
|
|
return Cand->Viable && Cand->Function &&
|
|
S.IdentifyCUDAPreference(Caller, Cand->Function) ==
|
|
Sema::CFP_SameSide;
|
|
});
|
|
if (ContainsSameSideCandidate) {
|
|
auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
|
|
// Check viable function only to avoid unnecessary data copying/moving.
|
|
return Cand->Viable && Cand->Function &&
|
|
S.IdentifyCUDAPreference(Caller, Cand->Function) ==
|
|
Sema::CFP_WrongSide;
|
|
};
|
|
llvm::erase_if(Candidates, IsWrongSideCandidate);
|
|
}
|
|
}
|
|
|
|
// Find the best viable function.
|
|
Best = end();
|
|
for (auto *Cand : Candidates) {
|
|
Cand->Best = false;
|
|
if (Cand->Viable)
|
|
if (Best == end() ||
|
|
isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
|
|
Best = Cand;
|
|
}
|
|
|
|
// If we didn't find any viable functions, abort.
|
|
if (Best == end())
|
|
return OR_No_Viable_Function;
|
|
|
|
llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
|
|
|
|
llvm::SmallVector<OverloadCandidate*, 4> PendingBest;
|
|
PendingBest.push_back(&*Best);
|
|
Best->Best = true;
|
|
|
|
// Make sure that this function is better than every other viable
|
|
// function. If not, we have an ambiguity.
|
|
while (!PendingBest.empty()) {
|
|
auto *Curr = PendingBest.pop_back_val();
|
|
for (auto *Cand : Candidates) {
|
|
if (Cand->Viable && !Cand->Best &&
|
|
!isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) {
|
|
PendingBest.push_back(Cand);
|
|
Cand->Best = true;
|
|
|
|
if (S.isEquivalentInternalLinkageDeclaration(Cand->Function,
|
|
Curr->Function))
|
|
EquivalentCands.push_back(Cand->Function);
|
|
else
|
|
Best = end();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we found more than one best candidate, this is ambiguous.
|
|
if (Best == end())
|
|
return OR_Ambiguous;
|
|
|
|
// Best is the best viable function.
|
|
if (Best->Function && Best->Function->isDeleted())
|
|
return OR_Deleted;
|
|
|
|
if (!EquivalentCands.empty())
|
|
S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
|
|
EquivalentCands);
|
|
|
|
return OR_Success;
|
|
}
|
|
|
|
namespace {
|
|
|
|
enum OverloadCandidateKind {
|
|
oc_function,
|
|
oc_method,
|
|
oc_reversed_binary_operator,
|
|
oc_constructor,
|
|
oc_implicit_default_constructor,
|
|
oc_implicit_copy_constructor,
|
|
oc_implicit_move_constructor,
|
|
oc_implicit_copy_assignment,
|
|
oc_implicit_move_assignment,
|
|
oc_implicit_equality_comparison,
|
|
oc_inherited_constructor
|
|
};
|
|
|
|
enum OverloadCandidateSelect {
|
|
ocs_non_template,
|
|
ocs_template,
|
|
ocs_described_template,
|
|
};
|
|
|
|
static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
|
|
ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
|
|
OverloadCandidateRewriteKind CRK,
|
|
std::string &Description) {
|
|
|
|
bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
|
|
if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
|
|
isTemplate = true;
|
|
Description = S.getTemplateArgumentBindingsText(
|
|
FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
|
|
}
|
|
|
|
OverloadCandidateSelect Select = [&]() {
|
|
if (!Description.empty())
|
|
return ocs_described_template;
|
|
return isTemplate ? ocs_template : ocs_non_template;
|
|
}();
|
|
|
|
OverloadCandidateKind Kind = [&]() {
|
|
if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual)
|
|
return oc_implicit_equality_comparison;
|
|
|
|
if (CRK & CRK_Reversed)
|
|
return oc_reversed_binary_operator;
|
|
|
|
if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
|
|
if (!Ctor->isImplicit()) {
|
|
if (isa<ConstructorUsingShadowDecl>(Found))
|
|
return oc_inherited_constructor;
|
|
else
|
|
return oc_constructor;
|
|
}
|
|
|
|
if (Ctor->isDefaultConstructor())
|
|
return oc_implicit_default_constructor;
|
|
|
|
if (Ctor->isMoveConstructor())
|
|
return oc_implicit_move_constructor;
|
|
|
|
assert(Ctor->isCopyConstructor() &&
|
|
"unexpected sort of implicit constructor");
|
|
return oc_implicit_copy_constructor;
|
|
}
|
|
|
|
if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
|
|
// This actually gets spelled 'candidate function' for now, but
|
|
// it doesn't hurt to split it out.
|
|
if (!Meth->isImplicit())
|
|
return oc_method;
|
|
|
|
if (Meth->isMoveAssignmentOperator())
|
|
return oc_implicit_move_assignment;
|
|
|
|
if (Meth->isCopyAssignmentOperator())
|
|
return oc_implicit_copy_assignment;
|
|
|
|
assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
|
|
return oc_method;
|
|
}
|
|
|
|
return oc_function;
|
|
}();
|
|
|
|
return std::make_pair(Kind, Select);
|
|
}
|
|
|
|
void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
|
|
// FIXME: It'd be nice to only emit a note once per using-decl per overload
|
|
// set.
|
|
if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
|
|
S.Diag(FoundDecl->getLocation(),
|
|
diag::note_ovl_candidate_inherited_constructor)
|
|
<< Shadow->getNominatedBaseClass();
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
|
|
const FunctionDecl *FD) {
|
|
for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
|
|
bool AlwaysTrue;
|
|
if (EnableIf->getCond()->isValueDependent() ||
|
|
!EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
|
|
return false;
|
|
if (!AlwaysTrue)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if we can take the address of the function.
|
|
///
|
|
/// \param Complain - If true, we'll emit a diagnostic
|
|
/// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
|
|
/// we in overload resolution?
|
|
/// \param Loc - The location of the statement we're complaining about. Ignored
|
|
/// if we're not complaining, or if we're in overload resolution.
|
|
static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
|
|
bool Complain,
|
|
bool InOverloadResolution,
|
|
SourceLocation Loc) {
|
|
if (!isFunctionAlwaysEnabled(S.Context, FD)) {
|
|
if (Complain) {
|
|
if (InOverloadResolution)
|
|
S.Diag(FD->getBeginLoc(),
|
|
diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
|
|
else
|
|
S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (FD->getTrailingRequiresClause()) {
|
|
ConstraintSatisfaction Satisfaction;
|
|
if (S.CheckFunctionConstraints(FD, Satisfaction, Loc))
|
|
return false;
|
|
if (!Satisfaction.IsSatisfied) {
|
|
if (Complain) {
|
|
if (InOverloadResolution)
|
|
S.Diag(FD->getBeginLoc(),
|
|
diag::note_ovl_candidate_unsatisfied_constraints);
|
|
else
|
|
S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied)
|
|
<< FD;
|
|
S.DiagnoseUnsatisfiedConstraint(Satisfaction);
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
|
|
return P->hasAttr<PassObjectSizeAttr>();
|
|
});
|
|
if (I == FD->param_end())
|
|
return true;
|
|
|
|
if (Complain) {
|
|
// Add one to ParamNo because it's user-facing
|
|
unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
|
|
if (InOverloadResolution)
|
|
S.Diag(FD->getLocation(),
|
|
diag::note_ovl_candidate_has_pass_object_size_params)
|
|
<< ParamNo;
|
|
else
|
|
S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
|
|
<< FD << ParamNo;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool checkAddressOfCandidateIsAvailable(Sema &S,
|
|
const FunctionDecl *FD) {
|
|
return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
|
|
/*InOverloadResolution=*/true,
|
|
/*Loc=*/SourceLocation());
|
|
}
|
|
|
|
bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
|
|
bool Complain,
|
|
SourceLocation Loc) {
|
|
return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
|
|
/*InOverloadResolution=*/false,
|
|
Loc);
|
|
}
|
|
|
|
// Don't print candidates other than the one that matches the calling
|
|
// convention of the call operator, since that is guaranteed to exist.
|
|
static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) {
|
|
const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn);
|
|
|
|
if (!ConvD)
|
|
return false;
|
|
const auto *RD = cast<CXXRecordDecl>(Fn->getParent());
|
|
if (!RD->isLambda())
|
|
return false;
|
|
|
|
CXXMethodDecl *CallOp = RD->getLambdaCallOperator();
|
|
CallingConv CallOpCC =
|
|
CallOp->getType()->getAs<FunctionType>()->getCallConv();
|
|
QualType ConvRTy = ConvD->getType()->getAs<FunctionType>()->getReturnType();
|
|
CallingConv ConvToCC =
|
|
ConvRTy->getPointeeType()->getAs<FunctionType>()->getCallConv();
|
|
|
|
return ConvToCC != CallOpCC;
|
|
}
|
|
|
|
// Notes the location of an overload candidate.
|
|
void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
|
|
OverloadCandidateRewriteKind RewriteKind,
|
|
QualType DestType, bool TakingAddress) {
|
|
if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
|
|
return;
|
|
if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
|
|
!Fn->getAttr<TargetAttr>()->isDefaultVersion())
|
|
return;
|
|
if (shouldSkipNotingLambdaConversionDecl(Fn))
|
|
return;
|
|
|
|
std::string FnDesc;
|
|
std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
|
|
ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc);
|
|
PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
|
|
<< (unsigned)KSPair.first << (unsigned)KSPair.second
|
|
<< Fn << FnDesc;
|
|
|
|
HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
|
|
Diag(Fn->getLocation(), PD);
|
|
MaybeEmitInheritedConstructorNote(*this, Found);
|
|
}
|
|
|
|
static void
|
|
MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) {
|
|
// Perhaps the ambiguity was caused by two atomic constraints that are
|
|
// 'identical' but not equivalent:
|
|
//
|
|
// void foo() requires (sizeof(T) > 4) { } // #1
|
|
// void foo() requires (sizeof(T) > 4) && T::value { } // #2
|
|
//
|
|
// The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause
|
|
// #2 to subsume #1, but these constraint are not considered equivalent
|
|
// according to the subsumption rules because they are not the same
|
|
// source-level construct. This behavior is quite confusing and we should try
|
|
// to help the user figure out what happened.
|
|
|
|
SmallVector<const Expr *, 3> FirstAC, SecondAC;
|
|
FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr;
|
|
for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) {
|
|
if (!I->Function)
|
|
continue;
|
|
SmallVector<const Expr *, 3> AC;
|
|
if (auto *Template = I->Function->getPrimaryTemplate())
|
|
Template->getAssociatedConstraints(AC);
|
|
else
|
|
I->Function->getAssociatedConstraints(AC);
|
|
if (AC.empty())
|
|
continue;
|
|
if (FirstCand == nullptr) {
|
|
FirstCand = I->Function;
|
|
FirstAC = AC;
|
|
} else if (SecondCand == nullptr) {
|
|
SecondCand = I->Function;
|
|
SecondAC = AC;
|
|
} else {
|
|
// We have more than one pair of constrained functions - this check is
|
|
// expensive and we'd rather not try to diagnose it.
|
|
return;
|
|
}
|
|
}
|
|
if (!SecondCand)
|
|
return;
|
|
// The diagnostic can only happen if there are associated constraints on
|
|
// both sides (there needs to be some identical atomic constraint).
|
|
if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC,
|
|
SecondCand, SecondAC))
|
|
// Just show the user one diagnostic, they'll probably figure it out
|
|
// from here.
|
|
return;
|
|
}
|
|
|
|
// Notes the location of all overload candidates designated through
|
|
// OverloadedExpr
|
|
void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
|
|
bool TakingAddress) {
|
|
assert(OverloadedExpr->getType() == Context.OverloadTy);
|
|
|
|
OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
|
|
OverloadExpr *OvlExpr = Ovl.Expression;
|
|
|
|
for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
|
|
IEnd = OvlExpr->decls_end();
|
|
I != IEnd; ++I) {
|
|
if (FunctionTemplateDecl *FunTmpl =
|
|
dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
|
|
NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType,
|
|
TakingAddress);
|
|
} else if (FunctionDecl *Fun
|
|
= dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
|
|
NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Diagnoses an ambiguous conversion. The partial diagnostic is the
|
|
/// "lead" diagnostic; it will be given two arguments, the source and
|
|
/// target types of the conversion.
|
|
void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
|
|
Sema &S,
|
|
SourceLocation CaretLoc,
|
|
const PartialDiagnostic &PDiag) const {
|
|
S.Diag(CaretLoc, PDiag)
|
|
<< Ambiguous.getFromType() << Ambiguous.getToType();
|
|
// FIXME: The note limiting machinery is borrowed from
|
|
// OverloadCandidateSet::NoteCandidates; there's an opportunity for
|
|
// refactoring here.
|
|
const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
|
|
unsigned CandsShown = 0;
|
|
AmbiguousConversionSequence::const_iterator I, E;
|
|
for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
|
|
if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
|
|
break;
|
|
++CandsShown;
|
|
S.NoteOverloadCandidate(I->first, I->second);
|
|
}
|
|
if (I != E)
|
|
S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
|
|
}
|
|
|
|
static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
|
|
unsigned I, bool TakingCandidateAddress) {
|
|
const ImplicitConversionSequence &Conv = Cand->Conversions[I];
|
|
assert(Conv.isBad());
|
|
assert(Cand->Function && "for now, candidate must be a function");
|
|
FunctionDecl *Fn = Cand->Function;
|
|
|
|
// There's a conversion slot for the object argument if this is a
|
|
// non-constructor method. Note that 'I' corresponds the
|
|
// conversion-slot index.
|
|
bool isObjectArgument = false;
|
|
if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
|
|
if (I == 0)
|
|
isObjectArgument = true;
|
|
else
|
|
I--;
|
|
}
|
|
|
|
std::string FnDesc;
|
|
std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
|
|
ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(),
|
|
FnDesc);
|
|
|
|
Expr *FromExpr = Conv.Bad.FromExpr;
|
|
QualType FromTy = Conv.Bad.getFromType();
|
|
QualType ToTy = Conv.Bad.getToType();
|
|
|
|
if (FromTy == S.Context.OverloadTy) {
|
|
assert(FromExpr && "overload set argument came from implicit argument?");
|
|
Expr *E = FromExpr->IgnoreParens();
|
|
if (isa<UnaryOperator>(E))
|
|
E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
|
|
DeclarationName Name = cast<OverloadExpr>(E)->getName();
|
|
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
|
|
<< Name << I + 1;
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
}
|
|
|
|
// Do some hand-waving analysis to see if the non-viability is due
|
|
// to a qualifier mismatch.
|
|
CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
|
|
CanQualType CToTy = S.Context.getCanonicalType(ToTy);
|
|
if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
|
|
CToTy = RT->getPointeeType();
|
|
else {
|
|
// TODO: detect and diagnose the full richness of const mismatches.
|
|
if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
|
|
if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
|
|
CFromTy = FromPT->getPointeeType();
|
|
CToTy = ToPT->getPointeeType();
|
|
}
|
|
}
|
|
|
|
if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
|
|
!CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
|
|
Qualifiers FromQs = CFromTy.getQualifiers();
|
|
Qualifiers ToQs = CToTy.getQualifiers();
|
|
|
|
if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
|
|
if (isObjectArgument)
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
|
|
<< FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromQs.getAddressSpace() << ToQs.getAddressSpace();
|
|
else
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
|
|
<< FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromQs.getAddressSpace() << ToQs.getAddressSpace()
|
|
<< ToTy->isReferenceType() << I + 1;
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
}
|
|
|
|
if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
|
|
<< FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
|
|
<< (unsigned)isObjectArgument << I + 1;
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
}
|
|
|
|
if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
|
|
<< FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
|
|
<< (unsigned)isObjectArgument << I + 1;
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
}
|
|
|
|
if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
|
|
<< FromQs.hasUnaligned() << I + 1;
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
}
|
|
|
|
unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
|
|
assert(CVR && "expected qualifiers mismatch");
|
|
|
|
if (isObjectArgument) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
|
|
<< (CVR - 1);
|
|
} else {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
|
|
<< (CVR - 1) << I + 1;
|
|
}
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
}
|
|
|
|
if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue ||
|
|
Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
|
|
<< (unsigned)isObjectArgument << I + 1
|
|
<< (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue)
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange());
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
}
|
|
|
|
// Special diagnostic for failure to convert an initializer list, since
|
|
// telling the user that it has type void is not useful.
|
|
if (FromExpr && isa<InitListExpr>(FromExpr)) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
|
|
<< ToTy << (unsigned)isObjectArgument << I + 1;
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
}
|
|
|
|
// Diagnose references or pointers to incomplete types differently,
|
|
// since it's far from impossible that the incompleteness triggered
|
|
// the failure.
|
|
QualType TempFromTy = FromTy.getNonReferenceType();
|
|
if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
|
|
TempFromTy = PTy->getPointeeType();
|
|
if (TempFromTy->isIncompleteType()) {
|
|
// Emit the generic diagnostic and, optionally, add the hints to it.
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
|
|
<< ToTy << (unsigned)isObjectArgument << I + 1
|
|
<< (unsigned)(Cand->Fix.Kind);
|
|
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
}
|
|
|
|
// Diagnose base -> derived pointer conversions.
|
|
unsigned BaseToDerivedConversion = 0;
|
|
if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
|
|
if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
|
|
if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
|
|
FromPtrTy->getPointeeType()) &&
|
|
!FromPtrTy->getPointeeType()->isIncompleteType() &&
|
|
!ToPtrTy->getPointeeType()->isIncompleteType() &&
|
|
S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
|
|
FromPtrTy->getPointeeType()))
|
|
BaseToDerivedConversion = 1;
|
|
}
|
|
} else if (const ObjCObjectPointerType *FromPtrTy
|
|
= FromTy->getAs<ObjCObjectPointerType>()) {
|
|
if (const ObjCObjectPointerType *ToPtrTy
|
|
= ToTy->getAs<ObjCObjectPointerType>())
|
|
if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
|
|
if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
|
|
if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
|
|
FromPtrTy->getPointeeType()) &&
|
|
FromIface->isSuperClassOf(ToIface))
|
|
BaseToDerivedConversion = 2;
|
|
} else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
|
|
if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
|
|
!FromTy->isIncompleteType() &&
|
|
!ToRefTy->getPointeeType()->isIncompleteType() &&
|
|
S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
|
|
BaseToDerivedConversion = 3;
|
|
}
|
|
}
|
|
|
|
if (BaseToDerivedConversion) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
}
|
|
|
|
if (isa<ObjCObjectPointerType>(CFromTy) &&
|
|
isa<PointerType>(CToTy)) {
|
|
Qualifiers FromQs = CFromTy.getQualifiers();
|
|
Qualifiers ToQs = CToTy.getQualifiers();
|
|
if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
|
|
<< FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (TakingCandidateAddress &&
|
|
!checkAddressOfCandidateIsAvailable(S, Cand->Function))
|
|
return;
|
|
|
|
// Emit the generic diagnostic and, optionally, add the hints to it.
|
|
PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
|
|
FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
|
|
<< ToTy << (unsigned)isObjectArgument << I + 1
|
|
<< (unsigned)(Cand->Fix.Kind);
|
|
|
|
// If we can fix the conversion, suggest the FixIts.
|
|
for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
|
|
HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
|
|
FDiag << *HI;
|
|
S.Diag(Fn->getLocation(), FDiag);
|
|
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
}
|
|
|
|
/// Additional arity mismatch diagnosis specific to a function overload
|
|
/// candidates. This is not covered by the more general DiagnoseArityMismatch()
|
|
/// over a candidate in any candidate set.
|
|
static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
|
|
unsigned NumArgs) {
|
|
FunctionDecl *Fn = Cand->Function;
|
|
unsigned MinParams = Fn->getMinRequiredArguments();
|
|
|
|
// With invalid overloaded operators, it's possible that we think we
|
|
// have an arity mismatch when in fact it looks like we have the
|
|
// right number of arguments, because only overloaded operators have
|
|
// the weird behavior of overloading member and non-member functions.
|
|
// Just don't report anything.
|
|
if (Fn->isInvalidDecl() &&
|
|
Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
|
|
return true;
|
|
|
|
if (NumArgs < MinParams) {
|
|
assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
|
|
(Cand->FailureKind == ovl_fail_bad_deduction &&
|
|
Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
|
|
} else {
|
|
assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
|
|
(Cand->FailureKind == ovl_fail_bad_deduction &&
|
|
Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// General arity mismatch diagnosis over a candidate in a candidate set.
|
|
static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
|
|
unsigned NumFormalArgs) {
|
|
assert(isa<FunctionDecl>(D) &&
|
|
"The templated declaration should at least be a function"
|
|
" when diagnosing bad template argument deduction due to too many"
|
|
" or too few arguments");
|
|
|
|
FunctionDecl *Fn = cast<FunctionDecl>(D);
|
|
|
|
// TODO: treat calls to a missing default constructor as a special case
|
|
const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>();
|
|
unsigned MinParams = Fn->getMinRequiredArguments();
|
|
|
|
// at least / at most / exactly
|
|
unsigned mode, modeCount;
|
|
if (NumFormalArgs < MinParams) {
|
|
if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
|
|
FnTy->isTemplateVariadic())
|
|
mode = 0; // "at least"
|
|
else
|
|
mode = 2; // "exactly"
|
|
modeCount = MinParams;
|
|
} else {
|
|
if (MinParams != FnTy->getNumParams())
|
|
mode = 1; // "at most"
|
|
else
|
|
mode = 2; // "exactly"
|
|
modeCount = FnTy->getNumParams();
|
|
}
|
|
|
|
std::string Description;
|
|
std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
|
|
ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description);
|
|
|
|
if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
|
|
<< Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
|
|
else
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
|
|
<< Description << mode << modeCount << NumFormalArgs;
|
|
|
|
MaybeEmitInheritedConstructorNote(S, Found);
|
|
}
|
|
|
|
/// Arity mismatch diagnosis specific to a function overload candidate.
|
|
static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
|
|
unsigned NumFormalArgs) {
|
|
if (!CheckArityMismatch(S, Cand, NumFormalArgs))
|
|
DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
|
|
}
|
|
|
|
static TemplateDecl *getDescribedTemplate(Decl *Templated) {
|
|
if (TemplateDecl *TD = Templated->getDescribedTemplate())
|
|
return TD;
|
|
llvm_unreachable("Unsupported: Getting the described template declaration"
|
|
" for bad deduction diagnosis");
|
|
}
|
|
|
|
/// Diagnose a failed template-argument deduction.
|
|
static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
|
|
DeductionFailureInfo &DeductionFailure,
|
|
unsigned NumArgs,
|
|
bool TakingCandidateAddress) {
|
|
TemplateParameter Param = DeductionFailure.getTemplateParameter();
|
|
NamedDecl *ParamD;
|
|
(ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
|
|
(ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
|
|
(ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
|
|
switch (DeductionFailure.Result) {
|
|
case Sema::TDK_Success:
|
|
llvm_unreachable("TDK_success while diagnosing bad deduction");
|
|
|
|
case Sema::TDK_Incomplete: {
|
|
assert(ParamD && "no parameter found for incomplete deduction result");
|
|
S.Diag(Templated->getLocation(),
|
|
diag::note_ovl_candidate_incomplete_deduction)
|
|
<< ParamD->getDeclName();
|
|
MaybeEmitInheritedConstructorNote(S, Found);
|
|
return;
|
|
}
|
|
|
|
case Sema::TDK_IncompletePack: {
|
|
assert(ParamD && "no parameter found for incomplete deduction result");
|
|
S.Diag(Templated->getLocation(),
|
|
diag::note_ovl_candidate_incomplete_deduction_pack)
|
|
<< ParamD->getDeclName()
|
|
<< (DeductionFailure.getFirstArg()->pack_size() + 1)
|
|
<< *DeductionFailure.getFirstArg();
|
|
MaybeEmitInheritedConstructorNote(S, Found);
|
|
return;
|
|
}
|
|
|
|
case Sema::TDK_Underqualified: {
|
|
assert(ParamD && "no parameter found for bad qualifiers deduction result");
|
|
TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
|
|
|
|
QualType Param = DeductionFailure.getFirstArg()->getAsType();
|
|
|
|
// Param will have been canonicalized, but it should just be a
|
|
// qualified version of ParamD, so move the qualifiers to that.
|
|
QualifierCollector Qs;
|
|
Qs.strip(Param);
|
|
QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
|
|
assert(S.Context.hasSameType(Param, NonCanonParam));
|
|
|
|
// Arg has also been canonicalized, but there's nothing we can do
|
|
// about that. It also doesn't matter as much, because it won't
|
|
// have any template parameters in it (because deduction isn't
|
|
// done on dependent types).
|
|
QualType Arg = DeductionFailure.getSecondArg()->getAsType();
|
|
|
|
S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
|
|
<< ParamD->getDeclName() << Arg << NonCanonParam;
|
|
MaybeEmitInheritedConstructorNote(S, Found);
|
|
return;
|
|
}
|
|
|
|
case Sema::TDK_Inconsistent: {
|
|
assert(ParamD && "no parameter found for inconsistent deduction result");
|
|
int which = 0;
|
|
if (isa<TemplateTypeParmDecl>(ParamD))
|
|
which = 0;
|
|
else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
|
|
// Deduction might have failed because we deduced arguments of two
|
|
// different types for a non-type template parameter.
|
|
// FIXME: Use a different TDK value for this.
|
|
QualType T1 =
|
|
DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
|
|
QualType T2 =
|
|
DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
|
|
if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
|
|
S.Diag(Templated->getLocation(),
|
|
diag::note_ovl_candidate_inconsistent_deduction_types)
|
|
<< ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
|
|
<< *DeductionFailure.getSecondArg() << T2;
|
|
MaybeEmitInheritedConstructorNote(S, Found);
|
|
return;
|
|
}
|
|
|
|
which = 1;
|
|
} else {
|
|
which = 2;
|
|
}
|
|
|
|
// Tweak the diagnostic if the problem is that we deduced packs of
|
|
// different arities. We'll print the actual packs anyway in case that
|
|
// includes additional useful information.
|
|
if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack &&
|
|
DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack &&
|
|
DeductionFailure.getFirstArg()->pack_size() !=
|
|
DeductionFailure.getSecondArg()->pack_size()) {
|
|
which = 3;
|
|
}
|
|
|
|
S.Diag(Templated->getLocation(),
|
|
diag::note_ovl_candidate_inconsistent_deduction)
|
|
<< which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
|
|
<< *DeductionFailure.getSecondArg();
|
|
MaybeEmitInheritedConstructorNote(S, Found);
|
|
return;
|
|
}
|
|
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
assert(ParamD && "no parameter found for invalid explicit arguments");
|
|
if (ParamD->getDeclName())
|
|
S.Diag(Templated->getLocation(),
|
|
diag::note_ovl_candidate_explicit_arg_mismatch_named)
|
|
<< ParamD->getDeclName();
|
|
else {
|
|
int index = 0;
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
|
|
index = TTP->getIndex();
|
|
else if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(ParamD))
|
|
index = NTTP->getIndex();
|
|
else
|
|
index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
|
|
S.Diag(Templated->getLocation(),
|
|
diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
|
|
<< (index + 1);
|
|
}
|
|
MaybeEmitInheritedConstructorNote(S, Found);
|
|
return;
|
|
|
|
case Sema::TDK_ConstraintsNotSatisfied: {
|
|
// Format the template argument list into the argument string.
|
|
SmallString<128> TemplateArgString;
|
|
TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList();
|
|
TemplateArgString = " ";
|
|
TemplateArgString += S.getTemplateArgumentBindingsText(
|
|
getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
|
|
if (TemplateArgString.size() == 1)
|
|
TemplateArgString.clear();
|
|
S.Diag(Templated->getLocation(),
|
|
diag::note_ovl_candidate_unsatisfied_constraints)
|
|
<< TemplateArgString;
|
|
|
|
S.DiagnoseUnsatisfiedConstraint(
|
|
static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction);
|
|
return;
|
|
}
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
DiagnoseArityMismatch(S, Found, Templated, NumArgs);
|
|
return;
|
|
|
|
case Sema::TDK_InstantiationDepth:
|
|
S.Diag(Templated->getLocation(),
|
|
diag::note_ovl_candidate_instantiation_depth);
|
|
MaybeEmitInheritedConstructorNote(S, Found);
|
|
return;
|
|
|
|
case Sema::TDK_SubstitutionFailure: {
|
|
// Format the template argument list into the argument string.
|
|
SmallString<128> TemplateArgString;
|
|
if (TemplateArgumentList *Args =
|
|
DeductionFailure.getTemplateArgumentList()) {
|
|
TemplateArgString = " ";
|
|
TemplateArgString += S.getTemplateArgumentBindingsText(
|
|
getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
|
|
if (TemplateArgString.size() == 1)
|
|
TemplateArgString.clear();
|
|
}
|
|
|
|
// If this candidate was disabled by enable_if, say so.
|
|
PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
|
|
if (PDiag && PDiag->second.getDiagID() ==
|
|
diag::err_typename_nested_not_found_enable_if) {
|
|
// FIXME: Use the source range of the condition, and the fully-qualified
|
|
// name of the enable_if template. These are both present in PDiag.
|
|
S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
|
|
<< "'enable_if'" << TemplateArgString;
|
|
return;
|
|
}
|
|
|
|
// We found a specific requirement that disabled the enable_if.
|
|
if (PDiag && PDiag->second.getDiagID() ==
|
|
diag::err_typename_nested_not_found_requirement) {
|
|
S.Diag(Templated->getLocation(),
|
|
diag::note_ovl_candidate_disabled_by_requirement)
|
|
<< PDiag->second.getStringArg(0) << TemplateArgString;
|
|
return;
|
|
}
|
|
|
|
// Format the SFINAE diagnostic into the argument string.
|
|
// FIXME: Add a general mechanism to include a PartialDiagnostic *'s
|
|
// formatted message in another diagnostic.
|
|
SmallString<128> SFINAEArgString;
|
|
SourceRange R;
|
|
if (PDiag) {
|
|
SFINAEArgString = ": ";
|
|
R = SourceRange(PDiag->first, PDiag->first);
|
|
PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
|
|
}
|
|
|
|
S.Diag(Templated->getLocation(),
|
|
diag::note_ovl_candidate_substitution_failure)
|
|
<< TemplateArgString << SFINAEArgString << R;
|
|
MaybeEmitInheritedConstructorNote(S, Found);
|
|
return;
|
|
}
|
|
|
|
case Sema::TDK_DeducedMismatch:
|
|
case Sema::TDK_DeducedMismatchNested: {
|
|
// Format the template argument list into the argument string.
|
|
SmallString<128> TemplateArgString;
|
|
if (TemplateArgumentList *Args =
|
|
DeductionFailure.getTemplateArgumentList()) {
|
|
TemplateArgString = " ";
|
|
TemplateArgString += S.getTemplateArgumentBindingsText(
|
|
getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
|
|
if (TemplateArgString.size() == 1)
|
|
TemplateArgString.clear();
|
|
}
|
|
|
|
S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
|
|
<< (*DeductionFailure.getCallArgIndex() + 1)
|
|
<< *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
|
|
<< TemplateArgString
|
|
<< (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
|
|
break;
|
|
}
|
|
|
|
case Sema::TDK_NonDeducedMismatch: {
|
|
// FIXME: Provide a source location to indicate what we couldn't match.
|
|
TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
|
|
TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
|
|
if (FirstTA.getKind() == TemplateArgument::Template &&
|
|
SecondTA.getKind() == TemplateArgument::Template) {
|
|
TemplateName FirstTN = FirstTA.getAsTemplate();
|
|
TemplateName SecondTN = SecondTA.getAsTemplate();
|
|
if (FirstTN.getKind() == TemplateName::Template &&
|
|
SecondTN.getKind() == TemplateName::Template) {
|
|
if (FirstTN.getAsTemplateDecl()->getName() ==
|
|
SecondTN.getAsTemplateDecl()->getName()) {
|
|
// FIXME: This fixes a bad diagnostic where both templates are named
|
|
// the same. This particular case is a bit difficult since:
|
|
// 1) It is passed as a string to the diagnostic printer.
|
|
// 2) The diagnostic printer only attempts to find a better
|
|
// name for types, not decls.
|
|
// Ideally, this should folded into the diagnostic printer.
|
|
S.Diag(Templated->getLocation(),
|
|
diag::note_ovl_candidate_non_deduced_mismatch_qualified)
|
|
<< FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
|
|
!checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
|
|
return;
|
|
|
|
// FIXME: For generic lambda parameters, check if the function is a lambda
|
|
// call operator, and if so, emit a prettier and more informative
|
|
// diagnostic that mentions 'auto' and lambda in addition to
|
|
// (or instead of?) the canonical template type parameters.
|
|
S.Diag(Templated->getLocation(),
|
|
diag::note_ovl_candidate_non_deduced_mismatch)
|
|
<< FirstTA << SecondTA;
|
|
return;
|
|
}
|
|
// TODO: diagnose these individually, then kill off
|
|
// note_ovl_candidate_bad_deduction, which is uselessly vague.
|
|
case Sema::TDK_MiscellaneousDeductionFailure:
|
|
S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
|
|
MaybeEmitInheritedConstructorNote(S, Found);
|
|
return;
|
|
case Sema::TDK_CUDATargetMismatch:
|
|
S.Diag(Templated->getLocation(),
|
|
diag::note_cuda_ovl_candidate_target_mismatch);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// Diagnose a failed template-argument deduction, for function calls.
|
|
static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
|
|
unsigned NumArgs,
|
|
bool TakingCandidateAddress) {
|
|
unsigned TDK = Cand->DeductionFailure.Result;
|
|
if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
|
|
if (CheckArityMismatch(S, Cand, NumArgs))
|
|
return;
|
|
}
|
|
DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
|
|
Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
|
|
}
|
|
|
|
/// CUDA: diagnose an invalid call across targets.
|
|
static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
|
|
FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
|
|
FunctionDecl *Callee = Cand->Function;
|
|
|
|
Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
|
|
CalleeTarget = S.IdentifyCUDATarget(Callee);
|
|
|
|
std::string FnDesc;
|
|
std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
|
|
ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee,
|
|
Cand->getRewriteKind(), FnDesc);
|
|
|
|
S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
|
|
<< (unsigned)FnKindPair.first << (unsigned)ocs_non_template
|
|
<< FnDesc /* Ignored */
|
|
<< CalleeTarget << CallerTarget;
|
|
|
|
// This could be an implicit constructor for which we could not infer the
|
|
// target due to a collsion. Diagnose that case.
|
|
CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
|
|
if (Meth != nullptr && Meth->isImplicit()) {
|
|
CXXRecordDecl *ParentClass = Meth->getParent();
|
|
Sema::CXXSpecialMember CSM;
|
|
|
|
switch (FnKindPair.first) {
|
|
default:
|
|
return;
|
|
case oc_implicit_default_constructor:
|
|
CSM = Sema::CXXDefaultConstructor;
|
|
break;
|
|
case oc_implicit_copy_constructor:
|
|
CSM = Sema::CXXCopyConstructor;
|
|
break;
|
|
case oc_implicit_move_constructor:
|
|
CSM = Sema::CXXMoveConstructor;
|
|
break;
|
|
case oc_implicit_copy_assignment:
|
|
CSM = Sema::CXXCopyAssignment;
|
|
break;
|
|
case oc_implicit_move_assignment:
|
|
CSM = Sema::CXXMoveAssignment;
|
|
break;
|
|
};
|
|
|
|
bool ConstRHS = false;
|
|
if (Meth->getNumParams()) {
|
|
if (const ReferenceType *RT =
|
|
Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
|
|
ConstRHS = RT->getPointeeType().isConstQualified();
|
|
}
|
|
}
|
|
|
|
S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
|
|
/* ConstRHS */ ConstRHS,
|
|
/* Diagnose */ true);
|
|
}
|
|
}
|
|
|
|
static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
|
|
FunctionDecl *Callee = Cand->Function;
|
|
EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
|
|
|
|
S.Diag(Callee->getLocation(),
|
|
diag::note_ovl_candidate_disabled_by_function_cond_attr)
|
|
<< Attr->getCond()->getSourceRange() << Attr->getMessage();
|
|
}
|
|
|
|
static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
|
|
ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function);
|
|
assert(ES.isExplicit() && "not an explicit candidate");
|
|
|
|
unsigned Kind;
|
|
switch (Cand->Function->getDeclKind()) {
|
|
case Decl::Kind::CXXConstructor:
|
|
Kind = 0;
|
|
break;
|
|
case Decl::Kind::CXXConversion:
|
|
Kind = 1;
|
|
break;
|
|
case Decl::Kind::CXXDeductionGuide:
|
|
Kind = Cand->Function->isImplicit() ? 0 : 2;
|
|
break;
|
|
default:
|
|
llvm_unreachable("invalid Decl");
|
|
}
|
|
|
|
// Note the location of the first (in-class) declaration; a redeclaration
|
|
// (particularly an out-of-class definition) will typically lack the
|
|
// 'explicit' specifier.
|
|
// FIXME: This is probably a good thing to do for all 'candidate' notes.
|
|
FunctionDecl *First = Cand->Function->getFirstDecl();
|
|
if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern())
|
|
First = Pattern->getFirstDecl();
|
|
|
|
S.Diag(First->getLocation(),
|
|
diag::note_ovl_candidate_explicit)
|
|
<< Kind << (ES.getExpr() ? 1 : 0)
|
|
<< (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange());
|
|
}
|
|
|
|
static void DiagnoseOpenCLExtensionDisabled(Sema &S, OverloadCandidate *Cand) {
|
|
FunctionDecl *Callee = Cand->Function;
|
|
|
|
S.Diag(Callee->getLocation(),
|
|
diag::note_ovl_candidate_disabled_by_extension)
|
|
<< S.getOpenCLExtensionsFromDeclExtMap(Callee);
|
|
}
|
|
|
|
/// Generates a 'note' diagnostic for an overload candidate. We've
|
|
/// already generated a primary error at the call site.
|
|
///
|
|
/// It really does need to be a single diagnostic with its caret
|
|
/// pointed at the candidate declaration. Yes, this creates some
|
|
/// major challenges of technical writing. Yes, this makes pointing
|
|
/// out problems with specific arguments quite awkward. It's still
|
|
/// better than generating twenty screens of text for every failed
|
|
/// overload.
|
|
///
|
|
/// It would be great to be able to express per-candidate problems
|
|
/// more richly for those diagnostic clients that cared, but we'd
|
|
/// still have to be just as careful with the default diagnostics.
|
|
/// \param CtorDestAS Addr space of object being constructed (for ctor
|
|
/// candidates only).
|
|
static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
|
|
unsigned NumArgs,
|
|
bool TakingCandidateAddress,
|
|
LangAS CtorDestAS = LangAS::Default) {
|
|
FunctionDecl *Fn = Cand->Function;
|
|
if (shouldSkipNotingLambdaConversionDecl(Fn))
|
|
return;
|
|
|
|
// Note deleted candidates, but only if they're viable.
|
|
if (Cand->Viable) {
|
|
if (Fn->isDeleted()) {
|
|
std::string FnDesc;
|
|
std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
|
|
ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
|
|
Cand->getRewriteKind(), FnDesc);
|
|
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
|
|
<< (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
|
|
<< (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
}
|
|
|
|
// We don't really have anything else to say about viable candidates.
|
|
S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
|
|
return;
|
|
}
|
|
|
|
switch (Cand->FailureKind) {
|
|
case ovl_fail_too_many_arguments:
|
|
case ovl_fail_too_few_arguments:
|
|
return DiagnoseArityMismatch(S, Cand, NumArgs);
|
|
|
|
case ovl_fail_bad_deduction:
|
|
return DiagnoseBadDeduction(S, Cand, NumArgs,
|
|
TakingCandidateAddress);
|
|
|
|
case ovl_fail_illegal_constructor: {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
|
|
<< (Fn->getPrimaryTemplate() ? 1 : 0);
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
}
|
|
|
|
case ovl_fail_object_addrspace_mismatch: {
|
|
Qualifiers QualsForPrinting;
|
|
QualsForPrinting.setAddressSpace(CtorDestAS);
|
|
S.Diag(Fn->getLocation(),
|
|
diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
|
|
<< QualsForPrinting;
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
}
|
|
|
|
case ovl_fail_trivial_conversion:
|
|
case ovl_fail_bad_final_conversion:
|
|
case ovl_fail_final_conversion_not_exact:
|
|
return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
|
|
|
|
case ovl_fail_bad_conversion: {
|
|
unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
|
|
for (unsigned N = Cand->Conversions.size(); I != N; ++I)
|
|
if (Cand->Conversions[I].isBad())
|
|
return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
|
|
|
|
// FIXME: this currently happens when we're called from SemaInit
|
|
// when user-conversion overload fails. Figure out how to handle
|
|
// those conditions and diagnose them well.
|
|
return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
|
|
}
|
|
|
|
case ovl_fail_bad_target:
|
|
return DiagnoseBadTarget(S, Cand);
|
|
|
|
case ovl_fail_enable_if:
|
|
return DiagnoseFailedEnableIfAttr(S, Cand);
|
|
|
|
case ovl_fail_explicit:
|
|
return DiagnoseFailedExplicitSpec(S, Cand);
|
|
|
|
case ovl_fail_ext_disabled:
|
|
return DiagnoseOpenCLExtensionDisabled(S, Cand);
|
|
|
|
case ovl_fail_inhctor_slice:
|
|
// It's generally not interesting to note copy/move constructors here.
|
|
if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
|
|
return;
|
|
S.Diag(Fn->getLocation(),
|
|
diag::note_ovl_candidate_inherited_constructor_slice)
|
|
<< (Fn->getPrimaryTemplate() ? 1 : 0)
|
|
<< Fn->getParamDecl(0)->getType()->isRValueReferenceType();
|
|
MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
|
|
return;
|
|
|
|
case ovl_fail_addr_not_available: {
|
|
bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
|
|
(void)Available;
|
|
assert(!Available);
|
|
break;
|
|
}
|
|
case ovl_non_default_multiversion_function:
|
|
// Do nothing, these should simply be ignored.
|
|
break;
|
|
|
|
case ovl_fail_constraints_not_satisfied: {
|
|
std::string FnDesc;
|
|
std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
|
|
ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
|
|
Cand->getRewriteKind(), FnDesc);
|
|
|
|
S.Diag(Fn->getLocation(),
|
|
diag::note_ovl_candidate_constraints_not_satisfied)
|
|
<< (unsigned)FnKindPair.first << (unsigned)ocs_non_template
|
|
<< FnDesc /* Ignored */;
|
|
ConstraintSatisfaction Satisfaction;
|
|
if (S.CheckFunctionConstraints(Fn, Satisfaction))
|
|
break;
|
|
S.DiagnoseUnsatisfiedConstraint(Satisfaction);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
|
|
if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate))
|
|
return;
|
|
|
|
// Desugar the type of the surrogate down to a function type,
|
|
// retaining as many typedefs as possible while still showing
|
|
// the function type (and, therefore, its parameter types).
|
|
QualType FnType = Cand->Surrogate->getConversionType();
|
|
bool isLValueReference = false;
|
|
bool isRValueReference = false;
|
|
bool isPointer = false;
|
|
if (const LValueReferenceType *FnTypeRef =
|
|
FnType->getAs<LValueReferenceType>()) {
|
|
FnType = FnTypeRef->getPointeeType();
|
|
isLValueReference = true;
|
|
} else if (const RValueReferenceType *FnTypeRef =
|
|
FnType->getAs<RValueReferenceType>()) {
|
|
FnType = FnTypeRef->getPointeeType();
|
|
isRValueReference = true;
|
|
}
|
|
if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
|
|
FnType = FnTypePtr->getPointeeType();
|
|
isPointer = true;
|
|
}
|
|
// Desugar down to a function type.
|
|
FnType = QualType(FnType->getAs<FunctionType>(), 0);
|
|
// Reconstruct the pointer/reference as appropriate.
|
|
if (isPointer) FnType = S.Context.getPointerType(FnType);
|
|
if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
|
|
if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
|
|
|
|
S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
|
|
<< FnType;
|
|
}
|
|
|
|
static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
|
|
SourceLocation OpLoc,
|
|
OverloadCandidate *Cand) {
|
|
assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
|
|
std::string TypeStr("operator");
|
|
TypeStr += Opc;
|
|
TypeStr += "(";
|
|
TypeStr += Cand->BuiltinParamTypes[0].getAsString();
|
|
if (Cand->Conversions.size() == 1) {
|
|
TypeStr += ")";
|
|
S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
|
|
} else {
|
|
TypeStr += ", ";
|
|
TypeStr += Cand->BuiltinParamTypes[1].getAsString();
|
|
TypeStr += ")";
|
|
S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
|
|
}
|
|
}
|
|
|
|
static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
|
|
OverloadCandidate *Cand) {
|
|
for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
|
|
if (ICS.isBad()) break; // all meaningless after first invalid
|
|
if (!ICS.isAmbiguous()) continue;
|
|
|
|
ICS.DiagnoseAmbiguousConversion(
|
|
S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
|
|
}
|
|
}
|
|
|
|
static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
|
|
if (Cand->Function)
|
|
return Cand->Function->getLocation();
|
|
if (Cand->IsSurrogate)
|
|
return Cand->Surrogate->getLocation();
|
|
return SourceLocation();
|
|
}
|
|
|
|
static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
|
|
switch ((Sema::TemplateDeductionResult)DFI.Result) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_NonDependentConversionFailure:
|
|
llvm_unreachable("non-deduction failure while diagnosing bad deduction");
|
|
|
|
case Sema::TDK_Invalid:
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_IncompletePack:
|
|
return 1;
|
|
|
|
case Sema::TDK_Underqualified:
|
|
case Sema::TDK_Inconsistent:
|
|
return 2;
|
|
|
|
case Sema::TDK_SubstitutionFailure:
|
|
case Sema::TDK_DeducedMismatch:
|
|
case Sema::TDK_ConstraintsNotSatisfied:
|
|
case Sema::TDK_DeducedMismatchNested:
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_MiscellaneousDeductionFailure:
|
|
case Sema::TDK_CUDATargetMismatch:
|
|
return 3;
|
|
|
|
case Sema::TDK_InstantiationDepth:
|
|
return 4;
|
|
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
return 5;
|
|
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
return 6;
|
|
}
|
|
llvm_unreachable("Unhandled deduction result");
|
|
}
|
|
|
|
namespace {
|
|
struct CompareOverloadCandidatesForDisplay {
|
|
Sema &S;
|
|
SourceLocation Loc;
|
|
size_t NumArgs;
|
|
OverloadCandidateSet::CandidateSetKind CSK;
|
|
|
|
CompareOverloadCandidatesForDisplay(
|
|
Sema &S, SourceLocation Loc, size_t NArgs,
|
|
OverloadCandidateSet::CandidateSetKind CSK)
|
|
: S(S), NumArgs(NArgs), CSK(CSK) {}
|
|
|
|
OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const {
|
|
// If there are too many or too few arguments, that's the high-order bit we
|
|
// want to sort by, even if the immediate failure kind was something else.
|
|
if (C->FailureKind == ovl_fail_too_many_arguments ||
|
|
C->FailureKind == ovl_fail_too_few_arguments)
|
|
return static_cast<OverloadFailureKind>(C->FailureKind);
|
|
|
|
if (C->Function) {
|
|
if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic())
|
|
return ovl_fail_too_many_arguments;
|
|
if (NumArgs < C->Function->getMinRequiredArguments())
|
|
return ovl_fail_too_few_arguments;
|
|
}
|
|
|
|
return static_cast<OverloadFailureKind>(C->FailureKind);
|
|
}
|
|
|
|
bool operator()(const OverloadCandidate *L,
|
|
const OverloadCandidate *R) {
|
|
// Fast-path this check.
|
|
if (L == R) return false;
|
|
|
|
// Order first by viability.
|
|
if (L->Viable) {
|
|
if (!R->Viable) return true;
|
|
|
|
// TODO: introduce a tri-valued comparison for overload
|
|
// candidates. Would be more worthwhile if we had a sort
|
|
// that could exploit it.
|
|
if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
|
|
return true;
|
|
if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
|
|
return false;
|
|
} else if (R->Viable)
|
|
return false;
|
|
|
|
assert(L->Viable == R->Viable);
|
|
|
|
// Criteria by which we can sort non-viable candidates:
|
|
if (!L->Viable) {
|
|
OverloadFailureKind LFailureKind = EffectiveFailureKind(L);
|
|
OverloadFailureKind RFailureKind = EffectiveFailureKind(R);
|
|
|
|
// 1. Arity mismatches come after other candidates.
|
|
if (LFailureKind == ovl_fail_too_many_arguments ||
|
|
LFailureKind == ovl_fail_too_few_arguments) {
|
|
if (RFailureKind == ovl_fail_too_many_arguments ||
|
|
RFailureKind == ovl_fail_too_few_arguments) {
|
|
int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
|
|
int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
|
|
if (LDist == RDist) {
|
|
if (LFailureKind == RFailureKind)
|
|
// Sort non-surrogates before surrogates.
|
|
return !L->IsSurrogate && R->IsSurrogate;
|
|
// Sort candidates requiring fewer parameters than there were
|
|
// arguments given after candidates requiring more parameters
|
|
// than there were arguments given.
|
|
return LFailureKind == ovl_fail_too_many_arguments;
|
|
}
|
|
return LDist < RDist;
|
|
}
|
|
return false;
|
|
}
|
|
if (RFailureKind == ovl_fail_too_many_arguments ||
|
|
RFailureKind == ovl_fail_too_few_arguments)
|
|
return true;
|
|
|
|
// 2. Bad conversions come first and are ordered by the number
|
|
// of bad conversions and quality of good conversions.
|
|
if (LFailureKind == ovl_fail_bad_conversion) {
|
|
if (RFailureKind != ovl_fail_bad_conversion)
|
|
return true;
|
|
|
|
// The conversion that can be fixed with a smaller number of changes,
|
|
// comes first.
|
|
unsigned numLFixes = L->Fix.NumConversionsFixed;
|
|
unsigned numRFixes = R->Fix.NumConversionsFixed;
|
|
numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
|
|
numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
|
|
if (numLFixes != numRFixes) {
|
|
return numLFixes < numRFixes;
|
|
}
|
|
|
|
// If there's any ordering between the defined conversions...
|
|
// FIXME: this might not be transitive.
|
|
assert(L->Conversions.size() == R->Conversions.size());
|
|
|
|
int leftBetter = 0;
|
|
unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
|
|
for (unsigned E = L->Conversions.size(); I != E; ++I) {
|
|
switch (CompareImplicitConversionSequences(S, Loc,
|
|
L->Conversions[I],
|
|
R->Conversions[I])) {
|
|
case ImplicitConversionSequence::Better:
|
|
leftBetter++;
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Worse:
|
|
leftBetter--;
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Indistinguishable:
|
|
break;
|
|
}
|
|
}
|
|
if (leftBetter > 0) return true;
|
|
if (leftBetter < 0) return false;
|
|
|
|
} else if (RFailureKind == ovl_fail_bad_conversion)
|
|
return false;
|
|
|
|
if (LFailureKind == ovl_fail_bad_deduction) {
|
|
if (RFailureKind != ovl_fail_bad_deduction)
|
|
return true;
|
|
|
|
if (L->DeductionFailure.Result != R->DeductionFailure.Result)
|
|
return RankDeductionFailure(L->DeductionFailure)
|
|
< RankDeductionFailure(R->DeductionFailure);
|
|
} else if (RFailureKind == ovl_fail_bad_deduction)
|
|
return false;
|
|
|
|
// TODO: others?
|
|
}
|
|
|
|
// Sort everything else by location.
|
|
SourceLocation LLoc = GetLocationForCandidate(L);
|
|
SourceLocation RLoc = GetLocationForCandidate(R);
|
|
|
|
// Put candidates without locations (e.g. builtins) at the end.
|
|
if (LLoc.isInvalid()) return false;
|
|
if (RLoc.isInvalid()) return true;
|
|
|
|
return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// CompleteNonViableCandidate - Normally, overload resolution only
|
|
/// computes up to the first bad conversion. Produces the FixIt set if
|
|
/// possible.
|
|
static void
|
|
CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet::CandidateSetKind CSK) {
|
|
assert(!Cand->Viable);
|
|
|
|
// Don't do anything on failures other than bad conversion.
|
|
if (Cand->FailureKind != ovl_fail_bad_conversion)
|
|
return;
|
|
|
|
// We only want the FixIts if all the arguments can be corrected.
|
|
bool Unfixable = false;
|
|
// Use a implicit copy initialization to check conversion fixes.
|
|
Cand->Fix.setConversionChecker(TryCopyInitialization);
|
|
|
|
// Attempt to fix the bad conversion.
|
|
unsigned ConvCount = Cand->Conversions.size();
|
|
for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
|
|
++ConvIdx) {
|
|
assert(ConvIdx != ConvCount && "no bad conversion in candidate");
|
|
if (Cand->Conversions[ConvIdx].isInitialized() &&
|
|
Cand->Conversions[ConvIdx].isBad()) {
|
|
Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// FIXME: this should probably be preserved from the overload
|
|
// operation somehow.
|
|
bool SuppressUserConversions = false;
|
|
|
|
unsigned ConvIdx = 0;
|
|
unsigned ArgIdx = 0;
|
|
ArrayRef<QualType> ParamTypes;
|
|
bool Reversed = Cand->isReversed();
|
|
|
|
if (Cand->IsSurrogate) {
|
|
QualType ConvType
|
|
= Cand->Surrogate->getConversionType().getNonReferenceType();
|
|
if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
|
|
ConvType = ConvPtrType->getPointeeType();
|
|
ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes();
|
|
// Conversion 0 is 'this', which doesn't have a corresponding parameter.
|
|
ConvIdx = 1;
|
|
} else if (Cand->Function) {
|
|
ParamTypes =
|
|
Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes();
|
|
if (isa<CXXMethodDecl>(Cand->Function) &&
|
|
!isa<CXXConstructorDecl>(Cand->Function) && !Reversed) {
|
|
// Conversion 0 is 'this', which doesn't have a corresponding parameter.
|
|
ConvIdx = 1;
|
|
if (CSK == OverloadCandidateSet::CSK_Operator &&
|
|
Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call)
|
|
// Argument 0 is 'this', which doesn't have a corresponding parameter.
|
|
ArgIdx = 1;
|
|
}
|
|
} else {
|
|
// Builtin operator.
|
|
assert(ConvCount <= 3);
|
|
ParamTypes = Cand->BuiltinParamTypes;
|
|
}
|
|
|
|
// Fill in the rest of the conversions.
|
|
for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0;
|
|
ConvIdx != ConvCount;
|
|
++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) {
|
|
assert(ArgIdx < Args.size() && "no argument for this arg conversion");
|
|
if (Cand->Conversions[ConvIdx].isInitialized()) {
|
|
// We've already checked this conversion.
|
|
} else if (ParamIdx < ParamTypes.size()) {
|
|
if (ParamTypes[ParamIdx]->isDependentType())
|
|
Cand->Conversions[ConvIdx].setAsIdentityConversion(
|
|
Args[ArgIdx]->getType());
|
|
else {
|
|
Cand->Conversions[ConvIdx] =
|
|
TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx],
|
|
SuppressUserConversions,
|
|
/*InOverloadResolution=*/true,
|
|
/*AllowObjCWritebackConversion=*/
|
|
S.getLangOpts().ObjCAutoRefCount);
|
|
// Store the FixIt in the candidate if it exists.
|
|
if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
|
|
Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
|
|
}
|
|
} else
|
|
Cand->Conversions[ConvIdx].setEllipsis();
|
|
}
|
|
}
|
|
|
|
SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
|
|
Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
|
|
SourceLocation OpLoc,
|
|
llvm::function_ref<bool(OverloadCandidate &)> Filter) {
|
|
// Sort the candidates by viability and position. Sorting directly would
|
|
// be prohibitive, so we make a set of pointers and sort those.
|
|
SmallVector<OverloadCandidate*, 32> Cands;
|
|
if (OCD == OCD_AllCandidates) Cands.reserve(size());
|
|
for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
|
|
if (!Filter(*Cand))
|
|
continue;
|
|
switch (OCD) {
|
|
case OCD_AllCandidates:
|
|
if (!Cand->Viable) {
|
|
if (!Cand->Function && !Cand->IsSurrogate) {
|
|
// This a non-viable builtin candidate. We do not, in general,
|
|
// want to list every possible builtin candidate.
|
|
continue;
|
|
}
|
|
CompleteNonViableCandidate(S, Cand, Args, Kind);
|
|
}
|
|
break;
|
|
|
|
case OCD_ViableCandidates:
|
|
if (!Cand->Viable)
|
|
continue;
|
|
break;
|
|
|
|
case OCD_AmbiguousCandidates:
|
|
if (!Cand->Best)
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
Cands.push_back(Cand);
|
|
}
|
|
|
|
llvm::stable_sort(
|
|
Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
|
|
|
|
return Cands;
|
|
}
|
|
|
|
bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args,
|
|
SourceLocation OpLoc) {
|
|
bool DeferHint = false;
|
|
if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) {
|
|
// Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or
|
|
// host device candidates.
|
|
auto WrongSidedCands =
|
|
CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) {
|
|
return (Cand.Viable == false &&
|
|
Cand.FailureKind == ovl_fail_bad_target) ||
|
|
(Cand.Function->template hasAttr<CUDAHostAttr>() &&
|
|
Cand.Function->template hasAttr<CUDADeviceAttr>());
|
|
});
|
|
DeferHint = WrongSidedCands.size();
|
|
}
|
|
return DeferHint;
|
|
}
|
|
|
|
/// When overload resolution fails, prints diagnostic messages containing the
|
|
/// candidates in the candidate set.
|
|
void OverloadCandidateSet::NoteCandidates(
|
|
PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD,
|
|
ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc,
|
|
llvm::function_ref<bool(OverloadCandidate &)> Filter) {
|
|
|
|
auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
|
|
|
|
S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc));
|
|
|
|
NoteCandidates(S, Args, Cands, Opc, OpLoc);
|
|
|
|
if (OCD == OCD_AmbiguousCandidates)
|
|
MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()});
|
|
}
|
|
|
|
void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
|
|
ArrayRef<OverloadCandidate *> Cands,
|
|
StringRef Opc, SourceLocation OpLoc) {
|
|
bool ReportedAmbiguousConversions = false;
|
|
|
|
const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
|
|
unsigned CandsShown = 0;
|
|
auto I = Cands.begin(), E = Cands.end();
|
|
for (; I != E; ++I) {
|
|
OverloadCandidate *Cand = *I;
|
|
|
|
// Set an arbitrary limit on the number of candidate functions we'll spam
|
|
// the user with. FIXME: This limit should depend on details of the
|
|
// candidate list.
|
|
if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
|
|
break;
|
|
}
|
|
++CandsShown;
|
|
|
|
if (Cand->Function)
|
|
NoteFunctionCandidate(S, Cand, Args.size(),
|
|
/*TakingCandidateAddress=*/false, DestAS);
|
|
else if (Cand->IsSurrogate)
|
|
NoteSurrogateCandidate(S, Cand);
|
|
else {
|
|
assert(Cand->Viable &&
|
|
"Non-viable built-in candidates are not added to Cands.");
|
|
// Generally we only see ambiguities including viable builtin
|
|
// operators if overload resolution got screwed up by an
|
|
// ambiguous user-defined conversion.
|
|
//
|
|
// FIXME: It's quite possible for different conversions to see
|
|
// different ambiguities, though.
|
|
if (!ReportedAmbiguousConversions) {
|
|
NoteAmbiguousUserConversions(S, OpLoc, Cand);
|
|
ReportedAmbiguousConversions = true;
|
|
}
|
|
|
|
// If this is a viable builtin, print it.
|
|
NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
|
|
}
|
|
}
|
|
|
|
if (I != E)
|
|
S.Diag(OpLoc, diag::note_ovl_too_many_candidates,
|
|
shouldDeferDiags(S, Args, OpLoc))
|
|
<< int(E - I);
|
|
}
|
|
|
|
static SourceLocation
|
|
GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
|
|
return Cand->Specialization ? Cand->Specialization->getLocation()
|
|
: SourceLocation();
|
|
}
|
|
|
|
namespace {
|
|
struct CompareTemplateSpecCandidatesForDisplay {
|
|
Sema &S;
|
|
CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
|
|
|
|
bool operator()(const TemplateSpecCandidate *L,
|
|
const TemplateSpecCandidate *R) {
|
|
// Fast-path this check.
|
|
if (L == R)
|
|
return false;
|
|
|
|
// Assuming that both candidates are not matches...
|
|
|
|
// Sort by the ranking of deduction failures.
|
|
if (L->DeductionFailure.Result != R->DeductionFailure.Result)
|
|
return RankDeductionFailure(L->DeductionFailure) <
|
|
RankDeductionFailure(R->DeductionFailure);
|
|
|
|
// Sort everything else by location.
|
|
SourceLocation LLoc = GetLocationForCandidate(L);
|
|
SourceLocation RLoc = GetLocationForCandidate(R);
|
|
|
|
// Put candidates without locations (e.g. builtins) at the end.
|
|
if (LLoc.isInvalid())
|
|
return false;
|
|
if (RLoc.isInvalid())
|
|
return true;
|
|
|
|
return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Diagnose a template argument deduction failure.
|
|
/// We are treating these failures as overload failures due to bad
|
|
/// deductions.
|
|
void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
|
|
bool ForTakingAddress) {
|
|
DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
|
|
DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
|
|
}
|
|
|
|
void TemplateSpecCandidateSet::destroyCandidates() {
|
|
for (iterator i = begin(), e = end(); i != e; ++i) {
|
|
i->DeductionFailure.Destroy();
|
|
}
|
|
}
|
|
|
|
void TemplateSpecCandidateSet::clear() {
|
|
destroyCandidates();
|
|
Candidates.clear();
|
|
}
|
|
|
|
/// NoteCandidates - When no template specialization match is found, prints
|
|
/// diagnostic messages containing the non-matching specializations that form
|
|
/// the candidate set.
|
|
/// This is analoguous to OverloadCandidateSet::NoteCandidates() with
|
|
/// OCD == OCD_AllCandidates and Cand->Viable == false.
|
|
void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
|
|
// Sort the candidates by position (assuming no candidate is a match).
|
|
// Sorting directly would be prohibitive, so we make a set of pointers
|
|
// and sort those.
|
|
SmallVector<TemplateSpecCandidate *, 32> Cands;
|
|
Cands.reserve(size());
|
|
for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
|
|
if (Cand->Specialization)
|
|
Cands.push_back(Cand);
|
|
// Otherwise, this is a non-matching builtin candidate. We do not,
|
|
// in general, want to list every possible builtin candidate.
|
|
}
|
|
|
|
llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
|
|
|
|
// FIXME: Perhaps rename OverloadsShown and getShowOverloads()
|
|
// for generalization purposes (?).
|
|
const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
|
|
|
|
SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
|
|
unsigned CandsShown = 0;
|
|
for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
|
|
TemplateSpecCandidate *Cand = *I;
|
|
|
|
// Set an arbitrary limit on the number of candidates we'll spam
|
|
// the user with. FIXME: This limit should depend on details of the
|
|
// candidate list.
|
|
if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
|
|
break;
|
|
++CandsShown;
|
|
|
|
assert(Cand->Specialization &&
|
|
"Non-matching built-in candidates are not added to Cands.");
|
|
Cand->NoteDeductionFailure(S, ForTakingAddress);
|
|
}
|
|
|
|
if (I != E)
|
|
S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
|
|
}
|
|
|
|
// [PossiblyAFunctionType] --> [Return]
|
|
// NonFunctionType --> NonFunctionType
|
|
// R (A) --> R(A)
|
|
// R (*)(A) --> R (A)
|
|
// R (&)(A) --> R (A)
|
|
// R (S::*)(A) --> R (A)
|
|
QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
|
|
QualType Ret = PossiblyAFunctionType;
|
|
if (const PointerType *ToTypePtr =
|
|
PossiblyAFunctionType->getAs<PointerType>())
|
|
Ret = ToTypePtr->getPointeeType();
|
|
else if (const ReferenceType *ToTypeRef =
|
|
PossiblyAFunctionType->getAs<ReferenceType>())
|
|
Ret = ToTypeRef->getPointeeType();
|
|
else if (const MemberPointerType *MemTypePtr =
|
|
PossiblyAFunctionType->getAs<MemberPointerType>())
|
|
Ret = MemTypePtr->getPointeeType();
|
|
Ret =
|
|
Context.getCanonicalType(Ret).getUnqualifiedType();
|
|
return Ret;
|
|
}
|
|
|
|
static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
|
|
bool Complain = true) {
|
|
if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
|
|
S.DeduceReturnType(FD, Loc, Complain))
|
|
return true;
|
|
|
|
auto *FPT = FD->getType()->castAs<FunctionProtoType>();
|
|
if (S.getLangOpts().CPlusPlus17 &&
|
|
isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
|
|
!S.ResolveExceptionSpec(Loc, FPT))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
// A helper class to help with address of function resolution
|
|
// - allows us to avoid passing around all those ugly parameters
|
|
class AddressOfFunctionResolver {
|
|
Sema& S;
|
|
Expr* SourceExpr;
|
|
const QualType& TargetType;
|
|
QualType TargetFunctionType; // Extracted function type from target type
|
|
|
|
bool Complain;
|
|
//DeclAccessPair& ResultFunctionAccessPair;
|
|
ASTContext& Context;
|
|
|
|
bool TargetTypeIsNonStaticMemberFunction;
|
|
bool FoundNonTemplateFunction;
|
|
bool StaticMemberFunctionFromBoundPointer;
|
|
bool HasComplained;
|
|
|
|
OverloadExpr::FindResult OvlExprInfo;
|
|
OverloadExpr *OvlExpr;
|
|
TemplateArgumentListInfo OvlExplicitTemplateArgs;
|
|
SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
|
|
TemplateSpecCandidateSet FailedCandidates;
|
|
|
|
public:
|
|
AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
|
|
const QualType &TargetType, bool Complain)
|
|
: S(S), SourceExpr(SourceExpr), TargetType(TargetType),
|
|
Complain(Complain), Context(S.getASTContext()),
|
|
TargetTypeIsNonStaticMemberFunction(
|
|
!!TargetType->getAs<MemberPointerType>()),
|
|
FoundNonTemplateFunction(false),
|
|
StaticMemberFunctionFromBoundPointer(false),
|
|
HasComplained(false),
|
|
OvlExprInfo(OverloadExpr::find(SourceExpr)),
|
|
OvlExpr(OvlExprInfo.Expression),
|
|
FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
|
|
ExtractUnqualifiedFunctionTypeFromTargetType();
|
|
|
|
if (TargetFunctionType->isFunctionType()) {
|
|
if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
|
|
if (!UME->isImplicitAccess() &&
|
|
!S.ResolveSingleFunctionTemplateSpecialization(UME))
|
|
StaticMemberFunctionFromBoundPointer = true;
|
|
} else if (OvlExpr->hasExplicitTemplateArgs()) {
|
|
DeclAccessPair dap;
|
|
if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
|
|
OvlExpr, false, &dap)) {
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
|
|
if (!Method->isStatic()) {
|
|
// If the target type is a non-function type and the function found
|
|
// is a non-static member function, pretend as if that was the
|
|
// target, it's the only possible type to end up with.
|
|
TargetTypeIsNonStaticMemberFunction = true;
|
|
|
|
// And skip adding the function if its not in the proper form.
|
|
// We'll diagnose this due to an empty set of functions.
|
|
if (!OvlExprInfo.HasFormOfMemberPointer)
|
|
return;
|
|
}
|
|
|
|
Matches.push_back(std::make_pair(dap, Fn));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (OvlExpr->hasExplicitTemplateArgs())
|
|
OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
|
|
|
|
if (FindAllFunctionsThatMatchTargetTypeExactly()) {
|
|
// C++ [over.over]p4:
|
|
// If more than one function is selected, [...]
|
|
if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
|
|
if (FoundNonTemplateFunction)
|
|
EliminateAllTemplateMatches();
|
|
else
|
|
EliminateAllExceptMostSpecializedTemplate();
|
|
}
|
|
}
|
|
|
|
if (S.getLangOpts().CUDA && Matches.size() > 1)
|
|
EliminateSuboptimalCudaMatches();
|
|
}
|
|
|
|
bool hasComplained() const { return HasComplained; }
|
|
|
|
private:
|
|
bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
|
|
QualType Discard;
|
|
return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
|
|
S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
|
|
}
|
|
|
|
/// \return true if A is considered a better overload candidate for the
|
|
/// desired type than B.
|
|
bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
|
|
// If A doesn't have exactly the correct type, we don't want to classify it
|
|
// as "better" than anything else. This way, the user is required to
|
|
// disambiguate for us if there are multiple candidates and no exact match.
|
|
return candidateHasExactlyCorrectType(A) &&
|
|
(!candidateHasExactlyCorrectType(B) ||
|
|
compareEnableIfAttrs(S, A, B) == Comparison::Better);
|
|
}
|
|
|
|
/// \return true if we were able to eliminate all but one overload candidate,
|
|
/// false otherwise.
|
|
bool eliminiateSuboptimalOverloadCandidates() {
|
|
// Same algorithm as overload resolution -- one pass to pick the "best",
|
|
// another pass to be sure that nothing is better than the best.
|
|
auto Best = Matches.begin();
|
|
for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
|
|
if (isBetterCandidate(I->second, Best->second))
|
|
Best = I;
|
|
|
|
const FunctionDecl *BestFn = Best->second;
|
|
auto IsBestOrInferiorToBest = [this, BestFn](
|
|
const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
|
|
return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
|
|
};
|
|
|
|
// Note: We explicitly leave Matches unmodified if there isn't a clear best
|
|
// option, so we can potentially give the user a better error
|
|
if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
|
|
return false;
|
|
Matches[0] = *Best;
|
|
Matches.resize(1);
|
|
return true;
|
|
}
|
|
|
|
bool isTargetTypeAFunction() const {
|
|
return TargetFunctionType->isFunctionType();
|
|
}
|
|
|
|
// [ToType] [Return]
|
|
|
|
// R (*)(A) --> R (A), IsNonStaticMemberFunction = false
|
|
// R (&)(A) --> R (A), IsNonStaticMemberFunction = false
|
|
// R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
|
|
void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
|
|
TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
|
|
}
|
|
|
|
// return true if any matching specializations were found
|
|
bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
|
|
const DeclAccessPair& CurAccessFunPair) {
|
|
if (CXXMethodDecl *Method
|
|
= dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
|
|
// Skip non-static function templates when converting to pointer, and
|
|
// static when converting to member pointer.
|
|
if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
|
|
return false;
|
|
}
|
|
else if (TargetTypeIsNonStaticMemberFunction)
|
|
return false;
|
|
|
|
// C++ [over.over]p2:
|
|
// If the name is a function template, template argument deduction is
|
|
// done (14.8.2.2), and if the argument deduction succeeds, the
|
|
// resulting template argument list is used to generate a single
|
|
// function template specialization, which is added to the set of
|
|
// overloaded functions considered.
|
|
FunctionDecl *Specialization = nullptr;
|
|
TemplateDeductionInfo Info(FailedCandidates.getLocation());
|
|
if (Sema::TemplateDeductionResult Result
|
|
= S.DeduceTemplateArguments(FunctionTemplate,
|
|
&OvlExplicitTemplateArgs,
|
|
TargetFunctionType, Specialization,
|
|
Info, /*IsAddressOfFunction*/true)) {
|
|
// Make a note of the failed deduction for diagnostics.
|
|
FailedCandidates.addCandidate()
|
|
.set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
|
|
MakeDeductionFailureInfo(Context, Result, Info));
|
|
return false;
|
|
}
|
|
|
|
// Template argument deduction ensures that we have an exact match or
|
|
// compatible pointer-to-function arguments that would be adjusted by ICS.
|
|
// This function template specicalization works.
|
|
assert(S.isSameOrCompatibleFunctionType(
|
|
Context.getCanonicalType(Specialization->getType()),
|
|
Context.getCanonicalType(TargetFunctionType)));
|
|
|
|
if (!S.checkAddressOfFunctionIsAvailable(Specialization))
|
|
return false;
|
|
|
|
Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
|
|
return true;
|
|
}
|
|
|
|
bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
|
|
const DeclAccessPair& CurAccessFunPair) {
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
|
|
// Skip non-static functions when converting to pointer, and static
|
|
// when converting to member pointer.
|
|
if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
|
|
return false;
|
|
}
|
|
else if (TargetTypeIsNonStaticMemberFunction)
|
|
return false;
|
|
|
|
if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
|
|
if (S.getLangOpts().CUDA)
|
|
if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
|
|
if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
|
|
return false;
|
|
if (FunDecl->isMultiVersion()) {
|
|
const auto *TA = FunDecl->getAttr<TargetAttr>();
|
|
if (TA && !TA->isDefaultVersion())
|
|
return false;
|
|
}
|
|
|
|
// If any candidate has a placeholder return type, trigger its deduction
|
|
// now.
|
|
if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
|
|
Complain)) {
|
|
HasComplained |= Complain;
|
|
return false;
|
|
}
|
|
|
|
if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
|
|
return false;
|
|
|
|
// If we're in C, we need to support types that aren't exactly identical.
|
|
if (!S.getLangOpts().CPlusPlus ||
|
|
candidateHasExactlyCorrectType(FunDecl)) {
|
|
Matches.push_back(std::make_pair(
|
|
CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
|
|
FoundNonTemplateFunction = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool FindAllFunctionsThatMatchTargetTypeExactly() {
|
|
bool Ret = false;
|
|
|
|
// If the overload expression doesn't have the form of a pointer to
|
|
// member, don't try to convert it to a pointer-to-member type.
|
|
if (IsInvalidFormOfPointerToMemberFunction())
|
|
return false;
|
|
|
|
for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
|
|
E = OvlExpr->decls_end();
|
|
I != E; ++I) {
|
|
// Look through any using declarations to find the underlying function.
|
|
NamedDecl *Fn = (*I)->getUnderlyingDecl();
|
|
|
|
// C++ [over.over]p3:
|
|
// Non-member functions and static member functions match
|
|
// targets of type "pointer-to-function" or "reference-to-function."
|
|
// Nonstatic member functions match targets of
|
|
// type "pointer-to-member-function."
|
|
// Note that according to DR 247, the containing class does not matter.
|
|
if (FunctionTemplateDecl *FunctionTemplate
|
|
= dyn_cast<FunctionTemplateDecl>(Fn)) {
|
|
if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
|
|
Ret = true;
|
|
}
|
|
// If we have explicit template arguments supplied, skip non-templates.
|
|
else if (!OvlExpr->hasExplicitTemplateArgs() &&
|
|
AddMatchingNonTemplateFunction(Fn, I.getPair()))
|
|
Ret = true;
|
|
}
|
|
assert(Ret || Matches.empty());
|
|
return Ret;
|
|
}
|
|
|
|
void EliminateAllExceptMostSpecializedTemplate() {
|
|
// [...] and any given function template specialization F1 is
|
|
// eliminated if the set contains a second function template
|
|
// specialization whose function template is more specialized
|
|
// than the function template of F1 according to the partial
|
|
// ordering rules of 14.5.5.2.
|
|
|
|
// The algorithm specified above is quadratic. We instead use a
|
|
// two-pass algorithm (similar to the one used to identify the
|
|
// best viable function in an overload set) that identifies the
|
|
// best function template (if it exists).
|
|
|
|
UnresolvedSet<4> MatchesCopy; // TODO: avoid!
|
|
for (unsigned I = 0, E = Matches.size(); I != E; ++I)
|
|
MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
|
|
|
|
// TODO: It looks like FailedCandidates does not serve much purpose
|
|
// here, since the no_viable diagnostic has index 0.
|
|
UnresolvedSetIterator Result = S.getMostSpecialized(
|
|
MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
|
|
SourceExpr->getBeginLoc(), S.PDiag(),
|
|
S.PDiag(diag::err_addr_ovl_ambiguous)
|
|
<< Matches[0].second->getDeclName(),
|
|
S.PDiag(diag::note_ovl_candidate)
|
|
<< (unsigned)oc_function << (unsigned)ocs_described_template,
|
|
Complain, TargetFunctionType);
|
|
|
|
if (Result != MatchesCopy.end()) {
|
|
// Make it the first and only element
|
|
Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
|
|
Matches[0].second = cast<FunctionDecl>(*Result);
|
|
Matches.resize(1);
|
|
} else
|
|
HasComplained |= Complain;
|
|
}
|
|
|
|
void EliminateAllTemplateMatches() {
|
|
// [...] any function template specializations in the set are
|
|
// eliminated if the set also contains a non-template function, [...]
|
|
for (unsigned I = 0, N = Matches.size(); I != N; ) {
|
|
if (Matches[I].second->getPrimaryTemplate() == nullptr)
|
|
++I;
|
|
else {
|
|
Matches[I] = Matches[--N];
|
|
Matches.resize(N);
|
|
}
|
|
}
|
|
}
|
|
|
|
void EliminateSuboptimalCudaMatches() {
|
|
S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
|
|
}
|
|
|
|
public:
|
|
void ComplainNoMatchesFound() const {
|
|
assert(Matches.empty());
|
|
S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
|
|
<< OvlExpr->getName() << TargetFunctionType
|
|
<< OvlExpr->getSourceRange();
|
|
if (FailedCandidates.empty())
|
|
S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
|
|
/*TakingAddress=*/true);
|
|
else {
|
|
// We have some deduction failure messages. Use them to diagnose
|
|
// the function templates, and diagnose the non-template candidates
|
|
// normally.
|
|
for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
|
|
IEnd = OvlExpr->decls_end();
|
|
I != IEnd; ++I)
|
|
if (FunctionDecl *Fun =
|
|
dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
|
|
if (!functionHasPassObjectSizeParams(Fun))
|
|
S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType,
|
|
/*TakingAddress=*/true);
|
|
FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
|
|
}
|
|
}
|
|
|
|
bool IsInvalidFormOfPointerToMemberFunction() const {
|
|
return TargetTypeIsNonStaticMemberFunction &&
|
|
!OvlExprInfo.HasFormOfMemberPointer;
|
|
}
|
|
|
|
void ComplainIsInvalidFormOfPointerToMemberFunction() const {
|
|
// TODO: Should we condition this on whether any functions might
|
|
// have matched, or is it more appropriate to do that in callers?
|
|
// TODO: a fixit wouldn't hurt.
|
|
S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
|
|
<< TargetType << OvlExpr->getSourceRange();
|
|
}
|
|
|
|
bool IsStaticMemberFunctionFromBoundPointer() const {
|
|
return StaticMemberFunctionFromBoundPointer;
|
|
}
|
|
|
|
void ComplainIsStaticMemberFunctionFromBoundPointer() const {
|
|
S.Diag(OvlExpr->getBeginLoc(),
|
|
diag::err_invalid_form_pointer_member_function)
|
|
<< OvlExpr->getSourceRange();
|
|
}
|
|
|
|
void ComplainOfInvalidConversion() const {
|
|
S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
|
|
<< OvlExpr->getName() << TargetType;
|
|
}
|
|
|
|
void ComplainMultipleMatchesFound() const {
|
|
assert(Matches.size() > 1);
|
|
S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
|
|
<< OvlExpr->getName() << OvlExpr->getSourceRange();
|
|
S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
|
|
/*TakingAddress=*/true);
|
|
}
|
|
|
|
bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
|
|
|
|
int getNumMatches() const { return Matches.size(); }
|
|
|
|
FunctionDecl* getMatchingFunctionDecl() const {
|
|
if (Matches.size() != 1) return nullptr;
|
|
return Matches[0].second;
|
|
}
|
|
|
|
const DeclAccessPair* getMatchingFunctionAccessPair() const {
|
|
if (Matches.size() != 1) return nullptr;
|
|
return &Matches[0].first;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
|
|
/// an overloaded function (C++ [over.over]), where @p From is an
|
|
/// expression with overloaded function type and @p ToType is the type
|
|
/// we're trying to resolve to. For example:
|
|
///
|
|
/// @code
|
|
/// int f(double);
|
|
/// int f(int);
|
|
///
|
|
/// int (*pfd)(double) = f; // selects f(double)
|
|
/// @endcode
|
|
///
|
|
/// This routine returns the resulting FunctionDecl if it could be
|
|
/// resolved, and NULL otherwise. When @p Complain is true, this
|
|
/// routine will emit diagnostics if there is an error.
|
|
FunctionDecl *
|
|
Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
|
|
QualType TargetType,
|
|
bool Complain,
|
|
DeclAccessPair &FoundResult,
|
|
bool *pHadMultipleCandidates) {
|
|
assert(AddressOfExpr->getType() == Context.OverloadTy);
|
|
|
|
AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
|
|
Complain);
|
|
int NumMatches = Resolver.getNumMatches();
|
|
FunctionDecl *Fn = nullptr;
|
|
bool ShouldComplain = Complain && !Resolver.hasComplained();
|
|
if (NumMatches == 0 && ShouldComplain) {
|
|
if (Resolver.IsInvalidFormOfPointerToMemberFunction())
|
|
Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
|
|
else
|
|
Resolver.ComplainNoMatchesFound();
|
|
}
|
|
else if (NumMatches > 1 && ShouldComplain)
|
|
Resolver.ComplainMultipleMatchesFound();
|
|
else if (NumMatches == 1) {
|
|
Fn = Resolver.getMatchingFunctionDecl();
|
|
assert(Fn);
|
|
if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
|
|
ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
|
|
FoundResult = *Resolver.getMatchingFunctionAccessPair();
|
|
if (Complain) {
|
|
if (Resolver.IsStaticMemberFunctionFromBoundPointer())
|
|
Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
|
|
else
|
|
CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
|
|
}
|
|
}
|
|
|
|
if (pHadMultipleCandidates)
|
|
*pHadMultipleCandidates = Resolver.hadMultipleCandidates();
|
|
return Fn;
|
|
}
|
|
|
|
/// Given an expression that refers to an overloaded function, try to
|
|
/// resolve that function to a single function that can have its address taken.
|
|
/// This will modify `Pair` iff it returns non-null.
|
|
///
|
|
/// This routine can only succeed if from all of the candidates in the overload
|
|
/// set for SrcExpr that can have their addresses taken, there is one candidate
|
|
/// that is more constrained than the rest.
|
|
FunctionDecl *
|
|
Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) {
|
|
OverloadExpr::FindResult R = OverloadExpr::find(E);
|
|
OverloadExpr *Ovl = R.Expression;
|
|
bool IsResultAmbiguous = false;
|
|
FunctionDecl *Result = nullptr;
|
|
DeclAccessPair DAP;
|
|
SmallVector<FunctionDecl *, 2> AmbiguousDecls;
|
|
|
|
auto CheckMoreConstrained =
|
|
[&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> {
|
|
SmallVector<const Expr *, 1> AC1, AC2;
|
|
FD1->getAssociatedConstraints(AC1);
|
|
FD2->getAssociatedConstraints(AC2);
|
|
bool AtLeastAsConstrained1, AtLeastAsConstrained2;
|
|
if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1))
|
|
return None;
|
|
if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2))
|
|
return None;
|
|
if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
|
|
return None;
|
|
return AtLeastAsConstrained1;
|
|
};
|
|
|
|
// Don't use the AddressOfResolver because we're specifically looking for
|
|
// cases where we have one overload candidate that lacks
|
|
// enable_if/pass_object_size/...
|
|
for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
|
|
auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
|
|
if (!FD)
|
|
return nullptr;
|
|
|
|
if (!checkAddressOfFunctionIsAvailable(FD))
|
|
continue;
|
|
|
|
// We have more than one result - see if it is more constrained than the
|
|
// previous one.
|
|
if (Result) {
|
|
Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD,
|
|
Result);
|
|
if (!MoreConstrainedThanPrevious) {
|
|
IsResultAmbiguous = true;
|
|
AmbiguousDecls.push_back(FD);
|
|
continue;
|
|
}
|
|
if (!*MoreConstrainedThanPrevious)
|
|
continue;
|
|
// FD is more constrained - replace Result with it.
|
|
}
|
|
IsResultAmbiguous = false;
|
|
DAP = I.getPair();
|
|
Result = FD;
|
|
}
|
|
|
|
if (IsResultAmbiguous)
|
|
return nullptr;
|
|
|
|
if (Result) {
|
|
SmallVector<const Expr *, 1> ResultAC;
|
|
// We skipped over some ambiguous declarations which might be ambiguous with
|
|
// the selected result.
|
|
for (FunctionDecl *Skipped : AmbiguousDecls)
|
|
if (!CheckMoreConstrained(Skipped, Result).hasValue())
|
|
return nullptr;
|
|
Pair = DAP;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// Given an overloaded function, tries to turn it into a non-overloaded
|
|
/// function reference using resolveAddressOfSingleOverloadCandidate. This
|
|
/// will perform access checks, diagnose the use of the resultant decl, and, if
|
|
/// requested, potentially perform a function-to-pointer decay.
|
|
///
|
|
/// Returns false if resolveAddressOfSingleOverloadCandidate fails.
|
|
/// Otherwise, returns true. This may emit diagnostics and return true.
|
|
bool Sema::resolveAndFixAddressOfSingleOverloadCandidate(
|
|
ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
|
|
Expr *E = SrcExpr.get();
|
|
assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");
|
|
|
|
DeclAccessPair DAP;
|
|
FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP);
|
|
if (!Found || Found->isCPUDispatchMultiVersion() ||
|
|
Found->isCPUSpecificMultiVersion())
|
|
return false;
|
|
|
|
// Emitting multiple diagnostics for a function that is both inaccessible and
|
|
// unavailable is consistent with our behavior elsewhere. So, always check
|
|
// for both.
|
|
DiagnoseUseOfDecl(Found, E->getExprLoc());
|
|
CheckAddressOfMemberAccess(E, DAP);
|
|
Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
|
|
if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
|
|
SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
|
|
else
|
|
SrcExpr = Fixed;
|
|
return true;
|
|
}
|
|
|
|
/// Given an expression that refers to an overloaded function, try to
|
|
/// resolve that overloaded function expression down to a single function.
|
|
///
|
|
/// This routine can only resolve template-ids that refer to a single function
|
|
/// template, where that template-id refers to a single template whose template
|
|
/// arguments are either provided by the template-id or have defaults,
|
|
/// as described in C++0x [temp.arg.explicit]p3.
|
|
///
|
|
/// If no template-ids are found, no diagnostics are emitted and NULL is
|
|
/// returned.
|
|
FunctionDecl *
|
|
Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
|
|
bool Complain,
|
|
DeclAccessPair *FoundResult) {
|
|
// C++ [over.over]p1:
|
|
// [...] [Note: any redundant set of parentheses surrounding the
|
|
// overloaded function name is ignored (5.1). ]
|
|
// C++ [over.over]p1:
|
|
// [...] The overloaded function name can be preceded by the &
|
|
// operator.
|
|
|
|
// If we didn't actually find any template-ids, we're done.
|
|
if (!ovl->hasExplicitTemplateArgs())
|
|
return nullptr;
|
|
|
|
TemplateArgumentListInfo ExplicitTemplateArgs;
|
|
ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
|
|
TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
|
|
|
|
// Look through all of the overloaded functions, searching for one
|
|
// whose type matches exactly.
|
|
FunctionDecl *Matched = nullptr;
|
|
for (UnresolvedSetIterator I = ovl->decls_begin(),
|
|
E = ovl->decls_end(); I != E; ++I) {
|
|
// C++0x [temp.arg.explicit]p3:
|
|
// [...] In contexts where deduction is done and fails, or in contexts
|
|
// where deduction is not done, if a template argument list is
|
|
// specified and it, along with any default template arguments,
|
|
// identifies a single function template specialization, then the
|
|
// template-id is an lvalue for the function template specialization.
|
|
FunctionTemplateDecl *FunctionTemplate
|
|
= cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
|
|
|
|
// C++ [over.over]p2:
|
|
// If the name is a function template, template argument deduction is
|
|
// done (14.8.2.2), and if the argument deduction succeeds, the
|
|
// resulting template argument list is used to generate a single
|
|
// function template specialization, which is added to the set of
|
|
// overloaded functions considered.
|
|
FunctionDecl *Specialization = nullptr;
|
|
TemplateDeductionInfo Info(FailedCandidates.getLocation());
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
|
|
Specialization, Info,
|
|
/*IsAddressOfFunction*/true)) {
|
|
// Make a note of the failed deduction for diagnostics.
|
|
// TODO: Actually use the failed-deduction info?
|
|
FailedCandidates.addCandidate()
|
|
.set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
|
|
MakeDeductionFailureInfo(Context, Result, Info));
|
|
continue;
|
|
}
|
|
|
|
assert(Specialization && "no specialization and no error?");
|
|
|
|
// Multiple matches; we can't resolve to a single declaration.
|
|
if (Matched) {
|
|
if (Complain) {
|
|
Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
|
|
<< ovl->getName();
|
|
NoteAllOverloadCandidates(ovl);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Matched = Specialization;
|
|
if (FoundResult) *FoundResult = I.getPair();
|
|
}
|
|
|
|
if (Matched &&
|
|
completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
|
|
return nullptr;
|
|
|
|
return Matched;
|
|
}
|
|
|
|
// Resolve and fix an overloaded expression that can be resolved
|
|
// because it identifies a single function template specialization.
|
|
//
|
|
// Last three arguments should only be supplied if Complain = true
|
|
//
|
|
// Return true if it was logically possible to so resolve the
|
|
// expression, regardless of whether or not it succeeded. Always
|
|
// returns true if 'complain' is set.
|
|
bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
|
|
ExprResult &SrcExpr, bool doFunctionPointerConverion,
|
|
bool complain, SourceRange OpRangeForComplaining,
|
|
QualType DestTypeForComplaining,
|
|
unsigned DiagIDForComplaining) {
|
|
assert(SrcExpr.get()->getType() == Context.OverloadTy);
|
|
|
|
OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
|
|
|
|
DeclAccessPair found;
|
|
ExprResult SingleFunctionExpression;
|
|
if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
|
|
ovl.Expression, /*complain*/ false, &found)) {
|
|
if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
|
|
SrcExpr = ExprError();
|
|
return true;
|
|
}
|
|
|
|
// It is only correct to resolve to an instance method if we're
|
|
// resolving a form that's permitted to be a pointer to member.
|
|
// Otherwise we'll end up making a bound member expression, which
|
|
// is illegal in all the contexts we resolve like this.
|
|
if (!ovl.HasFormOfMemberPointer &&
|
|
isa<CXXMethodDecl>(fn) &&
|
|
cast<CXXMethodDecl>(fn)->isInstance()) {
|
|
if (!complain) return false;
|
|
|
|
Diag(ovl.Expression->getExprLoc(),
|
|
diag::err_bound_member_function)
|
|
<< 0 << ovl.Expression->getSourceRange();
|
|
|
|
// TODO: I believe we only end up here if there's a mix of
|
|
// static and non-static candidates (otherwise the expression
|
|
// would have 'bound member' type, not 'overload' type).
|
|
// Ideally we would note which candidate was chosen and why
|
|
// the static candidates were rejected.
|
|
SrcExpr = ExprError();
|
|
return true;
|
|
}
|
|
|
|
// Fix the expression to refer to 'fn'.
|
|
SingleFunctionExpression =
|
|
FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
|
|
|
|
// If desired, do function-to-pointer decay.
|
|
if (doFunctionPointerConverion) {
|
|
SingleFunctionExpression =
|
|
DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
|
|
if (SingleFunctionExpression.isInvalid()) {
|
|
SrcExpr = ExprError();
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!SingleFunctionExpression.isUsable()) {
|
|
if (complain) {
|
|
Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
|
|
<< ovl.Expression->getName()
|
|
<< DestTypeForComplaining
|
|
<< OpRangeForComplaining
|
|
<< ovl.Expression->getQualifierLoc().getSourceRange();
|
|
NoteAllOverloadCandidates(SrcExpr.get());
|
|
|
|
SrcExpr = ExprError();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SrcExpr = SingleFunctionExpression;
|
|
return true;
|
|
}
|
|
|
|
/// Add a single candidate to the overload set.
|
|
static void AddOverloadedCallCandidate(Sema &S,
|
|
DeclAccessPair FoundDecl,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool PartialOverloading,
|
|
bool KnownValid) {
|
|
NamedDecl *Callee = FoundDecl.getDecl();
|
|
if (isa<UsingShadowDecl>(Callee))
|
|
Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
|
|
|
|
if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
|
|
if (ExplicitTemplateArgs) {
|
|
assert(!KnownValid && "Explicit template arguments?");
|
|
return;
|
|
}
|
|
// Prevent ill-formed function decls to be added as overload candidates.
|
|
if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
|
|
return;
|
|
|
|
S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
|
|
/*SuppressUserConversions=*/false,
|
|
PartialOverloading);
|
|
return;
|
|
}
|
|
|
|
if (FunctionTemplateDecl *FuncTemplate
|
|
= dyn_cast<FunctionTemplateDecl>(Callee)) {
|
|
S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
|
|
ExplicitTemplateArgs, Args, CandidateSet,
|
|
/*SuppressUserConversions=*/false,
|
|
PartialOverloading);
|
|
return;
|
|
}
|
|
|
|
assert(!KnownValid && "unhandled case in overloaded call candidate");
|
|
}
|
|
|
|
/// Add the overload candidates named by callee and/or found by argument
|
|
/// dependent lookup to the given overload set.
|
|
void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool PartialOverloading) {
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that ArgumentDependentLookup is consistent with the rules
|
|
// in C++0x [basic.lookup.argdep]p3:
|
|
//
|
|
// Let X be the lookup set produced by unqualified lookup (3.4.1)
|
|
// and let Y be the lookup set produced by argument dependent
|
|
// lookup (defined as follows). If X contains
|
|
//
|
|
// -- a declaration of a class member, or
|
|
//
|
|
// -- a block-scope function declaration that is not a
|
|
// using-declaration, or
|
|
//
|
|
// -- a declaration that is neither a function or a function
|
|
// template
|
|
//
|
|
// then Y is empty.
|
|
|
|
if (ULE->requiresADL()) {
|
|
for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
|
|
E = ULE->decls_end(); I != E; ++I) {
|
|
assert(!(*I)->getDeclContext()->isRecord());
|
|
assert(isa<UsingShadowDecl>(*I) ||
|
|
!(*I)->getDeclContext()->isFunctionOrMethod());
|
|
assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// It would be nice to avoid this copy.
|
|
TemplateArgumentListInfo TABuffer;
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
|
|
if (ULE->hasExplicitTemplateArgs()) {
|
|
ULE->copyTemplateArgumentsInto(TABuffer);
|
|
ExplicitTemplateArgs = &TABuffer;
|
|
}
|
|
|
|
for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
|
|
E = ULE->decls_end(); I != E; ++I)
|
|
AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
|
|
CandidateSet, PartialOverloading,
|
|
/*KnownValid*/ true);
|
|
|
|
if (ULE->requiresADL())
|
|
AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
|
|
Args, ExplicitTemplateArgs,
|
|
CandidateSet, PartialOverloading);
|
|
}
|
|
|
|
/// Add the call candidates from the given set of lookup results to the given
|
|
/// overload set. Non-function lookup results are ignored.
|
|
void Sema::AddOverloadedCallCandidates(
|
|
LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) {
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
|
|
AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
|
|
CandidateSet, false, /*KnownValid*/ false);
|
|
}
|
|
|
|
/// Determine whether a declaration with the specified name could be moved into
|
|
/// a different namespace.
|
|
static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
|
|
switch (Name.getCXXOverloadedOperator()) {
|
|
case OO_New: case OO_Array_New:
|
|
case OO_Delete: case OO_Array_Delete:
|
|
return false;
|
|
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Attempt to recover from an ill-formed use of a non-dependent name in a
|
|
/// template, where the non-dependent name was declared after the template
|
|
/// was defined. This is common in code written for a compilers which do not
|
|
/// correctly implement two-stage name lookup.
|
|
///
|
|
/// Returns true if a viable candidate was found and a diagnostic was issued.
|
|
static bool DiagnoseTwoPhaseLookup(
|
|
Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS,
|
|
LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
|
|
CXXRecordDecl **FoundInClass = nullptr) {
|
|
if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
|
|
return false;
|
|
|
|
for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
|
|
if (DC->isTransparentContext())
|
|
continue;
|
|
|
|
SemaRef.LookupQualifiedName(R, DC);
|
|
|
|
if (!R.empty()) {
|
|
R.suppressDiagnostics();
|
|
|
|
OverloadCandidateSet Candidates(FnLoc, CSK);
|
|
SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args,
|
|
Candidates);
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
OverloadingResult OR =
|
|
Candidates.BestViableFunction(SemaRef, FnLoc, Best);
|
|
|
|
if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) {
|
|
// We either found non-function declarations or a best viable function
|
|
// at class scope. A class-scope lookup result disables ADL. Don't
|
|
// look past this, but let the caller know that we found something that
|
|
// either is, or might be, usable in this class.
|
|
if (FoundInClass) {
|
|
*FoundInClass = RD;
|
|
if (OR == OR_Success) {
|
|
R.clear();
|
|
R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
|
|
R.resolveKind();
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (OR != OR_Success) {
|
|
// There wasn't a unique best function or function template.
|
|
return false;
|
|
}
|
|
|
|
// Find the namespaces where ADL would have looked, and suggest
|
|
// declaring the function there instead.
|
|
Sema::AssociatedNamespaceSet AssociatedNamespaces;
|
|
Sema::AssociatedClassSet AssociatedClasses;
|
|
SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
|
|
AssociatedNamespaces,
|
|
AssociatedClasses);
|
|
Sema::AssociatedNamespaceSet SuggestedNamespaces;
|
|
if (canBeDeclaredInNamespace(R.getLookupName())) {
|
|
DeclContext *Std = SemaRef.getStdNamespace();
|
|
for (Sema::AssociatedNamespaceSet::iterator
|
|
it = AssociatedNamespaces.begin(),
|
|
end = AssociatedNamespaces.end(); it != end; ++it) {
|
|
// Never suggest declaring a function within namespace 'std'.
|
|
if (Std && Std->Encloses(*it))
|
|
continue;
|
|
|
|
// Never suggest declaring a function within a namespace with a
|
|
// reserved name, like __gnu_cxx.
|
|
NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
|
|
if (NS &&
|
|
NS->getQualifiedNameAsString().find("__") != std::string::npos)
|
|
continue;
|
|
|
|
SuggestedNamespaces.insert(*it);
|
|
}
|
|
}
|
|
|
|
SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
|
|
<< R.getLookupName();
|
|
if (SuggestedNamespaces.empty()) {
|
|
SemaRef.Diag(Best->Function->getLocation(),
|
|
diag::note_not_found_by_two_phase_lookup)
|
|
<< R.getLookupName() << 0;
|
|
} else if (SuggestedNamespaces.size() == 1) {
|
|
SemaRef.Diag(Best->Function->getLocation(),
|
|
diag::note_not_found_by_two_phase_lookup)
|
|
<< R.getLookupName() << 1 << *SuggestedNamespaces.begin();
|
|
} else {
|
|
// FIXME: It would be useful to list the associated namespaces here,
|
|
// but the diagnostics infrastructure doesn't provide a way to produce
|
|
// a localized representation of a list of items.
|
|
SemaRef.Diag(Best->Function->getLocation(),
|
|
diag::note_not_found_by_two_phase_lookup)
|
|
<< R.getLookupName() << 2;
|
|
}
|
|
|
|
// Try to recover by calling this function.
|
|
return true;
|
|
}
|
|
|
|
R.clear();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Attempt to recover from ill-formed use of a non-dependent operator in a
|
|
/// template, where the non-dependent operator was declared after the template
|
|
/// was defined.
|
|
///
|
|
/// Returns true if a viable candidate was found and a diagnostic was issued.
|
|
static bool
|
|
DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc,
|
|
ArrayRef<Expr *> Args) {
|
|
DeclarationName OpName =
|
|
SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
|
|
LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
|
|
return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
|
|
OverloadCandidateSet::CSK_Operator,
|
|
/*ExplicitTemplateArgs=*/nullptr, Args);
|
|
}
|
|
|
|
namespace {
|
|
class BuildRecoveryCallExprRAII {
|
|
Sema &SemaRef;
|
|
public:
|
|
BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
|
|
assert(SemaRef.IsBuildingRecoveryCallExpr == false);
|
|
SemaRef.IsBuildingRecoveryCallExpr = true;
|
|
}
|
|
|
|
~BuildRecoveryCallExprRAII() {
|
|
SemaRef.IsBuildingRecoveryCallExpr = false;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
/// Attempts to recover from a call where no functions were found.
|
|
///
|
|
/// This function will do one of three things:
|
|
/// * Diagnose, recover, and return a recovery expression.
|
|
/// * Diagnose, fail to recover, and return ExprError().
|
|
/// * Do not diagnose, do not recover, and return ExprResult(). The caller is
|
|
/// expected to diagnose as appropriate.
|
|
static ExprResult
|
|
BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
|
|
UnresolvedLookupExpr *ULE,
|
|
SourceLocation LParenLoc,
|
|
MutableArrayRef<Expr *> Args,
|
|
SourceLocation RParenLoc,
|
|
bool EmptyLookup, bool AllowTypoCorrection) {
|
|
// Do not try to recover if it is already building a recovery call.
|
|
// This stops infinite loops for template instantiations like
|
|
//
|
|
// template <typename T> auto foo(T t) -> decltype(foo(t)) {}
|
|
// template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
|
|
if (SemaRef.IsBuildingRecoveryCallExpr)
|
|
return ExprResult();
|
|
BuildRecoveryCallExprRAII RCE(SemaRef);
|
|
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(ULE->getQualifierLoc());
|
|
SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
|
|
|
|
TemplateArgumentListInfo TABuffer;
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
|
|
if (ULE->hasExplicitTemplateArgs()) {
|
|
ULE->copyTemplateArgumentsInto(TABuffer);
|
|
ExplicitTemplateArgs = &TABuffer;
|
|
}
|
|
|
|
LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
|
|
Sema::LookupOrdinaryName);
|
|
CXXRecordDecl *FoundInClass = nullptr;
|
|
if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
|
|
OverloadCandidateSet::CSK_Normal,
|
|
ExplicitTemplateArgs, Args, &FoundInClass)) {
|
|
// OK, diagnosed a two-phase lookup issue.
|
|
} else if (EmptyLookup) {
|
|
// Try to recover from an empty lookup with typo correction.
|
|
R.clear();
|
|
NoTypoCorrectionCCC NoTypoValidator{};
|
|
FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
|
|
ExplicitTemplateArgs != nullptr,
|
|
dyn_cast<MemberExpr>(Fn));
|
|
CorrectionCandidateCallback &Validator =
|
|
AllowTypoCorrection
|
|
? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
|
|
: static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
|
|
if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
|
|
Args))
|
|
return ExprError();
|
|
} else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) {
|
|
// We found a usable declaration of the name in a dependent base of some
|
|
// enclosing class.
|
|
// FIXME: We should also explain why the candidates found by name lookup
|
|
// were not viable.
|
|
if (SemaRef.DiagnoseDependentMemberLookup(R))
|
|
return ExprError();
|
|
} else {
|
|
// We had viable candidates and couldn't recover; let the caller diagnose
|
|
// this.
|
|
return ExprResult();
|
|
}
|
|
|
|
// If we get here, we should have issued a diagnostic and formed a recovery
|
|
// lookup result.
|
|
assert(!R.empty() && "lookup results empty despite recovery");
|
|
|
|
// If recovery created an ambiguity, just bail out.
|
|
if (R.isAmbiguous()) {
|
|
R.suppressDiagnostics();
|
|
return ExprError();
|
|
}
|
|
|
|
// Build an implicit member call if appropriate. Just drop the
|
|
// casts and such from the call, we don't really care.
|
|
ExprResult NewFn = ExprError();
|
|
if ((*R.begin())->isCXXClassMember())
|
|
NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
|
|
ExplicitTemplateArgs, S);
|
|
else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
|
|
NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
|
|
ExplicitTemplateArgs);
|
|
else
|
|
NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
|
|
|
|
if (NewFn.isInvalid())
|
|
return ExprError();
|
|
|
|
// This shouldn't cause an infinite loop because we're giving it
|
|
// an expression with viable lookup results, which should never
|
|
// end up here.
|
|
return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
|
|
MultiExprArg(Args.data(), Args.size()),
|
|
RParenLoc);
|
|
}
|
|
|
|
/// Constructs and populates an OverloadedCandidateSet from
|
|
/// the given function.
|
|
/// \returns true when an the ExprResult output parameter has been set.
|
|
bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
|
|
UnresolvedLookupExpr *ULE,
|
|
MultiExprArg Args,
|
|
SourceLocation RParenLoc,
|
|
OverloadCandidateSet *CandidateSet,
|
|
ExprResult *Result) {
|
|
#ifndef NDEBUG
|
|
if (ULE->requiresADL()) {
|
|
// To do ADL, we must have found an unqualified name.
|
|
assert(!ULE->getQualifier() && "qualified name with ADL");
|
|
|
|
// We don't perform ADL for implicit declarations of builtins.
|
|
// Verify that this was correctly set up.
|
|
FunctionDecl *F;
|
|
if (ULE->decls_begin() != ULE->decls_end() &&
|
|
ULE->decls_begin() + 1 == ULE->decls_end() &&
|
|
(F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
|
|
F->getBuiltinID() && F->isImplicit())
|
|
llvm_unreachable("performing ADL for builtin");
|
|
|
|
// We don't perform ADL in C.
|
|
assert(getLangOpts().CPlusPlus && "ADL enabled in C");
|
|
}
|
|
#endif
|
|
|
|
UnbridgedCastsSet UnbridgedCasts;
|
|
if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
|
|
*Result = ExprError();
|
|
return true;
|
|
}
|
|
|
|
// Add the functions denoted by the callee to the set of candidate
|
|
// functions, including those from argument-dependent lookup.
|
|
AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
|
|
|
|
if (getLangOpts().MSVCCompat &&
|
|
CurContext->isDependentContext() && !isSFINAEContext() &&
|
|
(isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
if (CandidateSet->empty() ||
|
|
CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
|
|
OR_No_Viable_Function) {
|
|
// In Microsoft mode, if we are inside a template class member function
|
|
// then create a type dependent CallExpr. The goal is to postpone name
|
|
// lookup to instantiation time to be able to search into type dependent
|
|
// base classes.
|
|
CallExpr *CE =
|
|
CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_RValue,
|
|
RParenLoc, CurFPFeatureOverrides());
|
|
CE->markDependentForPostponedNameLookup();
|
|
*Result = CE;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (CandidateSet->empty())
|
|
return false;
|
|
|
|
UnbridgedCasts.restore();
|
|
return false;
|
|
}
|
|
|
|
// Guess at what the return type for an unresolvable overload should be.
|
|
static QualType chooseRecoveryType(OverloadCandidateSet &CS,
|
|
OverloadCandidateSet::iterator *Best) {
|
|
llvm::Optional<QualType> Result;
|
|
// Adjust Type after seeing a candidate.
|
|
auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) {
|
|
if (!Candidate.Function)
|
|
return;
|
|
if (Candidate.Function->isInvalidDecl())
|
|
return;
|
|
QualType T = Candidate.Function->getReturnType();
|
|
if (T.isNull())
|
|
return;
|
|
if (!Result)
|
|
Result = T;
|
|
else if (Result != T)
|
|
Result = QualType();
|
|
};
|
|
|
|
// Look for an unambiguous type from a progressively larger subset.
|
|
// e.g. if types disagree, but all *viable* overloads return int, choose int.
|
|
//
|
|
// First, consider only the best candidate.
|
|
if (Best && *Best != CS.end())
|
|
ConsiderCandidate(**Best);
|
|
// Next, consider only viable candidates.
|
|
if (!Result)
|
|
for (const auto &C : CS)
|
|
if (C.Viable)
|
|
ConsiderCandidate(C);
|
|
// Finally, consider all candidates.
|
|
if (!Result)
|
|
for (const auto &C : CS)
|
|
ConsiderCandidate(C);
|
|
|
|
if (!Result)
|
|
return QualType();
|
|
auto Value = Result.getValue();
|
|
if (Value.isNull() || Value->isUndeducedType())
|
|
return QualType();
|
|
return Value;
|
|
}
|
|
|
|
/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
|
|
/// the completed call expression. If overload resolution fails, emits
|
|
/// diagnostics and returns ExprError()
|
|
static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
|
|
UnresolvedLookupExpr *ULE,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation RParenLoc,
|
|
Expr *ExecConfig,
|
|
OverloadCandidateSet *CandidateSet,
|
|
OverloadCandidateSet::iterator *Best,
|
|
OverloadingResult OverloadResult,
|
|
bool AllowTypoCorrection) {
|
|
switch (OverloadResult) {
|
|
case OR_Success: {
|
|
FunctionDecl *FDecl = (*Best)->Function;
|
|
SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
|
|
if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
|
|
return ExprError();
|
|
Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
|
|
return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
|
|
ExecConfig, /*IsExecConfig=*/false,
|
|
(*Best)->IsADLCandidate);
|
|
}
|
|
|
|
case OR_No_Viable_Function: {
|
|
// Try to recover by looking for viable functions which the user might
|
|
// have meant to call.
|
|
ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
|
|
Args, RParenLoc,
|
|
CandidateSet->empty(),
|
|
AllowTypoCorrection);
|
|
if (Recovery.isInvalid() || Recovery.isUsable())
|
|
return Recovery;
|
|
|
|
// If the user passes in a function that we can't take the address of, we
|
|
// generally end up emitting really bad error messages. Here, we attempt to
|
|
// emit better ones.
|
|
for (const Expr *Arg : Args) {
|
|
if (!Arg->getType()->isFunctionType())
|
|
continue;
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
|
|
auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
|
|
if (FD &&
|
|
!SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
|
|
Arg->getExprLoc()))
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
CandidateSet->NoteCandidates(
|
|
PartialDiagnosticAt(
|
|
Fn->getBeginLoc(),
|
|
SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
|
|
<< ULE->getName() << Fn->getSourceRange()),
|
|
SemaRef, OCD_AllCandidates, Args);
|
|
break;
|
|
}
|
|
|
|
case OR_Ambiguous:
|
|
CandidateSet->NoteCandidates(
|
|
PartialDiagnosticAt(Fn->getBeginLoc(),
|
|
SemaRef.PDiag(diag::err_ovl_ambiguous_call)
|
|
<< ULE->getName() << Fn->getSourceRange()),
|
|
SemaRef, OCD_AmbiguousCandidates, Args);
|
|
break;
|
|
|
|
case OR_Deleted: {
|
|
CandidateSet->NoteCandidates(
|
|
PartialDiagnosticAt(Fn->getBeginLoc(),
|
|
SemaRef.PDiag(diag::err_ovl_deleted_call)
|
|
<< ULE->getName() << Fn->getSourceRange()),
|
|
SemaRef, OCD_AllCandidates, Args);
|
|
|
|
// We emitted an error for the unavailable/deleted function call but keep
|
|
// the call in the AST.
|
|
FunctionDecl *FDecl = (*Best)->Function;
|
|
Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
|
|
return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
|
|
ExecConfig, /*IsExecConfig=*/false,
|
|
(*Best)->IsADLCandidate);
|
|
}
|
|
}
|
|
|
|
// Overload resolution failed, try to recover.
|
|
SmallVector<Expr *, 8> SubExprs = {Fn};
|
|
SubExprs.append(Args.begin(), Args.end());
|
|
return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs,
|
|
chooseRecoveryType(*CandidateSet, Best));
|
|
}
|
|
|
|
static void markUnaddressableCandidatesUnviable(Sema &S,
|
|
OverloadCandidateSet &CS) {
|
|
for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
|
|
if (I->Viable &&
|
|
!S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
|
|
I->Viable = false;
|
|
I->FailureKind = ovl_fail_addr_not_available;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// BuildOverloadedCallExpr - Given the call expression that calls Fn
|
|
/// (which eventually refers to the declaration Func) and the call
|
|
/// arguments Args/NumArgs, attempt to resolve the function call down
|
|
/// to a specific function. If overload resolution succeeds, returns
|
|
/// the call expression produced by overload resolution.
|
|
/// Otherwise, emits diagnostics and returns ExprError.
|
|
ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
|
|
UnresolvedLookupExpr *ULE,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation RParenLoc,
|
|
Expr *ExecConfig,
|
|
bool AllowTypoCorrection,
|
|
bool CalleesAddressIsTaken) {
|
|
OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
|
|
OverloadCandidateSet::CSK_Normal);
|
|
ExprResult result;
|
|
|
|
if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
|
|
&result))
|
|
return result;
|
|
|
|
// If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
|
|
// functions that aren't addressible are considered unviable.
|
|
if (CalleesAddressIsTaken)
|
|
markUnaddressableCandidatesUnviable(*this, CandidateSet);
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
OverloadingResult OverloadResult =
|
|
CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
|
|
|
|
return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
|
|
ExecConfig, &CandidateSet, &Best,
|
|
OverloadResult, AllowTypoCorrection);
|
|
}
|
|
|
|
static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
|
|
return Functions.size() > 1 ||
|
|
(Functions.size() == 1 &&
|
|
isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl()));
|
|
}
|
|
|
|
ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
|
|
NestedNameSpecifierLoc NNSLoc,
|
|
DeclarationNameInfo DNI,
|
|
const UnresolvedSetImpl &Fns,
|
|
bool PerformADL) {
|
|
return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI,
|
|
PerformADL, IsOverloaded(Fns),
|
|
Fns.begin(), Fns.end());
|
|
}
|
|
|
|
/// Create a unary operation that may resolve to an overloaded
|
|
/// operator.
|
|
///
|
|
/// \param OpLoc The location of the operator itself (e.g., '*').
|
|
///
|
|
/// \param Opc The UnaryOperatorKind that describes this operator.
|
|
///
|
|
/// \param Fns The set of non-member functions that will be
|
|
/// considered by overload resolution. The caller needs to build this
|
|
/// set based on the context using, e.g.,
|
|
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
|
|
/// set should not contain any member functions; those will be added
|
|
/// by CreateOverloadedUnaryOp().
|
|
///
|
|
/// \param Input The input argument.
|
|
ExprResult
|
|
Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
|
|
const UnresolvedSetImpl &Fns,
|
|
Expr *Input, bool PerformADL) {
|
|
OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
|
|
assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
|
|
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
|
|
// TODO: provide better source location info.
|
|
DeclarationNameInfo OpNameInfo(OpName, OpLoc);
|
|
|
|
if (checkPlaceholderForOverload(*this, Input))
|
|
return ExprError();
|
|
|
|
Expr *Args[2] = { Input, nullptr };
|
|
unsigned NumArgs = 1;
|
|
|
|
// For post-increment and post-decrement, add the implicit '0' as
|
|
// the second argument, so that we know this is a post-increment or
|
|
// post-decrement.
|
|
if (Opc == UO_PostInc || Opc == UO_PostDec) {
|
|
llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
|
|
Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
|
|
SourceLocation());
|
|
NumArgs = 2;
|
|
}
|
|
|
|
ArrayRef<Expr *> ArgsArray(Args, NumArgs);
|
|
|
|
if (Input->isTypeDependent()) {
|
|
if (Fns.empty())
|
|
return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy,
|
|
VK_RValue, OK_Ordinary, OpLoc, false,
|
|
CurFPFeatureOverrides());
|
|
|
|
CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
|
|
ExprResult Fn = CreateUnresolvedLookupExpr(
|
|
NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns);
|
|
if (Fn.isInvalid())
|
|
return ExprError();
|
|
return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray,
|
|
Context.DependentTy, VK_RValue, OpLoc,
|
|
CurFPFeatureOverrides());
|
|
}
|
|
|
|
// Build an empty overload set.
|
|
OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
|
|
|
|
// Add the candidates from the given function set.
|
|
AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet);
|
|
|
|
// Add operator candidates that are member functions.
|
|
AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
|
|
|
|
// Add candidates from ADL.
|
|
if (PerformADL) {
|
|
AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
|
|
/*ExplicitTemplateArgs*/nullptr,
|
|
CandidateSet);
|
|
}
|
|
|
|
// Add builtin operator candidates.
|
|
AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
if (FnDecl) {
|
|
Expr *Base = nullptr;
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
// Convert the arguments.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
|
CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
|
|
|
|
ExprResult InputRes =
|
|
PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
|
|
Best->FoundDecl, Method);
|
|
if (InputRes.isInvalid())
|
|
return ExprError();
|
|
Base = Input = InputRes.get();
|
|
} else {
|
|
// Convert the arguments.
|
|
ExprResult InputInit
|
|
= PerformCopyInitialization(InitializedEntity::InitializeParameter(
|
|
Context,
|
|
FnDecl->getParamDecl(0)),
|
|
SourceLocation(),
|
|
Input);
|
|
if (InputInit.isInvalid())
|
|
return ExprError();
|
|
Input = InputInit.get();
|
|
}
|
|
|
|
// Build the actual expression node.
|
|
ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
|
|
Base, HadMultipleCandidates,
|
|
OpLoc);
|
|
if (FnExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
// Determine the result type.
|
|
QualType ResultTy = FnDecl->getReturnType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultTy);
|
|
ResultTy = ResultTy.getNonLValueExprType(Context);
|
|
|
|
Args[0] = Input;
|
|
CallExpr *TheCall = CXXOperatorCallExpr::Create(
|
|
Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
|
|
CurFPFeatureOverrides(), Best->IsADLCandidate);
|
|
|
|
if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
|
|
return ExprError();
|
|
|
|
if (CheckFunctionCall(FnDecl, TheCall,
|
|
FnDecl->getType()->castAs<FunctionProtoType>()))
|
|
return ExprError();
|
|
return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl);
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
ExprResult InputRes = PerformImplicitConversion(
|
|
Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
|
|
CCK_ForBuiltinOverloadedOp);
|
|
if (InputRes.isInvalid())
|
|
return ExprError();
|
|
Input = InputRes.get();
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
// This is an erroneous use of an operator which can be overloaded by
|
|
// a non-member function. Check for non-member operators which were
|
|
// defined too late to be candidates.
|
|
if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
|
|
// FIXME: Recover by calling the found function.
|
|
return ExprError();
|
|
|
|
// No viable function; fall through to handling this as a
|
|
// built-in operator, which will produce an error message for us.
|
|
break;
|
|
|
|
case OR_Ambiguous:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(OpLoc,
|
|
PDiag(diag::err_ovl_ambiguous_oper_unary)
|
|
<< UnaryOperator::getOpcodeStr(Opc)
|
|
<< Input->getType() << Input->getSourceRange()),
|
|
*this, OCD_AmbiguousCandidates, ArgsArray,
|
|
UnaryOperator::getOpcodeStr(Opc), OpLoc);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
|
|
<< UnaryOperator::getOpcodeStr(Opc)
|
|
<< Input->getSourceRange()),
|
|
*this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
|
|
OpLoc);
|
|
return ExprError();
|
|
}
|
|
|
|
// Either we found no viable overloaded operator or we matched a
|
|
// built-in operator. In either case, fall through to trying to
|
|
// build a built-in operation.
|
|
return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
|
|
}
|
|
|
|
/// Perform lookup for an overloaded binary operator.
|
|
void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
|
|
OverloadedOperatorKind Op,
|
|
const UnresolvedSetImpl &Fns,
|
|
ArrayRef<Expr *> Args, bool PerformADL) {
|
|
SourceLocation OpLoc = CandidateSet.getLocation();
|
|
|
|
OverloadedOperatorKind ExtraOp =
|
|
CandidateSet.getRewriteInfo().AllowRewrittenCandidates
|
|
? getRewrittenOverloadedOperator(Op)
|
|
: OO_None;
|
|
|
|
// Add the candidates from the given function set. This also adds the
|
|
// rewritten candidates using these functions if necessary.
|
|
AddNonMemberOperatorCandidates(Fns, Args, CandidateSet);
|
|
|
|
// Add operator candidates that are member functions.
|
|
AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
|
|
if (CandidateSet.getRewriteInfo().shouldAddReversed(Op))
|
|
AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet,
|
|
OverloadCandidateParamOrder::Reversed);
|
|
|
|
// In C++20, also add any rewritten member candidates.
|
|
if (ExtraOp) {
|
|
AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet);
|
|
if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp))
|
|
AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]},
|
|
CandidateSet,
|
|
OverloadCandidateParamOrder::Reversed);
|
|
}
|
|
|
|
// Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
|
|
// performed for an assignment operator (nor for operator[] nor operator->,
|
|
// which don't get here).
|
|
if (Op != OO_Equal && PerformADL) {
|
|
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
|
|
AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
|
|
/*ExplicitTemplateArgs*/ nullptr,
|
|
CandidateSet);
|
|
if (ExtraOp) {
|
|
DeclarationName ExtraOpName =
|
|
Context.DeclarationNames.getCXXOperatorName(ExtraOp);
|
|
AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args,
|
|
/*ExplicitTemplateArgs*/ nullptr,
|
|
CandidateSet);
|
|
}
|
|
}
|
|
|
|
// Add builtin operator candidates.
|
|
//
|
|
// FIXME: We don't add any rewritten candidates here. This is strictly
|
|
// incorrect; a builtin candidate could be hidden by a non-viable candidate,
|
|
// resulting in our selecting a rewritten builtin candidate. For example:
|
|
//
|
|
// enum class E { e };
|
|
// bool operator!=(E, E) requires false;
|
|
// bool k = E::e != E::e;
|
|
//
|
|
// ... should select the rewritten builtin candidate 'operator==(E, E)'. But
|
|
// it seems unreasonable to consider rewritten builtin candidates. A core
|
|
// issue has been filed proposing to removed this requirement.
|
|
AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
|
|
}
|
|
|
|
/// Create a binary operation that may resolve to an overloaded
|
|
/// operator.
|
|
///
|
|
/// \param OpLoc The location of the operator itself (e.g., '+').
|
|
///
|
|
/// \param Opc The BinaryOperatorKind that describes this operator.
|
|
///
|
|
/// \param Fns The set of non-member functions that will be
|
|
/// considered by overload resolution. The caller needs to build this
|
|
/// set based on the context using, e.g.,
|
|
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
|
|
/// set should not contain any member functions; those will be added
|
|
/// by CreateOverloadedBinOp().
|
|
///
|
|
/// \param LHS Left-hand argument.
|
|
/// \param RHS Right-hand argument.
|
|
/// \param PerformADL Whether to consider operator candidates found by ADL.
|
|
/// \param AllowRewrittenCandidates Whether to consider candidates found by
|
|
/// C++20 operator rewrites.
|
|
/// \param DefaultedFn If we are synthesizing a defaulted operator function,
|
|
/// the function in question. Such a function is never a candidate in
|
|
/// our overload resolution. This also enables synthesizing a three-way
|
|
/// comparison from < and == as described in C++20 [class.spaceship]p1.
|
|
ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
|
|
BinaryOperatorKind Opc,
|
|
const UnresolvedSetImpl &Fns, Expr *LHS,
|
|
Expr *RHS, bool PerformADL,
|
|
bool AllowRewrittenCandidates,
|
|
FunctionDecl *DefaultedFn) {
|
|
Expr *Args[2] = { LHS, RHS };
|
|
LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
|
|
|
|
if (!getLangOpts().CPlusPlus20)
|
|
AllowRewrittenCandidates = false;
|
|
|
|
OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
|
|
|
|
// If either side is type-dependent, create an appropriate dependent
|
|
// expression.
|
|
if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
|
|
if (Fns.empty()) {
|
|
// If there are no functions to store, just build a dependent
|
|
// BinaryOperator or CompoundAssignment.
|
|
if (BinaryOperator::isCompoundAssignmentOp(Opc))
|
|
return CompoundAssignOperator::Create(
|
|
Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue,
|
|
OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy,
|
|
Context.DependentTy);
|
|
return BinaryOperator::Create(Context, Args[0], Args[1], Opc,
|
|
Context.DependentTy, VK_RValue, OK_Ordinary,
|
|
OpLoc, CurFPFeatureOverrides());
|
|
}
|
|
|
|
// FIXME: save results of ADL from here?
|
|
CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
|
|
// TODO: provide better source location info in DNLoc component.
|
|
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
|
|
DeclarationNameInfo OpNameInfo(OpName, OpLoc);
|
|
ExprResult Fn = CreateUnresolvedLookupExpr(
|
|
NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL);
|
|
if (Fn.isInvalid())
|
|
return ExprError();
|
|
return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args,
|
|
Context.DependentTy, VK_RValue, OpLoc,
|
|
CurFPFeatureOverrides());
|
|
}
|
|
|
|
// Always do placeholder-like conversions on the RHS.
|
|
if (checkPlaceholderForOverload(*this, Args[1]))
|
|
return ExprError();
|
|
|
|
// Do placeholder-like conversion on the LHS; note that we should
|
|
// not get here with a PseudoObject LHS.
|
|
assert(Args[0]->getObjectKind() != OK_ObjCProperty);
|
|
if (checkPlaceholderForOverload(*this, Args[0]))
|
|
return ExprError();
|
|
|
|
// If this is the assignment operator, we only perform overload resolution
|
|
// if the left-hand side is a class or enumeration type. This is actually
|
|
// a hack. The standard requires that we do overload resolution between the
|
|
// various built-in candidates, but as DR507 points out, this can lead to
|
|
// problems. So we do it this way, which pretty much follows what GCC does.
|
|
// Note that we go the traditional code path for compound assignment forms.
|
|
if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
|
|
return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
|
|
|
|
// If this is the .* operator, which is not overloadable, just
|
|
// create a built-in binary operator.
|
|
if (Opc == BO_PtrMemD)
|
|
return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
|
|
|
|
// Build the overload set.
|
|
OverloadCandidateSet CandidateSet(
|
|
OpLoc, OverloadCandidateSet::CSK_Operator,
|
|
OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates));
|
|
if (DefaultedFn)
|
|
CandidateSet.exclude(DefaultedFn);
|
|
LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL);
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
bool IsReversed = Best->isReversed();
|
|
if (IsReversed)
|
|
std::swap(Args[0], Args[1]);
|
|
|
|
if (FnDecl) {
|
|
Expr *Base = nullptr;
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
OverloadedOperatorKind ChosenOp =
|
|
FnDecl->getDeclName().getCXXOverloadedOperator();
|
|
|
|
// C++2a [over.match.oper]p9:
|
|
// If a rewritten operator== candidate is selected by overload
|
|
// resolution for an operator@, its return type shall be cv bool
|
|
if (Best->RewriteKind && ChosenOp == OO_EqualEqual &&
|
|
!FnDecl->getReturnType()->isBooleanType()) {
|
|
bool IsExtension =
|
|
FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType();
|
|
Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool
|
|
: diag::err_ovl_rewrite_equalequal_not_bool)
|
|
<< FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc)
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
Diag(FnDecl->getLocation(), diag::note_declared_at);
|
|
if (!IsExtension)
|
|
return ExprError();
|
|
}
|
|
|
|
if (AllowRewrittenCandidates && !IsReversed &&
|
|
CandidateSet.getRewriteInfo().isReversible()) {
|
|
// We could have reversed this operator, but didn't. Check if some
|
|
// reversed form was a viable candidate, and if so, if it had a
|
|
// better conversion for either parameter. If so, this call is
|
|
// formally ambiguous, and allowing it is an extension.
|
|
llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith;
|
|
for (OverloadCandidate &Cand : CandidateSet) {
|
|
if (Cand.Viable && Cand.Function && Cand.isReversed() &&
|
|
haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) {
|
|
for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
|
|
if (CompareImplicitConversionSequences(
|
|
*this, OpLoc, Cand.Conversions[ArgIdx],
|
|
Best->Conversions[ArgIdx]) ==
|
|
ImplicitConversionSequence::Better) {
|
|
AmbiguousWith.push_back(Cand.Function);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!AmbiguousWith.empty()) {
|
|
bool AmbiguousWithSelf =
|
|
AmbiguousWith.size() == 1 &&
|
|
declaresSameEntity(AmbiguousWith.front(), FnDecl);
|
|
Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed)
|
|
<< BinaryOperator::getOpcodeStr(Opc)
|
|
<< Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
if (AmbiguousWithSelf) {
|
|
Diag(FnDecl->getLocation(),
|
|
diag::note_ovl_ambiguous_oper_binary_reversed_self);
|
|
} else {
|
|
Diag(FnDecl->getLocation(),
|
|
diag::note_ovl_ambiguous_oper_binary_selected_candidate);
|
|
for (auto *F : AmbiguousWith)
|
|
Diag(F->getLocation(),
|
|
diag::note_ovl_ambiguous_oper_binary_reversed_candidate);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert the arguments.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
|
// Best->Access is only meaningful for class members.
|
|
CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
|
|
|
|
ExprResult Arg1 =
|
|
PerformCopyInitialization(
|
|
InitializedEntity::InitializeParameter(Context,
|
|
FnDecl->getParamDecl(0)),
|
|
SourceLocation(), Args[1]);
|
|
if (Arg1.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult Arg0 =
|
|
PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
|
|
Best->FoundDecl, Method);
|
|
if (Arg0.isInvalid())
|
|
return ExprError();
|
|
Base = Args[0] = Arg0.getAs<Expr>();
|
|
Args[1] = RHS = Arg1.getAs<Expr>();
|
|
} else {
|
|
// Convert the arguments.
|
|
ExprResult Arg0 = PerformCopyInitialization(
|
|
InitializedEntity::InitializeParameter(Context,
|
|
FnDecl->getParamDecl(0)),
|
|
SourceLocation(), Args[0]);
|
|
if (Arg0.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult Arg1 =
|
|
PerformCopyInitialization(
|
|
InitializedEntity::InitializeParameter(Context,
|
|
FnDecl->getParamDecl(1)),
|
|
SourceLocation(), Args[1]);
|
|
if (Arg1.isInvalid())
|
|
return ExprError();
|
|
Args[0] = LHS = Arg0.getAs<Expr>();
|
|
Args[1] = RHS = Arg1.getAs<Expr>();
|
|
}
|
|
|
|
// Build the actual expression node.
|
|
ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
|
|
Best->FoundDecl, Base,
|
|
HadMultipleCandidates, OpLoc);
|
|
if (FnExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
// Determine the result type.
|
|
QualType ResultTy = FnDecl->getReturnType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultTy);
|
|
ResultTy = ResultTy.getNonLValueExprType(Context);
|
|
|
|
CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
|
|
Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc,
|
|
CurFPFeatureOverrides(), Best->IsADLCandidate);
|
|
|
|
if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
|
|
FnDecl))
|
|
return ExprError();
|
|
|
|
ArrayRef<const Expr *> ArgsArray(Args, 2);
|
|
const Expr *ImplicitThis = nullptr;
|
|
// Cut off the implicit 'this'.
|
|
if (isa<CXXMethodDecl>(FnDecl)) {
|
|
ImplicitThis = ArgsArray[0];
|
|
ArgsArray = ArgsArray.slice(1);
|
|
}
|
|
|
|
// Check for a self move.
|
|
if (Op == OO_Equal)
|
|
DiagnoseSelfMove(Args[0], Args[1], OpLoc);
|
|
|
|
checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
|
|
isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
|
|
VariadicDoesNotApply);
|
|
|
|
ExprResult R = MaybeBindToTemporary(TheCall);
|
|
if (R.isInvalid())
|
|
return ExprError();
|
|
|
|
R = CheckForImmediateInvocation(R, FnDecl);
|
|
if (R.isInvalid())
|
|
return ExprError();
|
|
|
|
// For a rewritten candidate, we've already reversed the arguments
|
|
// if needed. Perform the rest of the rewrite now.
|
|
if ((Best->RewriteKind & CRK_DifferentOperator) ||
|
|
(Op == OO_Spaceship && IsReversed)) {
|
|
if (Op == OO_ExclaimEqual) {
|
|
assert(ChosenOp == OO_EqualEqual && "unexpected operator name");
|
|
R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get());
|
|
} else {
|
|
assert(ChosenOp == OO_Spaceship && "unexpected operator name");
|
|
llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
|
|
Expr *ZeroLiteral =
|
|
IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc);
|
|
|
|
Sema::CodeSynthesisContext Ctx;
|
|
Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship;
|
|
Ctx.Entity = FnDecl;
|
|
pushCodeSynthesisContext(Ctx);
|
|
|
|
R = CreateOverloadedBinOp(
|
|
OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(),
|
|
IsReversed ? R.get() : ZeroLiteral, PerformADL,
|
|
/*AllowRewrittenCandidates=*/false);
|
|
|
|
popCodeSynthesisContext();
|
|
}
|
|
if (R.isInvalid())
|
|
return ExprError();
|
|
} else {
|
|
assert(ChosenOp == Op && "unexpected operator name");
|
|
}
|
|
|
|
// Make a note in the AST if we did any rewriting.
|
|
if (Best->RewriteKind != CRK_None)
|
|
R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed);
|
|
|
|
return R;
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
ExprResult ArgsRes0 = PerformImplicitConversion(
|
|
Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
|
|
AA_Passing, CCK_ForBuiltinOverloadedOp);
|
|
if (ArgsRes0.isInvalid())
|
|
return ExprError();
|
|
Args[0] = ArgsRes0.get();
|
|
|
|
ExprResult ArgsRes1 = PerformImplicitConversion(
|
|
Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
|
|
AA_Passing, CCK_ForBuiltinOverloadedOp);
|
|
if (ArgsRes1.isInvalid())
|
|
return ExprError();
|
|
Args[1] = ArgsRes1.get();
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function: {
|
|
// C++ [over.match.oper]p9:
|
|
// If the operator is the operator , [...] and there are no
|
|
// viable functions, then the operator is assumed to be the
|
|
// built-in operator and interpreted according to clause 5.
|
|
if (Opc == BO_Comma)
|
|
break;
|
|
|
|
// When defaulting an 'operator<=>', we can try to synthesize a three-way
|
|
// compare result using '==' and '<'.
|
|
if (DefaultedFn && Opc == BO_Cmp) {
|
|
ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0],
|
|
Args[1], DefaultedFn);
|
|
if (E.isInvalid() || E.isUsable())
|
|
return E;
|
|
}
|
|
|
|
// For class as left operand for assignment or compound assignment
|
|
// operator do not fall through to handling in built-in, but report that
|
|
// no overloaded assignment operator found
|
|
ExprResult Result = ExprError();
|
|
StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
|
|
auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
|
|
Args, OpLoc);
|
|
if (Args[0]->getType()->isRecordType() &&
|
|
Opc >= BO_Assign && Opc <= BO_OrAssign) {
|
|
Diag(OpLoc, diag::err_ovl_no_viable_oper)
|
|
<< BinaryOperator::getOpcodeStr(Opc)
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
if (Args[0]->getType()->isIncompleteType()) {
|
|
Diag(OpLoc, diag::note_assign_lhs_incomplete)
|
|
<< Args[0]->getType()
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
}
|
|
} else {
|
|
// This is an erroneous use of an operator which can be overloaded by
|
|
// a non-member function. Check for non-member operators which were
|
|
// defined too late to be candidates.
|
|
if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
|
|
// FIXME: Recover by calling the found function.
|
|
return ExprError();
|
|
|
|
// No viable function; try to create a built-in operation, which will
|
|
// produce an error. Then, show the non-viable candidates.
|
|
Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
|
|
}
|
|
assert(Result.isInvalid() &&
|
|
"C++ binary operator overloading is missing candidates!");
|
|
CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
|
|
return Result;
|
|
}
|
|
|
|
case OR_Ambiguous:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
|
|
<< BinaryOperator::getOpcodeStr(Opc)
|
|
<< Args[0]->getType()
|
|
<< Args[1]->getType()
|
|
<< Args[0]->getSourceRange()
|
|
<< Args[1]->getSourceRange()),
|
|
*this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
|
|
OpLoc);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
if (isImplicitlyDeleted(Best->Function)) {
|
|
FunctionDecl *DeletedFD = Best->Function;
|
|
DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD);
|
|
if (DFK.isSpecialMember()) {
|
|
Diag(OpLoc, diag::err_ovl_deleted_special_oper)
|
|
<< Args[0]->getType() << DFK.asSpecialMember();
|
|
} else {
|
|
assert(DFK.isComparison());
|
|
Diag(OpLoc, diag::err_ovl_deleted_comparison)
|
|
<< Args[0]->getType() << DeletedFD;
|
|
}
|
|
|
|
// The user probably meant to call this special member. Just
|
|
// explain why it's deleted.
|
|
NoteDeletedFunction(DeletedFD);
|
|
return ExprError();
|
|
}
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(
|
|
OpLoc, PDiag(diag::err_ovl_deleted_oper)
|
|
<< getOperatorSpelling(Best->Function->getDeclName()
|
|
.getCXXOverloadedOperator())
|
|
<< Args[0]->getSourceRange()
|
|
<< Args[1]->getSourceRange()),
|
|
*this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
|
|
OpLoc);
|
|
return ExprError();
|
|
}
|
|
|
|
// We matched a built-in operator; build it.
|
|
return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
|
|
}
|
|
|
|
ExprResult Sema::BuildSynthesizedThreeWayComparison(
|
|
SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS,
|
|
FunctionDecl *DefaultedFn) {
|
|
const ComparisonCategoryInfo *Info =
|
|
Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType());
|
|
// If we're not producing a known comparison category type, we can't
|
|
// synthesize a three-way comparison. Let the caller diagnose this.
|
|
if (!Info)
|
|
return ExprResult((Expr*)nullptr);
|
|
|
|
// If we ever want to perform this synthesis more generally, we will need to
|
|
// apply the temporary materialization conversion to the operands.
|
|
assert(LHS->isGLValue() && RHS->isGLValue() &&
|
|
"cannot use prvalue expressions more than once");
|
|
Expr *OrigLHS = LHS;
|
|
Expr *OrigRHS = RHS;
|
|
|
|
// Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to
|
|
// each of them multiple times below.
|
|
LHS = new (Context)
|
|
OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(),
|
|
LHS->getObjectKind(), LHS);
|
|
RHS = new (Context)
|
|
OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(),
|
|
RHS->getObjectKind(), RHS);
|
|
|
|
ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true,
|
|
DefaultedFn);
|
|
if (Eq.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true,
|
|
true, DefaultedFn);
|
|
if (Less.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult Greater;
|
|
if (Info->isPartial()) {
|
|
Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true,
|
|
DefaultedFn);
|
|
if (Greater.isInvalid())
|
|
return ExprError();
|
|
}
|
|
|
|
// Form the list of comparisons we're going to perform.
|
|
struct Comparison {
|
|
ExprResult Cmp;
|
|
ComparisonCategoryResult Result;
|
|
} Comparisons[4] =
|
|
{ {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal
|
|
: ComparisonCategoryResult::Equivalent},
|
|
{Less, ComparisonCategoryResult::Less},
|
|
{Greater, ComparisonCategoryResult::Greater},
|
|
{ExprResult(), ComparisonCategoryResult::Unordered},
|
|
};
|
|
|
|
int I = Info->isPartial() ? 3 : 2;
|
|
|
|
// Combine the comparisons with suitable conditional expressions.
|
|
ExprResult Result;
|
|
for (; I >= 0; --I) {
|
|
// Build a reference to the comparison category constant.
|
|
auto *VI = Info->lookupValueInfo(Comparisons[I].Result);
|
|
// FIXME: Missing a constant for a comparison category. Diagnose this?
|
|
if (!VI)
|
|
return ExprResult((Expr*)nullptr);
|
|
ExprResult ThisResult =
|
|
BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD);
|
|
if (ThisResult.isInvalid())
|
|
return ExprError();
|
|
|
|
// Build a conditional unless this is the final case.
|
|
if (Result.get()) {
|
|
Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(),
|
|
ThisResult.get(), Result.get());
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
} else {
|
|
Result = ThisResult;
|
|
}
|
|
}
|
|
|
|
// Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to
|
|
// bind the OpaqueValueExprs before they're (repeatedly) used.
|
|
Expr *SyntacticForm = BinaryOperator::Create(
|
|
Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(),
|
|
Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc,
|
|
CurFPFeatureOverrides());
|
|
Expr *SemanticForm[] = {LHS, RHS, Result.get()};
|
|
return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
|
|
SourceLocation RLoc,
|
|
Expr *Base, Expr *Idx) {
|
|
Expr *Args[2] = { Base, Idx };
|
|
DeclarationName OpName =
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
|
|
|
|
// If either side is type-dependent, create an appropriate dependent
|
|
// expression.
|
|
if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
|
|
|
|
CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
|
|
// CHECKME: no 'operator' keyword?
|
|
DeclarationNameInfo OpNameInfo(OpName, LLoc);
|
|
OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
|
|
ExprResult Fn = CreateUnresolvedLookupExpr(
|
|
NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>());
|
|
if (Fn.isInvalid())
|
|
return ExprError();
|
|
// Can't add any actual overloads yet
|
|
|
|
return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args,
|
|
Context.DependentTy, VK_RValue, RLoc,
|
|
CurFPFeatureOverrides());
|
|
}
|
|
|
|
// Handle placeholders on both operands.
|
|
if (checkPlaceholderForOverload(*this, Args[0]))
|
|
return ExprError();
|
|
if (checkPlaceholderForOverload(*this, Args[1]))
|
|
return ExprError();
|
|
|
|
// Build an empty overload set.
|
|
OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
|
|
|
|
// Subscript can only be overloaded as a member function.
|
|
|
|
// Add operator candidates that are member functions.
|
|
AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
|
|
|
|
// Add builtin operator candidates.
|
|
AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
if (FnDecl) {
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
|
|
|
|
// Convert the arguments.
|
|
CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
|
|
ExprResult Arg0 =
|
|
PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
|
|
Best->FoundDecl, Method);
|
|
if (Arg0.isInvalid())
|
|
return ExprError();
|
|
Args[0] = Arg0.get();
|
|
|
|
// Convert the arguments.
|
|
ExprResult InputInit
|
|
= PerformCopyInitialization(InitializedEntity::InitializeParameter(
|
|
Context,
|
|
FnDecl->getParamDecl(0)),
|
|
SourceLocation(),
|
|
Args[1]);
|
|
if (InputInit.isInvalid())
|
|
return ExprError();
|
|
|
|
Args[1] = InputInit.getAs<Expr>();
|
|
|
|
// Build the actual expression node.
|
|
DeclarationNameInfo OpLocInfo(OpName, LLoc);
|
|
OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
|
|
ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
|
|
Best->FoundDecl,
|
|
Base,
|
|
HadMultipleCandidates,
|
|
OpLocInfo.getLoc(),
|
|
OpLocInfo.getInfo());
|
|
if (FnExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
// Determine the result type
|
|
QualType ResultTy = FnDecl->getReturnType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultTy);
|
|
ResultTy = ResultTy.getNonLValueExprType(Context);
|
|
|
|
CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
|
|
Context, OO_Subscript, FnExpr.get(), Args, ResultTy, VK, RLoc,
|
|
CurFPFeatureOverrides());
|
|
if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
|
|
return ExprError();
|
|
|
|
if (CheckFunctionCall(Method, TheCall,
|
|
Method->getType()->castAs<FunctionProtoType>()))
|
|
return ExprError();
|
|
|
|
return MaybeBindToTemporary(TheCall);
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
ExprResult ArgsRes0 = PerformImplicitConversion(
|
|
Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
|
|
AA_Passing, CCK_ForBuiltinOverloadedOp);
|
|
if (ArgsRes0.isInvalid())
|
|
return ExprError();
|
|
Args[0] = ArgsRes0.get();
|
|
|
|
ExprResult ArgsRes1 = PerformImplicitConversion(
|
|
Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
|
|
AA_Passing, CCK_ForBuiltinOverloadedOp);
|
|
if (ArgsRes1.isInvalid())
|
|
return ExprError();
|
|
Args[1] = ArgsRes1.get();
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function: {
|
|
PartialDiagnostic PD = CandidateSet.empty()
|
|
? (PDiag(diag::err_ovl_no_oper)
|
|
<< Args[0]->getType() << /*subscript*/ 0
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange())
|
|
: (PDiag(diag::err_ovl_no_viable_subscript)
|
|
<< Args[0]->getType() << Args[0]->getSourceRange()
|
|
<< Args[1]->getSourceRange());
|
|
CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
|
|
OCD_AllCandidates, Args, "[]", LLoc);
|
|
return ExprError();
|
|
}
|
|
|
|
case OR_Ambiguous:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
|
|
<< "[]" << Args[0]->getType()
|
|
<< Args[1]->getType()
|
|
<< Args[0]->getSourceRange()
|
|
<< Args[1]->getSourceRange()),
|
|
*this, OCD_AmbiguousCandidates, Args, "[]", LLoc);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
|
|
<< "[]" << Args[0]->getSourceRange()
|
|
<< Args[1]->getSourceRange()),
|
|
*this, OCD_AllCandidates, Args, "[]", LLoc);
|
|
return ExprError();
|
|
}
|
|
|
|
// We matched a built-in operator; build it.
|
|
return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
|
|
}
|
|
|
|
/// BuildCallToMemberFunction - Build a call to a member
|
|
/// function. MemExpr is the expression that refers to the member
|
|
/// function (and includes the object parameter), Args/NumArgs are the
|
|
/// arguments to the function call (not including the object
|
|
/// parameter). The caller needs to validate that the member
|
|
/// expression refers to a non-static member function or an overloaded
|
|
/// member function.
|
|
ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation RParenLoc,
|
|
bool AllowRecovery) {
|
|
assert(MemExprE->getType() == Context.BoundMemberTy ||
|
|
MemExprE->getType() == Context.OverloadTy);
|
|
|
|
// Dig out the member expression. This holds both the object
|
|
// argument and the member function we're referring to.
|
|
Expr *NakedMemExpr = MemExprE->IgnoreParens();
|
|
|
|
// Determine whether this is a call to a pointer-to-member function.
|
|
if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
|
|
assert(op->getType() == Context.BoundMemberTy);
|
|
assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
|
|
|
|
QualType fnType =
|
|
op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
|
|
|
|
const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
|
|
QualType resultType = proto->getCallResultType(Context);
|
|
ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
|
|
|
|
// Check that the object type isn't more qualified than the
|
|
// member function we're calling.
|
|
Qualifiers funcQuals = proto->getMethodQuals();
|
|
|
|
QualType objectType = op->getLHS()->getType();
|
|
if (op->getOpcode() == BO_PtrMemI)
|
|
objectType = objectType->castAs<PointerType>()->getPointeeType();
|
|
Qualifiers objectQuals = objectType.getQualifiers();
|
|
|
|
Qualifiers difference = objectQuals - funcQuals;
|
|
difference.removeObjCGCAttr();
|
|
difference.removeAddressSpace();
|
|
if (difference) {
|
|
std::string qualsString = difference.getAsString();
|
|
Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
|
|
<< fnType.getUnqualifiedType()
|
|
<< qualsString
|
|
<< (qualsString.find(' ') == std::string::npos ? 1 : 2);
|
|
}
|
|
|
|
CXXMemberCallExpr *call = CXXMemberCallExpr::Create(
|
|
Context, MemExprE, Args, resultType, valueKind, RParenLoc,
|
|
CurFPFeatureOverrides(), proto->getNumParams());
|
|
|
|
if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
|
|
call, nullptr))
|
|
return ExprError();
|
|
|
|
if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
|
|
return ExprError();
|
|
|
|
if (CheckOtherCall(call, proto))
|
|
return ExprError();
|
|
|
|
return MaybeBindToTemporary(call);
|
|
}
|
|
|
|
// We only try to build a recovery expr at this level if we can preserve
|
|
// the return type, otherwise we return ExprError() and let the caller
|
|
// recover.
|
|
auto BuildRecoveryExpr = [&](QualType Type) {
|
|
if (!AllowRecovery)
|
|
return ExprError();
|
|
std::vector<Expr *> SubExprs = {MemExprE};
|
|
llvm::for_each(Args, [&SubExprs](Expr *E) { SubExprs.push_back(E); });
|
|
return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs,
|
|
Type);
|
|
};
|
|
if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
|
|
return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_RValue,
|
|
RParenLoc, CurFPFeatureOverrides());
|
|
|
|
UnbridgedCastsSet UnbridgedCasts;
|
|
if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
|
|
return ExprError();
|
|
|
|
MemberExpr *MemExpr;
|
|
CXXMethodDecl *Method = nullptr;
|
|
DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
|
|
NestedNameSpecifier *Qualifier = nullptr;
|
|
if (isa<MemberExpr>(NakedMemExpr)) {
|
|
MemExpr = cast<MemberExpr>(NakedMemExpr);
|
|
Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
|
|
FoundDecl = MemExpr->getFoundDecl();
|
|
Qualifier = MemExpr->getQualifier();
|
|
UnbridgedCasts.restore();
|
|
} else {
|
|
UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
|
|
Qualifier = UnresExpr->getQualifier();
|
|
|
|
QualType ObjectType = UnresExpr->getBaseType();
|
|
Expr::Classification ObjectClassification
|
|
= UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
|
|
: UnresExpr->getBase()->Classify(Context);
|
|
|
|
// Add overload candidates
|
|
OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
|
|
OverloadCandidateSet::CSK_Normal);
|
|
|
|
// FIXME: avoid copy.
|
|
TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
|
|
if (UnresExpr->hasExplicitTemplateArgs()) {
|
|
UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
|
|
TemplateArgs = &TemplateArgsBuffer;
|
|
}
|
|
|
|
for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
|
|
E = UnresExpr->decls_end(); I != E; ++I) {
|
|
|
|
NamedDecl *Func = *I;
|
|
CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
|
|
if (isa<UsingShadowDecl>(Func))
|
|
Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
|
|
|
|
|
|
// Microsoft supports direct constructor calls.
|
|
if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
|
|
AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
|
|
CandidateSet,
|
|
/*SuppressUserConversions*/ false);
|
|
} else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
|
|
// If explicit template arguments were provided, we can't call a
|
|
// non-template member function.
|
|
if (TemplateArgs)
|
|
continue;
|
|
|
|
AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
|
|
ObjectClassification, Args, CandidateSet,
|
|
/*SuppressUserConversions=*/false);
|
|
} else {
|
|
AddMethodTemplateCandidate(
|
|
cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
|
|
TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
|
|
/*SuppressUserConversions=*/false);
|
|
}
|
|
}
|
|
|
|
DeclarationName DeclName = UnresExpr->getMemberName();
|
|
|
|
UnbridgedCasts.restore();
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
bool Succeeded = false;
|
|
switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
|
|
Best)) {
|
|
case OR_Success:
|
|
Method = cast<CXXMethodDecl>(Best->Function);
|
|
FoundDecl = Best->FoundDecl;
|
|
CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
|
|
if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
|
|
break;
|
|
// If FoundDecl is different from Method (such as if one is a template
|
|
// and the other a specialization), make sure DiagnoseUseOfDecl is
|
|
// called on both.
|
|
// FIXME: This would be more comprehensively addressed by modifying
|
|
// DiagnoseUseOfDecl to accept both the FoundDecl and the decl
|
|
// being used.
|
|
if (Method != FoundDecl.getDecl() &&
|
|
DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
|
|
break;
|
|
Succeeded = true;
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(
|
|
UnresExpr->getMemberLoc(),
|
|
PDiag(diag::err_ovl_no_viable_member_function_in_call)
|
|
<< DeclName << MemExprE->getSourceRange()),
|
|
*this, OCD_AllCandidates, Args);
|
|
break;
|
|
case OR_Ambiguous:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(UnresExpr->getMemberLoc(),
|
|
PDiag(diag::err_ovl_ambiguous_member_call)
|
|
<< DeclName << MemExprE->getSourceRange()),
|
|
*this, OCD_AmbiguousCandidates, Args);
|
|
break;
|
|
case OR_Deleted:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(UnresExpr->getMemberLoc(),
|
|
PDiag(diag::err_ovl_deleted_member_call)
|
|
<< DeclName << MemExprE->getSourceRange()),
|
|
*this, OCD_AllCandidates, Args);
|
|
break;
|
|
}
|
|
// Overload resolution fails, try to recover.
|
|
if (!Succeeded)
|
|
return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best));
|
|
|
|
MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
|
|
|
|
// If overload resolution picked a static member, build a
|
|
// non-member call based on that function.
|
|
if (Method->isStatic()) {
|
|
return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
|
|
RParenLoc);
|
|
}
|
|
|
|
MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
|
|
}
|
|
|
|
QualType ResultType = Method->getReturnType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultType);
|
|
ResultType = ResultType.getNonLValueExprType(Context);
|
|
|
|
assert(Method && "Member call to something that isn't a method?");
|
|
const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
|
|
CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create(
|
|
Context, MemExprE, Args, ResultType, VK, RParenLoc,
|
|
CurFPFeatureOverrides(), Proto->getNumParams());
|
|
|
|
// Check for a valid return type.
|
|
if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
|
|
TheCall, Method))
|
|
return BuildRecoveryExpr(ResultType);
|
|
|
|
// Convert the object argument (for a non-static member function call).
|
|
// We only need to do this if there was actually an overload; otherwise
|
|
// it was done at lookup.
|
|
if (!Method->isStatic()) {
|
|
ExprResult ObjectArg =
|
|
PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
|
|
FoundDecl, Method);
|
|
if (ObjectArg.isInvalid())
|
|
return ExprError();
|
|
MemExpr->setBase(ObjectArg.get());
|
|
}
|
|
|
|
// Convert the rest of the arguments
|
|
if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
|
|
RParenLoc))
|
|
return BuildRecoveryExpr(ResultType);
|
|
|
|
DiagnoseSentinelCalls(Method, LParenLoc, Args);
|
|
|
|
if (CheckFunctionCall(Method, TheCall, Proto))
|
|
return ExprError();
|
|
|
|
// In the case the method to call was not selected by the overloading
|
|
// resolution process, we still need to handle the enable_if attribute. Do
|
|
// that here, so it will not hide previous -- and more relevant -- errors.
|
|
if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
|
|
if (const EnableIfAttr *Attr =
|
|
CheckEnableIf(Method, LParenLoc, Args, true)) {
|
|
Diag(MemE->getMemberLoc(),
|
|
diag::err_ovl_no_viable_member_function_in_call)
|
|
<< Method << Method->getSourceRange();
|
|
Diag(Method->getLocation(),
|
|
diag::note_ovl_candidate_disabled_by_function_cond_attr)
|
|
<< Attr->getCond()->getSourceRange() << Attr->getMessage();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
if ((isa<CXXConstructorDecl>(CurContext) ||
|
|
isa<CXXDestructorDecl>(CurContext)) &&
|
|
TheCall->getMethodDecl()->isPure()) {
|
|
const CXXMethodDecl *MD = TheCall->getMethodDecl();
|
|
|
|
if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
|
|
MemExpr->performsVirtualDispatch(getLangOpts())) {
|
|
Diag(MemExpr->getBeginLoc(),
|
|
diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
|
|
<< MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
|
|
<< MD->getParent();
|
|
|
|
Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
|
|
if (getLangOpts().AppleKext)
|
|
Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
|
|
<< MD->getParent() << MD->getDeclName();
|
|
}
|
|
}
|
|
|
|
if (CXXDestructorDecl *DD =
|
|
dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
|
|
// a->A::f() doesn't go through the vtable, except in AppleKext mode.
|
|
bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
|
|
CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
|
|
CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
|
|
MemExpr->getMemberLoc());
|
|
}
|
|
|
|
return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
|
|
TheCall->getMethodDecl());
|
|
}
|
|
|
|
/// BuildCallToObjectOfClassType - Build a call to an object of class
|
|
/// type (C++ [over.call.object]), which can end up invoking an
|
|
/// overloaded function call operator (@c operator()) or performing a
|
|
/// user-defined conversion on the object argument.
|
|
ExprResult
|
|
Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation RParenLoc) {
|
|
if (checkPlaceholderForOverload(*this, Obj))
|
|
return ExprError();
|
|
ExprResult Object = Obj;
|
|
|
|
UnbridgedCastsSet UnbridgedCasts;
|
|
if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
|
|
return ExprError();
|
|
|
|
assert(Object.get()->getType()->isRecordType() &&
|
|
"Requires object type argument");
|
|
|
|
// C++ [over.call.object]p1:
|
|
// If the primary-expression E in the function call syntax
|
|
// evaluates to a class object of type "cv T", then the set of
|
|
// candidate functions includes at least the function call
|
|
// operators of T. The function call operators of T are obtained by
|
|
// ordinary lookup of the name operator() in the context of
|
|
// (E).operator().
|
|
OverloadCandidateSet CandidateSet(LParenLoc,
|
|
OverloadCandidateSet::CSK_Operator);
|
|
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
|
|
|
|
if (RequireCompleteType(LParenLoc, Object.get()->getType(),
|
|
diag::err_incomplete_object_call, Object.get()))
|
|
return true;
|
|
|
|
const auto *Record = Object.get()->getType()->castAs<RecordType>();
|
|
LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
|
|
LookupQualifiedName(R, Record->getDecl());
|
|
R.suppressDiagnostics();
|
|
|
|
for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
|
|
Oper != OperEnd; ++Oper) {
|
|
AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
|
|
Object.get()->Classify(Context), Args, CandidateSet,
|
|
/*SuppressUserConversion=*/false);
|
|
}
|
|
|
|
// C++ [over.call.object]p2:
|
|
// In addition, for each (non-explicit in C++0x) conversion function
|
|
// declared in T of the form
|
|
//
|
|
// operator conversion-type-id () cv-qualifier;
|
|
//
|
|
// where cv-qualifier is the same cv-qualification as, or a
|
|
// greater cv-qualification than, cv, and where conversion-type-id
|
|
// denotes the type "pointer to function of (P1,...,Pn) returning
|
|
// R", or the type "reference to pointer to function of
|
|
// (P1,...,Pn) returning R", or the type "reference to function
|
|
// of (P1,...,Pn) returning R", a surrogate call function [...]
|
|
// is also considered as a candidate function. Similarly,
|
|
// surrogate call functions are added to the set of candidate
|
|
// functions for each conversion function declared in an
|
|
// accessible base class provided the function is not hidden
|
|
// within T by another intervening declaration.
|
|
const auto &Conversions =
|
|
cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
|
|
for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
// Skip over templated conversion functions; they aren't
|
|
// surrogates.
|
|
if (isa<FunctionTemplateDecl>(D))
|
|
continue;
|
|
|
|
CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
|
|
if (!Conv->isExplicit()) {
|
|
// Strip the reference type (if any) and then the pointer type (if
|
|
// any) to get down to what might be a function type.
|
|
QualType ConvType = Conv->getConversionType().getNonReferenceType();
|
|
if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
|
|
ConvType = ConvPtrType->getPointeeType();
|
|
|
|
if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
|
|
{
|
|
AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
|
|
Object.get(), Args, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
|
|
Best)) {
|
|
case OR_Success:
|
|
// Overload resolution succeeded; we'll build the appropriate call
|
|
// below.
|
|
break;
|
|
|
|
case OR_No_Viable_Function: {
|
|
PartialDiagnostic PD =
|
|
CandidateSet.empty()
|
|
? (PDiag(diag::err_ovl_no_oper)
|
|
<< Object.get()->getType() << /*call*/ 1
|
|
<< Object.get()->getSourceRange())
|
|
: (PDiag(diag::err_ovl_no_viable_object_call)
|
|
<< Object.get()->getType() << Object.get()->getSourceRange());
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
|
|
OCD_AllCandidates, Args);
|
|
break;
|
|
}
|
|
case OR_Ambiguous:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(Object.get()->getBeginLoc(),
|
|
PDiag(diag::err_ovl_ambiguous_object_call)
|
|
<< Object.get()->getType()
|
|
<< Object.get()->getSourceRange()),
|
|
*this, OCD_AmbiguousCandidates, Args);
|
|
break;
|
|
|
|
case OR_Deleted:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(Object.get()->getBeginLoc(),
|
|
PDiag(diag::err_ovl_deleted_object_call)
|
|
<< Object.get()->getType()
|
|
<< Object.get()->getSourceRange()),
|
|
*this, OCD_AllCandidates, Args);
|
|
break;
|
|
}
|
|
|
|
if (Best == CandidateSet.end())
|
|
return true;
|
|
|
|
UnbridgedCasts.restore();
|
|
|
|
if (Best->Function == nullptr) {
|
|
// Since there is no function declaration, this is one of the
|
|
// surrogate candidates. Dig out the conversion function.
|
|
CXXConversionDecl *Conv
|
|
= cast<CXXConversionDecl>(
|
|
Best->Conversions[0].UserDefined.ConversionFunction);
|
|
|
|
CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
|
|
Best->FoundDecl);
|
|
if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
|
|
return ExprError();
|
|
assert(Conv == Best->FoundDecl.getDecl() &&
|
|
"Found Decl & conversion-to-functionptr should be same, right?!");
|
|
// We selected one of the surrogate functions that converts the
|
|
// object parameter to a function pointer. Perform the conversion
|
|
// on the object argument, then let BuildCallExpr finish the job.
|
|
|
|
// Create an implicit member expr to refer to the conversion operator.
|
|
// and then call it.
|
|
ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
|
|
Conv, HadMultipleCandidates);
|
|
if (Call.isInvalid())
|
|
return ExprError();
|
|
// Record usage of conversion in an implicit cast.
|
|
Call = ImplicitCastExpr::Create(
|
|
Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(),
|
|
nullptr, VK_RValue, CurFPFeatureOverrides());
|
|
|
|
return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
|
|
}
|
|
|
|
CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
|
|
|
|
// We found an overloaded operator(). Build a CXXOperatorCallExpr
|
|
// that calls this method, using Object for the implicit object
|
|
// parameter and passing along the remaining arguments.
|
|
CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
|
|
|
|
// An error diagnostic has already been printed when parsing the declaration.
|
|
if (Method->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
|
|
unsigned NumParams = Proto->getNumParams();
|
|
|
|
DeclarationNameInfo OpLocInfo(
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
|
|
OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
|
|
ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
|
|
Obj, HadMultipleCandidates,
|
|
OpLocInfo.getLoc(),
|
|
OpLocInfo.getInfo());
|
|
if (NewFn.isInvalid())
|
|
return true;
|
|
|
|
// The number of argument slots to allocate in the call. If we have default
|
|
// arguments we need to allocate space for them as well. We additionally
|
|
// need one more slot for the object parameter.
|
|
unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
|
|
|
|
// Build the full argument list for the method call (the implicit object
|
|
// parameter is placed at the beginning of the list).
|
|
SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
|
|
|
|
bool IsError = false;
|
|
|
|
// Initialize the implicit object parameter.
|
|
ExprResult ObjRes =
|
|
PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
|
|
Best->FoundDecl, Method);
|
|
if (ObjRes.isInvalid())
|
|
IsError = true;
|
|
else
|
|
Object = ObjRes;
|
|
MethodArgs[0] = Object.get();
|
|
|
|
// Check the argument types.
|
|
for (unsigned i = 0; i != NumParams; i++) {
|
|
Expr *Arg;
|
|
if (i < Args.size()) {
|
|
Arg = Args[i];
|
|
|
|
// Pass the argument.
|
|
|
|
ExprResult InputInit
|
|
= PerformCopyInitialization(InitializedEntity::InitializeParameter(
|
|
Context,
|
|
Method->getParamDecl(i)),
|
|
SourceLocation(), Arg);
|
|
|
|
IsError |= InputInit.isInvalid();
|
|
Arg = InputInit.getAs<Expr>();
|
|
} else {
|
|
ExprResult DefArg
|
|
= BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
|
|
if (DefArg.isInvalid()) {
|
|
IsError = true;
|
|
break;
|
|
}
|
|
|
|
Arg = DefArg.getAs<Expr>();
|
|
}
|
|
|
|
MethodArgs[i + 1] = Arg;
|
|
}
|
|
|
|
// If this is a variadic call, handle args passed through "...".
|
|
if (Proto->isVariadic()) {
|
|
// Promote the arguments (C99 6.5.2.2p7).
|
|
for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
|
|
ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
|
|
nullptr);
|
|
IsError |= Arg.isInvalid();
|
|
MethodArgs[i + 1] = Arg.get();
|
|
}
|
|
}
|
|
|
|
if (IsError)
|
|
return true;
|
|
|
|
DiagnoseSentinelCalls(Method, LParenLoc, Args);
|
|
|
|
// Once we've built TheCall, all of the expressions are properly owned.
|
|
QualType ResultTy = Method->getReturnType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultTy);
|
|
ResultTy = ResultTy.getNonLValueExprType(Context);
|
|
|
|
CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
|
|
Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc,
|
|
CurFPFeatureOverrides());
|
|
|
|
if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
|
|
return true;
|
|
|
|
if (CheckFunctionCall(Method, TheCall, Proto))
|
|
return true;
|
|
|
|
return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
|
|
}
|
|
|
|
/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
|
|
/// (if one exists), where @c Base is an expression of class type and
|
|
/// @c Member is the name of the member we're trying to find.
|
|
ExprResult
|
|
Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
|
|
bool *NoArrowOperatorFound) {
|
|
assert(Base->getType()->isRecordType() &&
|
|
"left-hand side must have class type");
|
|
|
|
if (checkPlaceholderForOverload(*this, Base))
|
|
return ExprError();
|
|
|
|
SourceLocation Loc = Base->getExprLoc();
|
|
|
|
// C++ [over.ref]p1:
|
|
//
|
|
// [...] An expression x->m is interpreted as (x.operator->())->m
|
|
// for a class object x of type T if T::operator->() exists and if
|
|
// the operator is selected as the best match function by the
|
|
// overload resolution mechanism (13.3).
|
|
DeclarationName OpName =
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
|
|
OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
|
|
|
|
if (RequireCompleteType(Loc, Base->getType(),
|
|
diag::err_typecheck_incomplete_tag, Base))
|
|
return ExprError();
|
|
|
|
LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
|
|
LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl());
|
|
R.suppressDiagnostics();
|
|
|
|
for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
|
|
Oper != OperEnd; ++Oper) {
|
|
AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
|
|
None, CandidateSet, /*SuppressUserConversion=*/false);
|
|
}
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
|
|
case OR_Success:
|
|
// Overload resolution succeeded; we'll build the call below.
|
|
break;
|
|
|
|
case OR_No_Viable_Function: {
|
|
auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
|
|
if (CandidateSet.empty()) {
|
|
QualType BaseType = Base->getType();
|
|
if (NoArrowOperatorFound) {
|
|
// Report this specific error to the caller instead of emitting a
|
|
// diagnostic, as requested.
|
|
*NoArrowOperatorFound = true;
|
|
return ExprError();
|
|
}
|
|
Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
|
|
<< BaseType << Base->getSourceRange();
|
|
if (BaseType->isRecordType() && !BaseType->isPointerType()) {
|
|
Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
|
|
<< FixItHint::CreateReplacement(OpLoc, ".");
|
|
}
|
|
} else
|
|
Diag(OpLoc, diag::err_ovl_no_viable_oper)
|
|
<< "operator->" << Base->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, Base, Cands);
|
|
return ExprError();
|
|
}
|
|
case OR_Ambiguous:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
|
|
<< "->" << Base->getType()
|
|
<< Base->getSourceRange()),
|
|
*this, OCD_AmbiguousCandidates, Base);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
|
|
<< "->" << Base->getSourceRange()),
|
|
*this, OCD_AllCandidates, Base);
|
|
return ExprError();
|
|
}
|
|
|
|
CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
|
|
|
|
// Convert the object parameter.
|
|
CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
|
|
ExprResult BaseResult =
|
|
PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
|
|
Best->FoundDecl, Method);
|
|
if (BaseResult.isInvalid())
|
|
return ExprError();
|
|
Base = BaseResult.get();
|
|
|
|
// Build the operator call.
|
|
ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
|
|
Base, HadMultipleCandidates, OpLoc);
|
|
if (FnExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
QualType ResultTy = Method->getReturnType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultTy);
|
|
ResultTy = ResultTy.getNonLValueExprType(Context);
|
|
CXXOperatorCallExpr *TheCall =
|
|
CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base,
|
|
ResultTy, VK, OpLoc, CurFPFeatureOverrides());
|
|
|
|
if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
|
|
return ExprError();
|
|
|
|
if (CheckFunctionCall(Method, TheCall,
|
|
Method->getType()->castAs<FunctionProtoType>()))
|
|
return ExprError();
|
|
|
|
return MaybeBindToTemporary(TheCall);
|
|
}
|
|
|
|
/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
|
|
/// a literal operator described by the provided lookup results.
|
|
ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
|
|
DeclarationNameInfo &SuffixInfo,
|
|
ArrayRef<Expr*> Args,
|
|
SourceLocation LitEndLoc,
|
|
TemplateArgumentListInfo *TemplateArgs) {
|
|
SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
|
|
|
|
OverloadCandidateSet CandidateSet(UDSuffixLoc,
|
|
OverloadCandidateSet::CSK_Normal);
|
|
AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet,
|
|
TemplateArgs);
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
// Perform overload resolution. This will usually be trivial, but might need
|
|
// to perform substitutions for a literal operator template.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
|
|
case OR_Success:
|
|
case OR_Deleted:
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(UDSuffixLoc,
|
|
PDiag(diag::err_ovl_no_viable_function_in_call)
|
|
<< R.getLookupName()),
|
|
*this, OCD_AllCandidates, Args);
|
|
return ExprError();
|
|
|
|
case OR_Ambiguous:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
|
|
<< R.getLookupName()),
|
|
*this, OCD_AmbiguousCandidates, Args);
|
|
return ExprError();
|
|
}
|
|
|
|
FunctionDecl *FD = Best->Function;
|
|
ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
|
|
nullptr, HadMultipleCandidates,
|
|
SuffixInfo.getLoc(),
|
|
SuffixInfo.getInfo());
|
|
if (Fn.isInvalid())
|
|
return true;
|
|
|
|
// Check the argument types. This should almost always be a no-op, except
|
|
// that array-to-pointer decay is applied to string literals.
|
|
Expr *ConvArgs[2];
|
|
for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
|
|
ExprResult InputInit = PerformCopyInitialization(
|
|
InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
|
|
SourceLocation(), Args[ArgIdx]);
|
|
if (InputInit.isInvalid())
|
|
return true;
|
|
ConvArgs[ArgIdx] = InputInit.get();
|
|
}
|
|
|
|
QualType ResultTy = FD->getReturnType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultTy);
|
|
ResultTy = ResultTy.getNonLValueExprType(Context);
|
|
|
|
UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
|
|
Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
|
|
VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides());
|
|
|
|
if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
|
|
return ExprError();
|
|
|
|
if (CheckFunctionCall(FD, UDL, nullptr))
|
|
return ExprError();
|
|
|
|
return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD);
|
|
}
|
|
|
|
/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
|
|
/// given LookupResult is non-empty, it is assumed to describe a member which
|
|
/// will be invoked. Otherwise, the function will be found via argument
|
|
/// dependent lookup.
|
|
/// CallExpr is set to a valid expression and FRS_Success returned on success,
|
|
/// otherwise CallExpr is set to ExprError() and some non-success value
|
|
/// is returned.
|
|
Sema::ForRangeStatus
|
|
Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
|
|
SourceLocation RangeLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
LookupResult &MemberLookup,
|
|
OverloadCandidateSet *CandidateSet,
|
|
Expr *Range, ExprResult *CallExpr) {
|
|
Scope *S = nullptr;
|
|
|
|
CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
|
|
if (!MemberLookup.empty()) {
|
|
ExprResult MemberRef =
|
|
BuildMemberReferenceExpr(Range, Range->getType(), Loc,
|
|
/*IsPtr=*/false, CXXScopeSpec(),
|
|
/*TemplateKWLoc=*/SourceLocation(),
|
|
/*FirstQualifierInScope=*/nullptr,
|
|
MemberLookup,
|
|
/*TemplateArgs=*/nullptr, S);
|
|
if (MemberRef.isInvalid()) {
|
|
*CallExpr = ExprError();
|
|
return FRS_DiagnosticIssued;
|
|
}
|
|
*CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
|
|
if (CallExpr->isInvalid()) {
|
|
*CallExpr = ExprError();
|
|
return FRS_DiagnosticIssued;
|
|
}
|
|
} else {
|
|
ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr,
|
|
NestedNameSpecifierLoc(),
|
|
NameInfo, UnresolvedSet<0>());
|
|
if (FnR.isInvalid())
|
|
return FRS_DiagnosticIssued;
|
|
UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get());
|
|
|
|
bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
|
|
CandidateSet, CallExpr);
|
|
if (CandidateSet->empty() || CandidateSetError) {
|
|
*CallExpr = ExprError();
|
|
return FRS_NoViableFunction;
|
|
}
|
|
OverloadCandidateSet::iterator Best;
|
|
OverloadingResult OverloadResult =
|
|
CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
|
|
|
|
if (OverloadResult == OR_No_Viable_Function) {
|
|
*CallExpr = ExprError();
|
|
return FRS_NoViableFunction;
|
|
}
|
|
*CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
|
|
Loc, nullptr, CandidateSet, &Best,
|
|
OverloadResult,
|
|
/*AllowTypoCorrection=*/false);
|
|
if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
|
|
*CallExpr = ExprError();
|
|
return FRS_DiagnosticIssued;
|
|
}
|
|
}
|
|
return FRS_Success;
|
|
}
|
|
|
|
|
|
/// FixOverloadedFunctionReference - E is an expression that refers to
|
|
/// a C++ overloaded function (possibly with some parentheses and
|
|
/// perhaps a '&' around it). We have resolved the overloaded function
|
|
/// to the function declaration Fn, so patch up the expression E to
|
|
/// refer (possibly indirectly) to Fn. Returns the new expr.
|
|
Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
|
|
FunctionDecl *Fn) {
|
|
if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
|
|
Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
|
|
Found, Fn);
|
|
if (SubExpr == PE->getSubExpr())
|
|
return PE;
|
|
|
|
return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
|
|
}
|
|
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
|
|
Found, Fn);
|
|
assert(Context.hasSameType(ICE->getSubExpr()->getType(),
|
|
SubExpr->getType()) &&
|
|
"Implicit cast type cannot be determined from overload");
|
|
assert(ICE->path_empty() && "fixing up hierarchy conversion?");
|
|
if (SubExpr == ICE->getSubExpr())
|
|
return ICE;
|
|
|
|
return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(),
|
|
SubExpr, nullptr, ICE->getValueKind(),
|
|
CurFPFeatureOverrides());
|
|
}
|
|
|
|
if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
|
|
if (!GSE->isResultDependent()) {
|
|
Expr *SubExpr =
|
|
FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
|
|
if (SubExpr == GSE->getResultExpr())
|
|
return GSE;
|
|
|
|
// Replace the resulting type information before rebuilding the generic
|
|
// selection expression.
|
|
ArrayRef<Expr *> A = GSE->getAssocExprs();
|
|
SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
|
|
unsigned ResultIdx = GSE->getResultIndex();
|
|
AssocExprs[ResultIdx] = SubExpr;
|
|
|
|
return GenericSelectionExpr::Create(
|
|
Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
|
|
GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
|
|
GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
|
|
ResultIdx);
|
|
}
|
|
// Rather than fall through to the unreachable, return the original generic
|
|
// selection expression.
|
|
return GSE;
|
|
}
|
|
|
|
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
|
|
assert(UnOp->getOpcode() == UO_AddrOf &&
|
|
"Can only take the address of an overloaded function");
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
|
|
if (Method->isStatic()) {
|
|
// Do nothing: static member functions aren't any different
|
|
// from non-member functions.
|
|
} else {
|
|
// Fix the subexpression, which really has to be an
|
|
// UnresolvedLookupExpr holding an overloaded member function
|
|
// or template.
|
|
Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
|
|
Found, Fn);
|
|
if (SubExpr == UnOp->getSubExpr())
|
|
return UnOp;
|
|
|
|
assert(isa<DeclRefExpr>(SubExpr)
|
|
&& "fixed to something other than a decl ref");
|
|
assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
|
|
&& "fixed to a member ref with no nested name qualifier");
|
|
|
|
// We have taken the address of a pointer to member
|
|
// function. Perform the computation here so that we get the
|
|
// appropriate pointer to member type.
|
|
QualType ClassType
|
|
= Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
|
|
QualType MemPtrType
|
|
= Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
|
|
// Under the MS ABI, lock down the inheritance model now.
|
|
if (Context.getTargetInfo().getCXXABI().isMicrosoft())
|
|
(void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
|
|
|
|
return UnaryOperator::Create(
|
|
Context, SubExpr, UO_AddrOf, MemPtrType, VK_RValue, OK_Ordinary,
|
|
UnOp->getOperatorLoc(), false, CurFPFeatureOverrides());
|
|
}
|
|
}
|
|
Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
|
|
Found, Fn);
|
|
if (SubExpr == UnOp->getSubExpr())
|
|
return UnOp;
|
|
|
|
return UnaryOperator::Create(Context, SubExpr, UO_AddrOf,
|
|
Context.getPointerType(SubExpr->getType()),
|
|
VK_RValue, OK_Ordinary, UnOp->getOperatorLoc(),
|
|
false, CurFPFeatureOverrides());
|
|
}
|
|
|
|
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
|
|
// FIXME: avoid copy.
|
|
TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
|
|
if (ULE->hasExplicitTemplateArgs()) {
|
|
ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
|
|
TemplateArgs = &TemplateArgsBuffer;
|
|
}
|
|
|
|
DeclRefExpr *DRE =
|
|
BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(),
|
|
ULE->getQualifierLoc(), Found.getDecl(),
|
|
ULE->getTemplateKeywordLoc(), TemplateArgs);
|
|
DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
|
|
return DRE;
|
|
}
|
|
|
|
if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
|
|
// FIXME: avoid copy.
|
|
TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
|
|
if (MemExpr->hasExplicitTemplateArgs()) {
|
|
MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
|
|
TemplateArgs = &TemplateArgsBuffer;
|
|
}
|
|
|
|
Expr *Base;
|
|
|
|
// If we're filling in a static method where we used to have an
|
|
// implicit member access, rewrite to a simple decl ref.
|
|
if (MemExpr->isImplicitAccess()) {
|
|
if (cast<CXXMethodDecl>(Fn)->isStatic()) {
|
|
DeclRefExpr *DRE = BuildDeclRefExpr(
|
|
Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
|
|
MemExpr->getQualifierLoc(), Found.getDecl(),
|
|
MemExpr->getTemplateKeywordLoc(), TemplateArgs);
|
|
DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
|
|
return DRE;
|
|
} else {
|
|
SourceLocation Loc = MemExpr->getMemberLoc();
|
|
if (MemExpr->getQualifier())
|
|
Loc = MemExpr->getQualifierLoc().getBeginLoc();
|
|
Base =
|
|
BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true);
|
|
}
|
|
} else
|
|
Base = MemExpr->getBase();
|
|
|
|
ExprValueKind valueKind;
|
|
QualType type;
|
|
if (cast<CXXMethodDecl>(Fn)->isStatic()) {
|
|
valueKind = VK_LValue;
|
|
type = Fn->getType();
|
|
} else {
|
|
valueKind = VK_RValue;
|
|
type = Context.BoundMemberTy;
|
|
}
|
|
|
|
return BuildMemberExpr(
|
|
Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
|
|
MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
|
|
/*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
|
|
type, valueKind, OK_Ordinary, TemplateArgs);
|
|
}
|
|
|
|
llvm_unreachable("Invalid reference to overloaded function");
|
|
}
|
|
|
|
ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
|
|
DeclAccessPair Found,
|
|
FunctionDecl *Fn) {
|
|
return FixOverloadedFunctionReference(E.get(), Found, Fn);
|
|
}
|