llvm-for-llvmta/tools/clang/lib/Sema/SemaDeclAttr.cpp

8714 lines
295 KiB
C++

//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements decl-related attribute processing.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetBuiltins.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedAttr.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Assumptions.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace sema;
namespace AttributeLangSupport {
enum LANG {
C,
Cpp,
ObjC
};
} // end namespace AttributeLangSupport
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
/// isFunctionOrMethod - Return true if the given decl has function
/// type (function or function-typed variable) or an Objective-C
/// method.
static bool isFunctionOrMethod(const Decl *D) {
return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
}
/// Return true if the given decl has function type (function or
/// function-typed variable) or an Objective-C method or a block.
static bool isFunctionOrMethodOrBlock(const Decl *D) {
return isFunctionOrMethod(D) || isa<BlockDecl>(D);
}
/// Return true if the given decl has a declarator that should have
/// been processed by Sema::GetTypeForDeclarator.
static bool hasDeclarator(const Decl *D) {
// In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
isa<ObjCPropertyDecl>(D);
}
/// hasFunctionProto - Return true if the given decl has a argument
/// information. This decl should have already passed
/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
static bool hasFunctionProto(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType())
return isa<FunctionProtoType>(FnTy);
return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
}
/// getFunctionOrMethodNumParams - Return number of function or method
/// parameters. It is an error to call this on a K&R function (use
/// hasFunctionProto first).
static unsigned getFunctionOrMethodNumParams(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType())
return cast<FunctionProtoType>(FnTy)->getNumParams();
if (const auto *BD = dyn_cast<BlockDecl>(D))
return BD->getNumParams();
return cast<ObjCMethodDecl>(D)->param_size();
}
static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D,
unsigned Idx) {
if (const auto *FD = dyn_cast<FunctionDecl>(D))
return FD->getParamDecl(Idx);
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
return MD->getParamDecl(Idx);
if (const auto *BD = dyn_cast<BlockDecl>(D))
return BD->getParamDecl(Idx);
return nullptr;
}
static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
if (const FunctionType *FnTy = D->getFunctionType())
return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
if (const auto *BD = dyn_cast<BlockDecl>(D))
return BD->getParamDecl(Idx)->getType();
return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
}
static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
if (auto *PVD = getFunctionOrMethodParam(D, Idx))
return PVD->getSourceRange();
return SourceRange();
}
static QualType getFunctionOrMethodResultType(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType())
return FnTy->getReturnType();
return cast<ObjCMethodDecl>(D)->getReturnType();
}
static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
if (const auto *FD = dyn_cast<FunctionDecl>(D))
return FD->getReturnTypeSourceRange();
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
return MD->getReturnTypeSourceRange();
return SourceRange();
}
static bool isFunctionOrMethodVariadic(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType())
return cast<FunctionProtoType>(FnTy)->isVariadic();
if (const auto *BD = dyn_cast<BlockDecl>(D))
return BD->isVariadic();
return cast<ObjCMethodDecl>(D)->isVariadic();
}
static bool isInstanceMethod(const Decl *D) {
if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
return MethodDecl->isInstance();
return false;
}
static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
const auto *PT = T->getAs<ObjCObjectPointerType>();
if (!PT)
return false;
ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
if (!Cls)
return false;
IdentifierInfo* ClsName = Cls->getIdentifier();
// FIXME: Should we walk the chain of classes?
return ClsName == &Ctx.Idents.get("NSString") ||
ClsName == &Ctx.Idents.get("NSMutableString");
}
static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
const auto *PT = T->getAs<PointerType>();
if (!PT)
return false;
const auto *RT = PT->getPointeeType()->getAs<RecordType>();
if (!RT)
return false;
const RecordDecl *RD = RT->getDecl();
if (RD->getTagKind() != TTK_Struct)
return false;
return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
}
static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
// FIXME: Include the type in the argument list.
return AL.getNumArgs() + AL.hasParsedType();
}
template <typename Compare>
static bool checkAttributeNumArgsImpl(Sema &S, const ParsedAttr &AL,
unsigned Num, unsigned Diag,
Compare Comp) {
if (Comp(getNumAttributeArgs(AL), Num)) {
S.Diag(AL.getLoc(), Diag) << AL << Num;
return false;
}
return true;
}
/// Check if the attribute has exactly as many args as Num. May
/// output an error.
static bool checkAttributeNumArgs(Sema &S, const ParsedAttr &AL, unsigned Num) {
return checkAttributeNumArgsImpl(S, AL, Num,
diag::err_attribute_wrong_number_arguments,
std::not_equal_to<unsigned>());
}
/// Check if the attribute has at least as many args as Num. May
/// output an error.
static bool checkAttributeAtLeastNumArgs(Sema &S, const ParsedAttr &AL,
unsigned Num) {
return checkAttributeNumArgsImpl(S, AL, Num,
diag::err_attribute_too_few_arguments,
std::less<unsigned>());
}
/// Check if the attribute has at most as many args as Num. May
/// output an error.
static bool checkAttributeAtMostNumArgs(Sema &S, const ParsedAttr &AL,
unsigned Num) {
return checkAttributeNumArgsImpl(S, AL, Num,
diag::err_attribute_too_many_arguments,
std::greater<unsigned>());
}
/// A helper function to provide Attribute Location for the Attr types
/// AND the ParsedAttr.
template <typename AttrInfo>
static std::enable_if_t<std::is_base_of<Attr, AttrInfo>::value, SourceLocation>
getAttrLoc(const AttrInfo &AL) {
return AL.getLocation();
}
static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); }
/// If Expr is a valid integer constant, get the value of the integer
/// expression and return success or failure. May output an error.
///
/// Negative argument is implicitly converted to unsigned, unless
/// \p StrictlyUnsigned is true.
template <typename AttrInfo>
static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
uint32_t &Val, unsigned Idx = UINT_MAX,
bool StrictlyUnsigned = false) {
Optional<llvm::APSInt> I = llvm::APSInt(32);
if (Expr->isTypeDependent() || Expr->isValueDependent() ||
!(I = Expr->getIntegerConstantExpr(S.Context))) {
if (Idx != UINT_MAX)
S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
<< &AI << Idx << AANT_ArgumentIntegerConstant
<< Expr->getSourceRange();
else
S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
<< &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
return false;
}
if (!I->isIntN(32)) {
S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
<< I->toString(10, false) << 32 << /* Unsigned */ 1;
return false;
}
if (StrictlyUnsigned && I->isSigned() && I->isNegative()) {
S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
<< &AI << /*non-negative*/ 1;
return false;
}
Val = (uint32_t)I->getZExtValue();
return true;
}
/// Wrapper around checkUInt32Argument, with an extra check to be sure
/// that the result will fit into a regular (signed) int. All args have the same
/// purpose as they do in checkUInt32Argument.
template <typename AttrInfo>
static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
int &Val, unsigned Idx = UINT_MAX) {
uint32_t UVal;
if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
return false;
if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
llvm::APSInt I(32); // for toString
I = UVal;
S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
<< I.toString(10, false) << 32 << /* Unsigned */ 0;
return false;
}
Val = UVal;
return true;
}
/// Diagnose mutually exclusive attributes when present on a given
/// declaration. Returns true if diagnosed.
template <typename AttrTy>
static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) {
if (const auto *A = D->getAttr<AttrTy>()) {
S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A;
S.Diag(A->getLocation(), diag::note_conflicting_attribute);
return true;
}
return false;
}
template <typename AttrTy>
static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) {
if (const auto *A = D->getAttr<AttrTy>()) {
S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL
<< A;
S.Diag(A->getLocation(), diag::note_conflicting_attribute);
return true;
}
return false;
}
/// Check if IdxExpr is a valid parameter index for a function or
/// instance method D. May output an error.
///
/// \returns true if IdxExpr is a valid index.
template <typename AttrInfo>
static bool checkFunctionOrMethodParameterIndex(
Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
assert(isFunctionOrMethodOrBlock(D));
// In C++ the implicit 'this' function parameter also counts.
// Parameters are counted from one.
bool HP = hasFunctionProto(D);
bool HasImplicitThisParam = isInstanceMethod(D);
bool IV = HP && isFunctionOrMethodVariadic(D);
unsigned NumParams =
(HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
Optional<llvm::APSInt> IdxInt;
if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
!(IdxInt = IdxExpr->getIntegerConstantExpr(S.Context))) {
S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
<< &AI << AttrArgNum << AANT_ArgumentIntegerConstant
<< IdxExpr->getSourceRange();
return false;
}
unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX);
if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
<< &AI << AttrArgNum << IdxExpr->getSourceRange();
return false;
}
if (HasImplicitThisParam && !CanIndexImplicitThis) {
if (IdxSource == 1) {
S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
<< &AI << IdxExpr->getSourceRange();
return false;
}
}
Idx = ParamIdx(IdxSource, D);
return true;
}
/// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
/// If not emit an error and return false. If the argument is an identifier it
/// will emit an error with a fixit hint and treat it as if it was a string
/// literal.
bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
StringRef &Str,
SourceLocation *ArgLocation) {
// Look for identifiers. If we have one emit a hint to fix it to a literal.
if (AL.isArgIdent(ArgNum)) {
IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
Diag(Loc->Loc, diag::err_attribute_argument_type)
<< AL << AANT_ArgumentString
<< FixItHint::CreateInsertion(Loc->Loc, "\"")
<< FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
Str = Loc->Ident->getName();
if (ArgLocation)
*ArgLocation = Loc->Loc;
return true;
}
// Now check for an actual string literal.
Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
if (ArgLocation)
*ArgLocation = ArgExpr->getBeginLoc();
if (!Literal || !Literal->isAscii()) {
Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentString;
return false;
}
Str = Literal->getString();
return true;
}
/// Applies the given attribute to the Decl without performing any
/// additional semantic checking.
template <typename AttrType>
static void handleSimpleAttribute(Sema &S, Decl *D,
const AttributeCommonInfo &CI) {
D->addAttr(::new (S.Context) AttrType(S.Context, CI));
}
template <typename... DiagnosticArgs>
static const Sema::SemaDiagnosticBuilder&
appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) {
return Bldr;
}
template <typename T, typename... DiagnosticArgs>
static const Sema::SemaDiagnosticBuilder&
appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg,
DiagnosticArgs &&... ExtraArgs) {
return appendDiagnostics(Bldr << std::forward<T>(ExtraArg),
std::forward<DiagnosticArgs>(ExtraArgs)...);
}
/// Add an attribute {@code AttrType} to declaration {@code D}, provided that
/// {@code PassesCheck} is true.
/// Otherwise, emit diagnostic {@code DiagID}, passing in all parameters
/// specified in {@code ExtraArgs}.
template <typename AttrType, typename... DiagnosticArgs>
static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D,
const AttributeCommonInfo &CI,
bool PassesCheck, unsigned DiagID,
DiagnosticArgs &&... ExtraArgs) {
if (!PassesCheck) {
Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID);
appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...);
return;
}
handleSimpleAttribute<AttrType>(S, D, CI);
}
template <typename AttrType>
static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
const ParsedAttr &AL) {
handleSimpleAttribute<AttrType>(S, D, AL);
}
/// Applies the given attribute to the Decl so long as the Decl doesn't
/// already have one of the given incompatible attributes.
template <typename AttrType, typename IncompatibleAttrType,
typename... IncompatibleAttrTypes>
static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
const ParsedAttr &AL) {
if (checkAttrMutualExclusion<IncompatibleAttrType>(S, D, AL))
return;
handleSimpleAttributeWithExclusions<AttrType, IncompatibleAttrTypes...>(S, D,
AL);
}
/// Check if the passed-in expression is of type int or bool.
static bool isIntOrBool(Expr *Exp) {
QualType QT = Exp->getType();
return QT->isBooleanType() || QT->isIntegerType();
}
// Check to see if the type is a smart pointer of some kind. We assume
// it's a smart pointer if it defines both operator-> and operator*.
static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
OverloadedOperatorKind Op) {
DeclContextLookupResult Result =
Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op));
return !Result.empty();
};
const RecordDecl *Record = RT->getDecl();
bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
if (foundStarOperator && foundArrowOperator)
return true;
const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
if (!CXXRecord)
return false;
for (auto BaseSpecifier : CXXRecord->bases()) {
if (!foundStarOperator)
foundStarOperator = IsOverloadedOperatorPresent(
BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
if (!foundArrowOperator)
foundArrowOperator = IsOverloadedOperatorPresent(
BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
}
if (foundStarOperator && foundArrowOperator)
return true;
return false;
}
/// Check if passed in Decl is a pointer type.
/// Note that this function may produce an error message.
/// \return true if the Decl is a pointer type; false otherwise
static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
const ParsedAttr &AL) {
const auto *VD = cast<ValueDecl>(D);
QualType QT = VD->getType();
if (QT->isAnyPointerType())
return true;
if (const auto *RT = QT->getAs<RecordType>()) {
// If it's an incomplete type, it could be a smart pointer; skip it.
// (We don't want to force template instantiation if we can avoid it,
// since that would alter the order in which templates are instantiated.)
if (RT->isIncompleteType())
return true;
if (threadSafetyCheckIsSmartPointer(S, RT))
return true;
}
S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
return false;
}
/// Checks that the passed in QualType either is of RecordType or points
/// to RecordType. Returns the relevant RecordType, null if it does not exit.
static const RecordType *getRecordType(QualType QT) {
if (const auto *RT = QT->getAs<RecordType>())
return RT;
// Now check if we point to record type.
if (const auto *PT = QT->getAs<PointerType>())
return PT->getPointeeType()->getAs<RecordType>();
return nullptr;
}
template <typename AttrType>
static bool checkRecordDeclForAttr(const RecordDecl *RD) {
// Check if the record itself has the attribute.
if (RD->hasAttr<AttrType>())
return true;
// Else check if any base classes have the attribute.
if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
CXXBasePaths BPaths(false, false);
if (CRD->lookupInBases(
[](const CXXBaseSpecifier *BS, CXXBasePath &) {
const auto &Ty = *BS->getType();
// If it's type-dependent, we assume it could have the attribute.
if (Ty.isDependentType())
return true;
return Ty.castAs<RecordType>()->getDecl()->hasAttr<AttrType>();
},
BPaths, true))
return true;
}
return false;
}
static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
const RecordType *RT = getRecordType(Ty);
if (!RT)
return false;
// Don't check for the capability if the class hasn't been defined yet.
if (RT->isIncompleteType())
return true;
// Allow smart pointers to be used as capability objects.
// FIXME -- Check the type that the smart pointer points to.
if (threadSafetyCheckIsSmartPointer(S, RT))
return true;
return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl());
}
static bool checkTypedefTypeForCapability(QualType Ty) {
const auto *TD = Ty->getAs<TypedefType>();
if (!TD)
return false;
TypedefNameDecl *TN = TD->getDecl();
if (!TN)
return false;
return TN->hasAttr<CapabilityAttr>();
}
static bool typeHasCapability(Sema &S, QualType Ty) {
if (checkTypedefTypeForCapability(Ty))
return true;
if (checkRecordTypeForCapability(S, Ty))
return true;
return false;
}
static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
// Capability expressions are simple expressions involving the boolean logic
// operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
// a DeclRefExpr is found, its type should be checked to determine whether it
// is a capability or not.
if (const auto *E = dyn_cast<CastExpr>(Ex))
return isCapabilityExpr(S, E->getSubExpr());
else if (const auto *E = dyn_cast<ParenExpr>(Ex))
return isCapabilityExpr(S, E->getSubExpr());
else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
E->getOpcode() == UO_Deref)
return isCapabilityExpr(S, E->getSubExpr());
return false;
} else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
return isCapabilityExpr(S, E->getLHS()) &&
isCapabilityExpr(S, E->getRHS());
return false;
}
return typeHasCapability(S, Ex->getType());
}
/// Checks that all attribute arguments, starting from Sidx, resolve to
/// a capability object.
/// \param Sidx The attribute argument index to start checking with.
/// \param ParamIdxOk Whether an argument can be indexing into a function
/// parameter list.
static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
const ParsedAttr &AL,
SmallVectorImpl<Expr *> &Args,
unsigned Sidx = 0,
bool ParamIdxOk = false) {
if (Sidx == AL.getNumArgs()) {
// If we don't have any capability arguments, the attribute implicitly
// refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
// a non-static method, and that the class is a (scoped) capability.
const auto *MD = dyn_cast<const CXXMethodDecl>(D);
if (MD && !MD->isStatic()) {
const CXXRecordDecl *RD = MD->getParent();
// FIXME -- need to check this again on template instantiation
if (!checkRecordDeclForAttr<CapabilityAttr>(RD) &&
!checkRecordDeclForAttr<ScopedLockableAttr>(RD))
S.Diag(AL.getLoc(),
diag::warn_thread_attribute_not_on_capability_member)
<< AL << MD->getParent();
} else {
S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
<< AL;
}
}
for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
Expr *ArgExp = AL.getArgAsExpr(Idx);
if (ArgExp->isTypeDependent()) {
// FIXME -- need to check this again on template instantiation
Args.push_back(ArgExp);
continue;
}
if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
if (StrLit->getLength() == 0 ||
(StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
// Pass empty strings to the analyzer without warnings.
// Treat "*" as the universal lock.
Args.push_back(ArgExp);
continue;
}
// We allow constant strings to be used as a placeholder for expressions
// that are not valid C++ syntax, but warn that they are ignored.
S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
Args.push_back(ArgExp);
continue;
}
QualType ArgTy = ArgExp->getType();
// A pointer to member expression of the form &MyClass::mu is treated
// specially -- we need to look at the type of the member.
if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
if (UOp->getOpcode() == UO_AddrOf)
if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
if (DRE->getDecl()->isCXXInstanceMember())
ArgTy = DRE->getDecl()->getType();
// First see if we can just cast to record type, or pointer to record type.
const RecordType *RT = getRecordType(ArgTy);
// Now check if we index into a record type function param.
if(!RT && ParamIdxOk) {
const auto *FD = dyn_cast<FunctionDecl>(D);
const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
if(FD && IL) {
unsigned int NumParams = FD->getNumParams();
llvm::APInt ArgValue = IL->getValue();
uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
S.Diag(AL.getLoc(),
diag::err_attribute_argument_out_of_bounds_extra_info)
<< AL << Idx + 1 << NumParams;
continue;
}
ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
}
}
// If the type does not have a capability, see if the components of the
// expression have capabilities. This allows for writing C code where the
// capability may be on the type, and the expression is a capability
// boolean logic expression. Eg) requires_capability(A || B && !C)
if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
<< AL << ArgTy;
Args.push_back(ArgExp);
}
}
//===----------------------------------------------------------------------===//
// Attribute Implementations
//===----------------------------------------------------------------------===//
static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!threadSafetyCheckIsPointer(S, D, AL))
return;
D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
}
static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
Expr *&Arg) {
SmallVector<Expr *, 1> Args;
// check that all arguments are lockable objects
checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
unsigned Size = Args.size();
if (Size != 1)
return false;
Arg = Args[0];
return true;
}
static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
Expr *Arg = nullptr;
if (!checkGuardedByAttrCommon(S, D, AL, Arg))
return;
D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
}
static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
Expr *Arg = nullptr;
if (!checkGuardedByAttrCommon(S, D, AL, Arg))
return;
if (!threadSafetyCheckIsPointer(S, D, AL))
return;
D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
}
static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
SmallVectorImpl<Expr *> &Args) {
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
return false;
// Check that this attribute only applies to lockable types.
QualType QT = cast<ValueDecl>(D)->getType();
if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
return false;
}
// Check that all arguments are lockable objects.
checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
if (Args.empty())
return false;
return true;
}
static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
SmallVector<Expr *, 1> Args;
if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
}
static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
SmallVector<Expr *, 1> Args;
if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
}
static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
SmallVectorImpl<Expr *> &Args) {
// zero or more arguments ok
// check that all arguments are lockable objects
checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
return true;
}
static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
SmallVector<Expr *, 1> Args;
if (!checkLockFunAttrCommon(S, D, AL, Args))
return;
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? nullptr : &Args[0];
D->addAttr(::new (S.Context)
AssertSharedLockAttr(S.Context, AL, StartArg, Size));
}
static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
SmallVector<Expr *, 1> Args;
if (!checkLockFunAttrCommon(S, D, AL, Args))
return;
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? nullptr : &Args[0];
D->addAttr(::new (S.Context)
AssertExclusiveLockAttr(S.Context, AL, StartArg, Size));
}
/// Checks to be sure that the given parameter number is in bounds, and
/// is an integral type. Will emit appropriate diagnostics if this returns
/// false.
///
/// AttrArgNo is used to actually retrieve the argument, so it's base-0.
template <typename AttrInfo>
static bool checkParamIsIntegerType(Sema &S, const FunctionDecl *FD,
const AttrInfo &AI, unsigned AttrArgNo) {
assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
ParamIdx Idx;
if (!checkFunctionOrMethodParameterIndex(S, FD, AI, AttrArgNo + 1, AttrArg,
Idx))
return false;
const ParmVarDecl *Param = FD->getParamDecl(Idx.getASTIndex());
if (!Param->getType()->isIntegerType() && !Param->getType()->isCharType()) {
SourceLocation SrcLoc = AttrArg->getBeginLoc();
S.Diag(SrcLoc, diag::err_attribute_integers_only)
<< AI << Param->getSourceRange();
return false;
}
return true;
}
static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
!checkAttributeAtMostNumArgs(S, AL, 2))
return;
const auto *FD = cast<FunctionDecl>(D);
if (!FD->getReturnType()->isPointerType()) {
S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
return;
}
const Expr *SizeExpr = AL.getArgAsExpr(0);
int SizeArgNoVal;
// Parameter indices are 1-indexed, hence Index=1
if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
return;
if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/0))
return;
ParamIdx SizeArgNo(SizeArgNoVal, D);
ParamIdx NumberArgNo;
if (AL.getNumArgs() == 2) {
const Expr *NumberExpr = AL.getArgAsExpr(1);
int Val;
// Parameter indices are 1-based, hence Index=2
if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
return;
if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/1))
return;
NumberArgNo = ParamIdx(Val, D);
}
D->addAttr(::new (S.Context)
AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
}
static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
SmallVectorImpl<Expr *> &Args) {
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
return false;
if (!isIntOrBool(AL.getArgAsExpr(0))) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 1 << AANT_ArgumentIntOrBool;
return false;
}
// check that all arguments are lockable objects
checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
return true;
}
static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
SmallVector<Expr*, 2> Args;
if (!checkTryLockFunAttrCommon(S, D, AL, Args))
return;
D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
}
static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
SmallVector<Expr*, 2> Args;
if (!checkTryLockFunAttrCommon(S, D, AL, Args))
return;
D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
}
static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// check that the argument is lockable object
SmallVector<Expr*, 1> Args;
checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
unsigned Size = Args.size();
if (Size == 0)
return;
D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
}
static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
return;
// check that all arguments are lockable objects
SmallVector<Expr*, 1> Args;
checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
unsigned Size = Args.size();
if (Size == 0)
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
LocksExcludedAttr(S.Context, AL, StartArg, Size));
}
static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
Expr *&Cond, StringRef &Msg) {
Cond = AL.getArgAsExpr(0);
if (!Cond->isTypeDependent()) {
ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
if (Converted.isInvalid())
return false;
Cond = Converted.get();
}
if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
return false;
if (Msg.empty())
Msg = "<no message provided>";
SmallVector<PartialDiagnosticAt, 8> Diags;
if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
!Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
Diags)) {
S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
for (const PartialDiagnosticAt &PDiag : Diags)
S.Diag(PDiag.first, PDiag.second);
return false;
}
return true;
}
static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
Expr *Cond;
StringRef Msg;
if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
}
namespace {
/// Determines if a given Expr references any of the given function's
/// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
class ArgumentDependenceChecker
: public RecursiveASTVisitor<ArgumentDependenceChecker> {
#ifndef NDEBUG
const CXXRecordDecl *ClassType;
#endif
llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
bool Result;
public:
ArgumentDependenceChecker(const FunctionDecl *FD) {
#ifndef NDEBUG
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
ClassType = MD->getParent();
else
ClassType = nullptr;
#endif
Parms.insert(FD->param_begin(), FD->param_end());
}
bool referencesArgs(Expr *E) {
Result = false;
TraverseStmt(E);
return Result;
}
bool VisitCXXThisExpr(CXXThisExpr *E) {
assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
"`this` doesn't refer to the enclosing class?");
Result = true;
return false;
}
bool VisitDeclRefExpr(DeclRefExpr *DRE) {
if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
if (Parms.count(PVD)) {
Result = true;
return false;
}
return true;
}
};
}
static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
Expr *Cond;
StringRef Msg;
if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
return;
StringRef DiagTypeStr;
if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
return;
DiagnoseIfAttr::DiagnosticType DiagType;
if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
diag::err_diagnose_if_invalid_diagnostic_type);
return;
}
bool ArgDependent = false;
if (const auto *FD = dyn_cast<FunctionDecl>(D))
ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
D->addAttr(::new (S.Context) DiagnoseIfAttr(
S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D)));
}
static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
static constexpr const StringRef kWildcard = "*";
llvm::SmallVector<StringRef, 16> Names;
bool HasWildcard = false;
const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
if (Name == kWildcard)
HasWildcard = true;
Names.push_back(Name);
};
// Add previously defined attributes.
if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
for (StringRef BuiltinName : NBA->builtinNames())
AddBuiltinName(BuiltinName);
// Add current attributes.
if (AL.getNumArgs() == 0)
AddBuiltinName(kWildcard);
else
for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
StringRef BuiltinName;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
return;
if (Builtin::Context::isBuiltinFunc(BuiltinName))
AddBuiltinName(BuiltinName);
else
S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
<< BuiltinName << AL;
}
// Repeating the same attribute is fine.
llvm::sort(Names);
Names.erase(std::unique(Names.begin(), Names.end()), Names.end());
// Empty no_builtin must be on its own.
if (HasWildcard && Names.size() > 1)
S.Diag(D->getLocation(),
diag::err_attribute_no_builtin_wildcard_or_builtin_name)
<< AL;
if (D->hasAttr<NoBuiltinAttr>())
D->dropAttr<NoBuiltinAttr>();
D->addAttr(::new (S.Context)
NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
}
static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (D->hasAttr<PassObjectSizeAttr>()) {
S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
return;
}
Expr *E = AL.getArgAsExpr(0);
uint32_t Type;
if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
return;
// pass_object_size's argument is passed in as the second argument of
// __builtin_object_size. So, it has the same constraints as that second
// argument; namely, it must be in the range [0, 3].
if (Type > 3) {
S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
<< AL << 0 << 3 << E->getSourceRange();
return;
}
// pass_object_size is only supported on constant pointer parameters; as a
// kindness to users, we allow the parameter to be non-const for declarations.
// At this point, we have no clue if `D` belongs to a function declaration or
// definition, so we defer the constness check until later.
if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
return;
}
D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
}
static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
ConsumableAttr::ConsumedState DefaultState;
if (AL.isArgIdent(0)) {
IdentifierLoc *IL = AL.getArgAsIdent(0);
if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
DefaultState)) {
S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
<< IL->Ident;
return;
}
} else {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
}
static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
const ParsedAttr &AL) {
QualType ThisType = MD->getThisType()->getPointeeType();
if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
if (!RD->hasAttr<ConsumableAttr>()) {
S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD;
return false;
}
}
return true;
}
static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
return;
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
return;
SmallVector<CallableWhenAttr::ConsumedState, 3> States;
for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
CallableWhenAttr::ConsumedState CallableState;
StringRef StateString;
SourceLocation Loc;
if (AL.isArgIdent(ArgIndex)) {
IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
StateString = Ident->Ident->getName();
Loc = Ident->Loc;
} else {
if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
return;
}
if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
CallableState)) {
S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
return;
}
States.push_back(CallableState);
}
D->addAttr(::new (S.Context)
CallableWhenAttr(S.Context, AL, States.data(), States.size()));
}
static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
ParamTypestateAttr::ConsumedState ParamState;
if (AL.isArgIdent(0)) {
IdentifierLoc *Ident = AL.getArgAsIdent(0);
StringRef StateString = Ident->Ident->getName();
if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
ParamState)) {
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
<< AL << StateString;
return;
}
} else {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
// FIXME: This check is currently being done in the analysis. It can be
// enabled here only after the parser propagates attributes at
// template specialization definition, not declaration.
//QualType ReturnType = cast<ParmVarDecl>(D)->getType();
//const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
//
//if (!RD || !RD->hasAttr<ConsumableAttr>()) {
// S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
// ReturnType.getAsString();
// return;
//}
D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
}
static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
ReturnTypestateAttr::ConsumedState ReturnState;
if (AL.isArgIdent(0)) {
IdentifierLoc *IL = AL.getArgAsIdent(0);
if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
ReturnState)) {
S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
<< IL->Ident;
return;
}
} else {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
// FIXME: This check is currently being done in the analysis. It can be
// enabled here only after the parser propagates attributes at
// template specialization definition, not declaration.
//QualType ReturnType;
//
//if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
// ReturnType = Param->getType();
//
//} else if (const CXXConstructorDecl *Constructor =
// dyn_cast<CXXConstructorDecl>(D)) {
// ReturnType = Constructor->getThisType()->getPointeeType();
//
//} else {
//
// ReturnType = cast<FunctionDecl>(D)->getCallResultType();
//}
//
//const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
//
//if (!RD || !RD->hasAttr<ConsumableAttr>()) {
// S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
// ReturnType.getAsString();
// return;
//}
D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
}
static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
return;
SetTypestateAttr::ConsumedState NewState;
if (AL.isArgIdent(0)) {
IdentifierLoc *Ident = AL.getArgAsIdent(0);
StringRef Param = Ident->Ident->getName();
if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
<< Param;
return;
}
} else {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
}
static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
return;
TestTypestateAttr::ConsumedState TestState;
if (AL.isArgIdent(0)) {
IdentifierLoc *Ident = AL.getArgAsIdent(0);
StringRef Param = Ident->Ident->getName();
if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
<< Param;
return;
}
} else {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
}
static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Remember this typedef decl, we will need it later for diagnostics.
S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
}
static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (auto *TD = dyn_cast<TagDecl>(D))
TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
else if (auto *FD = dyn_cast<FieldDecl>(D)) {
bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
!FD->getType()->isIncompleteType() &&
FD->isBitField() &&
S.Context.getTypeAlign(FD->getType()) <= 8);
if (S.getASTContext().getTargetInfo().getTriple().isPS4()) {
if (BitfieldByteAligned)
// The PS4 target needs to maintain ABI backwards compatibility.
S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
<< AL << FD->getType();
else
FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
} else {
// Report warning about changed offset in the newer compiler versions.
if (BitfieldByteAligned)
S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
}
} else
S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
}
static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) {
auto *RD = cast<CXXRecordDecl>(D);
ClassTemplateDecl *CTD = RD->getDescribedClassTemplate();
assert(CTD && "attribute does not appertain to this declaration");
ParsedType PT = AL.getTypeArg();
TypeSourceInfo *TSI = nullptr;
QualType T = S.GetTypeFromParser(PT, &TSI);
if (!TSI)
TSI = S.Context.getTrivialTypeSourceInfo(T, AL.getLoc());
if (!T.hasQualifiers() && T->isTypedefNameType()) {
// Find the template name, if this type names a template specialization.
const TemplateDecl *Template = nullptr;
if (const auto *CTSD = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
T->getAsCXXRecordDecl())) {
Template = CTSD->getSpecializedTemplate();
} else if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
while (TST && TST->isTypeAlias())
TST = TST->getAliasedType()->getAs<TemplateSpecializationType>();
if (TST)
Template = TST->getTemplateName().getAsTemplateDecl();
}
if (Template && declaresSameEntity(Template, CTD)) {
D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI));
return;
}
}
S.Diag(AL.getLoc(), diag::err_attribute_preferred_name_arg_invalid)
<< T << CTD;
if (const auto *TT = T->getAs<TypedefType>())
S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at)
<< TT->getDecl();
}
static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) {
// The IBOutlet/IBOutletCollection attributes only apply to instance
// variables or properties of Objective-C classes. The outlet must also
// have an object reference type.
if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
<< AL << VD->getType() << 0;
return false;
}
}
else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
<< AL << PD->getType() << 1;
return false;
}
}
else {
S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL;
return false;
}
return true;
}
static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!checkIBOutletCommon(S, D, AL))
return;
D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL));
}
static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) {
// The iboutletcollection attribute can have zero or one arguments.
if (AL.getNumArgs() > 1) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
return;
}
if (!checkIBOutletCommon(S, D, AL))
return;
ParsedType PT;
if (AL.hasParsedType())
PT = AL.getTypeArg();
else {
PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
S.getScopeForContext(D->getDeclContext()->getParent()));
if (!PT) {
S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
return;
}
}
TypeSourceInfo *QTLoc = nullptr;
QualType QT = S.GetTypeFromParser(PT, &QTLoc);
if (!QTLoc)
QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
// Diagnose use of non-object type in iboutletcollection attribute.
// FIXME. Gnu attribute extension ignores use of builtin types in
// attributes. So, __attribute__((iboutletcollection(char))) will be
// treated as __attribute__((iboutletcollection())).
if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
S.Diag(AL.getLoc(),
QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
: diag::err_iboutletcollection_type) << QT;
return;
}
D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc));
}
bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
if (RefOkay) {
if (T->isReferenceType())
return true;
} else {
T = T.getNonReferenceType();
}
// The nonnull attribute, and other similar attributes, can be applied to a
// transparent union that contains a pointer type.
if (const RecordType *UT = T->getAsUnionType()) {
if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
RecordDecl *UD = UT->getDecl();
for (const auto *I : UD->fields()) {
QualType QT = I->getType();
if (QT->isAnyPointerType() || QT->isBlockPointerType())
return true;
}
}
}
return T->isAnyPointerType() || T->isBlockPointerType();
}
static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
SourceRange AttrParmRange,
SourceRange TypeRange,
bool isReturnValue = false) {
if (!S.isValidPointerAttrType(T)) {
if (isReturnValue)
S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
<< AL << AttrParmRange << TypeRange;
else
S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
<< AL << AttrParmRange << TypeRange << 0;
return false;
}
return true;
}
static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
SmallVector<ParamIdx, 8> NonNullArgs;
for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
Expr *Ex = AL.getArgAsExpr(I);
ParamIdx Idx;
if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
return;
// Is the function argument a pointer type?
if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
!attrNonNullArgCheck(
S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
Ex->getSourceRange(),
getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
continue;
NonNullArgs.push_back(Idx);
}
// If no arguments were specified to __attribute__((nonnull)) then all pointer
// arguments have a nonnull attribute; warn if there aren't any. Skip this
// check if the attribute came from a macro expansion or a template
// instantiation.
if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
!S.inTemplateInstantiation()) {
bool AnyPointers = isFunctionOrMethodVariadic(D);
for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
I != E && !AnyPointers; ++I) {
QualType T = getFunctionOrMethodParamType(D, I);
if (T->isDependentType() || S.isValidPointerAttrType(T))
AnyPointers = true;
}
if (!AnyPointers)
S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
}
ParamIdx *Start = NonNullArgs.data();
unsigned Size = NonNullArgs.size();
llvm::array_pod_sort(Start, Start + Size);
D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
}
static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
const ParsedAttr &AL) {
if (AL.getNumArgs() > 0) {
if (D->getFunctionType()) {
handleNonNullAttr(S, D, AL);
} else {
S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
<< D->getSourceRange();
}
return;
}
// Is the argument a pointer type?
if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
D->getSourceRange()))
return;
D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
}
static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
QualType ResultType = getFunctionOrMethodResultType(D);
SourceRange SR = getFunctionOrMethodResultSourceRange(D);
if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
/* isReturnValue */ true))
return;
D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
}
static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (D->isInvalidDecl())
return;
// noescape only applies to pointer types.
QualType T = cast<ParmVarDecl>(D)->getType();
if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
<< AL << AL.getRange() << 0;
return;
}
D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
}
static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
Expr *E = AL.getArgAsExpr(0),
*OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
S.AddAssumeAlignedAttr(D, AL, E, OE);
}
static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
}
void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
Expr *OE) {
QualType ResultType = getFunctionOrMethodResultType(D);
SourceRange SR = getFunctionOrMethodResultSourceRange(D);
AssumeAlignedAttr TmpAttr(Context, CI, E, OE);
SourceLocation AttrLoc = TmpAttr.getLocation();
if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
<< &TmpAttr << TmpAttr.getRange() << SR;
return;
}
if (!E->isValueDependent()) {
Optional<llvm::APSInt> I = llvm::APSInt(64);
if (!(I = E->getIntegerConstantExpr(Context))) {
if (OE)
Diag(AttrLoc, diag::err_attribute_argument_n_type)
<< &TmpAttr << 1 << AANT_ArgumentIntegerConstant
<< E->getSourceRange();
else
Diag(AttrLoc, diag::err_attribute_argument_type)
<< &TmpAttr << AANT_ArgumentIntegerConstant
<< E->getSourceRange();
return;
}
if (!I->isPowerOf2()) {
Diag(AttrLoc, diag::err_alignment_not_power_of_two)
<< E->getSourceRange();
return;
}
if (*I > Sema::MaximumAlignment)
Diag(CI.getLoc(), diag::warn_assume_aligned_too_great)
<< CI.getRange() << Sema::MaximumAlignment;
}
if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) {
Diag(AttrLoc, diag::err_attribute_argument_n_type)
<< &TmpAttr << 2 << AANT_ArgumentIntegerConstant
<< OE->getSourceRange();
return;
}
D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
}
void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
Expr *ParamExpr) {
QualType ResultType = getFunctionOrMethodResultType(D);
AllocAlignAttr TmpAttr(Context, CI, ParamIdx());
SourceLocation AttrLoc = CI.getLoc();
if (!ResultType->isDependentType() &&
!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
<< &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D);
return;
}
ParamIdx Idx;
const auto *FuncDecl = cast<FunctionDecl>(D);
if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
/*AttrArgNum=*/1, ParamExpr, Idx))
return;
QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
if (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
!Ty->isAlignValT()) {
Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
<< &TmpAttr
<< FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
return;
}
D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
}
/// Check if \p AssumptionStr is a known assumption and warn if not.
static void checkAssumptionAttr(Sema &S, SourceLocation Loc,
StringRef AssumptionStr) {
if (llvm::KnownAssumptionStrings.count(AssumptionStr))
return;
unsigned BestEditDistance = 3;
StringRef Suggestion;
for (const auto &KnownAssumptionIt : llvm::KnownAssumptionStrings) {
unsigned EditDistance =
AssumptionStr.edit_distance(KnownAssumptionIt.getKey());
if (EditDistance < BestEditDistance) {
Suggestion = KnownAssumptionIt.getKey();
BestEditDistance = EditDistance;
}
}
if (!Suggestion.empty())
S.Diag(Loc, diag::warn_assume_attribute_string_unknown_suggested)
<< AssumptionStr << Suggestion;
else
S.Diag(Loc, diag::warn_assume_attribute_string_unknown) << AssumptionStr;
}
static void handleAssumumptionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Handle the case where the attribute has a text message.
StringRef Str;
SourceLocation AttrStrLoc;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &AttrStrLoc))
return;
checkAssumptionAttr(S, AttrStrLoc, Str);
D->addAttr(::new (S.Context) AssumptionAttr(S.Context, AL, Str));
}
/// Normalize the attribute, __foo__ becomes foo.
/// Returns true if normalization was applied.
static bool normalizeName(StringRef &AttrName) {
if (AttrName.size() > 4 && AttrName.startswith("__") &&
AttrName.endswith("__")) {
AttrName = AttrName.drop_front(2).drop_back(2);
return true;
}
return false;
}
static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// This attribute must be applied to a function declaration. The first
// argument to the attribute must be an identifier, the name of the resource,
// for example: malloc. The following arguments must be argument indexes, the
// arguments must be of integer type for Returns, otherwise of pointer type.
// The difference between Holds and Takes is that a pointer may still be used
// after being held. free() should be __attribute((ownership_takes)), whereas
// a list append function may well be __attribute((ownership_holds)).
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 1 << AANT_ArgumentIdentifier;
return;
}
// Figure out our Kind.
OwnershipAttr::OwnershipKind K =
OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
// Check arguments.
switch (K) {
case OwnershipAttr::Takes:
case OwnershipAttr::Holds:
if (AL.getNumArgs() < 2) {
S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
return;
}
break;
case OwnershipAttr::Returns:
if (AL.getNumArgs() > 2) {
S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
return;
}
break;
}
IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
StringRef ModuleName = Module->getName();
if (normalizeName(ModuleName)) {
Module = &S.PP.getIdentifierTable().get(ModuleName);
}
SmallVector<ParamIdx, 8> OwnershipArgs;
for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
Expr *Ex = AL.getArgAsExpr(i);
ParamIdx Idx;
if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
return;
// Is the function argument a pointer type?
QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
int Err = -1; // No error
switch (K) {
case OwnershipAttr::Takes:
case OwnershipAttr::Holds:
if (!T->isAnyPointerType() && !T->isBlockPointerType())
Err = 0;
break;
case OwnershipAttr::Returns:
if (!T->isIntegerType())
Err = 1;
break;
}
if (-1 != Err) {
S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
<< Ex->getSourceRange();
return;
}
// Check we don't have a conflict with another ownership attribute.
for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
// Cannot have two ownership attributes of different kinds for the same
// index.
if (I->getOwnKind() != K && I->args_end() !=
std::find(I->args_begin(), I->args_end(), Idx)) {
S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I;
return;
} else if (K == OwnershipAttr::Returns &&
I->getOwnKind() == OwnershipAttr::Returns) {
// A returns attribute conflicts with any other returns attribute using
// a different index.
if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
<< I->args_begin()->getSourceIndex();
if (I->args_size())
S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
<< Idx.getSourceIndex() << Ex->getSourceRange();
return;
}
}
}
OwnershipArgs.push_back(Idx);
}
ParamIdx *Start = OwnershipArgs.data();
unsigned Size = OwnershipArgs.size();
llvm::array_pod_sort(Start, Start + Size);
D->addAttr(::new (S.Context)
OwnershipAttr(S.Context, AL, Module, Start, Size));
}
static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Check the attribute arguments.
if (AL.getNumArgs() > 1) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
return;
}
// gcc rejects
// class c {
// static int a __attribute__((weakref ("v2")));
// static int b() __attribute__((weakref ("f3")));
// };
// and ignores the attributes of
// void f(void) {
// static int a __attribute__((weakref ("v2")));
// }
// we reject them
const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
if (!Ctx->isFileContext()) {
S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
<< cast<NamedDecl>(D);
return;
}
// The GCC manual says
//
// At present, a declaration to which `weakref' is attached can only
// be `static'.
//
// It also says
//
// Without a TARGET,
// given as an argument to `weakref' or to `alias', `weakref' is
// equivalent to `weak'.
//
// gcc 4.4.1 will accept
// int a7 __attribute__((weakref));
// as
// int a7 __attribute__((weak));
// This looks like a bug in gcc. We reject that for now. We should revisit
// it if this behaviour is actually used.
// GCC rejects
// static ((alias ("y"), weakref)).
// Should we? How to check that weakref is before or after alias?
// FIXME: it would be good for us to keep the WeakRefAttr as-written instead
// of transforming it into an AliasAttr. The WeakRefAttr never uses the
// StringRef parameter it was given anyway.
StringRef Str;
if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
// GCC will accept anything as the argument of weakref. Should we
// check for an existing decl?
D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
}
static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
StringRef Str;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
return;
// Aliases should be on declarations, not definitions.
const auto *FD = cast<FunctionDecl>(D);
if (FD->isThisDeclarationADefinition()) {
S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
return;
}
D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
}
static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
StringRef Str;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
return;
if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
return;
}
if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
}
// Aliases should be on declarations, not definitions.
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isThisDeclarationADefinition()) {
S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
return;
}
} else {
const auto *VD = cast<VarDecl>(D);
if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
return;
}
}
// Mark target used to prevent unneeded-internal-declaration warnings.
if (!S.LangOpts.CPlusPlus) {
// FIXME: demangle Str for C++, as the attribute refers to the mangled
// linkage name, not the pre-mangled identifier.
const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc());
LookupResult LR(S, target, Sema::LookupOrdinaryName);
if (S.LookupQualifiedName(LR, S.getCurLexicalContext()))
for (NamedDecl *ND : LR)
ND->markUsed(S.Context);
}
D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
}
static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
StringRef Model;
SourceLocation LiteralLoc;
// Check that it is a string.
if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
return;
// Check that the value.
if (Model != "global-dynamic" && Model != "local-dynamic"
&& Model != "initial-exec" && Model != "local-exec") {
S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
return;
}
D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
}
static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
QualType ResultType = getFunctionOrMethodResultType(D);
if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
return;
}
S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
<< AL << getFunctionOrMethodResultSourceRange(D);
}
static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
FunctionDecl *FD = cast<FunctionDecl>(D);
if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
if (MD->getParent()->isLambda()) {
S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
return;
}
}
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
return;
SmallVector<IdentifierInfo *, 8> CPUs;
for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
if (!AL.isArgIdent(ArgNo)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
StringRef CPUName = CPUArg->Ident->getName().trim();
if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) {
S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value)
<< CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
return;
}
const TargetInfo &Target = S.Context.getTargetInfo();
if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
return Target.CPUSpecificManglingCharacter(CPUName) ==
Target.CPUSpecificManglingCharacter(Cur->getName());
})) {
S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
return;
}
CPUs.push_back(CPUArg->Ident);
}
FD->setIsMultiVersion(true);
if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
D->addAttr(::new (S.Context)
CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
else
D->addAttr(::new (S.Context)
CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
}
static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (S.LangOpts.CPlusPlus) {
S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
<< AL << AttributeLangSupport::Cpp;
return;
}
if (CommonAttr *CA = S.mergeCommonAttr(D, AL))
D->addAttr(CA);
}
static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) {
S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL;
return;
}
const auto *FD = cast<FunctionDecl>(D);
if (!FD->isExternallyVisible()) {
S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static);
return;
}
D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL));
}
static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (checkAttrMutualExclusion<DisableTailCallsAttr>(S, D, AL))
return;
if (AL.isDeclspecAttribute()) {
const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
const auto &Arch = Triple.getArch();
if (Arch != llvm::Triple::x86 &&
(Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
<< AL << Triple.getArchName();
return;
}
}
D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
}
static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
if (hasDeclarator(D)) return;
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attrs << ExpectedFunctionOrMethod;
return;
}
D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
}
static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
if (!S.getLangOpts().CFProtectionBranch)
S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
else
handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
}
bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) {
if (!checkAttributeNumArgs(*this, Attrs, 0)) {
Attrs.setInvalid();
return true;
}
return false;
}
bool Sema::CheckAttrTarget(const ParsedAttr &AL) {
// Check whether the attribute is valid on the current target.
if (!AL.existsInTarget(Context.getTargetInfo())) {
Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
<< AL << AL.getRange();
AL.setInvalid();
return true;
}
return false;
}
static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// The checking path for 'noreturn' and 'analyzer_noreturn' are different
// because 'analyzer_noreturn' does not impact the type.
if (!isFunctionOrMethodOrBlock(D)) {
ValueDecl *VD = dyn_cast<ValueDecl>(D);
if (!VD || (!VD->getType()->isBlockPointerType() &&
!VD->getType()->isFunctionPointerType())) {
S.Diag(AL.getLoc(), AL.isCXX11Attribute()
? diag::err_attribute_wrong_decl_type
: diag::warn_attribute_wrong_decl_type)
<< AL << ExpectedFunctionMethodOrBlock;
return;
}
}
D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
}
// PS3 PPU-specific.
static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
/*
Returning a Vector Class in Registers
According to the PPU ABI specifications, a class with a single member of
vector type is returned in memory when used as the return value of a
function.
This results in inefficient code when implementing vector classes. To return
the value in a single vector register, add the vecreturn attribute to the
class definition. This attribute is also applicable to struct types.
Example:
struct Vector
{
__vector float xyzw;
} __attribute__((vecreturn));
Vector Add(Vector lhs, Vector rhs)
{
Vector result;
result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
return result; // This will be returned in a register
}
*/
if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
return;
}
const auto *R = cast<RecordDecl>(D);
int count = 0;
if (!isa<CXXRecordDecl>(R)) {
S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
return;
}
if (!cast<CXXRecordDecl>(R)->isPOD()) {
S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
return;
}
for (const auto *I : R->fields()) {
if ((count == 1) || !I->getType()->isVectorType()) {
S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
return;
}
count++;
}
D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
}
static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
const ParsedAttr &AL) {
if (isa<ParmVarDecl>(D)) {
// [[carries_dependency]] can only be applied to a parameter if it is a
// parameter of a function declaration or lambda.
if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
S.Diag(AL.getLoc(),
diag::err_carries_dependency_param_not_function_decl);
return;
}
}
D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
}
static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
// If this is spelled as the standard C++17 attribute, but not in C++17, warn
// about using it as an extension.
if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
}
static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
uint32_t priority = ConstructorAttr::DefaultPriority;
if (AL.getNumArgs() &&
!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
return;
D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority));
}
static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
uint32_t priority = DestructorAttr::DefaultPriority;
if (AL.getNumArgs() &&
!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
return;
D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority));
}
template <typename AttrTy>
static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
// Handle the case where the attribute has a text message.
StringRef Str;
if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
return;
D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
}
static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
<< AL << AL.getRange();
return;
}
D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL));
}
static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
IdentifierInfo *Platform,
VersionTuple Introduced,
VersionTuple Deprecated,
VersionTuple Obsoleted) {
StringRef PlatformName
= AvailabilityAttr::getPrettyPlatformName(Platform->getName());
if (PlatformName.empty())
PlatformName = Platform->getName();
// Ensure that Introduced <= Deprecated <= Obsoleted (although not all
// of these steps are needed).
if (!Introduced.empty() && !Deprecated.empty() &&
!(Introduced <= Deprecated)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 1 << PlatformName << Deprecated.getAsString()
<< 0 << Introduced.getAsString();
return true;
}
if (!Introduced.empty() && !Obsoleted.empty() &&
!(Introduced <= Obsoleted)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 2 << PlatformName << Obsoleted.getAsString()
<< 0 << Introduced.getAsString();
return true;
}
if (!Deprecated.empty() && !Obsoleted.empty() &&
!(Deprecated <= Obsoleted)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 2 << PlatformName << Obsoleted.getAsString()
<< 1 << Deprecated.getAsString();
return true;
}
return false;
}
/// Check whether the two versions match.
///
/// If either version tuple is empty, then they are assumed to match. If
/// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
bool BeforeIsOkay) {
if (X.empty() || Y.empty())
return true;
if (X == Y)
return true;
if (BeforeIsOkay && X < Y)
return true;
return false;
}
AvailabilityAttr *Sema::mergeAvailabilityAttr(
NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
int Priority) {
VersionTuple MergedIntroduced = Introduced;
VersionTuple MergedDeprecated = Deprecated;
VersionTuple MergedObsoleted = Obsoleted;
bool FoundAny = false;
bool OverrideOrImpl = false;
switch (AMK) {
case AMK_None:
case AMK_Redeclaration:
OverrideOrImpl = false;
break;
case AMK_Override:
case AMK_ProtocolImplementation:
OverrideOrImpl = true;
break;
}
if (D->hasAttrs()) {
AttrVec &Attrs = D->getAttrs();
for (unsigned i = 0, e = Attrs.size(); i != e;) {
const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
if (!OldAA) {
++i;
continue;
}
IdentifierInfo *OldPlatform = OldAA->getPlatform();
if (OldPlatform != Platform) {
++i;
continue;
}
// If there is an existing availability attribute for this platform that
// has a lower priority use the existing one and discard the new
// attribute.
if (OldAA->getPriority() < Priority)
return nullptr;
// If there is an existing attribute for this platform that has a higher
// priority than the new attribute then erase the old one and continue
// processing the attributes.
if (OldAA->getPriority() > Priority) {
Attrs.erase(Attrs.begin() + i);
--e;
continue;
}
FoundAny = true;
VersionTuple OldIntroduced = OldAA->getIntroduced();
VersionTuple OldDeprecated = OldAA->getDeprecated();
VersionTuple OldObsoleted = OldAA->getObsoleted();
bool OldIsUnavailable = OldAA->getUnavailable();
if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
!(OldIsUnavailable == IsUnavailable ||
(OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
if (OverrideOrImpl) {
int Which = -1;
VersionTuple FirstVersion;
VersionTuple SecondVersion;
if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
Which = 0;
FirstVersion = OldIntroduced;
SecondVersion = Introduced;
} else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
Which = 1;
FirstVersion = Deprecated;
SecondVersion = OldDeprecated;
} else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
Which = 2;
FirstVersion = Obsoleted;
SecondVersion = OldObsoleted;
}
if (Which == -1) {
Diag(OldAA->getLocation(),
diag::warn_mismatched_availability_override_unavail)
<< AvailabilityAttr::getPrettyPlatformName(Platform->getName())
<< (AMK == AMK_Override);
} else {
Diag(OldAA->getLocation(),
diag::warn_mismatched_availability_override)
<< Which
<< AvailabilityAttr::getPrettyPlatformName(Platform->getName())
<< FirstVersion.getAsString() << SecondVersion.getAsString()
<< (AMK == AMK_Override);
}
if (AMK == AMK_Override)
Diag(CI.getLoc(), diag::note_overridden_method);
else
Diag(CI.getLoc(), diag::note_protocol_method);
} else {
Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
Diag(CI.getLoc(), diag::note_previous_attribute);
}
Attrs.erase(Attrs.begin() + i);
--e;
continue;
}
VersionTuple MergedIntroduced2 = MergedIntroduced;
VersionTuple MergedDeprecated2 = MergedDeprecated;
VersionTuple MergedObsoleted2 = MergedObsoleted;
if (MergedIntroduced2.empty())
MergedIntroduced2 = OldIntroduced;
if (MergedDeprecated2.empty())
MergedDeprecated2 = OldDeprecated;
if (MergedObsoleted2.empty())
MergedObsoleted2 = OldObsoleted;
if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
MergedIntroduced2, MergedDeprecated2,
MergedObsoleted2)) {
Attrs.erase(Attrs.begin() + i);
--e;
continue;
}
MergedIntroduced = MergedIntroduced2;
MergedDeprecated = MergedDeprecated2;
MergedObsoleted = MergedObsoleted2;
++i;
}
}
if (FoundAny &&
MergedIntroduced == Introduced &&
MergedDeprecated == Deprecated &&
MergedObsoleted == Obsoleted)
return nullptr;
// Only create a new attribute if !OverrideOrImpl, but we want to do
// the checking.
if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
MergedDeprecated, MergedObsoleted) &&
!OverrideOrImpl) {
auto *Avail = ::new (Context) AvailabilityAttr(
Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
Message, IsStrict, Replacement, Priority);
Avail->setImplicit(Implicit);
return Avail;
}
return nullptr;
}
static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!checkAttributeNumArgs(S, AL, 1))
return;
IdentifierLoc *Platform = AL.getArgAsIdent(0);
IdentifierInfo *II = Platform->Ident;
if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
<< Platform->Ident;
auto *ND = dyn_cast<NamedDecl>(D);
if (!ND) // We warned about this already, so just return.
return;
AvailabilityChange Introduced = AL.getAvailabilityIntroduced();
AvailabilityChange Deprecated = AL.getAvailabilityDeprecated();
AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted();
bool IsUnavailable = AL.getUnavailableLoc().isValid();
bool IsStrict = AL.getStrictLoc().isValid();
StringRef Str;
if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr()))
Str = SE->getString();
StringRef Replacement;
if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr()))
Replacement = SE->getString();
if (II->isStr("swift")) {
if (Introduced.isValid() || Obsoleted.isValid() ||
(!IsUnavailable && !Deprecated.isValid())) {
S.Diag(AL.getLoc(),
diag::warn_availability_swift_unavailable_deprecated_only);
return;
}
}
int PriorityModifier = AL.isPragmaClangAttribute()
? Sema::AP_PragmaClangAttribute
: Sema::AP_Explicit;
AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
Sema::AMK_None, PriorityModifier);
if (NewAttr)
D->addAttr(NewAttr);
// Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
// matches before the start of the watchOS platform.
if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
IdentifierInfo *NewII = nullptr;
if (II->getName() == "ios")
NewII = &S.Context.Idents.get("watchos");
else if (II->getName() == "ios_app_extension")
NewII = &S.Context.Idents.get("watchos_app_extension");
if (NewII) {
auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple {
if (Version.empty())
return Version;
auto Major = Version.getMajor();
auto NewMajor = Major >= 9 ? Major - 7 : 0;
if (NewMajor >= 2) {
if (Version.getMinor().hasValue()) {
if (Version.getSubminor().hasValue())
return VersionTuple(NewMajor, Version.getMinor().getValue(),
Version.getSubminor().getValue());
else
return VersionTuple(NewMajor, Version.getMinor().getValue());
}
return VersionTuple(NewMajor);
}
return VersionTuple(2, 0);
};
auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
Sema::AMK_None,
PriorityModifier + Sema::AP_InferredFromOtherPlatform);
if (NewAttr)
D->addAttr(NewAttr);
}
} else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
// Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
// matches before the start of the tvOS platform.
IdentifierInfo *NewII = nullptr;
if (II->getName() == "ios")
NewII = &S.Context.Idents.get("tvos");
else if (II->getName() == "ios_app_extension")
NewII = &S.Context.Idents.get("tvos_app_extension");
if (NewII) {
AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
ND, AL, NewII, true /*Implicit*/, Introduced.Version,
Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, IsStrict,
Replacement, Sema::AMK_None,
PriorityModifier + Sema::AP_InferredFromOtherPlatform);
if (NewAttr)
D->addAttr(NewAttr);
}
}
}
static void handleExternalSourceSymbolAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
return;
assert(checkAttributeAtMostNumArgs(S, AL, 3) &&
"Invalid number of arguments in an external_source_symbol attribute");
StringRef Language;
if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0)))
Language = SE->getString();
StringRef DefinedIn;
if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1)))
DefinedIn = SE->getString();
bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration));
}
template <class T>
static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI,
typename T::VisibilityType value) {
T *existingAttr = D->getAttr<T>();
if (existingAttr) {
typename T::VisibilityType existingValue = existingAttr->getVisibility();
if (existingValue == value)
return nullptr;
S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
S.Diag(CI.getLoc(), diag::note_previous_attribute);
D->dropAttr<T>();
}
return ::new (S.Context) T(S.Context, CI, value);
}
VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D,
const AttributeCommonInfo &CI,
VisibilityAttr::VisibilityType Vis) {
return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
}
TypeVisibilityAttr *
Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
TypeVisibilityAttr::VisibilityType Vis) {
return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
}
static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
bool isTypeVisibility) {
// Visibility attributes don't mean anything on a typedef.
if (isa<TypedefNameDecl>(D)) {
S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
return;
}
// 'type_visibility' can only go on a type or namespace.
if (isTypeVisibility &&
!(isa<TagDecl>(D) ||
isa<ObjCInterfaceDecl>(D) ||
isa<NamespaceDecl>(D))) {
S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
<< AL << ExpectedTypeOrNamespace;
return;
}
// Check that the argument is a string literal.
StringRef TypeStr;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
return;
VisibilityAttr::VisibilityType type;
if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
<< TypeStr;
return;
}
// Complain about attempts to use protected visibility on targets
// (like Darwin) that don't support it.
if (type == VisibilityAttr::Protected &&
!S.Context.getTargetInfo().hasProtectedVisibility()) {
S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
type = VisibilityAttr::Default;
}
Attr *newAttr;
if (isTypeVisibility) {
newAttr = S.mergeTypeVisibilityAttr(
D, AL, (TypeVisibilityAttr::VisibilityType)type);
} else {
newAttr = S.mergeVisibilityAttr(D, AL, type);
}
if (newAttr)
D->addAttr(newAttr);
}
static void handleObjCNonRuntimeProtocolAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
handleSimpleAttribute<ObjCNonRuntimeProtocolAttr>(S, D, AL);
}
static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// objc_direct cannot be set on methods declared in the context of a protocol
if (isa<ObjCProtocolDecl>(D->getDeclContext())) {
S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false;
return;
}
if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
handleSimpleAttribute<ObjCDirectAttr>(S, D, AL);
} else {
S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
}
}
static void handleObjCDirectMembersAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
} else {
S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
}
}
static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
const auto *M = cast<ObjCMethodDecl>(D);
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 1 << AANT_ArgumentIdentifier;
return;
}
IdentifierLoc *IL = AL.getArgAsIdent(0);
ObjCMethodFamilyAttr::FamilyKind F;
if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident;
return;
}
if (F == ObjCMethodFamilyAttr::OMF_init &&
!M->getReturnType()->isObjCObjectPointerType()) {
S.Diag(M->getLocation(), diag::err_init_method_bad_return_type)
<< M->getReturnType();
// Ignore the attribute.
return;
}
D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F));
}
static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) {
if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
QualType T = TD->getUnderlyingType();
if (!T->isCARCBridgableType()) {
S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
return;
}
}
else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
QualType T = PD->getType();
if (!T->isCARCBridgableType()) {
S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
return;
}
}
else {
// It is okay to include this attribute on properties, e.g.:
//
// @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
//
// In this case it follows tradition and suppresses an error in the above
// case.
S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
}
D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL));
}
static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) {
if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
QualType T = TD->getUnderlyingType();
if (!T->isObjCObjectPointerType()) {
S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
return;
}
} else {
S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
return;
}
D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL));
}
static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 1 << AANT_ArgumentIdentifier;
return;
}
IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
BlocksAttr::BlockType type;
if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
return;
}
D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type));
}
static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
if (AL.getNumArgs() > 0) {
Expr *E = AL.getArgAsExpr(0);
Optional<llvm::APSInt> Idx = llvm::APSInt(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!(Idx = E->getIntegerConstantExpr(S.Context))) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
return;
}
if (Idx->isSigned() && Idx->isNegative()) {
S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
<< E->getSourceRange();
return;
}
sentinel = Idx->getZExtValue();
}
unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
if (AL.getNumArgs() > 1) {
Expr *E = AL.getArgAsExpr(1);
Optional<llvm::APSInt> Idx = llvm::APSInt(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!(Idx = E->getIntegerConstantExpr(S.Context))) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
return;
}
nullPos = Idx->getZExtValue();
if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) {
// FIXME: This error message could be improved, it would be nice
// to say what the bounds actually are.
S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
<< E->getSourceRange();
return;
}
}
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
const FunctionType *FT = FD->getType()->castAs<FunctionType>();
if (isa<FunctionNoProtoType>(FT)) {
S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
return;
}
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
return;
}
} else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
if (!MD->isVariadic()) {
S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
return;
}
} else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
if (!BD->isVariadic()) {
S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
return;
}
} else if (const auto *V = dyn_cast<VarDecl>(D)) {
QualType Ty = V->getType();
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
const FunctionType *FT = Ty->isFunctionPointerType()
? D->getFunctionType()
: Ty->castAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
int m = Ty->isFunctionPointerType() ? 0 : 1;
S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
return;
}
} else {
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
<< AL << ExpectedFunctionMethodOrBlock;
return;
}
} else {
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
<< AL << ExpectedFunctionMethodOrBlock;
return;
}
D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
}
static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
if (D->getFunctionType() &&
D->getFunctionType()->getReturnType()->isVoidType() &&
!isa<CXXConstructorDecl>(D)) {
S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
return;
}
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
if (MD->getReturnType()->isVoidType()) {
S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
return;
}
StringRef Str;
if ((AL.isCXX11Attribute() || AL.isC2xAttribute()) && !AL.getScopeName()) {
// The standard attribute cannot be applied to variable declarations such
// as a function pointer.
if (isa<VarDecl>(D))
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
<< AL << "functions, classes, or enumerations";
// If this is spelled as the standard C++17 attribute, but not in C++17,
// warn about using it as an extension. If there are attribute arguments,
// then claim it's a C++2a extension instead.
// FIXME: If WG14 does not seem likely to adopt the same feature, add an
// extension warning for C2x mode.
const LangOptions &LO = S.getLangOpts();
if (AL.getNumArgs() == 1) {
if (LO.CPlusPlus && !LO.CPlusPlus20)
S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL;
// Since this this is spelled [[nodiscard]], get the optional string
// literal. If in C++ mode, but not in C++2a mode, diagnose as an
// extension.
// FIXME: C2x should support this feature as well, even as an extension.
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
return;
} else if (LO.CPlusPlus && !LO.CPlusPlus17)
S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
}
D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
}
static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// weak_import only applies to variable & function declarations.
bool isDef = false;
if (!D->canBeWeakImported(isDef)) {
if (isDef)
S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
<< "weak_import";
else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
(S.Context.getTargetInfo().getTriple().isOSDarwin() &&
(isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
// Nothing to warn about here.
} else
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
<< AL << ExpectedVariableOrFunction;
return;
}
D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
}
// Handles reqd_work_group_size and work_group_size_hint.
template <typename WorkGroupAttr>
static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
uint32_t WGSize[3];
for (unsigned i = 0; i < 3; ++i) {
const Expr *E = AL.getArgAsExpr(i);
if (!checkUInt32Argument(S, AL, E, WGSize[i], i,
/*StrictlyUnsigned=*/true))
return;
if (WGSize[i] == 0) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
<< AL << E->getSourceRange();
return;
}
}
WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
if (Existing && !(Existing->getXDim() == WGSize[0] &&
Existing->getYDim() == WGSize[1] &&
Existing->getZDim() == WGSize[2]))
S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
D->addAttr(::new (S.Context)
WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
}
// Handles intel_reqd_sub_group_size.
static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
uint32_t SGSize;
const Expr *E = AL.getArgAsExpr(0);
if (!checkUInt32Argument(S, AL, E, SGSize))
return;
if (SGSize == 0) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
<< AL << E->getSourceRange();
return;
}
OpenCLIntelReqdSubGroupSizeAttr *Existing =
D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>();
if (Existing && Existing->getSubGroupSize() != SGSize)
S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
D->addAttr(::new (S.Context)
OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize));
}
static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!AL.hasParsedType()) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
return;
}
TypeSourceInfo *ParmTSI = nullptr;
QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
assert(ParmTSI && "no type source info for attribute argument");
if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
(ParmType->isBooleanType() ||
!ParmType->isIntegralType(S.getASTContext()))) {
S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
return;
}
if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
return;
}
}
D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
}
SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
StringRef Name) {
// Explicit or partial specializations do not inherit
// the section attribute from the primary template.
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
FD->isFunctionTemplateSpecialization())
return nullptr;
}
if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
if (ExistingAttr->getName() == Name)
return nullptr;
Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
<< 1 /*section*/;
Diag(CI.getLoc(), diag::note_previous_attribute);
return nullptr;
}
return ::new (Context) SectionAttr(Context, CI, Name);
}
bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName);
if (!Error.empty()) {
Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error
<< 1 /*'section'*/;
return false;
}
return true;
}
static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Make sure that there is a string literal as the sections's single
// argument.
StringRef Str;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
return;
if (!S.checkSectionName(LiteralLoc, Str))
return;
// If the target wants to validate the section specifier, make it happen.
std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
if (!Error.empty()) {
S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
<< Error;
return;
}
SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
if (NewAttr) {
D->addAttr(NewAttr);
if (isa<FunctionDecl, FunctionTemplateDecl, ObjCMethodDecl,
ObjCPropertyDecl>(D))
S.UnifySection(NewAttr->getName(),
ASTContext::PSF_Execute | ASTContext::PSF_Read,
cast<NamedDecl>(D));
}
}
// This is used for `__declspec(code_seg("segname"))` on a decl.
// `#pragma code_seg("segname")` uses checkSectionName() instead.
static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
StringRef CodeSegName) {
std::string Error =
S.Context.getTargetInfo().isValidSectionSpecifier(CodeSegName);
if (!Error.empty()) {
S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
<< Error << 0 /*'code-seg'*/;
return false;
}
return true;
}
CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
StringRef Name) {
// Explicit or partial specializations do not inherit
// the code_seg attribute from the primary template.
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isFunctionTemplateSpecialization())
return nullptr;
}
if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
if (ExistingAttr->getName() == Name)
return nullptr;
Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
<< 0 /*codeseg*/;
Diag(CI.getLoc(), diag::note_previous_attribute);
return nullptr;
}
return ::new (Context) CodeSegAttr(Context, CI, Name);
}
static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
StringRef Str;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
return;
if (!checkCodeSegName(S, LiteralLoc, Str))
return;
if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
if (!ExistingAttr->isImplicit()) {
S.Diag(AL.getLoc(),
ExistingAttr->getName() == Str
? diag::warn_duplicate_codeseg_attribute
: diag::err_conflicting_codeseg_attribute);
return;
}
D->dropAttr<CodeSegAttr>();
}
if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
D->addAttr(CSA);
}
// Check for things we'd like to warn about. Multiversioning issues are
// handled later in the process, once we know how many exist.
bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
enum FirstParam { Unsupported, Duplicate, Unknown };
enum SecondParam { None, Architecture, Tune };
if (AttrStr.find("fpmath=") != StringRef::npos)
return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
<< Unsupported << None << "fpmath=";
// Diagnose use of tune if target doesn't support it.
if (!Context.getTargetInfo().supportsTargetAttributeTune() &&
AttrStr.find("tune=") != StringRef::npos)
return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
<< Unsupported << None << "tune=";
ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr);
if (!ParsedAttrs.Architecture.empty() &&
!Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture))
return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
<< Unknown << Architecture << ParsedAttrs.Architecture;
if (!ParsedAttrs.Tune.empty() &&
!Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune))
return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
<< Unknown << Tune << ParsedAttrs.Tune;
if (ParsedAttrs.DuplicateArchitecture)
return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
<< Duplicate << None << "arch=";
if (ParsedAttrs.DuplicateTune)
return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
<< Duplicate << None << "tune=";
for (const auto &Feature : ParsedAttrs.Features) {
auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
<< Unsupported << None << CurFeature;
}
TargetInfo::BranchProtectionInfo BPI;
StringRef Error;
if (!ParsedAttrs.BranchProtection.empty() &&
!Context.getTargetInfo().validateBranchProtection(
ParsedAttrs.BranchProtection, BPI, Error)) {
if (Error.empty())
return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
<< Unsupported << None << "branch-protection";
else
return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
<< Error;
}
return false;
}
static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
StringRef Str;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
S.checkTargetAttr(LiteralLoc, Str))
return;
TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
D->addAttr(NewAttr);
}
static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
Expr *E = AL.getArgAsExpr(0);
uint32_t VecWidth;
if (!checkUInt32Argument(S, AL, E, VecWidth)) {
AL.setInvalid();
return;
}
MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
if (Existing && Existing->getVectorWidth() != VecWidth) {
S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
return;
}
D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
}
static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
Expr *E = AL.getArgAsExpr(0);
SourceLocation Loc = E->getExprLoc();
FunctionDecl *FD = nullptr;
DeclarationNameInfo NI;
// gcc only allows for simple identifiers. Since we support more than gcc, we
// will warn the user.
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
if (DRE->hasQualifier())
S.Diag(Loc, diag::warn_cleanup_ext);
FD = dyn_cast<FunctionDecl>(DRE->getDecl());
NI = DRE->getNameInfo();
if (!FD) {
S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
<< NI.getName();
return;
}
} else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
if (ULE->hasExplicitTemplateArgs())
S.Diag(Loc, diag::warn_cleanup_ext);
FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
NI = ULE->getNameInfo();
if (!FD) {
S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
<< NI.getName();
if (ULE->getType() == S.Context.OverloadTy)
S.NoteAllOverloadCandidates(ULE);
return;
}
} else {
S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
return;
}
if (FD->getNumParams() != 1) {
S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
<< NI.getName();
return;
}
// We're currently more strict than GCC about what function types we accept.
// If this ever proves to be a problem it should be easy to fix.
QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType());
QualType ParamTy = FD->getParamDecl(0)->getType();
if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
ParamTy, Ty) != Sema::Compatible) {
S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
<< NI.getName() << ParamTy << Ty;
return;
}
D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD));
}
static void handleEnumExtensibilityAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 0 << AANT_ArgumentIdentifier;
return;
}
EnumExtensibilityAttr::Kind ExtensibilityKind;
IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
ExtensibilityKind)) {
S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
return;
}
D->addAttr(::new (S.Context)
EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
}
/// Handle __attribute__((format_arg((idx)))) attribute based on
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
Expr *IdxExpr = AL.getArgAsExpr(0);
ParamIdx Idx;
if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx))
return;
// Make sure the format string is really a string.
QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
bool NotNSStringTy = !isNSStringType(Ty, S.Context);
if (NotNSStringTy &&
!isCFStringType(Ty, S.Context) &&
(!Ty->isPointerType() ||
!Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
S.Diag(AL.getLoc(), diag::err_format_attribute_not)
<< "a string type" << IdxExpr->getSourceRange()
<< getFunctionOrMethodParamRange(D, 0);
return;
}
Ty = getFunctionOrMethodResultType(D);
if (!isNSStringType(Ty, S.Context) &&
!isCFStringType(Ty, S.Context) &&
(!Ty->isPointerType() ||
!Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
<< (NotNSStringTy ? "string type" : "NSString")
<< IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
return;
}
D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
}
enum FormatAttrKind {
CFStringFormat,
NSStringFormat,
StrftimeFormat,
SupportedFormat,
IgnoredFormat,
InvalidFormat
};
/// getFormatAttrKind - Map from format attribute names to supported format
/// types.
static FormatAttrKind getFormatAttrKind(StringRef Format) {
return llvm::StringSwitch<FormatAttrKind>(Format)
// Check for formats that get handled specially.
.Case("NSString", NSStringFormat)
.Case("CFString", CFStringFormat)
.Case("strftime", StrftimeFormat)
// Otherwise, check for supported formats.
.Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
.Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
.Case("kprintf", SupportedFormat) // OpenBSD.
.Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
.Case("os_trace", SupportedFormat)
.Case("os_log", SupportedFormat)
.Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
.Default(InvalidFormat);
}
/// Handle __attribute__((init_priority(priority))) attributes based on
/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!S.getLangOpts().CPlusPlus) {
S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
return;
}
if (S.getCurFunctionOrMethodDecl()) {
S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
AL.setInvalid();
return;
}
QualType T = cast<VarDecl>(D)->getType();
if (S.Context.getAsArrayType(T))
T = S.Context.getBaseElementType(T);
if (!T->getAs<RecordType>()) {
S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
AL.setInvalid();
return;
}
Expr *E = AL.getArgAsExpr(0);
uint32_t prioritynum;
if (!checkUInt32Argument(S, AL, E, prioritynum)) {
AL.setInvalid();
return;
}
// Only perform the priority check if the attribute is outside of a system
// header. Values <= 100 are reserved for the implementation, and libc++
// benefits from being able to specify values in that range.
if ((prioritynum < 101 || prioritynum > 65535) &&
!S.getSourceManager().isInSystemHeader(AL.getLoc())) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
<< E->getSourceRange() << AL << 101 << 65535;
AL.setInvalid();
return;
}
D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
}
FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
IdentifierInfo *Format, int FormatIdx,
int FirstArg) {
// Check whether we already have an equivalent format attribute.
for (auto *F : D->specific_attrs<FormatAttr>()) {
if (F->getType() == Format &&
F->getFormatIdx() == FormatIdx &&
F->getFirstArg() == FirstArg) {
// If we don't have a valid location for this attribute, adopt the
// location.
if (F->getLocation().isInvalid())
F->setRange(CI.getRange());
return nullptr;
}
}
return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
}
/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 1 << AANT_ArgumentIdentifier;
return;
}
// In C++ the implicit 'this' function parameter also counts, and they are
// counted from one.
bool HasImplicitThisParam = isInstanceMethod(D);
unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
StringRef Format = II->getName();
if (normalizeName(Format)) {
// If we've modified the string name, we need a new identifier for it.
II = &S.Context.Idents.get(Format);
}
// Check for supported formats.
FormatAttrKind Kind = getFormatAttrKind(Format);
if (Kind == IgnoredFormat)
return;
if (Kind == InvalidFormat) {
S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
<< AL << II->getName();
return;
}
// checks for the 2nd argument
Expr *IdxExpr = AL.getArgAsExpr(1);
uint32_t Idx;
if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2))
return;
if (Idx < 1 || Idx > NumArgs) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< AL << 2 << IdxExpr->getSourceRange();
return;
}
// FIXME: Do we need to bounds check?
unsigned ArgIdx = Idx - 1;
if (HasImplicitThisParam) {
if (ArgIdx == 0) {
S.Diag(AL.getLoc(),
diag::err_format_attribute_implicit_this_format_string)
<< IdxExpr->getSourceRange();
return;
}
ArgIdx--;
}
// make sure the format string is really a string
QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
if (Kind == CFStringFormat) {
if (!isCFStringType(Ty, S.Context)) {
S.Diag(AL.getLoc(), diag::err_format_attribute_not)
<< "a CFString" << IdxExpr->getSourceRange()
<< getFunctionOrMethodParamRange(D, ArgIdx);
return;
}
} else if (Kind == NSStringFormat) {
// FIXME: do we need to check if the type is NSString*? What are the
// semantics?
if (!isNSStringType(Ty, S.Context)) {
S.Diag(AL.getLoc(), diag::err_format_attribute_not)
<< "an NSString" << IdxExpr->getSourceRange()
<< getFunctionOrMethodParamRange(D, ArgIdx);
return;
}
} else if (!Ty->isPointerType() ||
!Ty->castAs<PointerType>()->getPointeeType()->isCharType()) {
S.Diag(AL.getLoc(), diag::err_format_attribute_not)
<< "a string type" << IdxExpr->getSourceRange()
<< getFunctionOrMethodParamRange(D, ArgIdx);
return;
}
// check the 3rd argument
Expr *FirstArgExpr = AL.getArgAsExpr(2);
uint32_t FirstArg;
if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3))
return;
// check if the function is variadic if the 3rd argument non-zero
if (FirstArg != 0) {
if (isFunctionOrMethodVariadic(D)) {
++NumArgs; // +1 for ...
} else {
S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
return;
}
}
// strftime requires FirstArg to be 0 because it doesn't read from any
// variable the input is just the current time + the format string.
if (Kind == StrftimeFormat) {
if (FirstArg != 0) {
S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
<< FirstArgExpr->getSourceRange();
return;
}
// if 0 it disables parameter checking (to use with e.g. va_list)
} else if (FirstArg != 0 && FirstArg != NumArgs) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< AL << 3 << FirstArgExpr->getSourceRange();
return;
}
FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg);
if (NewAttr)
D->addAttr(NewAttr);
}
/// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// The index that identifies the callback callee is mandatory.
if (AL.getNumArgs() == 0) {
S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
<< AL.getRange();
return;
}
bool HasImplicitThisParam = isInstanceMethod(D);
int32_t NumArgs = getFunctionOrMethodNumParams(D);
FunctionDecl *FD = D->getAsFunction();
assert(FD && "Expected a function declaration!");
llvm::StringMap<int> NameIdxMapping;
NameIdxMapping["__"] = -1;
NameIdxMapping["this"] = 0;
int Idx = 1;
for (const ParmVarDecl *PVD : FD->parameters())
NameIdxMapping[PVD->getName()] = Idx++;
auto UnknownName = NameIdxMapping.end();
SmallVector<int, 8> EncodingIndices;
for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
SourceRange SR;
int32_t ArgIdx;
if (AL.isArgIdent(I)) {
IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
auto It = NameIdxMapping.find(IdLoc->Ident->getName());
if (It == UnknownName) {
S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
<< IdLoc->Ident << IdLoc->Loc;
return;
}
SR = SourceRange(IdLoc->Loc);
ArgIdx = It->second;
} else if (AL.isArgExpr(I)) {
Expr *IdxExpr = AL.getArgAsExpr(I);
// If the expression is not parseable as an int32_t we have a problem.
if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
false)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< AL << (I + 1) << IdxExpr->getSourceRange();
return;
}
// Check oob, excluding the special values, 0 and -1.
if (ArgIdx < -1 || ArgIdx > NumArgs) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< AL << (I + 1) << IdxExpr->getSourceRange();
return;
}
SR = IdxExpr->getSourceRange();
} else {
llvm_unreachable("Unexpected ParsedAttr argument type!");
}
if (ArgIdx == 0 && !HasImplicitThisParam) {
S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
<< (I + 1) << SR;
return;
}
// Adjust for the case we do not have an implicit "this" parameter. In this
// case we decrease all positive values by 1 to get LLVM argument indices.
if (!HasImplicitThisParam && ArgIdx > 0)
ArgIdx -= 1;
EncodingIndices.push_back(ArgIdx);
}
int CalleeIdx = EncodingIndices.front();
// Check if the callee index is proper, thus not "this" and not "unknown".
// This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
// is false and positive if "HasImplicitThisParam" is true.
if (CalleeIdx < (int)HasImplicitThisParam) {
S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
<< AL.getRange();
return;
}
// Get the callee type, note the index adjustment as the AST doesn't contain
// the this type (which the callee cannot reference anyway!).
const Type *CalleeType =
getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
.getTypePtr();
if (!CalleeType || !CalleeType->isFunctionPointerType()) {
S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
<< AL.getRange();
return;
}
const Type *CalleeFnType =
CalleeType->getPointeeType()->getUnqualifiedDesugaredType();
// TODO: Check the type of the callee arguments.
const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
if (!CalleeFnProtoType) {
S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
<< AL.getRange();
return;
}
if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
<< AL << (unsigned)(EncodingIndices.size() - 1);
return;
}
if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
<< AL << (unsigned)(EncodingIndices.size() - 1);
return;
}
if (CalleeFnProtoType->isVariadic()) {
S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
return;
}
// Do not allow multiple callback attributes.
if (D->hasAttr<CallbackAttr>()) {
S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
return;
}
D->addAttr(::new (S.Context) CallbackAttr(
S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
}
static bool isFunctionLike(const Type &T) {
// Check for explicit function types.
// 'called_once' is only supported in Objective-C and it has
// function pointers and block pointers.
return T.isFunctionPointerType() || T.isBlockPointerType();
}
/// Handle 'called_once' attribute.
static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// 'called_once' only applies to parameters representing functions.
QualType T = cast<ParmVarDecl>(D)->getType();
if (!isFunctionLike(*T)) {
S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type);
return;
}
D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL));
}
static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Try to find the underlying union declaration.
RecordDecl *RD = nullptr;
const auto *TD = dyn_cast<TypedefNameDecl>(D);
if (TD && TD->getUnderlyingType()->isUnionType())
RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
else
RD = dyn_cast<RecordDecl>(D);
if (!RD || !RD->isUnion()) {
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL
<< ExpectedUnion;
return;
}
if (!RD->isCompleteDefinition()) {
if (!RD->isBeingDefined())
S.Diag(AL.getLoc(),
diag::warn_transparent_union_attribute_not_definition);
return;
}
RecordDecl::field_iterator Field = RD->field_begin(),
FieldEnd = RD->field_end();
if (Field == FieldEnd) {
S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
return;
}
FieldDecl *FirstField = *Field;
QualType FirstType = FirstField->getType();
if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
S.Diag(FirstField->getLocation(),
diag::warn_transparent_union_attribute_floating)
<< FirstType->isVectorType() << FirstType;
return;
}
if (FirstType->isIncompleteType())
return;
uint64_t FirstSize = S.Context.getTypeSize(FirstType);
uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
for (; Field != FieldEnd; ++Field) {
QualType FieldType = Field->getType();
if (FieldType->isIncompleteType())
return;
// FIXME: this isn't fully correct; we also need to test whether the
// members of the union would all have the same calling convention as the
// first member of the union. Checking just the size and alignment isn't
// sufficient (consider structs passed on the stack instead of in registers
// as an example).
if (S.Context.getTypeSize(FieldType) != FirstSize ||
S.Context.getTypeAlign(FieldType) > FirstAlign) {
// Warn if we drop the attribute.
bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType)
: S.Context.getTypeAlign(FieldType);
S.Diag(Field->getLocation(),
diag::warn_transparent_union_attribute_field_size_align)
<< isSize << *Field << FieldBits;
unsigned FirstBits = isSize ? FirstSize : FirstAlign;
S.Diag(FirstField->getLocation(),
diag::note_transparent_union_first_field_size_align)
<< isSize << FirstBits;
return;
}
}
RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
}
void Sema::AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
StringRef Str, MutableArrayRef<Expr *> Args) {
auto *Attr = AnnotateAttr::Create(Context, Str, Args.data(), Args.size(), CI);
llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
for (unsigned Idx = 0; Idx < Attr->args_size(); Idx++) {
Expr *&E = Attr->args_begin()[Idx];
assert(E && "error are handled before");
if (E->isValueDependent() || E->isTypeDependent())
continue;
if (E->getType()->isArrayType())
E = ImpCastExprToType(E, Context.getPointerType(E->getType()),
clang::CK_ArrayToPointerDecay)
.get();
if (E->getType()->isFunctionType())
E = ImplicitCastExpr::Create(Context,
Context.getPointerType(E->getType()),
clang::CK_FunctionToPointerDecay, E, nullptr,
VK_RValue, FPOptionsOverride());
if (E->isLValue())
E = ImplicitCastExpr::Create(Context, E->getType().getNonReferenceType(),
clang::CK_LValueToRValue, E, nullptr,
VK_RValue, FPOptionsOverride());
Expr::EvalResult Eval;
Notes.clear();
Eval.Diag = &Notes;
bool Result =
E->EvaluateAsConstantExpr(Eval, Context);
/// Result means the expression can be folded to a constant.
/// Note.empty() means the expression is a valid constant expression in the
/// current language mode.
if (!Result || !Notes.empty()) {
Diag(E->getBeginLoc(), diag::err_attribute_argument_n_type)
<< CI << (Idx + 1) << AANT_ArgumentConstantExpr;
for (auto &Note : Notes)
Diag(Note.first, Note.second);
return;
}
assert(Eval.Val.hasValue());
E = ConstantExpr::Create(Context, E, Eval.Val);
}
D->addAttr(Attr);
}
static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Make sure that there is a string literal as the annotation's first
// argument.
StringRef Str;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
return;
llvm::SmallVector<Expr *, 4> Args;
Args.reserve(AL.getNumArgs() - 1);
for (unsigned Idx = 1; Idx < AL.getNumArgs(); Idx++) {
assert(!AL.isArgIdent(Idx));
Args.push_back(AL.getArgAsExpr(Idx));
}
S.AddAnnotationAttr(D, AL, Str, Args);
}
static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
}
void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) {
AlignValueAttr TmpAttr(Context, CI, E);
SourceLocation AttrLoc = CI.getLoc();
QualType T;
if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
T = TD->getUnderlyingType();
else if (const auto *VD = dyn_cast<ValueDecl>(D))
T = VD->getType();
else
llvm_unreachable("Unknown decl type for align_value");
if (!T->isDependentType() && !T->isAnyPointerType() &&
!T->isReferenceType() && !T->isMemberPointerType()) {
Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
<< &TmpAttr << T << D->getSourceRange();
return;
}
if (!E->isValueDependent()) {
llvm::APSInt Alignment;
ExprResult ICE = VerifyIntegerConstantExpression(
E, &Alignment, diag::err_align_value_attribute_argument_not_int);
if (ICE.isInvalid())
return;
if (!Alignment.isPowerOf2()) {
Diag(AttrLoc, diag::err_alignment_not_power_of_two)
<< E->getSourceRange();
return;
}
D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
return;
}
// Save dependent expressions in the AST to be instantiated.
D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
}
static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// check the attribute arguments.
if (AL.getNumArgs() > 1) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
return;
}
if (AL.getNumArgs() == 0) {
D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
return;
}
Expr *E = AL.getArgAsExpr(0);
if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
S.Diag(AL.getEllipsisLoc(),
diag::err_pack_expansion_without_parameter_packs);
return;
}
if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
return;
S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
}
void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
bool IsPackExpansion) {
AlignedAttr TmpAttr(Context, CI, true, E);
SourceLocation AttrLoc = CI.getLoc();
// C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
if (TmpAttr.isAlignas()) {
// C++11 [dcl.align]p1:
// An alignment-specifier may be applied to a variable or to a class
// data member, but it shall not be applied to a bit-field, a function
// parameter, the formal parameter of a catch clause, or a variable
// declared with the register storage class specifier. An
// alignment-specifier may also be applied to the declaration of a class
// or enumeration type.
// C11 6.7.5/2:
// An alignment attribute shall not be specified in a declaration of
// a typedef, or a bit-field, or a function, or a parameter, or an
// object declared with the register storage-class specifier.
int DiagKind = -1;
if (isa<ParmVarDecl>(D)) {
DiagKind = 0;
} else if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (VD->getStorageClass() == SC_Register)
DiagKind = 1;
if (VD->isExceptionVariable())
DiagKind = 2;
} else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
if (FD->isBitField())
DiagKind = 3;
} else if (!isa<TagDecl>(D)) {
Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
<< (TmpAttr.isC11() ? ExpectedVariableOrField
: ExpectedVariableFieldOrTag);
return;
}
if (DiagKind != -1) {
Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
<< &TmpAttr << DiagKind;
return;
}
}
if (E->isValueDependent()) {
// We can't support a dependent alignment on a non-dependent type,
// because we have no way to model that a type is "alignment-dependent"
// but not dependent in any other way.
if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
if (!TND->getUnderlyingType()->isDependentType()) {
Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
<< E->getSourceRange();
return;
}
}
// Save dependent expressions in the AST to be instantiated.
AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
AA->setPackExpansion(IsPackExpansion);
D->addAttr(AA);
return;
}
// FIXME: Cache the number on the AL object?
llvm::APSInt Alignment;
ExprResult ICE = VerifyIntegerConstantExpression(
E, &Alignment, diag::err_aligned_attribute_argument_not_int);
if (ICE.isInvalid())
return;
uint64_t AlignVal = Alignment.getZExtValue();
// C++11 [dcl.align]p2:
// -- if the constant expression evaluates to zero, the alignment
// specifier shall have no effect
// C11 6.7.5p6:
// An alignment specification of zero has no effect.
if (!(TmpAttr.isAlignas() && !Alignment)) {
if (!llvm::isPowerOf2_64(AlignVal)) {
Diag(AttrLoc, diag::err_alignment_not_power_of_two)
<< E->getSourceRange();
return;
}
}
unsigned MaximumAlignment = Sema::MaximumAlignment;
if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF())
MaximumAlignment = std::min(MaximumAlignment, 8192u);
if (AlignVal > MaximumAlignment) {
Diag(AttrLoc, diag::err_attribute_aligned_too_great)
<< MaximumAlignment << E->getSourceRange();
return;
}
if (Context.getTargetInfo().isTLSSupported()) {
unsigned MaxTLSAlign =
Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
.getQuantity();
const auto *VD = dyn_cast<VarDecl>(D);
if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD &&
VD->getTLSKind() != VarDecl::TLS_None) {
Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
<< (unsigned)AlignVal << VD << MaxTLSAlign;
return;
}
}
AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
AA->setPackExpansion(IsPackExpansion);
D->addAttr(AA);
}
void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI,
TypeSourceInfo *TS, bool IsPackExpansion) {
// FIXME: Cache the number on the AL object if non-dependent?
// FIXME: Perform checking of type validity
AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
AA->setPackExpansion(IsPackExpansion);
D->addAttr(AA);
}
void Sema::CheckAlignasUnderalignment(Decl *D) {
assert(D->hasAttrs() && "no attributes on decl");
QualType UnderlyingTy, DiagTy;
if (const auto *VD = dyn_cast<ValueDecl>(D)) {
UnderlyingTy = DiagTy = VD->getType();
} else {
UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
if (const auto *ED = dyn_cast<EnumDecl>(D))
UnderlyingTy = ED->getIntegerType();
}
if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
return;
// C++11 [dcl.align]p5, C11 6.7.5/4:
// The combined effect of all alignment attributes in a declaration shall
// not specify an alignment that is less strict than the alignment that
// would otherwise be required for the entity being declared.
AlignedAttr *AlignasAttr = nullptr;
AlignedAttr *LastAlignedAttr = nullptr;
unsigned Align = 0;
for (auto *I : D->specific_attrs<AlignedAttr>()) {
if (I->isAlignmentDependent())
return;
if (I->isAlignas())
AlignasAttr = I;
Align = std::max(Align, I->getAlignment(Context));
LastAlignedAttr = I;
}
if (Align && DiagTy->isSizelessType()) {
Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type)
<< LastAlignedAttr << DiagTy;
} else if (AlignasAttr && Align) {
CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
if (NaturalAlign > RequestedAlign)
Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
<< DiagTy << (unsigned)NaturalAlign.getQuantity();
}
}
bool Sema::checkMSInheritanceAttrOnDefinition(
CXXRecordDecl *RD, SourceRange Range, bool BestCase,
MSInheritanceModel ExplicitModel) {
assert(RD->hasDefinition() && "RD has no definition!");
// We may not have seen base specifiers or any virtual methods yet. We will
// have to wait until the record is defined to catch any mismatches.
if (!RD->getDefinition()->isCompleteDefinition())
return false;
// The unspecified model never matches what a definition could need.
if (ExplicitModel == MSInheritanceModel::Unspecified)
return false;
if (BestCase) {
if (RD->calculateInheritanceModel() == ExplicitModel)
return false;
} else {
if (RD->calculateInheritanceModel() <= ExplicitModel)
return false;
}
Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
<< 0 /*definition*/;
Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD;
return true;
}
/// parseModeAttrArg - Parses attribute mode string and returns parsed type
/// attribute.
static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
bool &IntegerMode, bool &ComplexMode,
bool &ExplicitIEEE) {
IntegerMode = true;
ComplexMode = false;
switch (Str.size()) {
case 2:
switch (Str[0]) {
case 'Q':
DestWidth = 8;
break;
case 'H':
DestWidth = 16;
break;
case 'S':
DestWidth = 32;
break;
case 'D':
DestWidth = 64;
break;
case 'X':
DestWidth = 96;
break;
case 'K': // KFmode - IEEE quad precision (__float128)
ExplicitIEEE = true;
DestWidth = Str[1] == 'I' ? 0 : 128;
break;
case 'T':
ExplicitIEEE = false;
DestWidth = 128;
break;
}
if (Str[1] == 'F') {
IntegerMode = false;
} else if (Str[1] == 'C') {
IntegerMode = false;
ComplexMode = true;
} else if (Str[1] != 'I') {
DestWidth = 0;
}
break;
case 4:
// FIXME: glibc uses 'word' to define register_t; this is narrower than a
// pointer on PIC16 and other embedded platforms.
if (Str == "word")
DestWidth = S.Context.getTargetInfo().getRegisterWidth();
else if (Str == "byte")
DestWidth = S.Context.getTargetInfo().getCharWidth();
break;
case 7:
if (Str == "pointer")
DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
break;
case 11:
if (Str == "unwind_word")
DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
break;
}
}
/// handleModeAttr - This attribute modifies the width of a decl with primitive
/// type.
///
/// Despite what would be logical, the mode attribute is a decl attribute, not a
/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
/// HImode, not an intermediate pointer.
static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// This attribute isn't documented, but glibc uses it. It changes
// the width of an int or unsigned int to the specified size.
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident;
S.AddModeAttr(D, AL, Name);
}
void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI,
IdentifierInfo *Name, bool InInstantiation) {
StringRef Str = Name->getName();
normalizeName(Str);
SourceLocation AttrLoc = CI.getLoc();
unsigned DestWidth = 0;
bool IntegerMode = true;
bool ComplexMode = false;
bool ExplicitIEEE = false;
llvm::APInt VectorSize(64, 0);
if (Str.size() >= 4 && Str[0] == 'V') {
// Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
size_t StrSize = Str.size();
size_t VectorStringLength = 0;
while ((VectorStringLength + 1) < StrSize &&
isdigit(Str[VectorStringLength + 1]))
++VectorStringLength;
if (VectorStringLength &&
!Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
VectorSize.isPowerOf2()) {
parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
IntegerMode, ComplexMode, ExplicitIEEE);
// Avoid duplicate warning from template instantiation.
if (!InInstantiation)
Diag(AttrLoc, diag::warn_vector_mode_deprecated);
} else {
VectorSize = 0;
}
}
if (!VectorSize)
parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode,
ExplicitIEEE);
// FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
// and friends, at least with glibc.
// FIXME: Make sure floating-point mappings are accurate
// FIXME: Support XF and TF types
if (!DestWidth) {
Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
return;
}
QualType OldTy;
if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
OldTy = TD->getUnderlyingType();
else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
// Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
// Try to get type from enum declaration, default to int.
OldTy = ED->getIntegerType();
if (OldTy.isNull())
OldTy = Context.IntTy;
} else
OldTy = cast<ValueDecl>(D)->getType();
if (OldTy->isDependentType()) {
D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
return;
}
// Base type can also be a vector type (see PR17453).
// Distinguish between base type and base element type.
QualType OldElemTy = OldTy;
if (const auto *VT = OldTy->getAs<VectorType>())
OldElemTy = VT->getElementType();
// GCC allows 'mode' attribute on enumeration types (even incomplete), except
// for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
// type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
VectorSize.getBoolValue()) {
Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
return;
}
bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() &&
!OldElemTy->isExtIntType()) ||
OldElemTy->getAs<EnumType>();
if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
!IntegralOrAnyEnumType)
Diag(AttrLoc, diag::err_mode_not_primitive);
else if (IntegerMode) {
if (!IntegralOrAnyEnumType)
Diag(AttrLoc, diag::err_mode_wrong_type);
} else if (ComplexMode) {
if (!OldElemTy->isComplexType())
Diag(AttrLoc, diag::err_mode_wrong_type);
} else {
if (!OldElemTy->isFloatingType())
Diag(AttrLoc, diag::err_mode_wrong_type);
}
QualType NewElemTy;
if (IntegerMode)
NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
OldElemTy->isSignedIntegerType());
else
NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitIEEE);
if (NewElemTy.isNull()) {
Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
return;
}
if (ComplexMode) {
NewElemTy = Context.getComplexType(NewElemTy);
}
QualType NewTy = NewElemTy;
if (VectorSize.getBoolValue()) {
NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
VectorType::GenericVector);
} else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
// Complex machine mode does not support base vector types.
if (ComplexMode) {
Diag(AttrLoc, diag::err_complex_mode_vector_type);
return;
}
unsigned NumElements = Context.getTypeSize(OldElemTy) *
OldVT->getNumElements() /
Context.getTypeSize(NewElemTy);
NewTy =
Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
}
if (NewTy.isNull()) {
Diag(AttrLoc, diag::err_mode_wrong_type);
return;
}
// Install the new type.
if (auto *TD = dyn_cast<TypedefNameDecl>(D))
TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
else if (auto *ED = dyn_cast<EnumDecl>(D))
ED->setIntegerType(NewTy);
else
cast<ValueDecl>(D)->setType(NewTy);
D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
}
static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
}
AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D,
const AttributeCommonInfo &CI,
const IdentifierInfo *Ident) {
if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
return nullptr;
}
if (D->hasAttr<AlwaysInlineAttr>())
return nullptr;
return ::new (Context) AlwaysInlineAttr(Context, CI);
}
CommonAttr *Sema::mergeCommonAttr(Decl *D, const ParsedAttr &AL) {
if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL))
return nullptr;
return ::new (Context) CommonAttr(Context, AL);
}
CommonAttr *Sema::mergeCommonAttr(Decl *D, const CommonAttr &AL) {
if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL))
return nullptr;
return ::new (Context) CommonAttr(Context, AL);
}
InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
const ParsedAttr &AL) {
if (const auto *VD = dyn_cast<VarDecl>(D)) {
// Attribute applies to Var but not any subclass of it (like ParmVar,
// ImplicitParm or VarTemplateSpecialization).
if (VD->getKind() != Decl::Var) {
Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
<< AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
: ExpectedVariableOrFunction);
return nullptr;
}
// Attribute does not apply to non-static local variables.
if (VD->hasLocalStorage()) {
Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
return nullptr;
}
}
if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL))
return nullptr;
return ::new (Context) InternalLinkageAttr(Context, AL);
}
InternalLinkageAttr *
Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
if (const auto *VD = dyn_cast<VarDecl>(D)) {
// Attribute applies to Var but not any subclass of it (like ParmVar,
// ImplicitParm or VarTemplateSpecialization).
if (VD->getKind() != Decl::Var) {
Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
<< &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
: ExpectedVariableOrFunction);
return nullptr;
}
// Attribute does not apply to non-static local variables.
if (VD->hasLocalStorage()) {
Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
return nullptr;
}
}
if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL))
return nullptr;
return ::new (Context) InternalLinkageAttr(Context, AL);
}
MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) {
if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
return nullptr;
}
if (D->hasAttr<MinSizeAttr>())
return nullptr;
return ::new (Context) MinSizeAttr(Context, CI);
}
NoSpeculativeLoadHardeningAttr *Sema::mergeNoSpeculativeLoadHardeningAttr(
Decl *D, const NoSpeculativeLoadHardeningAttr &AL) {
if (checkAttrMutualExclusion<SpeculativeLoadHardeningAttr>(*this, D, AL))
return nullptr;
return ::new (Context) NoSpeculativeLoadHardeningAttr(Context, AL);
}
SwiftNameAttr *Sema::mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
StringRef Name) {
if (const auto *PrevSNA = D->getAttr<SwiftNameAttr>()) {
if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) {
Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible)
<< PrevSNA << &SNA;
Diag(SNA.getLoc(), diag::note_conflicting_attribute);
}
D->dropAttr<SwiftNameAttr>();
}
return ::new (Context) SwiftNameAttr(Context, SNA, Name);
}
OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D,
const AttributeCommonInfo &CI) {
if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
Diag(CI.getLoc(), diag::note_conflicting_attribute);
D->dropAttr<AlwaysInlineAttr>();
}
if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
Diag(CI.getLoc(), diag::note_conflicting_attribute);
D->dropAttr<MinSizeAttr>();
}
if (D->hasAttr<OptimizeNoneAttr>())
return nullptr;
return ::new (Context) OptimizeNoneAttr(Context, CI);
}
SpeculativeLoadHardeningAttr *Sema::mergeSpeculativeLoadHardeningAttr(
Decl *D, const SpeculativeLoadHardeningAttr &AL) {
if (checkAttrMutualExclusion<NoSpeculativeLoadHardeningAttr>(*this, D, AL))
return nullptr;
return ::new (Context) SpeculativeLoadHardeningAttr(Context, AL);
}
static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (checkAttrMutualExclusion<NotTailCalledAttr>(S, D, AL))
return;
if (AlwaysInlineAttr *Inline =
S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
D->addAttr(Inline);
}
static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
D->addAttr(MinSize);
}
static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
D->addAttr(Optnone);
}
static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (checkAttrMutualExclusion<CUDASharedAttr>(S, D, AL) ||
checkAttrMutualExclusion<HIPManagedAttr>(S, D, AL))
return;
const auto *VD = cast<VarDecl>(D);
if (VD->hasLocalStorage()) {
S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
return;
}
D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
}
static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (checkAttrMutualExclusion<CUDAConstantAttr>(S, D, AL) ||
checkAttrMutualExclusion<HIPManagedAttr>(S, D, AL))
return;
const auto *VD = cast<VarDecl>(D);
// extern __shared__ is only allowed on arrays with no length (e.g.
// "int x[]").
if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
!isa<IncompleteArrayType>(VD->getType())) {
S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
return;
}
if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
<< S.CurrentCUDATarget())
return;
D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
}
static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (checkAttrMutualExclusion<CUDADeviceAttr>(S, D, AL) ||
checkAttrMutualExclusion<CUDAHostAttr>(S, D, AL)) {
return;
}
const auto *FD = cast<FunctionDecl>(D);
if (!FD->getReturnType()->isVoidType() &&
!FD->getReturnType()->getAs<AutoType>() &&
!FD->getReturnType()->isInstantiationDependentType()) {
SourceRange RTRange = FD->getReturnTypeSourceRange();
S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
<< FD->getType()
<< (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
: FixItHint());
return;
}
if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
if (Method->isInstance()) {
S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
<< Method;
return;
}
S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
}
// Only warn for "inline" when compiling for host, to cut down on noise.
if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
// In host compilation the kernel is emitted as a stub function, which is
// a helper function for launching the kernel. The instructions in the helper
// function has nothing to do with the source code of the kernel. Do not emit
// debug info for the stub function to avoid confusing the debugger.
if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice)
D->addAttr(NoDebugAttr::CreateImplicit(S.Context));
}
static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (checkAttrMutualExclusion<CUDAGlobalAttr>(S, D, AL)) {
return;
}
if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (VD->hasLocalStorage()) {
S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
return;
}
}
if (auto *A = D->getAttr<CUDADeviceAttr>()) {
if (!A->isImplicit())
return;
D->dropAttr<CUDADeviceAttr>();
}
D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL));
}
static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (checkAttrMutualExclusion<CUDAConstantAttr>(S, D, AL) ||
checkAttrMutualExclusion<CUDASharedAttr>(S, D, AL)) {
return;
}
if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (VD->hasLocalStorage()) {
S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
return;
}
}
if (!D->hasAttr<HIPManagedAttr>())
D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL));
if (!D->hasAttr<CUDADeviceAttr>())
D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context));
}
static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
const auto *Fn = cast<FunctionDecl>(D);
if (!Fn->isInlineSpecified()) {
S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
return;
}
if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
}
static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (hasDeclarator(D)) return;
// Diagnostic is emitted elsewhere: here we store the (valid) AL
// in the Decl node for syntactic reasoning, e.g., pretty-printing.
CallingConv CC;
if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr))
return;
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
<< AL << ExpectedFunctionOrMethod;
return;
}
switch (AL.getKind()) {
case ParsedAttr::AT_FastCall:
D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
return;
case ParsedAttr::AT_StdCall:
D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
return;
case ParsedAttr::AT_ThisCall:
D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
return;
case ParsedAttr::AT_CDecl:
D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
return;
case ParsedAttr::AT_Pascal:
D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
return;
case ParsedAttr::AT_SwiftCall:
D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
return;
case ParsedAttr::AT_VectorCall:
D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
return;
case ParsedAttr::AT_MSABI:
D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
return;
case ParsedAttr::AT_SysVABI:
D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
return;
case ParsedAttr::AT_RegCall:
D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
return;
case ParsedAttr::AT_Pcs: {
PcsAttr::PCSType PCS;
switch (CC) {
case CC_AAPCS:
PCS = PcsAttr::AAPCS;
break;
case CC_AAPCS_VFP:
PCS = PcsAttr::AAPCS_VFP;
break;
default:
llvm_unreachable("unexpected calling convention in pcs attribute");
}
D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
return;
}
case ParsedAttr::AT_AArch64VectorPcs:
D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
return;
case ParsedAttr::AT_IntelOclBicc:
D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
return;
case ParsedAttr::AT_PreserveMost:
D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
return;
case ParsedAttr::AT_PreserveAll:
D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
return;
default:
llvm_unreachable("unexpected attribute kind");
}
}
static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
return;
std::vector<StringRef> DiagnosticIdentifiers;
for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
StringRef RuleName;
if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
return;
// FIXME: Warn if the rule name is unknown. This is tricky because only
// clang-tidy knows about available rules.
DiagnosticIdentifiers.push_back(RuleName);
}
D->addAttr(::new (S.Context)
SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
DiagnosticIdentifiers.size()));
}
static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
TypeSourceInfo *DerefTypeLoc = nullptr;
QualType ParmType;
if (AL.hasParsedType()) {
ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
unsigned SelectIdx = ~0U;
if (ParmType->isReferenceType())
SelectIdx = 0;
else if (ParmType->isArrayType())
SelectIdx = 1;
if (SelectIdx != ~0U) {
S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
<< SelectIdx << AL;
return;
}
}
// To check if earlier decl attributes do not conflict the newly parsed ones
// we always add (and check) the attribute to the cannonical decl.
D = D->getCanonicalDecl();
if (AL.getKind() == ParsedAttr::AT_Owner) {
if (checkAttrMutualExclusion<PointerAttr>(S, D, AL))
return;
if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
? OAttr->getDerefType().getTypePtr()
: nullptr;
if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
<< AL << OAttr;
S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
}
return;
}
for (Decl *Redecl : D->redecls()) {
Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
}
} else {
if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL))
return;
if (const auto *PAttr = D->getAttr<PointerAttr>()) {
const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
? PAttr->getDerefType().getTypePtr()
: nullptr;
if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
<< AL << PAttr;
S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
}
return;
}
for (Decl *Redecl : D->redecls()) {
Redecl->addAttr(::new (S.Context)
PointerAttr(S.Context, AL, DerefTypeLoc));
}
}
}
bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC,
const FunctionDecl *FD) {
if (Attrs.isInvalid())
return true;
if (Attrs.hasProcessingCache()) {
CC = (CallingConv) Attrs.getProcessingCache();
return false;
}
unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
if (!checkAttributeNumArgs(*this, Attrs, ReqArgs)) {
Attrs.setInvalid();
return true;
}
// TODO: diagnose uses of these conventions on the wrong target.
switch (Attrs.getKind()) {
case ParsedAttr::AT_CDecl:
CC = CC_C;
break;
case ParsedAttr::AT_FastCall:
CC = CC_X86FastCall;
break;
case ParsedAttr::AT_StdCall:
CC = CC_X86StdCall;
break;
case ParsedAttr::AT_ThisCall:
CC = CC_X86ThisCall;
break;
case ParsedAttr::AT_Pascal:
CC = CC_X86Pascal;
break;
case ParsedAttr::AT_SwiftCall:
CC = CC_Swift;
break;
case ParsedAttr::AT_VectorCall:
CC = CC_X86VectorCall;
break;
case ParsedAttr::AT_AArch64VectorPcs:
CC = CC_AArch64VectorCall;
break;
case ParsedAttr::AT_RegCall:
CC = CC_X86RegCall;
break;
case ParsedAttr::AT_MSABI:
CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
CC_Win64;
break;
case ParsedAttr::AT_SysVABI:
CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
CC_C;
break;
case ParsedAttr::AT_Pcs: {
StringRef StrRef;
if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
Attrs.setInvalid();
return true;
}
if (StrRef == "aapcs") {
CC = CC_AAPCS;
break;
} else if (StrRef == "aapcs-vfp") {
CC = CC_AAPCS_VFP;
break;
}
Attrs.setInvalid();
Diag(Attrs.getLoc(), diag::err_invalid_pcs);
return true;
}
case ParsedAttr::AT_IntelOclBicc:
CC = CC_IntelOclBicc;
break;
case ParsedAttr::AT_PreserveMost:
CC = CC_PreserveMost;
break;
case ParsedAttr::AT_PreserveAll:
CC = CC_PreserveAll;
break;
default: llvm_unreachable("unexpected attribute kind");
}
TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK;
const TargetInfo &TI = Context.getTargetInfo();
// CUDA functions may have host and/or device attributes which indicate
// their targeted execution environment, therefore the calling convention
// of functions in CUDA should be checked against the target deduced based
// on their host/device attributes.
if (LangOpts.CUDA) {
auto *Aux = Context.getAuxTargetInfo();
auto CudaTarget = IdentifyCUDATarget(FD);
bool CheckHost = false, CheckDevice = false;
switch (CudaTarget) {
case CFT_HostDevice:
CheckHost = true;
CheckDevice = true;
break;
case CFT_Host:
CheckHost = true;
break;
case CFT_Device:
case CFT_Global:
CheckDevice = true;
break;
case CFT_InvalidTarget:
llvm_unreachable("unexpected cuda target");
}
auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
if (CheckHost && HostTI)
A = HostTI->checkCallingConvention(CC);
if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
A = DeviceTI->checkCallingConvention(CC);
} else {
A = TI.checkCallingConvention(CC);
}
switch (A) {
case TargetInfo::CCCR_OK:
break;
case TargetInfo::CCCR_Ignore:
// Treat an ignored convention as if it was an explicit C calling convention
// attribute. For example, __stdcall on Win x64 functions as __cdecl, so
// that command line flags that change the default convention to
// __vectorcall don't affect declarations marked __stdcall.
CC = CC_C;
break;
case TargetInfo::CCCR_Error:
Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
<< Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
break;
case TargetInfo::CCCR_Warning: {
Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
<< Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
// This convention is not valid for the target. Use the default function or
// method calling convention.
bool IsCXXMethod = false, IsVariadic = false;
if (FD) {
IsCXXMethod = FD->isCXXInstanceMember();
IsVariadic = FD->isVariadic();
}
CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
break;
}
}
Attrs.setProcessingCache((unsigned) CC);
return false;
}
/// Pointer-like types in the default address space.
static bool isValidSwiftContextType(QualType Ty) {
if (!Ty->hasPointerRepresentation())
return Ty->isDependentType();
return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
}
/// Pointers and references in the default address space.
static bool isValidSwiftIndirectResultType(QualType Ty) {
if (const auto *PtrType = Ty->getAs<PointerType>()) {
Ty = PtrType->getPointeeType();
} else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
Ty = RefType->getPointeeType();
} else {
return Ty->isDependentType();
}
return Ty.getAddressSpace() == LangAS::Default;
}
/// Pointers and references to pointers in the default address space.
static bool isValidSwiftErrorResultType(QualType Ty) {
if (const auto *PtrType = Ty->getAs<PointerType>()) {
Ty = PtrType->getPointeeType();
} else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
Ty = RefType->getPointeeType();
} else {
return Ty->isDependentType();
}
if (!Ty.getQualifiers().empty())
return false;
return isValidSwiftContextType(Ty);
}
void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
ParameterABI abi) {
QualType type = cast<ParmVarDecl>(D)->getType();
if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
if (existingAttr->getABI() != abi) {
Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
<< getParameterABISpelling(abi) << existingAttr;
Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
return;
}
}
switch (abi) {
case ParameterABI::Ordinary:
llvm_unreachable("explicit attribute for ordinary parameter ABI?");
case ParameterABI::SwiftContext:
if (!isValidSwiftContextType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
}
D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
return;
case ParameterABI::SwiftErrorResult:
if (!isValidSwiftErrorResultType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
}
D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
return;
case ParameterABI::SwiftIndirectResult:
if (!isValidSwiftIndirectResultType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer*/ 0 << type;
}
D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
return;
}
llvm_unreachable("bad parameter ABI attribute");
}
/// Checks a regparm attribute, returning true if it is ill-formed and
/// otherwise setting numParams to the appropriate value.
bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
if (AL.isInvalid())
return true;
if (!checkAttributeNumArgs(*this, AL, 1)) {
AL.setInvalid();
return true;
}
uint32_t NP;
Expr *NumParamsExpr = AL.getArgAsExpr(0);
if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) {
AL.setInvalid();
return true;
}
if (Context.getTargetInfo().getRegParmMax() == 0) {
Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
<< NumParamsExpr->getSourceRange();
AL.setInvalid();
return true;
}
numParams = NP;
if (numParams > Context.getTargetInfo().getRegParmMax()) {
Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
<< Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
AL.setInvalid();
return true;
}
return false;
}
// Checks whether an argument of launch_bounds attribute is
// acceptable, performs implicit conversion to Rvalue, and returns
// non-nullptr Expr result on success. Otherwise, it returns nullptr
// and may output an error.
static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
const CUDALaunchBoundsAttr &AL,
const unsigned Idx) {
if (S.DiagnoseUnexpandedParameterPack(E))
return nullptr;
// Accept template arguments for now as they depend on something else.
// We'll get to check them when they eventually get instantiated.
if (E->isValueDependent())
return E;
Optional<llvm::APSInt> I = llvm::APSInt(64);
if (!(I = E->getIntegerConstantExpr(S.Context))) {
S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
<< &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
return nullptr;
}
// Make sure we can fit it in 32 bits.
if (!I->isIntN(32)) {
S.Diag(E->getExprLoc(), diag::err_ice_too_large)
<< I->toString(10, false) << 32 << /* Unsigned */ 1;
return nullptr;
}
if (*I < 0)
S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
<< &AL << Idx << E->getSourceRange();
// We may need to perform implicit conversion of the argument.
InitializedEntity Entity = InitializedEntity::InitializeParameter(
S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
assert(!ValArg.isInvalid() &&
"Unexpected PerformCopyInitialization() failure.");
return ValArg.getAs<Expr>();
}
void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
Expr *MaxThreads, Expr *MinBlocks) {
CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks);
MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
if (MaxThreads == nullptr)
return;
if (MinBlocks) {
MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
if (MinBlocks == nullptr)
return;
}
D->addAttr(::new (Context)
CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks));
}
static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
!checkAttributeAtMostNumArgs(S, AL, 2))
return;
S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr);
}
static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
return;
}
ParamIdx ArgumentIdx;
if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1),
ArgumentIdx))
return;
ParamIdx TypeTagIdx;
if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2),
TypeTagIdx))
return;
bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
if (IsPointer) {
// Ensure that buffer has a pointer type.
unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
!getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
}
D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx,
IsPointer));
}
static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 1 << AANT_ArgumentIdentifier;
return;
}
if (!checkAttributeNumArgs(S, AL, 1))
return;
if (!isa<VarDecl>(D)) {
S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
<< AL << ExpectedVariable;
return;
}
IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident;
TypeSourceInfo *MatchingCTypeLoc = nullptr;
S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
assert(MatchingCTypeLoc && "no type source info for attribute argument");
D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
AL.getMustBeNull()));
}
static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
ParamIdx ArgCount;
if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0),
ArgCount,
true /* CanIndexImplicitThis */))
return;
// ArgCount isn't a parameter index [0;n), it's a count [1;n]
D->addAttr(::new (S.Context)
XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
}
static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
uint32_t Count = 0, Offset = 0;
if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true))
return;
if (AL.getNumArgs() == 2) {
Expr *Arg = AL.getArgAsExpr(1);
if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true))
return;
if (Count < Offset) {
S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
<< &AL << 0 << Count << Arg->getBeginLoc();
return;
}
}
D->addAttr(::new (S.Context)
PatchableFunctionEntryAttr(S.Context, AL, Count, Offset));
}
namespace {
struct IntrinToName {
uint32_t Id;
int32_t FullName;
int32_t ShortName;
};
} // unnamed namespace
static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName,
ArrayRef<IntrinToName> Map,
const char *IntrinNames) {
if (AliasName.startswith("__arm_"))
AliasName = AliasName.substr(6);
const IntrinToName *It = std::lower_bound(
Map.begin(), Map.end(), BuiltinID,
[](const IntrinToName &L, unsigned Id) { return L.Id < Id; });
if (It == Map.end() || It->Id != BuiltinID)
return false;
StringRef FullName(&IntrinNames[It->FullName]);
if (AliasName == FullName)
return true;
if (It->ShortName == -1)
return false;
StringRef ShortName(&IntrinNames[It->ShortName]);
return AliasName == ShortName;
}
static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) {
#include "clang/Basic/arm_mve_builtin_aliases.inc"
// The included file defines:
// - ArrayRef<IntrinToName> Map
// - const char IntrinNames[]
return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
}
static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) {
#include "clang/Basic/arm_cde_builtin_aliases.inc"
return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
}
static bool ArmSveAliasValid(unsigned BuiltinID, StringRef AliasName) {
switch (BuiltinID) {
default:
return false;
#define GET_SVE_BUILTINS
#define BUILTIN(name, types, attr) case SVE::BI##name:
#include "clang/Basic/arm_sve_builtins.inc"
return true;
}
}
static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 1 << AANT_ArgumentIdentifier;
return;
}
IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
unsigned BuiltinID = Ident->getBuiltinID();
StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
if ((IsAArch64 && !ArmSveAliasValid(BuiltinID, AliasName)) ||
(!IsAArch64 && !ArmMveAliasValid(BuiltinID, AliasName) &&
!ArmCdeAliasValid(BuiltinID, AliasName))) {
S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias);
return;
}
D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident));
}
//===----------------------------------------------------------------------===//
// Checker-specific attribute handlers.
//===----------------------------------------------------------------------===//
static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) {
return QT->isDependentType() || QT->isObjCRetainableType();
}
static bool isValidSubjectOfNSAttribute(QualType QT) {
return QT->isDependentType() || QT->isObjCObjectPointerType() ||
QT->isObjCNSObjectType();
}
static bool isValidSubjectOfCFAttribute(QualType QT) {
return QT->isDependentType() || QT->isPointerType() ||
isValidSubjectOfNSAttribute(QT);
}
static bool isValidSubjectOfOSAttribute(QualType QT) {
if (QT->isDependentType())
return true;
QualType PT = QT->getPointeeType();
return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr;
}
void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
RetainOwnershipKind K,
bool IsTemplateInstantiation) {
ValueDecl *VD = cast<ValueDecl>(D);
switch (K) {
case RetainOwnershipKind::OS:
handleSimpleAttributeOrDiagnose<OSConsumedAttr>(
*this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()),
diag::warn_ns_attribute_wrong_parameter_type,
/*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1);
return;
case RetainOwnershipKind::NS:
handleSimpleAttributeOrDiagnose<NSConsumedAttr>(
*this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()),
// These attributes are normally just advisory, but in ARC, ns_consumed
// is significant. Allow non-dependent code to contain inappropriate
// attributes even in ARC, but require template instantiations to be
// set up correctly.
((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount)
? diag::err_ns_attribute_wrong_parameter_type
: diag::warn_ns_attribute_wrong_parameter_type),
/*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0);
return;
case RetainOwnershipKind::CF:
handleSimpleAttributeOrDiagnose<CFConsumedAttr>(
*this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()),
diag::warn_ns_attribute_wrong_parameter_type,
/*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1);
return;
}
}
static Sema::RetainOwnershipKind
parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) {
switch (AL.getKind()) {
case ParsedAttr::AT_CFConsumed:
case ParsedAttr::AT_CFReturnsRetained:
case ParsedAttr::AT_CFReturnsNotRetained:
return Sema::RetainOwnershipKind::CF;
case ParsedAttr::AT_OSConsumesThis:
case ParsedAttr::AT_OSConsumed:
case ParsedAttr::AT_OSReturnsRetained:
case ParsedAttr::AT_OSReturnsNotRetained:
case ParsedAttr::AT_OSReturnsRetainedOnZero:
case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
return Sema::RetainOwnershipKind::OS;
case ParsedAttr::AT_NSConsumesSelf:
case ParsedAttr::AT_NSConsumed:
case ParsedAttr::AT_NSReturnsRetained:
case ParsedAttr::AT_NSReturnsNotRetained:
case ParsedAttr::AT_NSReturnsAutoreleased:
return Sema::RetainOwnershipKind::NS;
default:
llvm_unreachable("Wrong argument supplied");
}
}
bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) {
if (isValidSubjectOfNSReturnsRetainedAttribute(QT))
return false;
Diag(Loc, diag::warn_ns_attribute_wrong_return_type)
<< "'ns_returns_retained'" << 0 << 0;
return true;
}
/// \return whether the parameter is a pointer to OSObject pointer.
static bool isValidOSObjectOutParameter(const Decl *D) {
const auto *PVD = dyn_cast<ParmVarDecl>(D);
if (!PVD)
return false;
QualType QT = PVD->getType();
QualType PT = QT->getPointeeType();
return !PT.isNull() && isValidSubjectOfOSAttribute(PT);
}
static void handleXReturnsXRetainedAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
QualType ReturnType;
Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL);
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
ReturnType = MD->getReturnType();
} else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
(AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) {
return; // ignore: was handled as a type attribute
} else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
ReturnType = PD->getType();
} else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
ReturnType = FD->getReturnType();
} else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) {
// Attributes on parameters are used for out-parameters,
// passed as pointers-to-pointers.
unsigned DiagID = K == Sema::RetainOwnershipKind::CF
? /*pointer-to-CF-pointer*/2
: /*pointer-to-OSObject-pointer*/3;
ReturnType = Param->getType()->getPointeeType();
if (ReturnType.isNull()) {
S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
<< AL << DiagID << AL.getRange();
return;
}
} else if (AL.isUsedAsTypeAttr()) {
return;
} else {
AttributeDeclKind ExpectedDeclKind;
switch (AL.getKind()) {
default: llvm_unreachable("invalid ownership attribute");
case ParsedAttr::AT_NSReturnsRetained:
case ParsedAttr::AT_NSReturnsAutoreleased:
case ParsedAttr::AT_NSReturnsNotRetained:
ExpectedDeclKind = ExpectedFunctionOrMethod;
break;
case ParsedAttr::AT_OSReturnsRetained:
case ParsedAttr::AT_OSReturnsNotRetained:
case ParsedAttr::AT_CFReturnsRetained:
case ParsedAttr::AT_CFReturnsNotRetained:
ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
break;
}
S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type)
<< AL.getRange() << AL << ExpectedDeclKind;
return;
}
bool TypeOK;
bool Cf;
unsigned ParmDiagID = 2; // Pointer-to-CF-pointer
switch (AL.getKind()) {
default: llvm_unreachable("invalid ownership attribute");
case ParsedAttr::AT_NSReturnsRetained:
TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType);
Cf = false;
break;
case ParsedAttr::AT_NSReturnsAutoreleased:
case ParsedAttr::AT_NSReturnsNotRetained:
TypeOK = isValidSubjectOfNSAttribute(ReturnType);
Cf = false;
break;
case ParsedAttr::AT_CFReturnsRetained:
case ParsedAttr::AT_CFReturnsNotRetained:
TypeOK = isValidSubjectOfCFAttribute(ReturnType);
Cf = true;
break;
case ParsedAttr::AT_OSReturnsRetained:
case ParsedAttr::AT_OSReturnsNotRetained:
TypeOK = isValidSubjectOfOSAttribute(ReturnType);
Cf = true;
ParmDiagID = 3; // Pointer-to-OSObject-pointer
break;
}
if (!TypeOK) {
if (AL.isUsedAsTypeAttr())
return;
if (isa<ParmVarDecl>(D)) {
S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
<< AL << ParmDiagID << AL.getRange();
} else {
// Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
enum : unsigned {
Function,
Method,
Property
} SubjectKind = Function;
if (isa<ObjCMethodDecl>(D))
SubjectKind = Method;
else if (isa<ObjCPropertyDecl>(D))
SubjectKind = Property;
S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
<< AL << SubjectKind << Cf << AL.getRange();
}
return;
}
switch (AL.getKind()) {
default:
llvm_unreachable("invalid ownership attribute");
case ParsedAttr::AT_NSReturnsAutoreleased:
handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL);
return;
case ParsedAttr::AT_CFReturnsNotRetained:
handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL);
return;
case ParsedAttr::AT_NSReturnsNotRetained:
handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL);
return;
case ParsedAttr::AT_CFReturnsRetained:
handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL);
return;
case ParsedAttr::AT_NSReturnsRetained:
handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL);
return;
case ParsedAttr::AT_OSReturnsRetained:
handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL);
return;
case ParsedAttr::AT_OSReturnsNotRetained:
handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL);
return;
};
}
static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
const ParsedAttr &Attrs) {
const int EP_ObjCMethod = 1;
const int EP_ObjCProperty = 2;
SourceLocation loc = Attrs.getLoc();
QualType resultType;
if (isa<ObjCMethodDecl>(D))
resultType = cast<ObjCMethodDecl>(D)->getReturnType();
else
resultType = cast<ObjCPropertyDecl>(D)->getType();
if (!resultType->isReferenceType() &&
(!resultType->isPointerType() || resultType->isObjCRetainableType())) {
S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
<< SourceRange(loc) << Attrs
<< (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
<< /*non-retainable pointer*/ 2;
// Drop the attribute.
return;
}
D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs));
}
static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
const ParsedAttr &Attrs) {
const auto *Method = cast<ObjCMethodDecl>(D);
const DeclContext *DC = Method->getDeclContext();
if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
<< 0;
S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
return;
}
if (Method->getMethodFamily() == OMF_dealloc) {
S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
<< 1;
return;
}
D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs));
}
static void handleNSErrorDomain(Sema &S, Decl *D, const ParsedAttr &AL) {
auto *E = AL.getArgAsExpr(0);
auto Loc = E ? E->getBeginLoc() : AL.getLoc();
auto *DRE = dyn_cast<DeclRefExpr>(AL.getArgAsExpr(0));
if (!DRE) {
S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 0;
return;
}
auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
if (!VD) {
S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 1 << DRE->getDecl();
return;
}
if (!isNSStringType(VD->getType(), S.Context) &&
!isCFStringType(VD->getType(), S.Context)) {
S.Diag(Loc, diag::err_nserrordomain_wrong_type) << VD;
return;
}
D->addAttr(::new (S.Context) NSErrorDomainAttr(S.Context, AL, VD));
}
static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
if (!Parm) {
S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
return;
}
// Typedefs only allow objc_bridge(id) and have some additional checking.
if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
if (!Parm->Ident->isStr("id")) {
S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL;
return;
}
// Only allow 'cv void *'.
QualType T = TD->getUnderlyingType();
if (!T->isVoidPointerType()) {
S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
return;
}
}
D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident));
}
static void handleObjCBridgeMutableAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
if (!Parm) {
S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
return;
}
D->addAttr(::new (S.Context)
ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident));
}
static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
IdentifierInfo *RelatedClass =
AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr;
if (!RelatedClass) {
S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
return;
}
IdentifierInfo *ClassMethod =
AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr;
IdentifierInfo *InstanceMethod =
AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr;
D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr(
S.Context, AL, RelatedClass, ClassMethod, InstanceMethod));
}
static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
const ParsedAttr &AL) {
DeclContext *Ctx = D->getDeclContext();
// This attribute can only be applied to methods in interfaces or class
// extensions.
if (!isa<ObjCInterfaceDecl>(Ctx) &&
!(isa<ObjCCategoryDecl>(Ctx) &&
cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) {
S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
return;
}
ObjCInterfaceDecl *IFace;
if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx))
IFace = CatDecl->getClassInterface();
else
IFace = cast<ObjCInterfaceDecl>(Ctx);
if (!IFace)
return;
IFace->setHasDesignatedInitializers();
D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL));
}
static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) {
StringRef MetaDataName;
if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName))
return;
D->addAttr(::new (S.Context)
ObjCRuntimeNameAttr(S.Context, AL, MetaDataName));
}
// When a user wants to use objc_boxable with a union or struct
// but they don't have access to the declaration (legacy/third-party code)
// then they can 'enable' this feature with a typedef:
// typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) {
bool notify = false;
auto *RD = dyn_cast<RecordDecl>(D);
if (RD && RD->getDefinition()) {
RD = RD->getDefinition();
notify = true;
}
if (RD) {
ObjCBoxableAttr *BoxableAttr =
::new (S.Context) ObjCBoxableAttr(S.Context, AL);
RD->addAttr(BoxableAttr);
if (notify) {
// we need to notify ASTReader/ASTWriter about
// modification of existing declaration
if (ASTMutationListener *L = S.getASTMutationListener())
L->AddedAttributeToRecord(BoxableAttr, RD);
}
}
}
static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (hasDeclarator(D)) return;
S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type)
<< AL.getRange() << AL << ExpectedVariable;
}
static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
const auto *VD = cast<ValueDecl>(D);
QualType QT = VD->getType();
if (!QT->isDependentType() &&
!QT->isObjCLifetimeType()) {
S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type)
<< QT;
return;
}
Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime();
// If we have no lifetime yet, check the lifetime we're presumably
// going to infer.
if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType())
Lifetime = QT->getObjCARCImplicitLifetime();
switch (Lifetime) {
case Qualifiers::OCL_None:
assert(QT->isDependentType() &&
"didn't infer lifetime for non-dependent type?");
break;
case Qualifiers::OCL_Weak: // meaningful
case Qualifiers::OCL_Strong: // meaningful
break;
case Qualifiers::OCL_ExplicitNone:
case Qualifiers::OCL_Autoreleasing:
S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
<< (Lifetime == Qualifiers::OCL_Autoreleasing);
break;
}
D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL));
}
static void handleSwiftAttrAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Make sure that there is a string literal as the annotation's single
// argument.
StringRef Str;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
return;
D->addAttr(::new (S.Context) SwiftAttrAttr(S.Context, AL, Str));
}
static void handleSwiftBridge(Sema &S, Decl *D, const ParsedAttr &AL) {
// Make sure that there is a string literal as the annotation's single
// argument.
StringRef BT;
if (!S.checkStringLiteralArgumentAttr(AL, 0, BT))
return;
// Don't duplicate annotations that are already set.
if (D->hasAttr<SwiftBridgeAttr>()) {
S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
return;
}
D->addAttr(::new (S.Context) SwiftBridgeAttr(S.Context, AL, BT));
}
static bool isErrorParameter(Sema &S, QualType QT) {
const auto *PT = QT->getAs<PointerType>();
if (!PT)
return false;
QualType Pointee = PT->getPointeeType();
// Check for NSError**.
if (const auto *OPT = Pointee->getAs<ObjCObjectPointerType>())
if (const auto *ID = OPT->getInterfaceDecl())
if (ID->getIdentifier() == S.getNSErrorIdent())
return true;
// Check for CFError**.
if (const auto *PT = Pointee->getAs<PointerType>())
if (const auto *RT = PT->getPointeeType()->getAs<RecordType>())
if (S.isCFError(RT->getDecl()))
return true;
return false;
}
static void handleSwiftError(Sema &S, Decl *D, const ParsedAttr &AL) {
auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) {
if (isErrorParameter(S, getFunctionOrMethodParamType(D, I)))
return true;
}
S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter)
<< AL << isa<ObjCMethodDecl>(D);
return false;
};
auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
// - C, ObjC, and block pointers are definitely okay.
// - References are definitely not okay.
// - nullptr_t is weird, but acceptable.
QualType RT = getFunctionOrMethodResultType(D);
if (RT->hasPointerRepresentation() && !RT->isReferenceType())
return true;
S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
<< AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
<< /*pointer*/ 1;
return false;
};
auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
QualType RT = getFunctionOrMethodResultType(D);
if (RT->isIntegralType(S.Context))
return true;
S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
<< AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
<< /*integral*/ 0;
return false;
};
if (D->isInvalidDecl())
return;
IdentifierLoc *Loc = AL.getArgAsIdent(0);
SwiftErrorAttr::ConventionKind Convention;
if (!SwiftErrorAttr::ConvertStrToConventionKind(Loc->Ident->getName(),
Convention)) {
S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
<< AL << Loc->Ident;
return;
}
switch (Convention) {
case SwiftErrorAttr::None:
// No additional validation required.
break;
case SwiftErrorAttr::NonNullError:
if (!hasErrorParameter(S, D, AL))
return;
break;
case SwiftErrorAttr::NullResult:
if (!hasErrorParameter(S, D, AL) || !hasPointerResult(S, D, AL))
return;
break;
case SwiftErrorAttr::NonZeroResult:
case SwiftErrorAttr::ZeroResult:
if (!hasErrorParameter(S, D, AL) || !hasIntegerResult(S, D, AL))
return;
break;
}
D->addAttr(::new (S.Context) SwiftErrorAttr(S.Context, AL, Convention));
}
// For a function, this will validate a compound Swift name, e.g.
// <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>, and
// the function will output the number of parameter names, and whether this is a
// single-arg initializer.
//
// For a type, enum constant, property, or variable declaration, this will
// validate either a simple identifier, or a qualified
// <code>context.identifier</code> name.
static bool
validateSwiftFunctionName(Sema &S, const ParsedAttr &AL, SourceLocation Loc,
StringRef Name, unsigned &SwiftParamCount,
bool &IsSingleParamInit) {
SwiftParamCount = 0;
IsSingleParamInit = false;
// Check whether this will be mapped to a getter or setter of a property.
bool IsGetter = false, IsSetter = false;
if (Name.startswith("getter:")) {
IsGetter = true;
Name = Name.substr(7);
} else if (Name.startswith("setter:")) {
IsSetter = true;
Name = Name.substr(7);
}
if (Name.back() != ')') {
S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
return false;
}
bool IsMember = false;
StringRef ContextName, BaseName, Parameters;
std::tie(BaseName, Parameters) = Name.split('(');
// Split at the first '.', if it exists, which separates the context name
// from the base name.
std::tie(ContextName, BaseName) = BaseName.split('.');
if (BaseName.empty()) {
BaseName = ContextName;
ContextName = StringRef();
} else if (ContextName.empty() || !isValidIdentifier(ContextName)) {
S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*context*/ 1;
return false;
} else {
IsMember = true;
}
if (!isValidIdentifier(BaseName) || BaseName == "_") {
S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*basename*/ 0;
return false;
}
bool IsSubscript = BaseName == "subscript";
// A subscript accessor must be a getter or setter.
if (IsSubscript && !IsGetter && !IsSetter) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
<< AL << /* getter or setter */ 0;
return false;
}
if (Parameters.empty()) {
S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL;
return false;
}
assert(Parameters.back() == ')' && "expected ')'");
Parameters = Parameters.drop_back(); // ')'
if (Parameters.empty()) {
// Setters and subscripts must have at least one parameter.
if (IsSubscript) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
<< AL << /* have at least one parameter */1;
return false;
}
if (IsSetter) {
S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL;
return false;
}
return true;
}
if (Parameters.back() != ':') {
S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
return false;
}
StringRef CurrentParam;
llvm::Optional<unsigned> SelfLocation;
unsigned NewValueCount = 0;
llvm::Optional<unsigned> NewValueLocation;
do {
std::tie(CurrentParam, Parameters) = Parameters.split(':');
if (!isValidIdentifier(CurrentParam)) {
S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*parameter*/2;
return false;
}
if (IsMember && CurrentParam == "self") {
// "self" indicates the "self" argument for a member.
// More than one "self"?
if (SelfLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL;
return false;
}
// The "self" location is the current parameter.
SelfLocation = SwiftParamCount;
} else if (CurrentParam == "newValue") {
// "newValue" indicates the "newValue" argument for a setter.
// There should only be one 'newValue', but it's only significant for
// subscript accessors, so don't error right away.
++NewValueCount;
NewValueLocation = SwiftParamCount;
}
++SwiftParamCount;
} while (!Parameters.empty());
// Only instance subscripts are currently supported.
if (IsSubscript && !SelfLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
<< AL << /*have a 'self:' parameter*/2;
return false;
}
IsSingleParamInit =
SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_";
// Check the number of parameters for a getter/setter.
if (IsGetter || IsSetter) {
// Setters have one parameter for the new value.
unsigned NumExpectedParams = IsGetter ? 0 : 1;
unsigned ParamDiag =
IsGetter ? diag::warn_attr_swift_name_getter_parameters
: diag::warn_attr_swift_name_setter_parameters;
// Instance methods have one parameter for "self".
if (SelfLocation)
++NumExpectedParams;
// Subscripts may have additional parameters beyond the expected params for
// the index.
if (IsSubscript) {
if (SwiftParamCount < NumExpectedParams) {
S.Diag(Loc, ParamDiag) << AL;
return false;
}
// A subscript setter must explicitly label its newValue parameter to
// distinguish it from index parameters.
if (IsSetter) {
if (!NewValueLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue)
<< AL;
return false;
}
if (NewValueCount > 1) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_multiple_newValues)
<< AL;
return false;
}
} else {
// Subscript getters should have no 'newValue:' parameter.
if (NewValueLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue)
<< AL;
return false;
}
}
} else {
// Property accessors must have exactly the number of expected params.
if (SwiftParamCount != NumExpectedParams) {
S.Diag(Loc, ParamDiag) << AL;
return false;
}
}
}
return true;
}
bool Sema::DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
const ParsedAttr &AL, bool IsAsync) {
if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
ArrayRef<ParmVarDecl*> Params;
unsigned ParamCount;
if (const auto *Method = dyn_cast<ObjCMethodDecl>(D)) {
ParamCount = Method->getSelector().getNumArgs();
Params = Method->parameters().slice(0, ParamCount);
} else {
const auto *F = cast<FunctionDecl>(D);
ParamCount = F->getNumParams();
Params = F->parameters();
if (!F->hasWrittenPrototype()) {
Diag(Loc, diag::warn_attribute_wrong_decl_type) << AL
<< ExpectedFunctionWithProtoType;
return false;
}
}
// The async name drops the last callback parameter.
if (IsAsync) {
if (ParamCount == 0) {
Diag(Loc, diag::warn_attr_swift_name_decl_missing_params)
<< AL << isa<ObjCMethodDecl>(D);
return false;
}
ParamCount -= 1;
}
unsigned SwiftParamCount;
bool IsSingleParamInit;
if (!validateSwiftFunctionName(*this, AL, Loc, Name,
SwiftParamCount, IsSingleParamInit))
return false;
bool ParamCountValid;
if (SwiftParamCount == ParamCount) {
ParamCountValid = true;
} else if (SwiftParamCount > ParamCount) {
ParamCountValid = IsSingleParamInit && ParamCount == 0;
} else {
// We have fewer Swift parameters than Objective-C parameters, but that
// might be because we've transformed some of them. Check for potential
// "out" parameters and err on the side of not warning.
unsigned MaybeOutParamCount =
std::count_if(Params.begin(), Params.end(),
[](const ParmVarDecl *Param) -> bool {
QualType ParamTy = Param->getType();
if (ParamTy->isReferenceType() || ParamTy->isPointerType())
return !ParamTy->getPointeeType().isConstQualified();
return false;
});
ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount;
}
if (!ParamCountValid) {
Diag(Loc, diag::warn_attr_swift_name_num_params)
<< (SwiftParamCount > ParamCount) << AL << ParamCount
<< SwiftParamCount;
return false;
}
} else if ((isa<EnumConstantDecl>(D) || isa<ObjCProtocolDecl>(D) ||
isa<ObjCInterfaceDecl>(D) || isa<ObjCPropertyDecl>(D) ||
isa<VarDecl>(D) || isa<TypedefNameDecl>(D) || isa<TagDecl>(D) ||
isa<IndirectFieldDecl>(D) || isa<FieldDecl>(D)) &&
!IsAsync) {
StringRef ContextName, BaseName;
std::tie(ContextName, BaseName) = Name.split('.');
if (BaseName.empty()) {
BaseName = ContextName;
ContextName = StringRef();
} else if (!isValidIdentifier(ContextName)) {
Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
<< /*context*/1;
return false;
}
if (!isValidIdentifier(BaseName)) {
Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
<< /*basename*/0;
return false;
}
} else {
Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL;
return false;
}
return true;
}
static void handleSwiftName(Sema &S, Decl *D, const ParsedAttr &AL) {
StringRef Name;
SourceLocation Loc;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
return;
if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/false))
return;
D->addAttr(::new (S.Context) SwiftNameAttr(S.Context, AL, Name));
}
static void handleSwiftAsyncName(Sema &S, Decl *D, const ParsedAttr &AL) {
StringRef Name;
SourceLocation Loc;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
return;
if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/true))
return;
D->addAttr(::new (S.Context) SwiftAsyncNameAttr(S.Context, AL, Name));
}
static void handleSwiftNewType(Sema &S, Decl *D, const ParsedAttr &AL) {
// Make sure that there is an identifier as the annotation's single argument.
if (!checkAttributeNumArgs(S, AL, 1))
return;
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
SwiftNewTypeAttr::NewtypeKind Kind;
IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) {
S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
return;
}
if (!isa<TypedefNameDecl>(D)) {
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
<< AL << "typedefs";
return;
}
D->addAttr(::new (S.Context) SwiftNewTypeAttr(S.Context, AL, Kind));
}
static void handleSwiftAsyncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 1 << AANT_ArgumentIdentifier;
return;
}
SwiftAsyncAttr::Kind Kind;
IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) {
S.Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II;
return;
}
ParamIdx Idx;
if (Kind == SwiftAsyncAttr::None) {
// If this is 'none', then there shouldn't be any additional arguments.
if (!checkAttributeNumArgs(S, AL, 1))
return;
} else {
// Non-none swift_async requires a completion handler index argument.
if (!checkAttributeNumArgs(S, AL, 2))
return;
Expr *HandlerIdx = AL.getArgAsExpr(1);
if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, HandlerIdx, Idx))
return;
const ParmVarDecl *CompletionBlock =
getFunctionOrMethodParam(D, Idx.getASTIndex());
QualType CompletionBlockType = CompletionBlock->getType();
if (!CompletionBlockType->isBlockPointerType()) {
S.Diag(CompletionBlock->getLocation(),
diag::err_swift_async_bad_block_type)
<< CompletionBlock->getType();
return;
}
QualType BlockTy =
CompletionBlockType->getAs<BlockPointerType>()->getPointeeType();
if (!BlockTy->getAs<FunctionType>()->getReturnType()->isVoidType()) {
S.Diag(CompletionBlock->getLocation(),
diag::err_swift_async_bad_block_type)
<< CompletionBlock->getType();
return;
}
}
D->addAttr(::new (S.Context) SwiftAsyncAttr(S.Context, AL, Kind, Idx));
}
//===----------------------------------------------------------------------===//
// Microsoft specific attribute handlers.
//===----------------------------------------------------------------------===//
UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
StringRef UuidAsWritten, MSGuidDecl *GuidDecl) {
if (const auto *UA = D->getAttr<UuidAttr>()) {
if (declaresSameEntity(UA->getGuidDecl(), GuidDecl))
return nullptr;
if (!UA->getGuid().empty()) {
Diag(UA->getLocation(), diag::err_mismatched_uuid);
Diag(CI.getLoc(), diag::note_previous_uuid);
D->dropAttr<UuidAttr>();
}
}
return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl);
}
static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!S.LangOpts.CPlusPlus) {
S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
<< AL << AttributeLangSupport::C;
return;
}
StringRef OrigStrRef;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc))
return;
// GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
// "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
StringRef StrRef = OrigStrRef;
if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
StrRef = StrRef.drop_front().drop_back();
// Validate GUID length.
if (StrRef.size() != 36) {
S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
return;
}
for (unsigned i = 0; i < 36; ++i) {
if (i == 8 || i == 13 || i == 18 || i == 23) {
if (StrRef[i] != '-') {
S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
return;
}
} else if (!isHexDigit(StrRef[i])) {
S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
return;
}
}
// Convert to our parsed format and canonicalize.
MSGuidDecl::Parts Parsed;
StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1);
StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2);
StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3);
for (unsigned i = 0; i != 8; ++i)
StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2)
.getAsInteger(16, Parsed.Part4And5[i]);
MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed);
// FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
// the only thing in the [] list, the [] too), and add an insertion of
// __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas
// separating attributes nor of the [ and the ] are in the AST.
// Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
// on cfe-dev.
if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid);
if (UA)
D->addAttr(UA);
}
static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!S.LangOpts.CPlusPlus) {
S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
<< AL << AttributeLangSupport::C;
return;
}
MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
if (IA) {
D->addAttr(IA);
S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
}
}
static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
const auto *VD = cast<VarDecl>(D);
if (!S.Context.getTargetInfo().isTLSSupported()) {
S.Diag(AL.getLoc(), diag::err_thread_unsupported);
return;
}
if (VD->getTSCSpec() != TSCS_unspecified) {
S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
return;
}
if (VD->hasLocalStorage()) {
S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
return;
}
D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
}
static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
SmallVector<StringRef, 4> Tags;
for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
StringRef Tag;
if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
return;
Tags.push_back(Tag);
}
if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
if (!NS->isInline()) {
S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
return;
}
if (NS->isAnonymousNamespace()) {
S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
return;
}
if (AL.getNumArgs() == 0)
Tags.push_back(NS->getName());
} else if (!checkAttributeAtLeastNumArgs(S, AL, 1))
return;
// Store tags sorted and without duplicates.
llvm::sort(Tags);
Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
D->addAttr(::new (S.Context)
AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
}
static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Check the attribute arguments.
if (AL.getNumArgs() > 1) {
S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
return;
}
StringRef Str;
SourceLocation ArgLoc;
if (AL.getNumArgs() == 0)
Str = "";
else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
return;
ARMInterruptAttr::InterruptType Kind;
if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
<< ArgLoc;
return;
}
D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind));
}
static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// MSP430 'interrupt' attribute is applied to
// a function with no parameters and void return type.
if (!isFunctionOrMethod(D)) {
S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
<< "'interrupt'" << ExpectedFunctionOrMethod;
return;
}
if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
<< /*MSP430*/ 1 << 0;
return;
}
if (!getFunctionOrMethodResultType(D)->isVoidType()) {
S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
<< /*MSP430*/ 1 << 1;
return;
}
// The attribute takes one integer argument.
if (!checkAttributeNumArgs(S, AL, 1))
return;
if (!AL.isArgExpr(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIntegerConstant;
return;
}
Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
Optional<llvm::APSInt> NumParams = llvm::APSInt(32);
if (!(NumParams = NumParamsExpr->getIntegerConstantExpr(S.Context))) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIntegerConstant
<< NumParamsExpr->getSourceRange();
return;
}
// The argument should be in range 0..63.
unsigned Num = NumParams->getLimitedValue(255);
if (Num > 63) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< AL << (int)NumParams->getSExtValue()
<< NumParamsExpr->getSourceRange();
return;
}
D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num));
D->addAttr(UsedAttr::CreateImplicit(S.Context));
}
static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Only one optional argument permitted.
if (AL.getNumArgs() > 1) {
S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
return;
}
StringRef Str;
SourceLocation ArgLoc;
if (AL.getNumArgs() == 0)
Str = "";
else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
return;
// Semantic checks for a function with the 'interrupt' attribute for MIPS:
// a) Must be a function.
// b) Must have no parameters.
// c) Must have the 'void' return type.
// d) Cannot have the 'mips16' attribute, as that instruction set
// lacks the 'eret' instruction.
// e) The attribute itself must either have no argument or one of the
// valid interrupt types, see [MipsInterruptDocs].
if (!isFunctionOrMethod(D)) {
S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
<< "'interrupt'" << ExpectedFunctionOrMethod;
return;
}
if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
<< /*MIPS*/ 0 << 0;
return;
}
if (!getFunctionOrMethodResultType(D)->isVoidType()) {
S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
<< /*MIPS*/ 0 << 1;
return;
}
if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL))
return;
MipsInterruptAttr::InterruptType Kind;
if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
<< AL << "'" + std::string(Str) + "'";
return;
}
D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind));
}
static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Semantic checks for a function with the 'interrupt' attribute.
// a) Must be a function.
// b) Must have the 'void' return type.
// c) Must take 1 or 2 arguments.
// d) The 1st argument must be a pointer.
// e) The 2nd argument (if any) must be an unsigned integer.
if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
CXXMethodDecl::isStaticOverloadedOperator(
cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
<< AL << ExpectedFunctionWithProtoType;
return;
}
// Interrupt handler must have void return type.
if (!getFunctionOrMethodResultType(D)->isVoidType()) {
S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
diag::err_anyx86_interrupt_attribute)
<< (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
? 0
: 1)
<< 0;
return;
}
// Interrupt handler must have 1 or 2 parameters.
unsigned NumParams = getFunctionOrMethodNumParams(D);
if (NumParams < 1 || NumParams > 2) {
S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute)
<< (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
? 0
: 1)
<< 1;
return;
}
// The first argument must be a pointer.
if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
diag::err_anyx86_interrupt_attribute)
<< (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
? 0
: 1)
<< 2;
return;
}
// The second argument, if present, must be an unsigned integer.
unsigned TypeSize =
S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
? 64
: 32;
if (NumParams == 2 &&
(!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
diag::err_anyx86_interrupt_attribute)
<< (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
? 0
: 1)
<< 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
return;
}
D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL));
D->addAttr(UsedAttr::CreateImplicit(S.Context));
}
static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!isFunctionOrMethod(D)) {
S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
<< "'interrupt'" << ExpectedFunction;
return;
}
if (!checkAttributeNumArgs(S, AL, 0))
return;
handleSimpleAttribute<AVRInterruptAttr>(S, D, AL);
}
static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!isFunctionOrMethod(D)) {
S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
<< "'signal'" << ExpectedFunction;
return;
}
if (!checkAttributeNumArgs(S, AL, 0))
return;
handleSimpleAttribute<AVRSignalAttr>(S, D, AL);
}
static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) {
// Add preserve_access_index attribute to all fields and inner records.
for (auto D : RD->decls()) {
if (D->hasAttr<BPFPreserveAccessIndexAttr>())
continue;
D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context));
if (auto *Rec = dyn_cast<RecordDecl>(D))
handleBPFPreserveAIRecord(S, Rec);
}
}
static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
auto *Rec = cast<RecordDecl>(D);
handleBPFPreserveAIRecord(S, Rec);
Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL));
}
static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!isFunctionOrMethod(D)) {
S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
<< "'export_name'" << ExpectedFunction;
return;
}
auto *FD = cast<FunctionDecl>(D);
if (FD->isThisDeclarationADefinition()) {
S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
return;
}
StringRef Str;
SourceLocation ArgLoc;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
return;
D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str));
D->addAttr(UsedAttr::CreateImplicit(S.Context));
}
WebAssemblyImportModuleAttr *
Sema::mergeImportModuleAttr(Decl *D, const WebAssemblyImportModuleAttr &AL) {
auto *FD = cast<FunctionDecl>(D);
if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
if (ExistingAttr->getImportModule() == AL.getImportModule())
return nullptr;
Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 0
<< ExistingAttr->getImportModule() << AL.getImportModule();
Diag(AL.getLoc(), diag::note_previous_attribute);
return nullptr;
}
if (FD->hasBody()) {
Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
return nullptr;
}
return ::new (Context) WebAssemblyImportModuleAttr(Context, AL,
AL.getImportModule());
}
WebAssemblyImportNameAttr *
Sema::mergeImportNameAttr(Decl *D, const WebAssemblyImportNameAttr &AL) {
auto *FD = cast<FunctionDecl>(D);
if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportNameAttr>()) {
if (ExistingAttr->getImportName() == AL.getImportName())
return nullptr;
Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 1
<< ExistingAttr->getImportName() << AL.getImportName();
Diag(AL.getLoc(), diag::note_previous_attribute);
return nullptr;
}
if (FD->hasBody()) {
Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
return nullptr;
}
return ::new (Context) WebAssemblyImportNameAttr(Context, AL,
AL.getImportName());
}
static void
handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
auto *FD = cast<FunctionDecl>(D);
StringRef Str;
SourceLocation ArgLoc;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
return;
if (FD->hasBody()) {
S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
return;
}
FD->addAttr(::new (S.Context)
WebAssemblyImportModuleAttr(S.Context, AL, Str));
}
static void
handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
auto *FD = cast<FunctionDecl>(D);
StringRef Str;
SourceLocation ArgLoc;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
return;
if (FD->hasBody()) {
S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
return;
}
FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str));
}
static void handleRISCVInterruptAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
// Warn about repeated attributes.
if (const auto *A = D->getAttr<RISCVInterruptAttr>()) {
S.Diag(AL.getRange().getBegin(),
diag::warn_riscv_repeated_interrupt_attribute);
S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute);
return;
}
// Check the attribute argument. Argument is optional.
if (!checkAttributeAtMostNumArgs(S, AL, 1))
return;
StringRef Str;
SourceLocation ArgLoc;
// 'machine'is the default interrupt mode.
if (AL.getNumArgs() == 0)
Str = "machine";
else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
return;
// Semantic checks for a function with the 'interrupt' attribute:
// - Must be a function.
// - Must have no parameters.
// - Must have the 'void' return type.
// - The attribute itself must either have no argument or one of the
// valid interrupt types, see [RISCVInterruptDocs].
if (D->getFunctionType() == nullptr) {
S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
<< "'interrupt'" << ExpectedFunction;
return;
}
if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
<< /*RISC-V*/ 2 << 0;
return;
}
if (!getFunctionOrMethodResultType(D)->isVoidType()) {
S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
<< /*RISC-V*/ 2 << 1;
return;
}
RISCVInterruptAttr::InterruptType Kind;
if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
<< ArgLoc;
return;
}
D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind));
}
static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Dispatch the interrupt attribute based on the current target.
switch (S.Context.getTargetInfo().getTriple().getArch()) {
case llvm::Triple::msp430:
handleMSP430InterruptAttr(S, D, AL);
break;
case llvm::Triple::mipsel:
case llvm::Triple::mips:
handleMipsInterruptAttr(S, D, AL);
break;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
handleAnyX86InterruptAttr(S, D, AL);
break;
case llvm::Triple::avr:
handleAVRInterruptAttr(S, D, AL);
break;
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
handleRISCVInterruptAttr(S, D, AL);
break;
default:
handleARMInterruptAttr(S, D, AL);
break;
}
}
static bool
checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr,
const AMDGPUFlatWorkGroupSizeAttr &Attr) {
// Accept template arguments for now as they depend on something else.
// We'll get to check them when they eventually get instantiated.
if (MinExpr->isValueDependent() || MaxExpr->isValueDependent())
return false;
uint32_t Min = 0;
if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
return true;
uint32_t Max = 0;
if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
return true;
if (Min == 0 && Max != 0) {
S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
<< &Attr << 0;
return true;
}
if (Min > Max) {
S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
<< &Attr << 1;
return true;
}
return false;
}
void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D,
const AttributeCommonInfo &CI,
Expr *MinExpr, Expr *MaxExpr) {
AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr))
return;
D->addAttr(::new (Context)
AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr));
}
static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
Expr *MinExpr = AL.getArgAsExpr(0);
Expr *MaxExpr = AL.getArgAsExpr(1);
S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr);
}
static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr,
Expr *MaxExpr,
const AMDGPUWavesPerEUAttr &Attr) {
if (S.DiagnoseUnexpandedParameterPack(MinExpr) ||
(MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr)))
return true;
// Accept template arguments for now as they depend on something else.
// We'll get to check them when they eventually get instantiated.
if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent()))
return false;
uint32_t Min = 0;
if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
return true;
uint32_t Max = 0;
if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
return true;
if (Min == 0 && Max != 0) {
S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
<< &Attr << 0;
return true;
}
if (Max != 0 && Min > Max) {
S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
<< &Attr << 1;
return true;
}
return false;
}
void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
Expr *MinExpr, Expr *MaxExpr) {
AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr))
return;
D->addAttr(::new (Context)
AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr));
}
static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
!checkAttributeAtMostNumArgs(S, AL, 2))
return;
Expr *MinExpr = AL.getArgAsExpr(0);
Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr;
S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr);
}
static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
uint32_t NumSGPR = 0;
Expr *NumSGPRExpr = AL.getArgAsExpr(0);
if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR))
return;
D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR));
}
static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
uint32_t NumVGPR = 0;
Expr *NumVGPRExpr = AL.getArgAsExpr(0);
if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR))
return;
D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR));
}
static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
// If we try to apply it to a function pointer, don't warn, but don't
// do anything, either. It doesn't matter anyway, because there's nothing
// special about calling a force_align_arg_pointer function.
const auto *VD = dyn_cast<ValueDecl>(D);
if (VD && VD->getType()->isFunctionPointerType())
return;
// Also don't warn on function pointer typedefs.
const auto *TD = dyn_cast<TypedefNameDecl>(D);
if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
TD->getUnderlyingType()->isFunctionType()))
return;
// Attribute can only be applied to function types.
if (!isa<FunctionDecl>(D)) {
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
<< AL << ExpectedFunction;
return;
}
D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL));
}
static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
uint32_t Version;
Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version))
return;
// TODO: Investigate what happens with the next major version of MSVC.
if (Version != LangOptions::MSVC2015 / 100) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< AL << Version << VersionExpr->getSourceRange();
return;
}
// The attribute expects a "major" version number like 19, but new versions of
// MSVC have moved to updating the "minor", or less significant numbers, so we
// have to multiply by 100 now.
Version *= 100;
D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
}
DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D,
const AttributeCommonInfo &CI) {
if (D->hasAttr<DLLExportAttr>()) {
Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
return nullptr;
}
if (D->hasAttr<DLLImportAttr>())
return nullptr;
return ::new (Context) DLLImportAttr(Context, CI);
}
DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D,
const AttributeCommonInfo &CI) {
if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
D->dropAttr<DLLImportAttr>();
}
if (D->hasAttr<DLLExportAttr>())
return nullptr;
return ::new (Context) DLLExportAttr(Context, CI);
}
static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
return;
}
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
!(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
// MinGW doesn't allow dllimport on inline functions.
S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
<< A;
return;
}
}
if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) &&
MD->getParent()->isLambda()) {
S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
return;
}
}
Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
? (Attr *)S.mergeDLLExportAttr(D, A)
: (Attr *)S.mergeDLLImportAttr(D, A);
if (NewAttr)
D->addAttr(NewAttr);
}
MSInheritanceAttr *
Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI,
bool BestCase,
MSInheritanceModel Model) {
if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
if (IA->getInheritanceModel() == Model)
return nullptr;
Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
<< 1 /*previous declaration*/;
Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
D->dropAttr<MSInheritanceAttr>();
}
auto *RD = cast<CXXRecordDecl>(D);
if (RD->hasDefinition()) {
if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
Model)) {
return nullptr;
}
} else {
if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
<< 1 /*partial specialization*/;
return nullptr;
}
if (RD->getDescribedClassTemplate()) {
Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
<< 0 /*primary template*/;
return nullptr;
}
}
return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
}
static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// The capability attributes take a single string parameter for the name of
// the capability they represent. The lockable attribute does not take any
// parameters. However, semantically, both attributes represent the same
// concept, and so they use the same semantic attribute. Eventually, the
// lockable attribute will be removed.
//
// For backward compatibility, any capability which has no specified string
// literal will be considered a "mutex."
StringRef N("mutex");
SourceLocation LiteralLoc;
if (AL.getKind() == ParsedAttr::AT_Capability &&
!S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
return;
D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
}
static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
SmallVector<Expr*, 1> Args;
if (!checkLockFunAttrCommon(S, D, AL, Args))
return;
D->addAttr(::new (S.Context)
AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
}
static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
SmallVector<Expr*, 1> Args;
if (!checkLockFunAttrCommon(S, D, AL, Args))
return;
D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
Args.size()));
}
static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
SmallVector<Expr*, 2> Args;
if (!checkTryLockFunAttrCommon(S, D, AL, Args))
return;
D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
}
static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
// Check that all arguments are lockable objects.
SmallVector<Expr *, 1> Args;
checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
Args.size()));
}
static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
return;
// check that all arguments are lockable objects
SmallVector<Expr*, 1> Args;
checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
if (Args.empty())
return;
RequiresCapabilityAttr *RCA = ::new (S.Context)
RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
D->addAttr(RCA);
}
static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
if (NSD->isAnonymousNamespace()) {
S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
// Do not want to attach the attribute to the namespace because that will
// cause confusing diagnostic reports for uses of declarations within the
// namespace.
return;
}
}
// Handle the cases where the attribute has a text message.
StringRef Str, Replacement;
if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
!S.checkStringLiteralArgumentAttr(AL, 0, Str))
return;
// Only support a single optional message for Declspec and CXX11.
if (AL.isDeclspecAttribute() || AL.isCXX11Attribute())
checkAttributeAtMostNumArgs(S, AL, 1);
else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
!S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
return;
if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
}
static bool isGlobalVar(const Decl *D) {
if (const auto *S = dyn_cast<VarDecl>(D))
return S->hasGlobalStorage();
return false;
}
static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
return;
std::vector<StringRef> Sanitizers;
for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
StringRef SanitizerName;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
return;
if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
SanitizerMask())
S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
else if (isGlobalVar(D) && SanitizerName != "address")
S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
<< AL << ExpectedFunctionOrMethod;
Sanitizers.push_back(SanitizerName);
}
D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
Sanitizers.size()));
}
static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
StringRef AttrName = AL.getAttrName()->getName();
normalizeName(AttrName);
StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
.Case("no_address_safety_analysis", "address")
.Case("no_sanitize_address", "address")
.Case("no_sanitize_thread", "thread")
.Case("no_sanitize_memory", "memory");
if (isGlobalVar(D) && SanitizerName != "address")
S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
<< AL << ExpectedFunction;
// FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
// NoSanitizeAttr object; but we need to calculate the correct spelling list
// index rather than incorrectly assume the index for NoSanitizeSpecificAttr
// has the same spellings as the index for NoSanitizeAttr. We don't have a
// general way to "translate" between the two, so this hack attempts to work
// around the issue with hard-coded indicies. This is critical for calling
// getSpelling() or prettyPrint() on the resulting semantic attribute object
// without failing assertions.
unsigned TranslatedSpellingIndex = 0;
if (AL.isC2xAttribute() || AL.isCXX11Attribute())
TranslatedSpellingIndex = 1;
AttributeCommonInfo Info = AL;
Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
D->addAttr(::new (S.Context)
NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
}
static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
D->addAttr(Internal);
}
static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (S.LangOpts.OpenCLVersion != 200)
S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version)
<< AL << "2.0" << 0;
else
S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored) << AL
<< "2.0";
}
/// Handles semantic checking for features that are common to all attributes,
/// such as checking whether a parameter was properly specified, or the correct
/// number of arguments were passed, etc.
static bool handleCommonAttributeFeatures(Sema &S, Decl *D,
const ParsedAttr &AL) {
// Several attributes carry different semantics than the parsing requires, so
// those are opted out of the common argument checks.
//
// We also bail on unknown and ignored attributes because those are handled
// as part of the target-specific handling logic.
if (AL.getKind() == ParsedAttr::UnknownAttribute)
return false;
// Check whether the attribute requires specific language extensions to be
// enabled.
if (!AL.diagnoseLangOpts(S))
return true;
// Check whether the attribute appertains to the given subject.
if (!AL.diagnoseAppertainsTo(S, D))
return true;
if (AL.hasCustomParsing())
return false;
if (AL.getMinArgs() == AL.getMaxArgs()) {
// If there are no optional arguments, then checking for the argument count
// is trivial.
if (!checkAttributeNumArgs(S, AL, AL.getMinArgs()))
return true;
} else {
// There are optional arguments, so checking is slightly more involved.
if (AL.getMinArgs() &&
!checkAttributeAtLeastNumArgs(S, AL, AL.getMinArgs()))
return true;
else if (!AL.hasVariadicArg() && AL.getMaxArgs() &&
!checkAttributeAtMostNumArgs(S, AL, AL.getMaxArgs()))
return true;
}
if (S.CheckAttrTarget(AL))
return true;
return false;
}
static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (D->isInvalidDecl())
return;
// Check if there is only one access qualifier.
if (D->hasAttr<OpenCLAccessAttr>()) {
if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() ==
AL.getSemanticSpelling()) {
S.Diag(AL.getLoc(), diag::warn_duplicate_declspec)
<< AL.getAttrName()->getName() << AL.getRange();
} else {
S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers)
<< D->getSourceRange();
D->setInvalidDecl(true);
return;
}
}
// OpenCL v2.0 s6.6 - read_write can be used for image types to specify that an
// image object can be read and written.
// OpenCL v2.0 s6.13.6 - A kernel cannot read from and write to the same pipe
// object. Using the read_write (or __read_write) qualifier with the pipe
// qualifier is a compilation error.
if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) {
const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
if (AL.getAttrName()->getName().find("read_write") != StringRef::npos) {
if ((!S.getLangOpts().OpenCLCPlusPlus &&
S.getLangOpts().OpenCLVersion < 200) ||
DeclTy->isPipeType()) {
S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write)
<< AL << PDecl->getType() << DeclTy->isImageType();
D->setInvalidDecl(true);
return;
}
}
}
D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL));
}
static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// The 'sycl_kernel' attribute applies only to function templates.
const auto *FD = cast<FunctionDecl>(D);
const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
assert(FT && "Function template is expected");
// Function template must have at least two template parameters.
const TemplateParameterList *TL = FT->getTemplateParameters();
if (TL->size() < 2) {
S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
return;
}
// Template parameters must be typenames.
for (unsigned I = 0; I < 2; ++I) {
const NamedDecl *TParam = TL->getParam(I);
if (isa<NonTypeTemplateParmDecl>(TParam)) {
S.Diag(FT->getLocation(),
diag::warn_sycl_kernel_invalid_template_param_type);
return;
}
}
// Function must have at least one argument.
if (getFunctionOrMethodNumParams(D) != 1) {
S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
return;
}
// Function must return void.
QualType RetTy = getFunctionOrMethodResultType(D);
if (!RetTy->isVoidType()) {
S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
return;
}
handleSimpleAttribute<SYCLKernelAttr>(S, D, AL);
}
static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
if (!cast<VarDecl>(D)->hasGlobalStorage()) {
S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
<< (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
return;
}
if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
handleSimpleAttributeWithExclusions<AlwaysDestroyAttr, NoDestroyAttr>(S, D, A);
else
handleSimpleAttributeWithExclusions<NoDestroyAttr, AlwaysDestroyAttr>(S, D, A);
}
static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
"uninitialized is only valid on automatic duration variables");
D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
}
static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD,
bool DiagnoseFailure) {
QualType Ty = VD->getType();
if (!Ty->isObjCRetainableType()) {
if (DiagnoseFailure) {
S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
<< 0;
}
return false;
}
Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime();
// Sema::inferObjCARCLifetime must run after processing decl attributes
// (because __block lowers to an attribute), so if the lifetime hasn't been
// explicitly specified, infer it locally now.
if (LifetimeQual == Qualifiers::OCL_None)
LifetimeQual = Ty->getObjCARCImplicitLifetime();
// The attributes only really makes sense for __strong variables; ignore any
// attempts to annotate a parameter with any other lifetime qualifier.
if (LifetimeQual != Qualifiers::OCL_Strong) {
if (DiagnoseFailure) {
S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
<< 1;
}
return false;
}
// Tampering with the type of a VarDecl here is a bit of a hack, but we need
// to ensure that the variable is 'const' so that we can error on
// modification, which can otherwise over-release.
VD->setType(Ty.withConst());
VD->setARCPseudoStrong(true);
return true;
}
static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D,
const ParsedAttr &AL) {
if (auto *VD = dyn_cast<VarDecl>(D)) {
assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically");
if (!VD->hasLocalStorage()) {
S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
<< 0;
return;
}
if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true))
return;
handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
return;
}
// If D is a function-like declaration (method, block, or function), then we
// make every parameter psuedo-strong.
unsigned NumParams =
hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0;
for (unsigned I = 0; I != NumParams; ++I) {
auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I));
QualType Ty = PVD->getType();
// If a user wrote a parameter with __strong explicitly, then assume they
// want "real" strong semantics for that parameter. This works because if
// the parameter was written with __strong, then the strong qualifier will
// be non-local.
if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() ==
Qualifiers::OCL_Strong)
continue;
tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false);
}
handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
}
static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Check that the return type is a `typedef int kern_return_t` or a typedef
// around it, because otherwise MIG convention checks make no sense.
// BlockDecl doesn't store a return type, so it's annoying to check,
// so let's skip it for now.
if (!isa<BlockDecl>(D)) {
QualType T = getFunctionOrMethodResultType(D);
bool IsKernReturnT = false;
while (const auto *TT = T->getAs<TypedefType>()) {
IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
T = TT->desugar();
}
if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
S.Diag(D->getBeginLoc(),
diag::warn_mig_server_routine_does_not_return_kern_return_t);
return;
}
}
handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL);
}
static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// Warn if the return type is not a pointer or reference type.
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
QualType RetTy = FD->getReturnType();
if (!RetTy->isPointerType() && !RetTy->isReferenceType()) {
S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
<< AL.getRange() << RetTy;
return;
}
}
handleSimpleAttribute<MSAllocatorAttr>(S, D, AL);
}
static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
if (AL.isUsedAsTypeAttr())
return;
// Warn if the parameter is definitely not an output parameter.
if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
if (PVD->getType()->isIntegerType()) {
S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
<< AL.getRange();
return;
}
}
StringRef Argument;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
return;
D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
}
template<typename Attr>
static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
StringRef Argument;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
return;
D->addAttr(Attr::Create(S.Context, Argument, AL));
}
static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
// The guard attribute takes a single identifier argument.
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
CFGuardAttr::GuardArg Arg;
IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
return;
}
D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
}
template <typename AttrTy>
static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) {
auto Attrs = D->specific_attrs<AttrTy>();
auto I = llvm::find_if(Attrs,
[Name](const AttrTy *A) {
return A->getTCBName() == Name;
});
return I == Attrs.end() ? nullptr : *I;
}
template <typename AttrTy, typename ConflictingAttrTy>
static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
StringRef Argument;
if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
return;
// A function cannot be have both regular and leaf membership in the same TCB.
if (const ConflictingAttrTy *ConflictingAttr =
findEnforceTCBAttrByName<ConflictingAttrTy>(D, Argument)) {
// We could attach a note to the other attribute but in this case
// there's no need given how the two are very close to each other.
S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes)
<< AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName()
<< Argument;
// Error recovery: drop the non-leaf attribute so that to suppress
// all future warnings caused by erroneous attributes. The leaf attribute
// needs to be kept because it can only suppresses warnings, not cause them.
D->dropAttr<EnforceTCBAttr>();
return;
}
D->addAttr(AttrTy::Create(S.Context, Argument, AL));
}
template <typename AttrTy, typename ConflictingAttrTy>
static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) {
// Check if the new redeclaration has different leaf-ness in the same TCB.
StringRef TCBName = AL.getTCBName();
if (const ConflictingAttrTy *ConflictingAttr =
findEnforceTCBAttrByName<ConflictingAttrTy>(D, TCBName)) {
S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes)
<< ConflictingAttr->getAttrName()->getName()
<< AL.getAttrName()->getName() << TCBName;
// Add a note so that the user could easily find the conflicting attribute.
S.Diag(AL.getLoc(), diag::note_conflicting_attribute);
// More error recovery.
D->dropAttr<EnforceTCBAttr>();
return nullptr;
}
ASTContext &Context = S.getASTContext();
return ::new(Context) AttrTy(Context, AL, AL.getTCBName());
}
EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) {
return mergeEnforceTCBAttrImpl<EnforceTCBAttr, EnforceTCBLeafAttr>(
*this, D, AL);
}
EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr(
Decl *D, const EnforceTCBLeafAttr &AL) {
return mergeEnforceTCBAttrImpl<EnforceTCBLeafAttr, EnforceTCBAttr>(
*this, D, AL);
}
//===----------------------------------------------------------------------===//
// Top Level Sema Entry Points
//===----------------------------------------------------------------------===//
/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
/// the attribute applies to decls. If the attribute is a type attribute, just
/// silently ignore it if a GNU attribute.
static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
const ParsedAttr &AL,
bool IncludeCXX11Attributes) {
if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
return;
// Ignore C++11 attributes on declarator chunks: they appertain to the type
// instead.
if (AL.isCXX11Attribute() && !IncludeCXX11Attributes)
return;
// Unknown attributes are automatically warned on. Target-specific attributes
// which do not apply to the current target architecture are treated as
// though they were unknown attributes.
if (AL.getKind() == ParsedAttr::UnknownAttribute ||
!AL.existsInTarget(S.Context.getTargetInfo())) {
S.Diag(AL.getLoc(),
AL.isDeclspecAttribute()
? (unsigned)diag::warn_unhandled_ms_attribute_ignored
: (unsigned)diag::warn_unknown_attribute_ignored)
<< AL << AL.getRange();
return;
}
if (handleCommonAttributeFeatures(S, D, AL))
return;
switch (AL.getKind()) {
default:
if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled)
break;
if (!AL.isStmtAttr()) {
// Type attributes are handled elsewhere; silently move on.
assert(AL.isTypeAttr() && "Non-type attribute not handled");
break;
}
S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)
<< AL << D->getLocation();
break;
case ParsedAttr::AT_Interrupt:
handleInterruptAttr(S, D, AL);
break;
case ParsedAttr::AT_X86ForceAlignArgPointer:
handleX86ForceAlignArgPointerAttr(S, D, AL);
break;
case ParsedAttr::AT_DLLExport:
case ParsedAttr::AT_DLLImport:
handleDLLAttr(S, D, AL);
break;
case ParsedAttr::AT_Mips16:
handleSimpleAttributeWithExclusions<Mips16Attr, MicroMipsAttr,
MipsInterruptAttr>(S, D, AL);
break;
case ParsedAttr::AT_MicroMips:
handleSimpleAttributeWithExclusions<MicroMipsAttr, Mips16Attr>(S, D, AL);
break;
case ParsedAttr::AT_MipsLongCall:
handleSimpleAttributeWithExclusions<MipsLongCallAttr, MipsShortCallAttr>(
S, D, AL);
break;
case ParsedAttr::AT_MipsShortCall:
handleSimpleAttributeWithExclusions<MipsShortCallAttr, MipsLongCallAttr>(
S, D, AL);
break;
case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL);
break;
case ParsedAttr::AT_AMDGPUWavesPerEU:
handleAMDGPUWavesPerEUAttr(S, D, AL);
break;
case ParsedAttr::AT_AMDGPUNumSGPR:
handleAMDGPUNumSGPRAttr(S, D, AL);
break;
case ParsedAttr::AT_AMDGPUNumVGPR:
handleAMDGPUNumVGPRAttr(S, D, AL);
break;
case ParsedAttr::AT_AVRSignal:
handleAVRSignalAttr(S, D, AL);
break;
case ParsedAttr::AT_BPFPreserveAccessIndex:
handleBPFPreserveAccessIndexAttr(S, D, AL);
break;
case ParsedAttr::AT_WebAssemblyExportName:
handleWebAssemblyExportNameAttr(S, D, AL);
break;
case ParsedAttr::AT_WebAssemblyImportModule:
handleWebAssemblyImportModuleAttr(S, D, AL);
break;
case ParsedAttr::AT_WebAssemblyImportName:
handleWebAssemblyImportNameAttr(S, D, AL);
break;
case ParsedAttr::AT_IBOutlet:
handleIBOutlet(S, D, AL);
break;
case ParsedAttr::AT_IBOutletCollection:
handleIBOutletCollection(S, D, AL);
break;
case ParsedAttr::AT_IFunc:
handleIFuncAttr(S, D, AL);
break;
case ParsedAttr::AT_Alias:
handleAliasAttr(S, D, AL);
break;
case ParsedAttr::AT_Aligned:
handleAlignedAttr(S, D, AL);
break;
case ParsedAttr::AT_AlignValue:
handleAlignValueAttr(S, D, AL);
break;
case ParsedAttr::AT_AllocSize:
handleAllocSizeAttr(S, D, AL);
break;
case ParsedAttr::AT_AlwaysInline:
handleAlwaysInlineAttr(S, D, AL);
break;
case ParsedAttr::AT_AnalyzerNoReturn:
handleAnalyzerNoReturnAttr(S, D, AL);
break;
case ParsedAttr::AT_TLSModel:
handleTLSModelAttr(S, D, AL);
break;
case ParsedAttr::AT_Annotate:
handleAnnotateAttr(S, D, AL);
break;
case ParsedAttr::AT_Availability:
handleAvailabilityAttr(S, D, AL);
break;
case ParsedAttr::AT_CarriesDependency:
handleDependencyAttr(S, scope, D, AL);
break;
case ParsedAttr::AT_CPUDispatch:
case ParsedAttr::AT_CPUSpecific:
handleCPUSpecificAttr(S, D, AL);
break;
case ParsedAttr::AT_Common:
handleCommonAttr(S, D, AL);
break;
case ParsedAttr::AT_CUDAConstant:
handleConstantAttr(S, D, AL);
break;
case ParsedAttr::AT_PassObjectSize:
handlePassObjectSizeAttr(S, D, AL);
break;
case ParsedAttr::AT_Constructor:
handleConstructorAttr(S, D, AL);
break;
case ParsedAttr::AT_Deprecated:
handleDeprecatedAttr(S, D, AL);
break;
case ParsedAttr::AT_Destructor:
handleDestructorAttr(S, D, AL);
break;
case ParsedAttr::AT_EnableIf:
handleEnableIfAttr(S, D, AL);
break;
case ParsedAttr::AT_DiagnoseIf:
handleDiagnoseIfAttr(S, D, AL);
break;
case ParsedAttr::AT_NoBuiltin:
handleNoBuiltinAttr(S, D, AL);
break;
case ParsedAttr::AT_ExtVectorType:
handleExtVectorTypeAttr(S, D, AL);
break;
case ParsedAttr::AT_ExternalSourceSymbol:
handleExternalSourceSymbolAttr(S, D, AL);
break;
case ParsedAttr::AT_MinSize:
handleMinSizeAttr(S, D, AL);
break;
case ParsedAttr::AT_OptimizeNone:
handleOptimizeNoneAttr(S, D, AL);
break;
case ParsedAttr::AT_EnumExtensibility:
handleEnumExtensibilityAttr(S, D, AL);
break;
case ParsedAttr::AT_SYCLKernel:
handleSYCLKernelAttr(S, D, AL);
break;
case ParsedAttr::AT_Format:
handleFormatAttr(S, D, AL);
break;
case ParsedAttr::AT_FormatArg:
handleFormatArgAttr(S, D, AL);
break;
case ParsedAttr::AT_Callback:
handleCallbackAttr(S, D, AL);
break;
case ParsedAttr::AT_CalledOnce:
handleCalledOnceAttr(S, D, AL);
break;
case ParsedAttr::AT_CUDAGlobal:
handleGlobalAttr(S, D, AL);
break;
case ParsedAttr::AT_CUDADevice:
handleDeviceAttr(S, D, AL);
break;
case ParsedAttr::AT_CUDAHost:
handleSimpleAttributeWithExclusions<CUDAHostAttr, CUDAGlobalAttr>(S, D, AL);
break;
case ParsedAttr::AT_HIPManaged:
handleManagedAttr(S, D, AL);
break;
case ParsedAttr::AT_CUDADeviceBuiltinSurfaceType:
handleSimpleAttributeWithExclusions<CUDADeviceBuiltinSurfaceTypeAttr,
CUDADeviceBuiltinTextureTypeAttr>(S, D,
AL);
break;
case ParsedAttr::AT_CUDADeviceBuiltinTextureType:
handleSimpleAttributeWithExclusions<CUDADeviceBuiltinTextureTypeAttr,
CUDADeviceBuiltinSurfaceTypeAttr>(S, D,
AL);
break;
case ParsedAttr::AT_GNUInline:
handleGNUInlineAttr(S, D, AL);
break;
case ParsedAttr::AT_CUDALaunchBounds:
handleLaunchBoundsAttr(S, D, AL);
break;
case ParsedAttr::AT_Restrict:
handleRestrictAttr(S, D, AL);
break;
case ParsedAttr::AT_Mode:
handleModeAttr(S, D, AL);
break;
case ParsedAttr::AT_NonNull:
if (auto *PVD = dyn_cast<ParmVarDecl>(D))
handleNonNullAttrParameter(S, PVD, AL);
else
handleNonNullAttr(S, D, AL);
break;
case ParsedAttr::AT_ReturnsNonNull:
handleReturnsNonNullAttr(S, D, AL);
break;
case ParsedAttr::AT_NoEscape:
handleNoEscapeAttr(S, D, AL);
break;
case ParsedAttr::AT_AssumeAligned:
handleAssumeAlignedAttr(S, D, AL);
break;
case ParsedAttr::AT_AllocAlign:
handleAllocAlignAttr(S, D, AL);
break;
case ParsedAttr::AT_Ownership:
handleOwnershipAttr(S, D, AL);
break;
case ParsedAttr::AT_Cold:
handleSimpleAttributeWithExclusions<ColdAttr, HotAttr>(S, D, AL);
break;
case ParsedAttr::AT_Hot:
handleSimpleAttributeWithExclusions<HotAttr, ColdAttr>(S, D, AL);
break;
case ParsedAttr::AT_Naked:
handleNakedAttr(S, D, AL);
break;
case ParsedAttr::AT_NoReturn:
handleNoReturnAttr(S, D, AL);
break;
case ParsedAttr::AT_AnyX86NoCfCheck:
handleNoCfCheckAttr(S, D, AL);
break;
case ParsedAttr::AT_Leaf:
handleSimpleAttribute<LeafAttr>(S, D, AL);
break;
case ParsedAttr::AT_NoThrow:
if (!AL.isUsedAsTypeAttr())
handleSimpleAttribute<NoThrowAttr>(S, D, AL);
break;
case ParsedAttr::AT_CUDAShared:
handleSharedAttr(S, D, AL);
break;
case ParsedAttr::AT_VecReturn:
handleVecReturnAttr(S, D, AL);
break;
case ParsedAttr::AT_ObjCOwnership:
handleObjCOwnershipAttr(S, D, AL);
break;
case ParsedAttr::AT_ObjCPreciseLifetime:
handleObjCPreciseLifetimeAttr(S, D, AL);
break;
case ParsedAttr::AT_ObjCReturnsInnerPointer:
handleObjCReturnsInnerPointerAttr(S, D, AL);
break;
case ParsedAttr::AT_ObjCRequiresSuper:
handleObjCRequiresSuperAttr(S, D, AL);
break;
case ParsedAttr::AT_ObjCBridge:
handleObjCBridgeAttr(S, D, AL);
break;
case ParsedAttr::AT_ObjCBridgeMutable:
handleObjCBridgeMutableAttr(S, D, AL);
break;
case ParsedAttr::AT_ObjCBridgeRelated:
handleObjCBridgeRelatedAttr(S, D, AL);
break;
case ParsedAttr::AT_ObjCDesignatedInitializer:
handleObjCDesignatedInitializer(S, D, AL);
break;
case ParsedAttr::AT_ObjCRuntimeName:
handleObjCRuntimeName(S, D, AL);
break;
case ParsedAttr::AT_ObjCBoxable:
handleObjCBoxable(S, D, AL);
break;
case ParsedAttr::AT_NSErrorDomain:
handleNSErrorDomain(S, D, AL);
break;
case ParsedAttr::AT_CFAuditedTransfer:
handleSimpleAttributeWithExclusions<CFAuditedTransferAttr,
CFUnknownTransferAttr>(S, D, AL);
break;
case ParsedAttr::AT_CFUnknownTransfer:
handleSimpleAttributeWithExclusions<CFUnknownTransferAttr,
CFAuditedTransferAttr>(S, D, AL);
break;
case ParsedAttr::AT_CFConsumed:
case ParsedAttr::AT_NSConsumed:
case ParsedAttr::AT_OSConsumed:
S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL),
/*IsTemplateInstantiation=*/false);
break;
case ParsedAttr::AT_OSReturnsRetainedOnZero:
handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>(
S, D, AL, isValidOSObjectOutParameter(D),
diag::warn_ns_attribute_wrong_parameter_type,
/*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
break;
case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>(
S, D, AL, isValidOSObjectOutParameter(D),
diag::warn_ns_attribute_wrong_parameter_type,
/*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
break;
case ParsedAttr::AT_NSReturnsAutoreleased:
case ParsedAttr::AT_NSReturnsNotRetained:
case ParsedAttr::AT_NSReturnsRetained:
case ParsedAttr::AT_CFReturnsNotRetained:
case ParsedAttr::AT_CFReturnsRetained:
case ParsedAttr::AT_OSReturnsNotRetained:
case ParsedAttr::AT_OSReturnsRetained:
handleXReturnsXRetainedAttr(S, D, AL);
break;
case ParsedAttr::AT_WorkGroupSizeHint:
handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL);
break;
case ParsedAttr::AT_ReqdWorkGroupSize:
handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL);
break;
case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
handleSubGroupSize(S, D, AL);
break;
case ParsedAttr::AT_VecTypeHint:
handleVecTypeHint(S, D, AL);
break;
case ParsedAttr::AT_InitPriority:
if (S.Context.getTargetInfo().getTriple().isOSAIX())
llvm::report_fatal_error(
"'init_priority' attribute is not yet supported on AIX");
else
handleInitPriorityAttr(S, D, AL);
break;
case ParsedAttr::AT_Packed:
handlePackedAttr(S, D, AL);
break;
case ParsedAttr::AT_PreferredName:
handlePreferredName(S, D, AL);
break;
case ParsedAttr::AT_Section:
handleSectionAttr(S, D, AL);
break;
case ParsedAttr::AT_SpeculativeLoadHardening:
handleSimpleAttributeWithExclusions<SpeculativeLoadHardeningAttr,
NoSpeculativeLoadHardeningAttr>(S, D,
AL);
break;
case ParsedAttr::AT_NoSpeculativeLoadHardening:
handleSimpleAttributeWithExclusions<NoSpeculativeLoadHardeningAttr,
SpeculativeLoadHardeningAttr>(S, D, AL);
break;
case ParsedAttr::AT_CodeSeg:
handleCodeSegAttr(S, D, AL);
break;
case ParsedAttr::AT_Target:
handleTargetAttr(S, D, AL);
break;
case ParsedAttr::AT_MinVectorWidth:
handleMinVectorWidthAttr(S, D, AL);
break;
case ParsedAttr::AT_Unavailable:
handleAttrWithMessage<UnavailableAttr>(S, D, AL);
break;
case ParsedAttr::AT_Assumption:
handleAssumumptionAttr(S, D, AL);
break;
case ParsedAttr::AT_ObjCDirect:
handleObjCDirectAttr(S, D, AL);
break;
case ParsedAttr::AT_ObjCNonRuntimeProtocol:
handleObjCNonRuntimeProtocolAttr(S, D, AL);
break;
case ParsedAttr::AT_ObjCDirectMembers:
handleObjCDirectMembersAttr(S, D, AL);
handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
break;
case ParsedAttr::AT_ObjCExplicitProtocolImpl:
handleObjCSuppresProtocolAttr(S, D, AL);
break;
case ParsedAttr::AT_Unused:
handleUnusedAttr(S, D, AL);
break;
case ParsedAttr::AT_NotTailCalled:
handleSimpleAttributeWithExclusions<NotTailCalledAttr, AlwaysInlineAttr>(
S, D, AL);
break;
case ParsedAttr::AT_DisableTailCalls:
handleSimpleAttributeWithExclusions<DisableTailCallsAttr, NakedAttr>(S, D,
AL);
break;
case ParsedAttr::AT_NoMerge:
handleSimpleAttribute<NoMergeAttr>(S, D, AL);
break;
case ParsedAttr::AT_Visibility:
handleVisibilityAttr(S, D, AL, false);
break;
case ParsedAttr::AT_TypeVisibility:
handleVisibilityAttr(S, D, AL, true);
break;
case ParsedAttr::AT_WarnUnusedResult:
handleWarnUnusedResult(S, D, AL);
break;
case ParsedAttr::AT_WeakRef:
handleWeakRefAttr(S, D, AL);
break;
case ParsedAttr::AT_WeakImport:
handleWeakImportAttr(S, D, AL);
break;
case ParsedAttr::AT_TransparentUnion:
handleTransparentUnionAttr(S, D, AL);
break;
case ParsedAttr::AT_ObjCMethodFamily:
handleObjCMethodFamilyAttr(S, D, AL);
break;
case ParsedAttr::AT_ObjCNSObject:
handleObjCNSObject(S, D, AL);
break;
case ParsedAttr::AT_ObjCIndependentClass:
handleObjCIndependentClass(S, D, AL);
break;
case ParsedAttr::AT_Blocks:
handleBlocksAttr(S, D, AL);
break;
case ParsedAttr::AT_Sentinel:
handleSentinelAttr(S, D, AL);
break;
case ParsedAttr::AT_Cleanup:
handleCleanupAttr(S, D, AL);
break;
case ParsedAttr::AT_NoDebug:
handleNoDebugAttr(S, D, AL);
break;
case ParsedAttr::AT_CmseNSEntry:
handleCmseNSEntryAttr(S, D, AL);
break;
case ParsedAttr::AT_StdCall:
case ParsedAttr::AT_CDecl:
case ParsedAttr::AT_FastCall:
case ParsedAttr::AT_ThisCall:
case ParsedAttr::AT_Pascal:
case ParsedAttr::AT_RegCall:
case ParsedAttr::AT_SwiftCall:
case ParsedAttr::AT_VectorCall:
case ParsedAttr::AT_MSABI:
case ParsedAttr::AT_SysVABI:
case ParsedAttr::AT_Pcs:
case ParsedAttr::AT_IntelOclBicc:
case ParsedAttr::AT_PreserveMost:
case ParsedAttr::AT_PreserveAll:
case ParsedAttr::AT_AArch64VectorPcs:
handleCallConvAttr(S, D, AL);
break;
case ParsedAttr::AT_Suppress:
handleSuppressAttr(S, D, AL);
break;
case ParsedAttr::AT_Owner:
case ParsedAttr::AT_Pointer:
handleLifetimeCategoryAttr(S, D, AL);
break;
case ParsedAttr::AT_OpenCLAccess:
handleOpenCLAccessAttr(S, D, AL);
break;
case ParsedAttr::AT_OpenCLNoSVM:
handleOpenCLNoSVMAttr(S, D, AL);
break;
case ParsedAttr::AT_SwiftContext:
S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext);
break;
case ParsedAttr::AT_SwiftErrorResult:
S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult);
break;
case ParsedAttr::AT_SwiftIndirectResult:
S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult);
break;
case ParsedAttr::AT_InternalLinkage:
handleInternalLinkageAttr(S, D, AL);
break;
// Microsoft attributes:
case ParsedAttr::AT_LayoutVersion:
handleLayoutVersion(S, D, AL);
break;
case ParsedAttr::AT_Uuid:
handleUuidAttr(S, D, AL);
break;
case ParsedAttr::AT_MSInheritance:
handleMSInheritanceAttr(S, D, AL);
break;
case ParsedAttr::AT_Thread:
handleDeclspecThreadAttr(S, D, AL);
break;
case ParsedAttr::AT_AbiTag:
handleAbiTagAttr(S, D, AL);
break;
case ParsedAttr::AT_CFGuard:
handleCFGuardAttr(S, D, AL);
break;
// Thread safety attributes:
case ParsedAttr::AT_AssertExclusiveLock:
handleAssertExclusiveLockAttr(S, D, AL);
break;
case ParsedAttr::AT_AssertSharedLock:
handleAssertSharedLockAttr(S, D, AL);
break;
case ParsedAttr::AT_PtGuardedVar:
handlePtGuardedVarAttr(S, D, AL);
break;
case ParsedAttr::AT_NoSanitize:
handleNoSanitizeAttr(S, D, AL);
break;
case ParsedAttr::AT_NoSanitizeSpecific:
handleNoSanitizeSpecificAttr(S, D, AL);
break;
case ParsedAttr::AT_GuardedBy:
handleGuardedByAttr(S, D, AL);
break;
case ParsedAttr::AT_PtGuardedBy:
handlePtGuardedByAttr(S, D, AL);
break;
case ParsedAttr::AT_ExclusiveTrylockFunction:
handleExclusiveTrylockFunctionAttr(S, D, AL);
break;
case ParsedAttr::AT_LockReturned:
handleLockReturnedAttr(S, D, AL);
break;
case ParsedAttr::AT_LocksExcluded:
handleLocksExcludedAttr(S, D, AL);
break;
case ParsedAttr::AT_SharedTrylockFunction:
handleSharedTrylockFunctionAttr(S, D, AL);
break;
case ParsedAttr::AT_AcquiredBefore:
handleAcquiredBeforeAttr(S, D, AL);
break;
case ParsedAttr::AT_AcquiredAfter:
handleAcquiredAfterAttr(S, D, AL);
break;
// Capability analysis attributes.
case ParsedAttr::AT_Capability:
case ParsedAttr::AT_Lockable:
handleCapabilityAttr(S, D, AL);
break;
case ParsedAttr::AT_RequiresCapability:
handleRequiresCapabilityAttr(S, D, AL);
break;
case ParsedAttr::AT_AssertCapability:
handleAssertCapabilityAttr(S, D, AL);
break;
case ParsedAttr::AT_AcquireCapability:
handleAcquireCapabilityAttr(S, D, AL);
break;
case ParsedAttr::AT_ReleaseCapability:
handleReleaseCapabilityAttr(S, D, AL);
break;
case ParsedAttr::AT_TryAcquireCapability:
handleTryAcquireCapabilityAttr(S, D, AL);
break;
// Consumed analysis attributes.
case ParsedAttr::AT_Consumable:
handleConsumableAttr(S, D, AL);
break;
case ParsedAttr::AT_CallableWhen:
handleCallableWhenAttr(S, D, AL);
break;
case ParsedAttr::AT_ParamTypestate:
handleParamTypestateAttr(S, D, AL);
break;
case ParsedAttr::AT_ReturnTypestate:
handleReturnTypestateAttr(S, D, AL);
break;
case ParsedAttr::AT_SetTypestate:
handleSetTypestateAttr(S, D, AL);
break;
case ParsedAttr::AT_TestTypestate:
handleTestTypestateAttr(S, D, AL);
break;
// Type safety attributes.
case ParsedAttr::AT_ArgumentWithTypeTag:
handleArgumentWithTypeTagAttr(S, D, AL);
break;
case ParsedAttr::AT_TypeTagForDatatype:
handleTypeTagForDatatypeAttr(S, D, AL);
break;
// Swift attributes.
case ParsedAttr::AT_SwiftAsyncName:
handleSwiftAsyncName(S, D, AL);
break;
case ParsedAttr::AT_SwiftAttr:
handleSwiftAttrAttr(S, D, AL);
break;
case ParsedAttr::AT_SwiftBridge:
handleSwiftBridge(S, D, AL);
break;
case ParsedAttr::AT_SwiftBridgedTypedef:
handleSimpleAttribute<SwiftBridgedTypedefAttr>(S, D, AL);
break;
case ParsedAttr::AT_SwiftError:
handleSwiftError(S, D, AL);
break;
case ParsedAttr::AT_SwiftName:
handleSwiftName(S, D, AL);
break;
case ParsedAttr::AT_SwiftNewType:
handleSwiftNewType(S, D, AL);
break;
case ParsedAttr::AT_SwiftObjCMembers:
handleSimpleAttribute<SwiftObjCMembersAttr>(S, D, AL);
break;
case ParsedAttr::AT_SwiftPrivate:
handleSimpleAttribute<SwiftPrivateAttr>(S, D, AL);
break;
case ParsedAttr::AT_SwiftAsync:
handleSwiftAsyncAttr(S, D, AL);
break;
// XRay attributes.
case ParsedAttr::AT_XRayLogArgs:
handleXRayLogArgsAttr(S, D, AL);
break;
case ParsedAttr::AT_PatchableFunctionEntry:
handlePatchableFunctionEntryAttr(S, D, AL);
break;
case ParsedAttr::AT_AlwaysDestroy:
case ParsedAttr::AT_NoDestroy:
handleDestroyAttr(S, D, AL);
break;
case ParsedAttr::AT_Uninitialized:
handleUninitializedAttr(S, D, AL);
break;
case ParsedAttr::AT_LoaderUninitialized:
handleSimpleAttribute<LoaderUninitializedAttr>(S, D, AL);
break;
case ParsedAttr::AT_ObjCExternallyRetained:
handleObjCExternallyRetainedAttr(S, D, AL);
break;
case ParsedAttr::AT_MIGServerRoutine:
handleMIGServerRoutineAttr(S, D, AL);
break;
case ParsedAttr::AT_MSAllocator:
handleMSAllocatorAttr(S, D, AL);
break;
case ParsedAttr::AT_ArmBuiltinAlias:
handleArmBuiltinAliasAttr(S, D, AL);
break;
case ParsedAttr::AT_AcquireHandle:
handleAcquireHandleAttr(S, D, AL);
break;
case ParsedAttr::AT_ReleaseHandle:
handleHandleAttr<ReleaseHandleAttr>(S, D, AL);
break;
case ParsedAttr::AT_UseHandle:
handleHandleAttr<UseHandleAttr>(S, D, AL);
break;
case ParsedAttr::AT_EnforceTCB:
handleEnforceTCBAttr<EnforceTCBAttr, EnforceTCBLeafAttr>(S, D, AL);
break;
case ParsedAttr::AT_EnforceTCBLeaf:
handleEnforceTCBAttr<EnforceTCBLeafAttr, EnforceTCBAttr>(S, D, AL);
break;
}
}
/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
/// attribute list to the specified decl, ignoring any type attributes.
void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
const ParsedAttributesView &AttrList,
bool IncludeCXX11Attributes) {
if (AttrList.empty())
return;
for (const ParsedAttr &AL : AttrList)
ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes);
// FIXME: We should be able to handle these cases in TableGen.
// GCC accepts
// static int a9 __attribute__((weakref));
// but that looks really pointless. We reject it.
if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
<< cast<NamedDecl>(D);
D->dropAttr<WeakRefAttr>();
return;
}
// FIXME: We should be able to handle this in TableGen as well. It would be
// good to have a way to specify "these attributes must appear as a group",
// for these. Additionally, it would be good to have a way to specify "these
// attribute must never appear as a group" for attributes like cold and hot.
if (!D->hasAttr<OpenCLKernelAttr>()) {
// These attributes cannot be applied to a non-kernel function.
if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
// FIXME: This emits a different error message than
// diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
D->setInvalidDecl();
} else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
D->setInvalidDecl();
} else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
D->setInvalidDecl();
} else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
D->setInvalidDecl();
} else if (!D->hasAttr<CUDAGlobalAttr>()) {
if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
<< A << ExpectedKernelFunction;
D->setInvalidDecl();
} else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
<< A << ExpectedKernelFunction;
D->setInvalidDecl();
} else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
<< A << ExpectedKernelFunction;
D->setInvalidDecl();
} else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
<< A << ExpectedKernelFunction;
D->setInvalidDecl();
}
}
}
// Do this check after processing D's attributes because the attribute
// objc_method_family can change whether the given method is in the init
// family, and it can be applied after objc_designated_initializer. This is a
// bit of a hack, but we need it to be compatible with versions of clang that
// processed the attribute list in the wrong order.
if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
D->dropAttr<ObjCDesignatedInitializerAttr>();
}
}
// Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr
// attribute.
void Sema::ProcessDeclAttributeDelayed(Decl *D,
const ParsedAttributesView &AttrList) {
for (const ParsedAttr &AL : AttrList)
if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
handleTransparentUnionAttr(*this, D, AL);
break;
}
// For BPFPreserveAccessIndexAttr, we want to populate the attributes
// to fields and inner records as well.
if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D));
}
// Annotation attributes are the only attributes allowed after an access
// specifier.
bool Sema::ProcessAccessDeclAttributeList(
AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
for (const ParsedAttr &AL : AttrList) {
if (AL.getKind() == ParsedAttr::AT_Annotate) {
ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute());
} else {
Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
return true;
}
}
return false;
}
/// checkUnusedDeclAttributes - Check a list of attributes to see if it
/// contains any decl attributes that we should warn about.
static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) {
for (const ParsedAttr &AL : A) {
// Only warn if the attribute is an unignored, non-type attribute.
if (AL.isUsedAsTypeAttr() || AL.isInvalid())
continue;
if (AL.getKind() == ParsedAttr::IgnoredAttribute)
continue;
if (AL.getKind() == ParsedAttr::UnknownAttribute) {
S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
<< AL << AL.getRange();
} else {
S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
<< AL.getRange();
}
}
}
/// checkUnusedDeclAttributes - Given a declarator which is not being
/// used to build a declaration, complain about any decl attributes
/// which might be lying around on it.
void Sema::checkUnusedDeclAttributes(Declarator &D) {
::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes());
::checkUnusedDeclAttributes(*this, D.getAttributes());
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
}
/// DeclClonePragmaWeak - clone existing decl (maybe definition),
/// \#pragma weak needs a non-definition decl and source may not have one.
NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
SourceLocation Loc) {
assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
NamedDecl *NewD = nullptr;
if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
FunctionDecl *NewFD;
// FIXME: Missing call to CheckFunctionDeclaration().
// FIXME: Mangling?
// FIXME: Is the qualifier info correct?
// FIXME: Is the DeclContext correct?
NewFD = FunctionDecl::Create(
FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None,
false /*isInlineSpecified*/, FD->hasPrototype(),
ConstexprSpecKind::Unspecified, FD->getTrailingRequiresClause());
NewD = NewFD;
if (FD->getQualifier())
NewFD->setQualifierInfo(FD->getQualifierLoc());
// Fake up parameter variables; they are declared as if this were
// a typedef.
QualType FDTy = FD->getType();
if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
SmallVector<ParmVarDecl*, 16> Params;
for (const auto &AI : FT->param_types()) {
ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
Param->setScopeInfo(0, Params.size());
Params.push_back(Param);
}
NewFD->setParams(Params);
}
} else if (auto *VD = dyn_cast<VarDecl>(ND)) {
NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
VD->getInnerLocStart(), VD->getLocation(), II,
VD->getType(), VD->getTypeSourceInfo(),
VD->getStorageClass());
if (VD->getQualifier())
cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
}
return NewD;
}
/// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
/// applied to it, possibly with an alias.
void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
if (W.getUsed()) return; // only do this once
W.setUsed(true);
if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
IdentifierInfo *NDId = ND->getIdentifier();
NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
NewD->addAttr(
AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
AttributeCommonInfo::AS_Pragma));
WeakTopLevelDecl.push_back(NewD);
// FIXME: "hideous" code from Sema::LazilyCreateBuiltin
// to insert Decl at TU scope, sorry.
DeclContext *SavedContext = CurContext;
CurContext = Context.getTranslationUnitDecl();
NewD->setDeclContext(CurContext);
NewD->setLexicalDeclContext(CurContext);
PushOnScopeChains(NewD, S);
CurContext = SavedContext;
} else { // just add weak to existing
ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
AttributeCommonInfo::AS_Pragma));
}
}
void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
// It's valid to "forward-declare" #pragma weak, in which case we
// have to do this.
LoadExternalWeakUndeclaredIdentifiers();
if (!WeakUndeclaredIdentifiers.empty()) {
NamedDecl *ND = nullptr;
if (auto *VD = dyn_cast<VarDecl>(D))
if (VD->isExternC())
ND = VD;
if (auto *FD = dyn_cast<FunctionDecl>(D))
if (FD->isExternC())
ND = FD;
if (ND) {
if (IdentifierInfo *Id = ND->getIdentifier()) {
auto I = WeakUndeclaredIdentifiers.find(Id);
if (I != WeakUndeclaredIdentifiers.end()) {
WeakInfo W = I->second;
DeclApplyPragmaWeak(S, ND, W);
WeakUndeclaredIdentifiers[Id] = W;
}
}
}
}
}
/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
/// it, apply them to D. This is a bit tricky because PD can have attributes
/// specified in many different places, and we need to find and apply them all.
void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
// Apply decl attributes from the DeclSpec if present.
if (!PD.getDeclSpec().getAttributes().empty())
ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes());
// Walk the declarator structure, applying decl attributes that were in a type
// position to the decl itself. This handles cases like:
// int *__attr__(x)** D;
// when X is a decl attribute.
for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(),
/*IncludeCXX11Attributes=*/false);
// Finally, apply any attributes on the decl itself.
ProcessDeclAttributeList(S, D, PD.getAttributes());
// Apply additional attributes specified by '#pragma clang attribute'.
AddPragmaAttributes(S, D);
}
/// Is the given declaration allowed to use a forbidden type?
/// If so, it'll still be annotated with an attribute that makes it
/// illegal to actually use.
static bool isForbiddenTypeAllowed(Sema &S, Decl *D,
const DelayedDiagnostic &diag,
UnavailableAttr::ImplicitReason &reason) {
// Private ivars are always okay. Unfortunately, people don't
// always properly make their ivars private, even in system headers.
// Plus we need to make fields okay, too.
if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
!isa<FunctionDecl>(D))
return false;
// Silently accept unsupported uses of __weak in both user and system
// declarations when it's been disabled, for ease of integration with
// -fno-objc-arc files. We do have to take some care against attempts
// to define such things; for now, we've only done that for ivars
// and properties.
if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
reason = UnavailableAttr::IR_ForbiddenWeak;
return true;
}
}
// Allow all sorts of things in system headers.
if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) {
// Currently, all the failures dealt with this way are due to ARC
// restrictions.
reason = UnavailableAttr::IR_ARCForbiddenType;
return true;
}
return false;
}
/// Handle a delayed forbidden-type diagnostic.
static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD,
Decl *D) {
auto Reason = UnavailableAttr::IR_None;
if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
assert(Reason && "didn't set reason?");
D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
return;
}
if (S.getLangOpts().ObjCAutoRefCount)
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
// FIXME: we may want to suppress diagnostics for all
// kind of forbidden type messages on unavailable functions.
if (FD->hasAttr<UnavailableAttr>() &&
DD.getForbiddenTypeDiagnostic() ==
diag::err_arc_array_param_no_ownership) {
DD.Triggered = true;
return;
}
}
S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic())
<< DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument();
DD.Triggered = true;
}
void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
assert(DelayedDiagnostics.getCurrentPool());
DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
DelayedDiagnostics.popWithoutEmitting(state);
// When delaying diagnostics to run in the context of a parsed
// declaration, we only want to actually emit anything if parsing
// succeeds.
if (!decl) return;
// We emit all the active diagnostics in this pool or any of its
// parents. In general, we'll get one pool for the decl spec
// and a child pool for each declarator; in a decl group like:
// deprecated_typedef foo, *bar, baz();
// only the declarator pops will be passed decls. This is correct;
// we really do need to consider delayed diagnostics from the decl spec
// for each of the different declarations.
const DelayedDiagnosticPool *pool = &poppedPool;
do {
bool AnyAccessFailures = false;
for (DelayedDiagnosticPool::pool_iterator
i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
// This const_cast is a bit lame. Really, Triggered should be mutable.
DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
if (diag.Triggered)
continue;
switch (diag.Kind) {
case DelayedDiagnostic::Availability:
// Don't bother giving deprecation/unavailable diagnostics if
// the decl is invalid.
if (!decl->isInvalidDecl())
handleDelayedAvailabilityCheck(diag, decl);
break;
case DelayedDiagnostic::Access:
// Only produce one access control diagnostic for a structured binding
// declaration: we don't need to tell the user that all the fields are
// inaccessible one at a time.
if (AnyAccessFailures && isa<DecompositionDecl>(decl))
continue;
HandleDelayedAccessCheck(diag, decl);
if (diag.Triggered)
AnyAccessFailures = true;
break;
case DelayedDiagnostic::ForbiddenType:
handleDelayedForbiddenType(*this, diag, decl);
break;
}
}
} while ((pool = pool->getParent()));
}
/// Given a set of delayed diagnostics, re-emit them as if they had
/// been delayed in the current context instead of in the given pool.
/// Essentially, this just moves them to the current pool.
void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
assert(curPool && "re-emitting in undelayed context not supported");
curPool->steal(pool);
}