llvm-for-llvmta/tools/clang/lib/CodeGen/CGLoopInfo.cpp

843 lines
31 KiB
C++

//===---- CGLoopInfo.cpp - LLVM CodeGen for loop metadata -*- C++ -*-------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "CGLoopInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/CodeGenOptions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
using namespace clang::CodeGen;
using namespace llvm;
MDNode *
LoopInfo::createLoopPropertiesMetadata(ArrayRef<Metadata *> LoopProperties) {
LLVMContext &Ctx = Header->getContext();
SmallVector<Metadata *, 4> NewLoopProperties;
NewLoopProperties.push_back(nullptr);
NewLoopProperties.append(LoopProperties.begin(), LoopProperties.end());
MDNode *LoopID = MDNode::getDistinct(Ctx, NewLoopProperties);
LoopID->replaceOperandWith(0, LoopID);
return LoopID;
}
MDNode *LoopInfo::createPipeliningMetadata(const LoopAttributes &Attrs,
ArrayRef<Metadata *> LoopProperties,
bool &HasUserTransforms) {
LLVMContext &Ctx = Header->getContext();
Optional<bool> Enabled;
if (Attrs.PipelineDisabled)
Enabled = false;
else if (Attrs.PipelineInitiationInterval != 0)
Enabled = true;
if (Enabled != true) {
SmallVector<Metadata *, 4> NewLoopProperties;
if (Enabled == false) {
NewLoopProperties.append(LoopProperties.begin(), LoopProperties.end());
NewLoopProperties.push_back(
MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.pipeline.disable"),
ConstantAsMetadata::get(ConstantInt::get(
llvm::Type::getInt1Ty(Ctx), 1))}));
LoopProperties = NewLoopProperties;
}
return createLoopPropertiesMetadata(LoopProperties);
}
SmallVector<Metadata *, 4> Args;
Args.push_back(nullptr);
Args.append(LoopProperties.begin(), LoopProperties.end());
if (Attrs.PipelineInitiationInterval > 0) {
Metadata *Vals[] = {
MDString::get(Ctx, "llvm.loop.pipeline.initiationinterval"),
ConstantAsMetadata::get(ConstantInt::get(
llvm::Type::getInt32Ty(Ctx), Attrs.PipelineInitiationInterval))};
Args.push_back(MDNode::get(Ctx, Vals));
}
// No follow-up: This is the last transformation.
MDNode *LoopID = MDNode::getDistinct(Ctx, Args);
LoopID->replaceOperandWith(0, LoopID);
HasUserTransforms = true;
return LoopID;
}
MDNode *
LoopInfo::createPartialUnrollMetadata(const LoopAttributes &Attrs,
ArrayRef<Metadata *> LoopProperties,
bool &HasUserTransforms) {
LLVMContext &Ctx = Header->getContext();
Optional<bool> Enabled;
if (Attrs.UnrollEnable == LoopAttributes::Disable)
Enabled = false;
else if (Attrs.UnrollEnable == LoopAttributes::Full)
Enabled = None;
else if (Attrs.UnrollEnable != LoopAttributes::Unspecified ||
Attrs.UnrollCount != 0)
Enabled = true;
if (Enabled != true) {
// createFullUnrollMetadata will already have added llvm.loop.unroll.disable
// if unrolling is disabled.
return createPipeliningMetadata(Attrs, LoopProperties, HasUserTransforms);
}
SmallVector<Metadata *, 4> FollowupLoopProperties;
// Apply all loop properties to the unrolled loop.
FollowupLoopProperties.append(LoopProperties.begin(), LoopProperties.end());
// Don't unroll an already unrolled loop.
FollowupLoopProperties.push_back(
MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.disable")));
bool FollowupHasTransforms = false;
MDNode *Followup = createPipeliningMetadata(Attrs, FollowupLoopProperties,
FollowupHasTransforms);
SmallVector<Metadata *, 4> Args;
Args.push_back(nullptr);
Args.append(LoopProperties.begin(), LoopProperties.end());
// Setting unroll.count
if (Attrs.UnrollCount > 0) {
Metadata *Vals[] = {MDString::get(Ctx, "llvm.loop.unroll.count"),
ConstantAsMetadata::get(ConstantInt::get(
llvm::Type::getInt32Ty(Ctx), Attrs.UnrollCount))};
Args.push_back(MDNode::get(Ctx, Vals));
}
// Setting unroll.full or unroll.disable
if (Attrs.UnrollEnable == LoopAttributes::Enable) {
Metadata *Vals[] = {MDString::get(Ctx, "llvm.loop.unroll.enable")};
Args.push_back(MDNode::get(Ctx, Vals));
}
if (FollowupHasTransforms)
Args.push_back(MDNode::get(
Ctx, {MDString::get(Ctx, "llvm.loop.unroll.followup_all"), Followup}));
MDNode *LoopID = MDNode::getDistinct(Ctx, Args);
LoopID->replaceOperandWith(0, LoopID);
HasUserTransforms = true;
return LoopID;
}
MDNode *
LoopInfo::createUnrollAndJamMetadata(const LoopAttributes &Attrs,
ArrayRef<Metadata *> LoopProperties,
bool &HasUserTransforms) {
LLVMContext &Ctx = Header->getContext();
Optional<bool> Enabled;
if (Attrs.UnrollAndJamEnable == LoopAttributes::Disable)
Enabled = false;
else if (Attrs.UnrollAndJamEnable == LoopAttributes::Enable ||
Attrs.UnrollAndJamCount != 0)
Enabled = true;
if (Enabled != true) {
SmallVector<Metadata *, 4> NewLoopProperties;
if (Enabled == false) {
NewLoopProperties.append(LoopProperties.begin(), LoopProperties.end());
NewLoopProperties.push_back(MDNode::get(
Ctx, MDString::get(Ctx, "llvm.loop.unroll_and_jam.disable")));
LoopProperties = NewLoopProperties;
}
return createPartialUnrollMetadata(Attrs, LoopProperties,
HasUserTransforms);
}
SmallVector<Metadata *, 4> FollowupLoopProperties;
FollowupLoopProperties.append(LoopProperties.begin(), LoopProperties.end());
FollowupLoopProperties.push_back(
MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll_and_jam.disable")));
bool FollowupHasTransforms = false;
MDNode *Followup = createPartialUnrollMetadata(Attrs, FollowupLoopProperties,
FollowupHasTransforms);
SmallVector<Metadata *, 4> Args;
Args.push_back(nullptr);
Args.append(LoopProperties.begin(), LoopProperties.end());
// Setting unroll_and_jam.count
if (Attrs.UnrollAndJamCount > 0) {
Metadata *Vals[] = {
MDString::get(Ctx, "llvm.loop.unroll_and_jam.count"),
ConstantAsMetadata::get(ConstantInt::get(llvm::Type::getInt32Ty(Ctx),
Attrs.UnrollAndJamCount))};
Args.push_back(MDNode::get(Ctx, Vals));
}
if (Attrs.UnrollAndJamEnable == LoopAttributes::Enable) {
Metadata *Vals[] = {MDString::get(Ctx, "llvm.loop.unroll_and_jam.enable")};
Args.push_back(MDNode::get(Ctx, Vals));
}
if (FollowupHasTransforms)
Args.push_back(MDNode::get(
Ctx, {MDString::get(Ctx, "llvm.loop.unroll_and_jam.followup_outer"),
Followup}));
if (UnrollAndJamInnerFollowup)
Args.push_back(MDNode::get(
Ctx, {MDString::get(Ctx, "llvm.loop.unroll_and_jam.followup_inner"),
UnrollAndJamInnerFollowup}));
MDNode *LoopID = MDNode::getDistinct(Ctx, Args);
LoopID->replaceOperandWith(0, LoopID);
HasUserTransforms = true;
return LoopID;
}
MDNode *
LoopInfo::createLoopVectorizeMetadata(const LoopAttributes &Attrs,
ArrayRef<Metadata *> LoopProperties,
bool &HasUserTransforms) {
LLVMContext &Ctx = Header->getContext();
Optional<bool> Enabled;
if (Attrs.VectorizeEnable == LoopAttributes::Disable)
Enabled = false;
else if (Attrs.VectorizeEnable != LoopAttributes::Unspecified ||
Attrs.VectorizePredicateEnable != LoopAttributes::Unspecified ||
Attrs.InterleaveCount != 0 || Attrs.VectorizeWidth != 0 ||
Attrs.VectorizeScalable != LoopAttributes::Unspecified)
Enabled = true;
if (Enabled != true) {
SmallVector<Metadata *, 4> NewLoopProperties;
if (Enabled == false) {
NewLoopProperties.append(LoopProperties.begin(), LoopProperties.end());
NewLoopProperties.push_back(
MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"),
ConstantAsMetadata::get(ConstantInt::get(
llvm::Type::getInt1Ty(Ctx), 0))}));
LoopProperties = NewLoopProperties;
}
return createUnrollAndJamMetadata(Attrs, LoopProperties, HasUserTransforms);
}
// Apply all loop properties to the vectorized loop.
SmallVector<Metadata *, 4> FollowupLoopProperties;
FollowupLoopProperties.append(LoopProperties.begin(), LoopProperties.end());
// Don't vectorize an already vectorized loop.
FollowupLoopProperties.push_back(
MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.isvectorized")));
bool FollowupHasTransforms = false;
MDNode *Followup = createUnrollAndJamMetadata(Attrs, FollowupLoopProperties,
FollowupHasTransforms);
SmallVector<Metadata *, 4> Args;
Args.push_back(nullptr);
Args.append(LoopProperties.begin(), LoopProperties.end());
// Setting vectorize.predicate
bool IsVectorPredicateEnabled = false;
if (Attrs.VectorizePredicateEnable != LoopAttributes::Unspecified &&
Attrs.VectorizeEnable != LoopAttributes::Disable &&
Attrs.VectorizeWidth < 1) {
IsVectorPredicateEnabled =
(Attrs.VectorizePredicateEnable == LoopAttributes::Enable);
Metadata *Vals[] = {
MDString::get(Ctx, "llvm.loop.vectorize.predicate.enable"),
ConstantAsMetadata::get(ConstantInt::get(llvm::Type::getInt1Ty(Ctx),
IsVectorPredicateEnabled))};
Args.push_back(MDNode::get(Ctx, Vals));
}
// Setting vectorize.width
if (Attrs.VectorizeWidth > 0) {
Metadata *Vals[] = {
MDString::get(Ctx, "llvm.loop.vectorize.width"),
ConstantAsMetadata::get(ConstantInt::get(llvm::Type::getInt32Ty(Ctx),
Attrs.VectorizeWidth))};
Args.push_back(MDNode::get(Ctx, Vals));
}
if (Attrs.VectorizeScalable != LoopAttributes::Unspecified) {
bool IsScalable = Attrs.VectorizeScalable == LoopAttributes::Enable;
Metadata *Vals[] = {
MDString::get(Ctx, "llvm.loop.vectorize.scalable.enable"),
ConstantAsMetadata::get(
ConstantInt::get(llvm::Type::getInt1Ty(Ctx), IsScalable))};
Args.push_back(MDNode::get(Ctx, Vals));
}
// Setting interleave.count
if (Attrs.InterleaveCount > 0) {
Metadata *Vals[] = {
MDString::get(Ctx, "llvm.loop.interleave.count"),
ConstantAsMetadata::get(ConstantInt::get(llvm::Type::getInt32Ty(Ctx),
Attrs.InterleaveCount))};
Args.push_back(MDNode::get(Ctx, Vals));
}
// vectorize.enable is set if:
// 1) loop hint vectorize.enable is set, or
// 2) it is implied when vectorize.predicate is set, or
// 3) it is implied when vectorize.width is set to a value > 1
// 4) it is implied when vectorize.scalable.enable is true
// 5) it is implied when vectorize.width is unset (0) and the user
// explicitly requested fixed-width vectorization, i.e.
// vectorize.scalable.enable is false.
if (Attrs.VectorizeEnable != LoopAttributes::Unspecified ||
IsVectorPredicateEnabled || Attrs.VectorizeWidth > 1 ||
Attrs.VectorizeScalable == LoopAttributes::Enable ||
(Attrs.VectorizeScalable == LoopAttributes::Disable &&
Attrs.VectorizeWidth != 1)) {
bool AttrVal = Attrs.VectorizeEnable != LoopAttributes::Disable;
Args.push_back(
MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"),
ConstantAsMetadata::get(ConstantInt::get(
llvm::Type::getInt1Ty(Ctx), AttrVal))}));
}
if (FollowupHasTransforms)
Args.push_back(MDNode::get(
Ctx,
{MDString::get(Ctx, "llvm.loop.vectorize.followup_all"), Followup}));
MDNode *LoopID = MDNode::getDistinct(Ctx, Args);
LoopID->replaceOperandWith(0, LoopID);
HasUserTransforms = true;
return LoopID;
}
MDNode *
LoopInfo::createLoopDistributeMetadata(const LoopAttributes &Attrs,
ArrayRef<Metadata *> LoopProperties,
bool &HasUserTransforms) {
LLVMContext &Ctx = Header->getContext();
Optional<bool> Enabled;
if (Attrs.DistributeEnable == LoopAttributes::Disable)
Enabled = false;
if (Attrs.DistributeEnable == LoopAttributes::Enable)
Enabled = true;
if (Enabled != true) {
SmallVector<Metadata *, 4> NewLoopProperties;
if (Enabled == false) {
NewLoopProperties.append(LoopProperties.begin(), LoopProperties.end());
NewLoopProperties.push_back(
MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.distribute.enable"),
ConstantAsMetadata::get(ConstantInt::get(
llvm::Type::getInt1Ty(Ctx), 0))}));
LoopProperties = NewLoopProperties;
}
return createLoopVectorizeMetadata(Attrs, LoopProperties,
HasUserTransforms);
}
bool FollowupHasTransforms = false;
MDNode *Followup =
createLoopVectorizeMetadata(Attrs, LoopProperties, FollowupHasTransforms);
SmallVector<Metadata *, 4> Args;
Args.push_back(nullptr);
Args.append(LoopProperties.begin(), LoopProperties.end());
Metadata *Vals[] = {MDString::get(Ctx, "llvm.loop.distribute.enable"),
ConstantAsMetadata::get(ConstantInt::get(
llvm::Type::getInt1Ty(Ctx),
(Attrs.DistributeEnable == LoopAttributes::Enable)))};
Args.push_back(MDNode::get(Ctx, Vals));
if (FollowupHasTransforms)
Args.push_back(MDNode::get(
Ctx,
{MDString::get(Ctx, "llvm.loop.distribute.followup_all"), Followup}));
MDNode *LoopID = MDNode::getDistinct(Ctx, Args);
LoopID->replaceOperandWith(0, LoopID);
HasUserTransforms = true;
return LoopID;
}
MDNode *LoopInfo::createFullUnrollMetadata(const LoopAttributes &Attrs,
ArrayRef<Metadata *> LoopProperties,
bool &HasUserTransforms) {
LLVMContext &Ctx = Header->getContext();
Optional<bool> Enabled;
if (Attrs.UnrollEnable == LoopAttributes::Disable)
Enabled = false;
else if (Attrs.UnrollEnable == LoopAttributes::Full)
Enabled = true;
if (Enabled != true) {
SmallVector<Metadata *, 4> NewLoopProperties;
if (Enabled == false) {
NewLoopProperties.append(LoopProperties.begin(), LoopProperties.end());
NewLoopProperties.push_back(
MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.disable")));
LoopProperties = NewLoopProperties;
}
return createLoopDistributeMetadata(Attrs, LoopProperties,
HasUserTransforms);
}
SmallVector<Metadata *, 4> Args;
Args.push_back(nullptr);
Args.append(LoopProperties.begin(), LoopProperties.end());
Args.push_back(MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.full")));
// No follow-up: there is no loop after full unrolling.
// TODO: Warn if there are transformations after full unrolling.
MDNode *LoopID = MDNode::getDistinct(Ctx, Args);
LoopID->replaceOperandWith(0, LoopID);
HasUserTransforms = true;
return LoopID;
}
MDNode *LoopInfo::createMetadata(
const LoopAttributes &Attrs,
llvm::ArrayRef<llvm::Metadata *> AdditionalLoopProperties,
bool &HasUserTransforms) {
SmallVector<Metadata *, 3> LoopProperties;
// If we have a valid start debug location for the loop, add it.
if (StartLoc) {
LoopProperties.push_back(StartLoc.getAsMDNode());
// If we also have a valid end debug location for the loop, add it.
if (EndLoc)
LoopProperties.push_back(EndLoc.getAsMDNode());
}
LLVMContext &Ctx = Header->getContext();
if (Attrs.MustProgress)
LoopProperties.push_back(
MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.mustprogress")));
assert(!!AccGroup == Attrs.IsParallel &&
"There must be an access group iff the loop is parallel");
if (Attrs.IsParallel) {
LoopProperties.push_back(MDNode::get(
Ctx, {MDString::get(Ctx, "llvm.loop.parallel_accesses"), AccGroup}));
}
LoopProperties.insert(LoopProperties.end(), AdditionalLoopProperties.begin(),
AdditionalLoopProperties.end());
return createFullUnrollMetadata(Attrs, LoopProperties, HasUserTransforms);
}
LoopAttributes::LoopAttributes(bool IsParallel)
: IsParallel(IsParallel), VectorizeEnable(LoopAttributes::Unspecified),
UnrollEnable(LoopAttributes::Unspecified),
UnrollAndJamEnable(LoopAttributes::Unspecified),
VectorizePredicateEnable(LoopAttributes::Unspecified), VectorizeWidth(0),
VectorizeScalable(LoopAttributes::Unspecified), InterleaveCount(0),
UnrollCount(0), UnrollAndJamCount(0),
DistributeEnable(LoopAttributes::Unspecified), PipelineDisabled(false),
PipelineInitiationInterval(0), MustProgress(false) {}
void LoopAttributes::clear() {
IsParallel = false;
VectorizeWidth = 0;
VectorizeScalable = LoopAttributes::Unspecified;
InterleaveCount = 0;
UnrollCount = 0;
UnrollAndJamCount = 0;
VectorizeEnable = LoopAttributes::Unspecified;
UnrollEnable = LoopAttributes::Unspecified;
UnrollAndJamEnable = LoopAttributes::Unspecified;
VectorizePredicateEnable = LoopAttributes::Unspecified;
DistributeEnable = LoopAttributes::Unspecified;
PipelineDisabled = false;
PipelineInitiationInterval = 0;
MustProgress = false;
}
LoopInfo::LoopInfo(BasicBlock *Header, const LoopAttributes &Attrs,
const llvm::DebugLoc &StartLoc, const llvm::DebugLoc &EndLoc,
LoopInfo *Parent)
: Header(Header), Attrs(Attrs), StartLoc(StartLoc), EndLoc(EndLoc),
Parent(Parent) {
if (Attrs.IsParallel) {
// Create an access group for this loop.
LLVMContext &Ctx = Header->getContext();
AccGroup = MDNode::getDistinct(Ctx, {});
}
if (!Attrs.IsParallel && Attrs.VectorizeWidth == 0 &&
Attrs.VectorizeScalable == LoopAttributes::Unspecified &&
Attrs.InterleaveCount == 0 && Attrs.UnrollCount == 0 &&
Attrs.UnrollAndJamCount == 0 && !Attrs.PipelineDisabled &&
Attrs.PipelineInitiationInterval == 0 &&
Attrs.VectorizePredicateEnable == LoopAttributes::Unspecified &&
Attrs.VectorizeEnable == LoopAttributes::Unspecified &&
Attrs.UnrollEnable == LoopAttributes::Unspecified &&
Attrs.UnrollAndJamEnable == LoopAttributes::Unspecified &&
Attrs.DistributeEnable == LoopAttributes::Unspecified && !StartLoc &&
!EndLoc && !Attrs.MustProgress)
return;
TempLoopID = MDNode::getTemporary(Header->getContext(), None);
}
void LoopInfo::finish() {
// We did not annotate the loop body instructions because there are no
// attributes for this loop.
if (!TempLoopID)
return;
MDNode *LoopID;
LoopAttributes CurLoopAttr = Attrs;
LLVMContext &Ctx = Header->getContext();
if (Parent && (Parent->Attrs.UnrollAndJamEnable ||
Parent->Attrs.UnrollAndJamCount != 0)) {
// Parent unroll-and-jams this loop.
// Split the transformations in those that happens before the unroll-and-jam
// and those after.
LoopAttributes BeforeJam, AfterJam;
BeforeJam.IsParallel = AfterJam.IsParallel = Attrs.IsParallel;
BeforeJam.VectorizeWidth = Attrs.VectorizeWidth;
BeforeJam.VectorizeScalable = Attrs.VectorizeScalable;
BeforeJam.InterleaveCount = Attrs.InterleaveCount;
BeforeJam.VectorizeEnable = Attrs.VectorizeEnable;
BeforeJam.DistributeEnable = Attrs.DistributeEnable;
BeforeJam.VectorizePredicateEnable = Attrs.VectorizePredicateEnable;
switch (Attrs.UnrollEnable) {
case LoopAttributes::Unspecified:
case LoopAttributes::Disable:
BeforeJam.UnrollEnable = Attrs.UnrollEnable;
AfterJam.UnrollEnable = Attrs.UnrollEnable;
break;
case LoopAttributes::Full:
BeforeJam.UnrollEnable = LoopAttributes::Full;
break;
case LoopAttributes::Enable:
AfterJam.UnrollEnable = LoopAttributes::Enable;
break;
}
AfterJam.VectorizePredicateEnable = Attrs.VectorizePredicateEnable;
AfterJam.UnrollCount = Attrs.UnrollCount;
AfterJam.PipelineDisabled = Attrs.PipelineDisabled;
AfterJam.PipelineInitiationInterval = Attrs.PipelineInitiationInterval;
// If this loop is subject of an unroll-and-jam by the parent loop, and has
// an unroll-and-jam annotation itself, we have to decide whether to first
// apply the parent's unroll-and-jam or this loop's unroll-and-jam. The
// UnrollAndJam pass processes loops from inner to outer, so we apply the
// inner first.
BeforeJam.UnrollAndJamCount = Attrs.UnrollAndJamCount;
BeforeJam.UnrollAndJamEnable = Attrs.UnrollAndJamEnable;
// Set the inner followup metadata to process by the outer loop. Only
// consider the first inner loop.
if (!Parent->UnrollAndJamInnerFollowup) {
// Splitting the attributes into a BeforeJam and an AfterJam part will
// stop 'llvm.loop.isvectorized' (generated by vectorization in BeforeJam)
// to be forwarded to the AfterJam part. We detect the situation here and
// add it manually.
SmallVector<Metadata *, 1> BeforeLoopProperties;
if (BeforeJam.VectorizeEnable != LoopAttributes::Unspecified ||
BeforeJam.VectorizePredicateEnable != LoopAttributes::Unspecified ||
BeforeJam.InterleaveCount != 0 || BeforeJam.VectorizeWidth != 0 ||
BeforeJam.VectorizeScalable == LoopAttributes::Enable)
BeforeLoopProperties.push_back(
MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.isvectorized")));
bool InnerFollowupHasTransform = false;
MDNode *InnerFollowup = createMetadata(AfterJam, BeforeLoopProperties,
InnerFollowupHasTransform);
if (InnerFollowupHasTransform)
Parent->UnrollAndJamInnerFollowup = InnerFollowup;
}
CurLoopAttr = BeforeJam;
}
bool HasUserTransforms = false;
LoopID = createMetadata(CurLoopAttr, {}, HasUserTransforms);
TempLoopID->replaceAllUsesWith(LoopID);
}
void LoopInfoStack::push(BasicBlock *Header, const llvm::DebugLoc &StartLoc,
const llvm::DebugLoc &EndLoc) {
Active.emplace_back(
new LoopInfo(Header, StagedAttrs, StartLoc, EndLoc,
Active.empty() ? nullptr : Active.back().get()));
// Clear the attributes so nested loops do not inherit them.
StagedAttrs.clear();
}
void LoopInfoStack::push(BasicBlock *Header, clang::ASTContext &Ctx,
const clang::CodeGenOptions &CGOpts,
ArrayRef<const clang::Attr *> Attrs,
const llvm::DebugLoc &StartLoc,
const llvm::DebugLoc &EndLoc, bool MustProgress) {
// Identify loop hint attributes from Attrs.
for (const auto *Attr : Attrs) {
const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr);
const OpenCLUnrollHintAttr *OpenCLHint =
dyn_cast<OpenCLUnrollHintAttr>(Attr);
// Skip non loop hint attributes
if (!LH && !OpenCLHint) {
continue;
}
LoopHintAttr::OptionType Option = LoopHintAttr::Unroll;
LoopHintAttr::LoopHintState State = LoopHintAttr::Disable;
unsigned ValueInt = 1;
// Translate opencl_unroll_hint attribute argument to
// equivalent LoopHintAttr enums.
// OpenCL v2.0 s6.11.5:
// 0 - enable unroll (no argument).
// 1 - disable unroll.
// other positive integer n - unroll by n.
if (OpenCLHint) {
ValueInt = OpenCLHint->getUnrollHint();
if (ValueInt == 0) {
State = LoopHintAttr::Enable;
} else if (ValueInt != 1) {
Option = LoopHintAttr::UnrollCount;
State = LoopHintAttr::Numeric;
}
} else if (LH) {
auto *ValueExpr = LH->getValue();
if (ValueExpr) {
llvm::APSInt ValueAPS = ValueExpr->EvaluateKnownConstInt(Ctx);
ValueInt = ValueAPS.getSExtValue();
}
Option = LH->getOption();
State = LH->getState();
}
switch (State) {
case LoopHintAttr::Disable:
switch (Option) {
case LoopHintAttr::Vectorize:
// Disable vectorization by specifying a width of 1.
setVectorizeWidth(1);
setVectorizeScalable(LoopAttributes::Unspecified);
break;
case LoopHintAttr::Interleave:
// Disable interleaving by speciyfing a count of 1.
setInterleaveCount(1);
break;
case LoopHintAttr::Unroll:
setUnrollState(LoopAttributes::Disable);
break;
case LoopHintAttr::UnrollAndJam:
setUnrollAndJamState(LoopAttributes::Disable);
break;
case LoopHintAttr::VectorizePredicate:
setVectorizePredicateState(LoopAttributes::Disable);
break;
case LoopHintAttr::Distribute:
setDistributeState(false);
break;
case LoopHintAttr::PipelineDisabled:
setPipelineDisabled(true);
break;
case LoopHintAttr::UnrollCount:
case LoopHintAttr::UnrollAndJamCount:
case LoopHintAttr::VectorizeWidth:
case LoopHintAttr::InterleaveCount:
case LoopHintAttr::PipelineInitiationInterval:
llvm_unreachable("Options cannot be disabled.");
break;
}
break;
case LoopHintAttr::Enable:
switch (Option) {
case LoopHintAttr::Vectorize:
case LoopHintAttr::Interleave:
setVectorizeEnable(true);
break;
case LoopHintAttr::Unroll:
setUnrollState(LoopAttributes::Enable);
break;
case LoopHintAttr::UnrollAndJam:
setUnrollAndJamState(LoopAttributes::Enable);
break;
case LoopHintAttr::VectorizePredicate:
setVectorizePredicateState(LoopAttributes::Enable);
break;
case LoopHintAttr::Distribute:
setDistributeState(true);
break;
case LoopHintAttr::UnrollCount:
case LoopHintAttr::UnrollAndJamCount:
case LoopHintAttr::VectorizeWidth:
case LoopHintAttr::InterleaveCount:
case LoopHintAttr::PipelineDisabled:
case LoopHintAttr::PipelineInitiationInterval:
llvm_unreachable("Options cannot enabled.");
break;
}
break;
case LoopHintAttr::AssumeSafety:
switch (Option) {
case LoopHintAttr::Vectorize:
case LoopHintAttr::Interleave:
// Apply "llvm.mem.parallel_loop_access" metadata to load/stores.
setParallel(true);
setVectorizeEnable(true);
break;
case LoopHintAttr::Unroll:
case LoopHintAttr::UnrollAndJam:
case LoopHintAttr::VectorizePredicate:
case LoopHintAttr::UnrollCount:
case LoopHintAttr::UnrollAndJamCount:
case LoopHintAttr::VectorizeWidth:
case LoopHintAttr::InterleaveCount:
case LoopHintAttr::Distribute:
case LoopHintAttr::PipelineDisabled:
case LoopHintAttr::PipelineInitiationInterval:
llvm_unreachable("Options cannot be used to assume mem safety.");
break;
}
break;
case LoopHintAttr::Full:
switch (Option) {
case LoopHintAttr::Unroll:
setUnrollState(LoopAttributes::Full);
break;
case LoopHintAttr::UnrollAndJam:
setUnrollAndJamState(LoopAttributes::Full);
break;
case LoopHintAttr::Vectorize:
case LoopHintAttr::Interleave:
case LoopHintAttr::UnrollCount:
case LoopHintAttr::UnrollAndJamCount:
case LoopHintAttr::VectorizeWidth:
case LoopHintAttr::InterleaveCount:
case LoopHintAttr::Distribute:
case LoopHintAttr::PipelineDisabled:
case LoopHintAttr::PipelineInitiationInterval:
case LoopHintAttr::VectorizePredicate:
llvm_unreachable("Options cannot be used with 'full' hint.");
break;
}
break;
case LoopHintAttr::FixedWidth:
case LoopHintAttr::ScalableWidth:
switch (Option) {
case LoopHintAttr::VectorizeWidth:
setVectorizeScalable(State == LoopHintAttr::ScalableWidth
? LoopAttributes::Enable
: LoopAttributes::Disable);
if (LH->getValue())
setVectorizeWidth(ValueInt);
break;
default:
llvm_unreachable("Options cannot be used with 'scalable' hint.");
break;
}
break;
case LoopHintAttr::Numeric:
switch (Option) {
case LoopHintAttr::InterleaveCount:
setInterleaveCount(ValueInt);
break;
case LoopHintAttr::UnrollCount:
setUnrollCount(ValueInt);
break;
case LoopHintAttr::UnrollAndJamCount:
setUnrollAndJamCount(ValueInt);
break;
case LoopHintAttr::PipelineInitiationInterval:
setPipelineInitiationInterval(ValueInt);
break;
case LoopHintAttr::Unroll:
case LoopHintAttr::UnrollAndJam:
case LoopHintAttr::VectorizePredicate:
case LoopHintAttr::Vectorize:
case LoopHintAttr::VectorizeWidth:
case LoopHintAttr::Interleave:
case LoopHintAttr::Distribute:
case LoopHintAttr::PipelineDisabled:
llvm_unreachable("Options cannot be assigned a value.");
break;
}
break;
}
}
setMustProgress(MustProgress);
if (CGOpts.OptimizationLevel > 0)
// Disable unrolling for the loop, if unrolling is disabled (via
// -fno-unroll-loops) and no pragmas override the decision.
if (!CGOpts.UnrollLoops &&
(StagedAttrs.UnrollEnable == LoopAttributes::Unspecified &&
StagedAttrs.UnrollCount == 0))
setUnrollState(LoopAttributes::Disable);
/// Stage the attributes.
push(Header, StartLoc, EndLoc);
}
void LoopInfoStack::pop() {
assert(!Active.empty() && "No active loops to pop");
Active.back()->finish();
Active.pop_back();
}
void LoopInfoStack::InsertHelper(Instruction *I) const {
if (I->mayReadOrWriteMemory()) {
SmallVector<Metadata *, 4> AccessGroups;
for (const auto &AL : Active) {
// Here we assume that every loop that has an access group is parallel.
if (MDNode *Group = AL->getAccessGroup())
AccessGroups.push_back(Group);
}
MDNode *UnionMD = nullptr;
if (AccessGroups.size() == 1)
UnionMD = cast<MDNode>(AccessGroups[0]);
else if (AccessGroups.size() >= 2)
UnionMD = MDNode::get(I->getContext(), AccessGroups);
I->setMetadata("llvm.access.group", UnionMD);
}
if (!hasInfo())
return;
const LoopInfo &L = getInfo();
if (!L.getLoopID())
return;
if (I->isTerminator()) {
for (BasicBlock *Succ : successors(I))
if (Succ == L.getHeader()) {
I->setMetadata(llvm::LLVMContext::MD_loop, L.getLoopID());
break;
}
return;
}
}