llvm-for-llvmta/tools/clang/lib/Analysis/CloneDetection.cpp

626 lines
22 KiB
C++

//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This file implements classes for searching and analyzing source code clones.
///
//===----------------------------------------------------------------------===//
#include "clang/Analysis/CloneDetection.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DataCollection.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/Path.h"
using namespace clang;
StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
unsigned StartIndex, unsigned EndIndex)
: S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
assert(Stmt && "Stmt must not be a nullptr");
assert(StartIndex < EndIndex && "Given array should not be empty");
assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
}
StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
: S(Stmt), D(D), StartIndex(0), EndIndex(0) {}
StmtSequence::StmtSequence()
: S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}
bool StmtSequence::contains(const StmtSequence &Other) const {
// If both sequences reside in different declarations, they can never contain
// each other.
if (D != Other.D)
return false;
const SourceManager &SM = getASTContext().getSourceManager();
// Otherwise check if the start and end locations of the current sequence
// surround the other sequence.
bool StartIsInBounds =
SM.isBeforeInTranslationUnit(getBeginLoc(), Other.getBeginLoc()) ||
getBeginLoc() == Other.getBeginLoc();
if (!StartIsInBounds)
return false;
bool EndIsInBounds =
SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
Other.getEndLoc() == getEndLoc();
return EndIsInBounds;
}
StmtSequence::iterator StmtSequence::begin() const {
if (!holdsSequence()) {
return &S;
}
auto CS = cast<CompoundStmt>(S);
return CS->body_begin() + StartIndex;
}
StmtSequence::iterator StmtSequence::end() const {
if (!holdsSequence()) {
return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
}
auto CS = cast<CompoundStmt>(S);
return CS->body_begin() + EndIndex;
}
ASTContext &StmtSequence::getASTContext() const {
assert(D);
return D->getASTContext();
}
SourceLocation StmtSequence::getBeginLoc() const {
return front()->getBeginLoc();
}
SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); }
SourceRange StmtSequence::getSourceRange() const {
return SourceRange(getBeginLoc(), getEndLoc());
}
void CloneDetector::analyzeCodeBody(const Decl *D) {
assert(D);
assert(D->hasBody());
Sequences.push_back(StmtSequence(D->getBody(), D));
}
/// Returns true if and only if \p Stmt contains at least one other
/// sequence in the \p Group.
static bool containsAnyInGroup(StmtSequence &Seq,
CloneDetector::CloneGroup &Group) {
for (StmtSequence &GroupSeq : Group) {
if (Seq.contains(GroupSeq))
return true;
}
return false;
}
/// Returns true if and only if all sequences in \p OtherGroup are
/// contained by a sequence in \p Group.
static bool containsGroup(CloneDetector::CloneGroup &Group,
CloneDetector::CloneGroup &OtherGroup) {
// We have less sequences in the current group than we have in the other,
// so we will never fulfill the requirement for returning true. This is only
// possible because we know that a sequence in Group can contain at most
// one sequence in OtherGroup.
if (Group.size() < OtherGroup.size())
return false;
for (StmtSequence &Stmt : Group) {
if (!containsAnyInGroup(Stmt, OtherGroup))
return false;
}
return true;
}
void OnlyLargestCloneConstraint::constrain(
std::vector<CloneDetector::CloneGroup> &Result) {
std::vector<unsigned> IndexesToRemove;
// Compare every group in the result with the rest. If one groups contains
// another group, we only need to return the bigger group.
// Note: This doesn't scale well, so if possible avoid calling any heavy
// function from this loop to minimize the performance impact.
for (unsigned i = 0; i < Result.size(); ++i) {
for (unsigned j = 0; j < Result.size(); ++j) {
// Don't compare a group with itself.
if (i == j)
continue;
if (containsGroup(Result[j], Result[i])) {
IndexesToRemove.push_back(i);
break;
}
}
}
// Erasing a list of indexes from the vector should be done with decreasing
// indexes. As IndexesToRemove is constructed with increasing values, we just
// reverse iterate over it to get the desired order.
for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
Result.erase(Result.begin() + *I);
}
}
bool FilenamePatternConstraint::isAutoGenerated(
const CloneDetector::CloneGroup &Group) {
if (IgnoredFilesPattern.empty() || Group.empty() ||
!IgnoredFilesRegex->isValid())
return false;
for (const StmtSequence &S : Group) {
const SourceManager &SM = S.getASTContext().getSourceManager();
StringRef Filename = llvm::sys::path::filename(
SM.getFilename(S.getContainingDecl()->getLocation()));
if (IgnoredFilesRegex->match(Filename))
return true;
}
return false;
}
/// This class defines what a type II code clone is: If it collects for two
/// statements the same data, then those two statements are considered to be
/// clones of each other.
///
/// All collected data is forwarded to the given data consumer of the type T.
/// The data consumer class needs to provide a member method with the signature:
/// update(StringRef Str)
namespace {
template <class T>
class CloneTypeIIStmtDataCollector
: public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> {
ASTContext &Context;
/// The data sink to which all data is forwarded.
T &DataConsumer;
template <class Ty> void addData(const Ty &Data) {
data_collection::addDataToConsumer(DataConsumer, Data);
}
public:
CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context,
T &DataConsumer)
: Context(Context), DataConsumer(DataConsumer) {
this->Visit(S);
}
// Define a visit method for each class to collect data and subsequently visit
// all parent classes. This uses a template so that custom visit methods by us
// take precedence.
#define DEF_ADD_DATA(CLASS, CODE) \
template <class = void> void Visit##CLASS(const CLASS *S) { \
CODE; \
ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \
}
#include "clang/AST/StmtDataCollectors.inc"
// Type II clones ignore variable names and literals, so let's skip them.
#define SKIP(CLASS) \
void Visit##CLASS(const CLASS *S) { \
ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \
}
SKIP(DeclRefExpr)
SKIP(MemberExpr)
SKIP(IntegerLiteral)
SKIP(FloatingLiteral)
SKIP(StringLiteral)
SKIP(CXXBoolLiteralExpr)
SKIP(CharacterLiteral)
#undef SKIP
};
} // end anonymous namespace
static size_t createHash(llvm::MD5 &Hash) {
size_t HashCode;
// Create the final hash code for the current Stmt.
llvm::MD5::MD5Result HashResult;
Hash.final(HashResult);
// Copy as much as possible of the generated hash code to the Stmt's hash
// code.
std::memcpy(&HashCode, &HashResult,
std::min(sizeof(HashCode), sizeof(HashResult)));
return HashCode;
}
/// Generates and saves a hash code for the given Stmt.
/// \param S The given Stmt.
/// \param D The Decl containing S.
/// \param StmtsByHash Output parameter that will contain the hash codes for
/// each StmtSequence in the given Stmt.
/// \return The hash code of the given Stmt.
///
/// If the given Stmt is a CompoundStmt, this method will also generate
/// hashes for all possible StmtSequences in the children of this Stmt.
static size_t
saveHash(const Stmt *S, const Decl *D,
std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
llvm::MD5 Hash;
ASTContext &Context = D->getASTContext();
CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash);
auto CS = dyn_cast<CompoundStmt>(S);
SmallVector<size_t, 8> ChildHashes;
for (const Stmt *Child : S->children()) {
if (Child == nullptr) {
ChildHashes.push_back(0);
continue;
}
size_t ChildHash = saveHash(Child, D, StmtsByHash);
Hash.update(
StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
ChildHashes.push_back(ChildHash);
}
if (CS) {
// If we're in a CompoundStmt, we hash all possible combinations of child
// statements to find clones in those subsequences.
// We first go through every possible starting position of a subsequence.
for (unsigned Pos = 0; Pos < CS->size(); ++Pos) {
// Then we try all possible lengths this subsequence could have and
// reuse the same hash object to make sure we only hash every child
// hash exactly once.
llvm::MD5 Hash;
for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) {
// Grab the current child hash and put it into our hash. We do
// -1 on the index because we start counting the length at 1.
size_t ChildHash = ChildHashes[Pos + Length - 1];
Hash.update(
StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
// If we have at least two elements in our subsequence, we can start
// saving it.
if (Length > 1) {
llvm::MD5 SubHash = Hash;
StmtsByHash.push_back(std::make_pair(
createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length)));
}
}
}
}
size_t HashCode = createHash(Hash);
StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
return HashCode;
}
namespace {
/// Wrapper around FoldingSetNodeID that it can be used as the template
/// argument of the StmtDataCollector.
class FoldingSetNodeIDWrapper {
llvm::FoldingSetNodeID &FS;
public:
FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
void update(StringRef Str) { FS.AddString(Str); }
};
} // end anonymous namespace
/// Writes the relevant data from all statements and child statements
/// in the given StmtSequence into the given FoldingSetNodeID.
static void CollectStmtSequenceData(const StmtSequence &Sequence,
FoldingSetNodeIDWrapper &OutputData) {
for (const Stmt *S : Sequence) {
CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>(
S, Sequence.getASTContext(), OutputData);
for (const Stmt *Child : S->children()) {
if (!Child)
continue;
CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
OutputData);
}
}
}
/// Returns true if both sequences are clones of each other.
static bool areSequencesClones(const StmtSequence &LHS,
const StmtSequence &RHS) {
// We collect the data from all statements in the sequence as we did before
// when generating a hash value for each sequence. But this time we don't
// hash the collected data and compare the whole data set instead. This
// prevents any false-positives due to hash code collisions.
llvm::FoldingSetNodeID DataLHS, DataRHS;
FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
CollectStmtSequenceData(LHS, LHSWrapper);
CollectStmtSequenceData(RHS, RHSWrapper);
return DataLHS == DataRHS;
}
void RecursiveCloneTypeIIHashConstraint::constrain(
std::vector<CloneDetector::CloneGroup> &Sequences) {
// FIXME: Maybe we can do this in-place and don't need this additional vector.
std::vector<CloneDetector::CloneGroup> Result;
for (CloneDetector::CloneGroup &Group : Sequences) {
// We assume in the following code that the Group is non-empty, so we
// skip all empty groups.
if (Group.empty())
continue;
std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;
// Generate hash codes for all children of S and save them in StmtsByHash.
for (const StmtSequence &S : Group) {
saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
}
// Sort hash_codes in StmtsByHash.
llvm::stable_sort(StmtsByHash, llvm::less_first());
// Check for each StmtSequence if its successor has the same hash value.
// We don't check the last StmtSequence as it has no successor.
// Note: The 'size - 1 ' in the condition is safe because we check for an
// empty Group vector at the beginning of this function.
for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
const auto Current = StmtsByHash[i];
// It's likely that we just found a sequence of StmtSequences that
// represent a CloneGroup, so we create a new group and start checking and
// adding the StmtSequences in this sequence.
CloneDetector::CloneGroup NewGroup;
size_t PrototypeHash = Current.first;
for (; i < StmtsByHash.size(); ++i) {
// A different hash value means we have reached the end of the sequence.
if (PrototypeHash != StmtsByHash[i].first) {
// The current sequence could be the start of a new CloneGroup. So we
// decrement i so that we visit it again in the outer loop.
// Note: i can never be 0 at this point because we are just comparing
// the hash of the Current StmtSequence with itself in the 'if' above.
assert(i != 0);
--i;
break;
}
// Same hash value means we should add the StmtSequence to the current
// group.
NewGroup.push_back(StmtsByHash[i].second);
}
// We created a new clone group with matching hash codes and move it to
// the result vector.
Result.push_back(NewGroup);
}
}
// Sequences is the output parameter, so we copy our result into it.
Sequences = Result;
}
void RecursiveCloneTypeIIVerifyConstraint::constrain(
std::vector<CloneDetector::CloneGroup> &Sequences) {
CloneConstraint::splitCloneGroups(
Sequences, [](const StmtSequence &A, const StmtSequence &B) {
return areSequencesClones(A, B);
});
}
size_t MinComplexityConstraint::calculateStmtComplexity(
const StmtSequence &Seq, std::size_t Limit,
const std::string &ParentMacroStack) {
if (Seq.empty())
return 0;
size_t Complexity = 1;
ASTContext &Context = Seq.getASTContext();
// Look up what macros expanded into the current statement.
std::string MacroStack =
data_collection::getMacroStack(Seq.getBeginLoc(), Context);
// First, check if ParentMacroStack is not empty which means we are currently
// dealing with a parent statement which was expanded from a macro.
// If this parent statement was expanded from the same macros as this
// statement, we reduce the initial complexity of this statement to zero.
// This causes that a group of statements that were generated by a single
// macro expansion will only increase the total complexity by one.
// Note: This is not the final complexity of this statement as we still
// add the complexity of the child statements to the complexity value.
if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) {
Complexity = 0;
}
// Iterate over the Stmts in the StmtSequence and add their complexity values
// to the current complexity value.
if (Seq.holdsSequence()) {
for (const Stmt *S : Seq) {
Complexity += calculateStmtComplexity(
StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
if (Complexity >= Limit)
return Limit;
}
} else {
for (const Stmt *S : Seq.front()->children()) {
Complexity += calculateStmtComplexity(
StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
if (Complexity >= Limit)
return Limit;
}
}
return Complexity;
}
void MatchingVariablePatternConstraint::constrain(
std::vector<CloneDetector::CloneGroup> &CloneGroups) {
CloneConstraint::splitCloneGroups(
CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
VariablePattern PatternA(A);
VariablePattern PatternB(B);
return PatternA.countPatternDifferences(PatternB) == 0;
});
}
void CloneConstraint::splitCloneGroups(
std::vector<CloneDetector::CloneGroup> &CloneGroups,
llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)>
Compare) {
std::vector<CloneDetector::CloneGroup> Result;
for (auto &HashGroup : CloneGroups) {
// Contains all indexes in HashGroup that were already added to a
// CloneGroup.
std::vector<char> Indexes;
Indexes.resize(HashGroup.size());
for (unsigned i = 0; i < HashGroup.size(); ++i) {
// Skip indexes that are already part of a CloneGroup.
if (Indexes[i])
continue;
// Pick the first unhandled StmtSequence and consider it as the
// beginning
// of a new CloneGroup for now.
// We don't add i to Indexes because we never iterate back.
StmtSequence Prototype = HashGroup[i];
CloneDetector::CloneGroup PotentialGroup = {Prototype};
++Indexes[i];
// Check all following StmtSequences for clones.
for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
// Skip indexes that are already part of a CloneGroup.
if (Indexes[j])
continue;
// If a following StmtSequence belongs to our CloneGroup, we add it.
const StmtSequence &Candidate = HashGroup[j];
if (!Compare(Prototype, Candidate))
continue;
PotentialGroup.push_back(Candidate);
// Make sure we never visit this StmtSequence again.
++Indexes[j];
}
// Otherwise, add it to the result and continue searching for more
// groups.
Result.push_back(PotentialGroup);
}
assert(llvm::all_of(Indexes, [](char c) { return c == 1; }));
}
CloneGroups = Result;
}
void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
const Stmt *Mention) {
// First check if we already reference this variable
for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
if (Variables[KindIndex] == VarDecl) {
// If yes, add a new occurrence that points to the existing entry in
// the Variables vector.
Occurences.emplace_back(KindIndex, Mention);
return;
}
}
// If this variable wasn't already referenced, add it to the list of
// referenced variables and add a occurrence that points to this new entry.
Occurences.emplace_back(Variables.size(), Mention);
Variables.push_back(VarDecl);
}
void VariablePattern::addVariables(const Stmt *S) {
// Sometimes we get a nullptr (such as from IfStmts which often have nullptr
// children). We skip such statements as they don't reference any
// variables.
if (!S)
return;
// Check if S is a reference to a variable. If yes, add it to the pattern.
if (auto D = dyn_cast<DeclRefExpr>(S)) {
if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
addVariableOccurence(VD, D);
}
// Recursively check all children of the given statement.
for (const Stmt *Child : S->children()) {
addVariables(Child);
}
}
unsigned VariablePattern::countPatternDifferences(
const VariablePattern &Other,
VariablePattern::SuspiciousClonePair *FirstMismatch) {
unsigned NumberOfDifferences = 0;
assert(Other.Occurences.size() == Occurences.size());
for (unsigned i = 0; i < Occurences.size(); ++i) {
auto ThisOccurence = Occurences[i];
auto OtherOccurence = Other.Occurences[i];
if (ThisOccurence.KindID == OtherOccurence.KindID)
continue;
++NumberOfDifferences;
// If FirstMismatch is not a nullptr, we need to store information about
// the first difference between the two patterns.
if (FirstMismatch == nullptr)
continue;
// Only proceed if we just found the first difference as we only store
// information about the first difference.
if (NumberOfDifferences != 1)
continue;
const VarDecl *FirstSuggestion = nullptr;
// If there is a variable available in the list of referenced variables
// which wouldn't break the pattern if it is used in place of the
// current variable, we provide this variable as the suggested fix.
if (OtherOccurence.KindID < Variables.size())
FirstSuggestion = Variables[OtherOccurence.KindID];
// Store information about the first clone.
FirstMismatch->FirstCloneInfo =
VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
Variables[ThisOccurence.KindID], ThisOccurence.Mention,
FirstSuggestion);
// Same as above but with the other clone. We do this for both clones as
// we don't know which clone is the one containing the unintended
// pattern error.
const VarDecl *SecondSuggestion = nullptr;
if (ThisOccurence.KindID < Other.Variables.size())
SecondSuggestion = Other.Variables[ThisOccurence.KindID];
// Store information about the second clone.
FirstMismatch->SecondCloneInfo =
VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
SecondSuggestion);
// SuspiciousClonePair guarantees that the first clone always has a
// suggested variable associated with it. As we know that one of the two
// clones in the pair always has suggestion, we swap the two clones
// in case the first clone has no suggested variable which means that
// the second clone has a suggested variable and should be first.
if (!FirstMismatch->FirstCloneInfo.Suggestion)
std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);
// This ensures that we always have at least one suggestion in a pair.
assert(FirstMismatch->FirstCloneInfo.Suggestion);
}
return NumberOfDifferences;
}