1439 lines
51 KiB
C++
1439 lines
51 KiB
C++
//===--- ASTMatchFinder.cpp - Structural query framework ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implements an algorithm to efficiently search for matches on AST nodes.
|
|
// Uses memoization to support recursive matches like HasDescendant.
|
|
//
|
|
// The general idea is to visit all AST nodes with a RecursiveASTVisitor,
|
|
// calling the Matches(...) method of each matcher we are running on each
|
|
// AST node. The matcher can recurse via the ASTMatchFinder interface.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/ASTMatchers/ASTMatchFinder.h"
|
|
#include "clang/AST/ASTConsumer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include <deque>
|
|
#include <memory>
|
|
#include <set>
|
|
|
|
namespace clang {
|
|
namespace ast_matchers {
|
|
namespace internal {
|
|
namespace {
|
|
|
|
typedef MatchFinder::MatchCallback MatchCallback;
|
|
|
|
// The maximum number of memoization entries to store.
|
|
// 10k has been experimentally found to give a good trade-off
|
|
// of performance vs. memory consumption by running matcher
|
|
// that match on every statement over a very large codebase.
|
|
//
|
|
// FIXME: Do some performance optimization in general and
|
|
// revisit this number; also, put up micro-benchmarks that we can
|
|
// optimize this on.
|
|
static const unsigned MaxMemoizationEntries = 10000;
|
|
|
|
enum class MatchType {
|
|
Ancestors,
|
|
|
|
Descendants,
|
|
Child,
|
|
};
|
|
|
|
// We use memoization to avoid running the same matcher on the same
|
|
// AST node twice. This struct is the key for looking up match
|
|
// result. It consists of an ID of the MatcherInterface (for
|
|
// identifying the matcher), a pointer to the AST node and the
|
|
// bound nodes before the matcher was executed.
|
|
//
|
|
// We currently only memoize on nodes whose pointers identify the
|
|
// nodes (\c Stmt and \c Decl, but not \c QualType or \c TypeLoc).
|
|
// For \c QualType and \c TypeLoc it is possible to implement
|
|
// generation of keys for each type.
|
|
// FIXME: Benchmark whether memoization of non-pointer typed nodes
|
|
// provides enough benefit for the additional amount of code.
|
|
struct MatchKey {
|
|
DynTypedMatcher::MatcherIDType MatcherID;
|
|
DynTypedNode Node;
|
|
BoundNodesTreeBuilder BoundNodes;
|
|
TraversalKind Traversal = TK_AsIs;
|
|
MatchType Type;
|
|
|
|
bool operator<(const MatchKey &Other) const {
|
|
return std::tie(Traversal, Type, MatcherID, Node, BoundNodes) <
|
|
std::tie(Other.Traversal, Other.Type, Other.MatcherID, Other.Node,
|
|
Other.BoundNodes);
|
|
}
|
|
};
|
|
|
|
// Used to store the result of a match and possibly bound nodes.
|
|
struct MemoizedMatchResult {
|
|
bool ResultOfMatch;
|
|
BoundNodesTreeBuilder Nodes;
|
|
};
|
|
|
|
// A RecursiveASTVisitor that traverses all children or all descendants of
|
|
// a node.
|
|
class MatchChildASTVisitor
|
|
: public RecursiveASTVisitor<MatchChildASTVisitor> {
|
|
public:
|
|
typedef RecursiveASTVisitor<MatchChildASTVisitor> VisitorBase;
|
|
|
|
// Creates an AST visitor that matches 'matcher' on all children or
|
|
// descendants of a traversed node. max_depth is the maximum depth
|
|
// to traverse: use 1 for matching the children and INT_MAX for
|
|
// matching the descendants.
|
|
MatchChildASTVisitor(const DynTypedMatcher *Matcher, ASTMatchFinder *Finder,
|
|
BoundNodesTreeBuilder *Builder, int MaxDepth,
|
|
bool IgnoreImplicitChildren,
|
|
ASTMatchFinder::BindKind Bind)
|
|
: Matcher(Matcher), Finder(Finder), Builder(Builder), CurrentDepth(0),
|
|
MaxDepth(MaxDepth), IgnoreImplicitChildren(IgnoreImplicitChildren),
|
|
Bind(Bind), Matches(false) {}
|
|
|
|
// Returns true if a match is found in the subtree rooted at the
|
|
// given AST node. This is done via a set of mutually recursive
|
|
// functions. Here's how the recursion is done (the *wildcard can
|
|
// actually be Decl, Stmt, or Type):
|
|
//
|
|
// - Traverse(node) calls BaseTraverse(node) when it needs
|
|
// to visit the descendants of node.
|
|
// - BaseTraverse(node) then calls (via VisitorBase::Traverse*(node))
|
|
// Traverse*(c) for each child c of 'node'.
|
|
// - Traverse*(c) in turn calls Traverse(c), completing the
|
|
// recursion.
|
|
bool findMatch(const DynTypedNode &DynNode) {
|
|
reset();
|
|
if (const Decl *D = DynNode.get<Decl>())
|
|
traverse(*D);
|
|
else if (const Stmt *S = DynNode.get<Stmt>())
|
|
traverse(*S);
|
|
else if (const NestedNameSpecifier *NNS =
|
|
DynNode.get<NestedNameSpecifier>())
|
|
traverse(*NNS);
|
|
else if (const NestedNameSpecifierLoc *NNSLoc =
|
|
DynNode.get<NestedNameSpecifierLoc>())
|
|
traverse(*NNSLoc);
|
|
else if (const QualType *Q = DynNode.get<QualType>())
|
|
traverse(*Q);
|
|
else if (const TypeLoc *T = DynNode.get<TypeLoc>())
|
|
traverse(*T);
|
|
else if (const auto *C = DynNode.get<CXXCtorInitializer>())
|
|
traverse(*C);
|
|
else if (const TemplateArgumentLoc *TALoc =
|
|
DynNode.get<TemplateArgumentLoc>())
|
|
traverse(*TALoc);
|
|
// FIXME: Add other base types after adding tests.
|
|
|
|
// It's OK to always overwrite the bound nodes, as if there was
|
|
// no match in this recursive branch, the result set is empty
|
|
// anyway.
|
|
*Builder = ResultBindings;
|
|
|
|
return Matches;
|
|
}
|
|
|
|
// The following are overriding methods from the base visitor class.
|
|
// They are public only to allow CRTP to work. They are *not *part
|
|
// of the public API of this class.
|
|
bool TraverseDecl(Decl *DeclNode) {
|
|
|
|
if (DeclNode && DeclNode->isImplicit() &&
|
|
Finder->isTraversalIgnoringImplicitNodes())
|
|
return baseTraverse(*DeclNode);
|
|
|
|
ScopedIncrement ScopedDepth(&CurrentDepth);
|
|
return (DeclNode == nullptr) || traverse(*DeclNode);
|
|
}
|
|
|
|
Stmt *getStmtToTraverse(Stmt *StmtNode) {
|
|
Stmt *StmtToTraverse = StmtNode;
|
|
if (auto *ExprNode = dyn_cast_or_null<Expr>(StmtNode)) {
|
|
auto *LambdaNode = dyn_cast_or_null<LambdaExpr>(StmtNode);
|
|
if (LambdaNode && Finder->isTraversalIgnoringImplicitNodes())
|
|
StmtToTraverse = LambdaNode;
|
|
else
|
|
StmtToTraverse =
|
|
Finder->getASTContext().getParentMapContext().traverseIgnored(
|
|
ExprNode);
|
|
}
|
|
return StmtToTraverse;
|
|
}
|
|
|
|
bool TraverseStmt(Stmt *StmtNode, DataRecursionQueue *Queue = nullptr) {
|
|
// If we need to keep track of the depth, we can't perform data recursion.
|
|
if (CurrentDepth == 0 || (CurrentDepth <= MaxDepth && MaxDepth < INT_MAX))
|
|
Queue = nullptr;
|
|
|
|
ScopedIncrement ScopedDepth(&CurrentDepth);
|
|
Stmt *StmtToTraverse = getStmtToTraverse(StmtNode);
|
|
if (!StmtToTraverse)
|
|
return true;
|
|
|
|
if (IgnoreImplicitChildren && isa<CXXDefaultArgExpr>(StmtNode))
|
|
return true;
|
|
|
|
if (!match(*StmtToTraverse))
|
|
return false;
|
|
return VisitorBase::TraverseStmt(StmtToTraverse, Queue);
|
|
}
|
|
// We assume that the QualType and the contained type are on the same
|
|
// hierarchy level. Thus, we try to match either of them.
|
|
bool TraverseType(QualType TypeNode) {
|
|
if (TypeNode.isNull())
|
|
return true;
|
|
ScopedIncrement ScopedDepth(&CurrentDepth);
|
|
// Match the Type.
|
|
if (!match(*TypeNode))
|
|
return false;
|
|
// The QualType is matched inside traverse.
|
|
return traverse(TypeNode);
|
|
}
|
|
// We assume that the TypeLoc, contained QualType and contained Type all are
|
|
// on the same hierarchy level. Thus, we try to match all of them.
|
|
bool TraverseTypeLoc(TypeLoc TypeLocNode) {
|
|
if (TypeLocNode.isNull())
|
|
return true;
|
|
ScopedIncrement ScopedDepth(&CurrentDepth);
|
|
// Match the Type.
|
|
if (!match(*TypeLocNode.getType()))
|
|
return false;
|
|
// Match the QualType.
|
|
if (!match(TypeLocNode.getType()))
|
|
return false;
|
|
// The TypeLoc is matched inside traverse.
|
|
return traverse(TypeLocNode);
|
|
}
|
|
bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) {
|
|
ScopedIncrement ScopedDepth(&CurrentDepth);
|
|
return (NNS == nullptr) || traverse(*NNS);
|
|
}
|
|
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS) {
|
|
if (!NNS)
|
|
return true;
|
|
ScopedIncrement ScopedDepth(&CurrentDepth);
|
|
if (!match(*NNS.getNestedNameSpecifier()))
|
|
return false;
|
|
return traverse(NNS);
|
|
}
|
|
bool TraverseConstructorInitializer(CXXCtorInitializer *CtorInit) {
|
|
if (!CtorInit)
|
|
return true;
|
|
ScopedIncrement ScopedDepth(&CurrentDepth);
|
|
return traverse(*CtorInit);
|
|
}
|
|
bool TraverseTemplateArgumentLoc(TemplateArgumentLoc TAL) {
|
|
ScopedIncrement ScopedDepth(&CurrentDepth);
|
|
return traverse(TAL);
|
|
}
|
|
bool TraverseCXXForRangeStmt(CXXForRangeStmt *Node) {
|
|
if (!Finder->isTraversalIgnoringImplicitNodes())
|
|
return VisitorBase::TraverseCXXForRangeStmt(Node);
|
|
if (!Node)
|
|
return true;
|
|
ScopedIncrement ScopedDepth(&CurrentDepth);
|
|
if (auto *Init = Node->getInit())
|
|
if (!traverse(*Init))
|
|
return false;
|
|
if (!match(*Node->getLoopVariable()))
|
|
return false;
|
|
if (match(*Node->getRangeInit()))
|
|
if (!VisitorBase::TraverseStmt(Node->getRangeInit()))
|
|
return false;
|
|
if (!match(*Node->getBody()))
|
|
return false;
|
|
return VisitorBase::TraverseStmt(Node->getBody());
|
|
}
|
|
bool TraverseCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *Node) {
|
|
if (!Finder->isTraversalIgnoringImplicitNodes())
|
|
return VisitorBase::TraverseCXXRewrittenBinaryOperator(Node);
|
|
if (!Node)
|
|
return true;
|
|
ScopedIncrement ScopedDepth(&CurrentDepth);
|
|
|
|
return match(*Node->getLHS()) && match(*Node->getRHS());
|
|
}
|
|
bool TraverseLambdaExpr(LambdaExpr *Node) {
|
|
if (!Finder->isTraversalIgnoringImplicitNodes())
|
|
return VisitorBase::TraverseLambdaExpr(Node);
|
|
if (!Node)
|
|
return true;
|
|
ScopedIncrement ScopedDepth(&CurrentDepth);
|
|
|
|
for (unsigned I = 0, N = Node->capture_size(); I != N; ++I) {
|
|
const auto *C = Node->capture_begin() + I;
|
|
if (!C->isExplicit())
|
|
continue;
|
|
if (Node->isInitCapture(C) && !match(*C->getCapturedVar()))
|
|
return false;
|
|
if (!match(*Node->capture_init_begin()[I]))
|
|
return false;
|
|
}
|
|
|
|
if (const auto *TPL = Node->getTemplateParameterList()) {
|
|
for (const auto *TP : *TPL) {
|
|
if (!match(*TP))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (const auto *P : Node->getCallOperator()->parameters()) {
|
|
if (!match(*P))
|
|
return false;
|
|
}
|
|
|
|
if (!match(*Node->getBody()))
|
|
return false;
|
|
|
|
return VisitorBase::TraverseStmt(Node->getBody());
|
|
}
|
|
|
|
bool shouldVisitTemplateInstantiations() const { return true; }
|
|
bool shouldVisitImplicitCode() const { return !IgnoreImplicitChildren; }
|
|
|
|
private:
|
|
// Used for updating the depth during traversal.
|
|
struct ScopedIncrement {
|
|
explicit ScopedIncrement(int *Depth) : Depth(Depth) { ++(*Depth); }
|
|
~ScopedIncrement() { --(*Depth); }
|
|
|
|
private:
|
|
int *Depth;
|
|
};
|
|
|
|
// Resets the state of this object.
|
|
void reset() {
|
|
Matches = false;
|
|
CurrentDepth = 0;
|
|
}
|
|
|
|
// Forwards the call to the corresponding Traverse*() method in the
|
|
// base visitor class.
|
|
bool baseTraverse(const Decl &DeclNode) {
|
|
return VisitorBase::TraverseDecl(const_cast<Decl*>(&DeclNode));
|
|
}
|
|
bool baseTraverse(const Stmt &StmtNode) {
|
|
return VisitorBase::TraverseStmt(const_cast<Stmt*>(&StmtNode));
|
|
}
|
|
bool baseTraverse(QualType TypeNode) {
|
|
return VisitorBase::TraverseType(TypeNode);
|
|
}
|
|
bool baseTraverse(TypeLoc TypeLocNode) {
|
|
return VisitorBase::TraverseTypeLoc(TypeLocNode);
|
|
}
|
|
bool baseTraverse(const NestedNameSpecifier &NNS) {
|
|
return VisitorBase::TraverseNestedNameSpecifier(
|
|
const_cast<NestedNameSpecifier*>(&NNS));
|
|
}
|
|
bool baseTraverse(NestedNameSpecifierLoc NNS) {
|
|
return VisitorBase::TraverseNestedNameSpecifierLoc(NNS);
|
|
}
|
|
bool baseTraverse(const CXXCtorInitializer &CtorInit) {
|
|
return VisitorBase::TraverseConstructorInitializer(
|
|
const_cast<CXXCtorInitializer *>(&CtorInit));
|
|
}
|
|
bool baseTraverse(TemplateArgumentLoc TAL) {
|
|
return VisitorBase::TraverseTemplateArgumentLoc(TAL);
|
|
}
|
|
|
|
// Sets 'Matched' to true if 'Matcher' matches 'Node' and:
|
|
// 0 < CurrentDepth <= MaxDepth.
|
|
//
|
|
// Returns 'true' if traversal should continue after this function
|
|
// returns, i.e. if no match is found or 'Bind' is 'BK_All'.
|
|
template <typename T>
|
|
bool match(const T &Node) {
|
|
if (CurrentDepth == 0 || CurrentDepth > MaxDepth) {
|
|
return true;
|
|
}
|
|
if (Bind != ASTMatchFinder::BK_All) {
|
|
BoundNodesTreeBuilder RecursiveBuilder(*Builder);
|
|
if (Matcher->matches(DynTypedNode::create(Node), Finder,
|
|
&RecursiveBuilder)) {
|
|
Matches = true;
|
|
ResultBindings.addMatch(RecursiveBuilder);
|
|
return false; // Abort as soon as a match is found.
|
|
}
|
|
} else {
|
|
BoundNodesTreeBuilder RecursiveBuilder(*Builder);
|
|
if (Matcher->matches(DynTypedNode::create(Node), Finder,
|
|
&RecursiveBuilder)) {
|
|
// After the first match the matcher succeeds.
|
|
Matches = true;
|
|
ResultBindings.addMatch(RecursiveBuilder);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Traverses the subtree rooted at 'Node'; returns true if the
|
|
// traversal should continue after this function returns.
|
|
template <typename T>
|
|
bool traverse(const T &Node) {
|
|
static_assert(IsBaseType<T>::value,
|
|
"traverse can only be instantiated with base type");
|
|
if (!match(Node))
|
|
return false;
|
|
return baseTraverse(Node);
|
|
}
|
|
|
|
const DynTypedMatcher *const Matcher;
|
|
ASTMatchFinder *const Finder;
|
|
BoundNodesTreeBuilder *const Builder;
|
|
BoundNodesTreeBuilder ResultBindings;
|
|
int CurrentDepth;
|
|
const int MaxDepth;
|
|
const bool IgnoreImplicitChildren;
|
|
const ASTMatchFinder::BindKind Bind;
|
|
bool Matches;
|
|
};
|
|
|
|
// Controls the outermost traversal of the AST and allows to match multiple
|
|
// matchers.
|
|
class MatchASTVisitor : public RecursiveASTVisitor<MatchASTVisitor>,
|
|
public ASTMatchFinder {
|
|
public:
|
|
MatchASTVisitor(const MatchFinder::MatchersByType *Matchers,
|
|
const MatchFinder::MatchFinderOptions &Options)
|
|
: Matchers(Matchers), Options(Options), ActiveASTContext(nullptr) {}
|
|
|
|
~MatchASTVisitor() override {
|
|
if (Options.CheckProfiling) {
|
|
Options.CheckProfiling->Records = std::move(TimeByBucket);
|
|
}
|
|
}
|
|
|
|
void onStartOfTranslationUnit() {
|
|
const bool EnableCheckProfiling = Options.CheckProfiling.hasValue();
|
|
TimeBucketRegion Timer;
|
|
for (MatchCallback *MC : Matchers->AllCallbacks) {
|
|
if (EnableCheckProfiling)
|
|
Timer.setBucket(&TimeByBucket[MC->getID()]);
|
|
MC->onStartOfTranslationUnit();
|
|
}
|
|
}
|
|
|
|
void onEndOfTranslationUnit() {
|
|
const bool EnableCheckProfiling = Options.CheckProfiling.hasValue();
|
|
TimeBucketRegion Timer;
|
|
for (MatchCallback *MC : Matchers->AllCallbacks) {
|
|
if (EnableCheckProfiling)
|
|
Timer.setBucket(&TimeByBucket[MC->getID()]);
|
|
MC->onEndOfTranslationUnit();
|
|
}
|
|
}
|
|
|
|
void set_active_ast_context(ASTContext *NewActiveASTContext) {
|
|
ActiveASTContext = NewActiveASTContext;
|
|
}
|
|
|
|
// The following Visit*() and Traverse*() functions "override"
|
|
// methods in RecursiveASTVisitor.
|
|
|
|
bool VisitTypedefNameDecl(TypedefNameDecl *DeclNode) {
|
|
// When we see 'typedef A B', we add name 'B' to the set of names
|
|
// A's canonical type maps to. This is necessary for implementing
|
|
// isDerivedFrom(x) properly, where x can be the name of the base
|
|
// class or any of its aliases.
|
|
//
|
|
// In general, the is-alias-of (as defined by typedefs) relation
|
|
// is tree-shaped, as you can typedef a type more than once. For
|
|
// example,
|
|
//
|
|
// typedef A B;
|
|
// typedef A C;
|
|
// typedef C D;
|
|
// typedef C E;
|
|
//
|
|
// gives you
|
|
//
|
|
// A
|
|
// |- B
|
|
// `- C
|
|
// |- D
|
|
// `- E
|
|
//
|
|
// It is wrong to assume that the relation is a chain. A correct
|
|
// implementation of isDerivedFrom() needs to recognize that B and
|
|
// E are aliases, even though neither is a typedef of the other.
|
|
// Therefore, we cannot simply walk through one typedef chain to
|
|
// find out whether the type name matches.
|
|
const Type *TypeNode = DeclNode->getUnderlyingType().getTypePtr();
|
|
const Type *CanonicalType = // root of the typedef tree
|
|
ActiveASTContext->getCanonicalType(TypeNode);
|
|
TypeAliases[CanonicalType].insert(DeclNode);
|
|
return true;
|
|
}
|
|
|
|
bool VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *CAD) {
|
|
const ObjCInterfaceDecl *InterfaceDecl = CAD->getClassInterface();
|
|
CompatibleAliases[InterfaceDecl].insert(CAD);
|
|
return true;
|
|
}
|
|
|
|
bool TraverseDecl(Decl *DeclNode);
|
|
bool TraverseStmt(Stmt *StmtNode, DataRecursionQueue *Queue = nullptr);
|
|
bool TraverseType(QualType TypeNode);
|
|
bool TraverseTypeLoc(TypeLoc TypeNode);
|
|
bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS);
|
|
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS);
|
|
bool TraverseConstructorInitializer(CXXCtorInitializer *CtorInit);
|
|
bool TraverseTemplateArgumentLoc(TemplateArgumentLoc TAL);
|
|
|
|
bool dataTraverseNode(Stmt *S, DataRecursionQueue *Queue) {
|
|
if (auto *RF = dyn_cast<CXXForRangeStmt>(S)) {
|
|
{
|
|
ASTNodeNotAsIsSourceScope RAII(this, true);
|
|
TraverseStmt(RF->getInit());
|
|
// Don't traverse under the loop variable
|
|
match(*RF->getLoopVariable());
|
|
TraverseStmt(RF->getRangeInit());
|
|
}
|
|
{
|
|
ASTNodeNotSpelledInSourceScope RAII(this, true);
|
|
for (auto *SubStmt : RF->children()) {
|
|
if (SubStmt != RF->getBody())
|
|
TraverseStmt(SubStmt);
|
|
}
|
|
}
|
|
TraverseStmt(RF->getBody());
|
|
return true;
|
|
} else if (auto *RBO = dyn_cast<CXXRewrittenBinaryOperator>(S)) {
|
|
{
|
|
ASTNodeNotAsIsSourceScope RAII(this, true);
|
|
TraverseStmt(const_cast<Expr *>(RBO->getLHS()));
|
|
TraverseStmt(const_cast<Expr *>(RBO->getRHS()));
|
|
}
|
|
{
|
|
ASTNodeNotSpelledInSourceScope RAII(this, true);
|
|
for (auto *SubStmt : RBO->children()) {
|
|
TraverseStmt(SubStmt);
|
|
}
|
|
}
|
|
return true;
|
|
} else if (auto *LE = dyn_cast<LambdaExpr>(S)) {
|
|
for (auto I : llvm::zip(LE->captures(), LE->capture_inits())) {
|
|
auto C = std::get<0>(I);
|
|
ASTNodeNotSpelledInSourceScope RAII(
|
|
this, TraversingASTNodeNotSpelledInSource || !C.isExplicit());
|
|
TraverseLambdaCapture(LE, &C, std::get<1>(I));
|
|
}
|
|
|
|
{
|
|
ASTNodeNotSpelledInSourceScope RAII(this, true);
|
|
TraverseDecl(LE->getLambdaClass());
|
|
}
|
|
{
|
|
ASTNodeNotAsIsSourceScope RAII(this, true);
|
|
|
|
// We need to poke around to find the bits that might be explicitly
|
|
// written.
|
|
TypeLoc TL = LE->getCallOperator()->getTypeSourceInfo()->getTypeLoc();
|
|
FunctionProtoTypeLoc Proto = TL.getAsAdjusted<FunctionProtoTypeLoc>();
|
|
|
|
if (auto *TPL = LE->getTemplateParameterList()) {
|
|
for (NamedDecl *D : *TPL) {
|
|
TraverseDecl(D);
|
|
}
|
|
if (Expr *RequiresClause = TPL->getRequiresClause()) {
|
|
TraverseStmt(RequiresClause);
|
|
}
|
|
}
|
|
|
|
if (LE->hasExplicitParameters()) {
|
|
// Visit parameters.
|
|
for (ParmVarDecl *Param : Proto.getParams())
|
|
TraverseDecl(Param);
|
|
}
|
|
|
|
const auto *T = Proto.getTypePtr();
|
|
for (const auto &E : T->exceptions())
|
|
TraverseType(E);
|
|
|
|
if (Expr *NE = T->getNoexceptExpr())
|
|
TraverseStmt(NE, Queue);
|
|
|
|
if (LE->hasExplicitResultType())
|
|
TraverseTypeLoc(Proto.getReturnLoc());
|
|
TraverseStmt(LE->getTrailingRequiresClause());
|
|
}
|
|
|
|
TraverseStmt(LE->getBody());
|
|
return true;
|
|
}
|
|
return RecursiveASTVisitor<MatchASTVisitor>::dataTraverseNode(S, Queue);
|
|
}
|
|
|
|
// Matches children or descendants of 'Node' with 'BaseMatcher'.
|
|
bool memoizedMatchesRecursively(const DynTypedNode &Node, ASTContext &Ctx,
|
|
const DynTypedMatcher &Matcher,
|
|
BoundNodesTreeBuilder *Builder, int MaxDepth,
|
|
BindKind Bind) {
|
|
// For AST-nodes that don't have an identity, we can't memoize.
|
|
if (!Node.getMemoizationData() || !Builder->isComparable())
|
|
return matchesRecursively(Node, Matcher, Builder, MaxDepth, Bind);
|
|
|
|
MatchKey Key;
|
|
Key.MatcherID = Matcher.getID();
|
|
Key.Node = Node;
|
|
// Note that we key on the bindings *before* the match.
|
|
Key.BoundNodes = *Builder;
|
|
Key.Traversal = Ctx.getParentMapContext().getTraversalKind();
|
|
// Memoize result even doing a single-level match, it might be expensive.
|
|
Key.Type = MaxDepth == 1 ? MatchType::Child : MatchType::Descendants;
|
|
MemoizationMap::iterator I = ResultCache.find(Key);
|
|
if (I != ResultCache.end()) {
|
|
*Builder = I->second.Nodes;
|
|
return I->second.ResultOfMatch;
|
|
}
|
|
|
|
MemoizedMatchResult Result;
|
|
Result.Nodes = *Builder;
|
|
Result.ResultOfMatch =
|
|
matchesRecursively(Node, Matcher, &Result.Nodes, MaxDepth, Bind);
|
|
|
|
MemoizedMatchResult &CachedResult = ResultCache[Key];
|
|
CachedResult = std::move(Result);
|
|
|
|
*Builder = CachedResult.Nodes;
|
|
return CachedResult.ResultOfMatch;
|
|
}
|
|
|
|
// Matches children or descendants of 'Node' with 'BaseMatcher'.
|
|
bool matchesRecursively(const DynTypedNode &Node,
|
|
const DynTypedMatcher &Matcher,
|
|
BoundNodesTreeBuilder *Builder, int MaxDepth,
|
|
BindKind Bind) {
|
|
bool ScopedTraversal = TraversingASTNodeNotSpelledInSource ||
|
|
TraversingASTChildrenNotSpelledInSource;
|
|
|
|
bool IgnoreImplicitChildren = false;
|
|
|
|
if (isTraversalIgnoringImplicitNodes()) {
|
|
IgnoreImplicitChildren = true;
|
|
}
|
|
|
|
ASTNodeNotSpelledInSourceScope RAII(this, ScopedTraversal);
|
|
|
|
MatchChildASTVisitor Visitor(&Matcher, this, Builder, MaxDepth,
|
|
IgnoreImplicitChildren, Bind);
|
|
return Visitor.findMatch(Node);
|
|
}
|
|
|
|
bool classIsDerivedFrom(const CXXRecordDecl *Declaration,
|
|
const Matcher<NamedDecl> &Base,
|
|
BoundNodesTreeBuilder *Builder,
|
|
bool Directly) override;
|
|
|
|
bool objcClassIsDerivedFrom(const ObjCInterfaceDecl *Declaration,
|
|
const Matcher<NamedDecl> &Base,
|
|
BoundNodesTreeBuilder *Builder,
|
|
bool Directly) override;
|
|
|
|
// Implements ASTMatchFinder::matchesChildOf.
|
|
bool matchesChildOf(const DynTypedNode &Node, ASTContext &Ctx,
|
|
const DynTypedMatcher &Matcher,
|
|
BoundNodesTreeBuilder *Builder, BindKind Bind) override {
|
|
if (ResultCache.size() > MaxMemoizationEntries)
|
|
ResultCache.clear();
|
|
return memoizedMatchesRecursively(Node, Ctx, Matcher, Builder, 1, Bind);
|
|
}
|
|
// Implements ASTMatchFinder::matchesDescendantOf.
|
|
bool matchesDescendantOf(const DynTypedNode &Node, ASTContext &Ctx,
|
|
const DynTypedMatcher &Matcher,
|
|
BoundNodesTreeBuilder *Builder,
|
|
BindKind Bind) override {
|
|
if (ResultCache.size() > MaxMemoizationEntries)
|
|
ResultCache.clear();
|
|
return memoizedMatchesRecursively(Node, Ctx, Matcher, Builder, INT_MAX,
|
|
Bind);
|
|
}
|
|
// Implements ASTMatchFinder::matchesAncestorOf.
|
|
bool matchesAncestorOf(const DynTypedNode &Node, ASTContext &Ctx,
|
|
const DynTypedMatcher &Matcher,
|
|
BoundNodesTreeBuilder *Builder,
|
|
AncestorMatchMode MatchMode) override {
|
|
// Reset the cache outside of the recursive call to make sure we
|
|
// don't invalidate any iterators.
|
|
if (ResultCache.size() > MaxMemoizationEntries)
|
|
ResultCache.clear();
|
|
if (MatchMode == AncestorMatchMode::AMM_ParentOnly)
|
|
return matchesParentOf(Node, Matcher, Builder);
|
|
return matchesAnyAncestorOf(Node, Ctx, Matcher, Builder);
|
|
}
|
|
|
|
// Matches all registered matchers on the given node and calls the
|
|
// result callback for every node that matches.
|
|
void match(const DynTypedNode &Node) {
|
|
// FIXME: Improve this with a switch or a visitor pattern.
|
|
if (auto *N = Node.get<Decl>()) {
|
|
match(*N);
|
|
} else if (auto *N = Node.get<Stmt>()) {
|
|
match(*N);
|
|
} else if (auto *N = Node.get<Type>()) {
|
|
match(*N);
|
|
} else if (auto *N = Node.get<QualType>()) {
|
|
match(*N);
|
|
} else if (auto *N = Node.get<NestedNameSpecifier>()) {
|
|
match(*N);
|
|
} else if (auto *N = Node.get<NestedNameSpecifierLoc>()) {
|
|
match(*N);
|
|
} else if (auto *N = Node.get<TypeLoc>()) {
|
|
match(*N);
|
|
} else if (auto *N = Node.get<CXXCtorInitializer>()) {
|
|
match(*N);
|
|
} else if (auto *N = Node.get<TemplateArgumentLoc>()) {
|
|
match(*N);
|
|
}
|
|
}
|
|
|
|
template <typename T> void match(const T &Node) {
|
|
matchDispatch(&Node);
|
|
}
|
|
|
|
// Implements ASTMatchFinder::getASTContext.
|
|
ASTContext &getASTContext() const override { return *ActiveASTContext; }
|
|
|
|
bool shouldVisitTemplateInstantiations() const { return true; }
|
|
bool shouldVisitImplicitCode() const { return true; }
|
|
|
|
// We visit the lambda body explicitly, so instruct the RAV
|
|
// to not visit it on our behalf too.
|
|
bool shouldVisitLambdaBody() const { return false; }
|
|
|
|
bool IsMatchingInASTNodeNotSpelledInSource() const override {
|
|
return TraversingASTNodeNotSpelledInSource;
|
|
}
|
|
bool isMatchingChildrenNotSpelledInSource() const override {
|
|
return TraversingASTChildrenNotSpelledInSource;
|
|
}
|
|
void setMatchingChildrenNotSpelledInSource(bool Set) override {
|
|
TraversingASTChildrenNotSpelledInSource = Set;
|
|
}
|
|
|
|
bool IsMatchingInASTNodeNotAsIs() const override {
|
|
return TraversingASTNodeNotAsIs;
|
|
}
|
|
|
|
bool TraverseTemplateInstantiations(ClassTemplateDecl *D) {
|
|
ASTNodeNotSpelledInSourceScope RAII(this, true);
|
|
return RecursiveASTVisitor<MatchASTVisitor>::TraverseTemplateInstantiations(
|
|
D);
|
|
}
|
|
|
|
bool TraverseTemplateInstantiations(VarTemplateDecl *D) {
|
|
ASTNodeNotSpelledInSourceScope RAII(this, true);
|
|
return RecursiveASTVisitor<MatchASTVisitor>::TraverseTemplateInstantiations(
|
|
D);
|
|
}
|
|
|
|
bool TraverseTemplateInstantiations(FunctionTemplateDecl *D) {
|
|
ASTNodeNotSpelledInSourceScope RAII(this, true);
|
|
return RecursiveASTVisitor<MatchASTVisitor>::TraverseTemplateInstantiations(
|
|
D);
|
|
}
|
|
|
|
private:
|
|
bool TraversingASTNodeNotSpelledInSource = false;
|
|
bool TraversingASTNodeNotAsIs = false;
|
|
bool TraversingASTChildrenNotSpelledInSource = false;
|
|
|
|
struct ASTNodeNotSpelledInSourceScope {
|
|
ASTNodeNotSpelledInSourceScope(MatchASTVisitor *V, bool B)
|
|
: MV(V), MB(V->TraversingASTNodeNotSpelledInSource) {
|
|
V->TraversingASTNodeNotSpelledInSource = B;
|
|
}
|
|
~ASTNodeNotSpelledInSourceScope() {
|
|
MV->TraversingASTNodeNotSpelledInSource = MB;
|
|
}
|
|
|
|
private:
|
|
MatchASTVisitor *MV;
|
|
bool MB;
|
|
};
|
|
|
|
struct ASTNodeNotAsIsSourceScope {
|
|
ASTNodeNotAsIsSourceScope(MatchASTVisitor *V, bool B)
|
|
: MV(V), MB(V->TraversingASTNodeNotAsIs) {
|
|
V->TraversingASTNodeNotAsIs = B;
|
|
}
|
|
~ASTNodeNotAsIsSourceScope() { MV->TraversingASTNodeNotAsIs = MB; }
|
|
|
|
private:
|
|
MatchASTVisitor *MV;
|
|
bool MB;
|
|
};
|
|
|
|
class TimeBucketRegion {
|
|
public:
|
|
TimeBucketRegion() : Bucket(nullptr) {}
|
|
~TimeBucketRegion() { setBucket(nullptr); }
|
|
|
|
/// Start timing for \p NewBucket.
|
|
///
|
|
/// If there was a bucket already set, it will finish the timing for that
|
|
/// other bucket.
|
|
/// \p NewBucket will be timed until the next call to \c setBucket() or
|
|
/// until the \c TimeBucketRegion is destroyed.
|
|
/// If \p NewBucket is the same as the currently timed bucket, this call
|
|
/// does nothing.
|
|
void setBucket(llvm::TimeRecord *NewBucket) {
|
|
if (Bucket != NewBucket) {
|
|
auto Now = llvm::TimeRecord::getCurrentTime(true);
|
|
if (Bucket)
|
|
*Bucket += Now;
|
|
if (NewBucket)
|
|
*NewBucket -= Now;
|
|
Bucket = NewBucket;
|
|
}
|
|
}
|
|
|
|
private:
|
|
llvm::TimeRecord *Bucket;
|
|
};
|
|
|
|
/// Runs all the \p Matchers on \p Node.
|
|
///
|
|
/// Used by \c matchDispatch() below.
|
|
template <typename T, typename MC>
|
|
void matchWithoutFilter(const T &Node, const MC &Matchers) {
|
|
const bool EnableCheckProfiling = Options.CheckProfiling.hasValue();
|
|
TimeBucketRegion Timer;
|
|
for (const auto &MP : Matchers) {
|
|
if (EnableCheckProfiling)
|
|
Timer.setBucket(&TimeByBucket[MP.second->getID()]);
|
|
BoundNodesTreeBuilder Builder;
|
|
if (MP.first.matches(Node, this, &Builder)) {
|
|
MatchVisitor Visitor(ActiveASTContext, MP.second);
|
|
Builder.visitMatches(&Visitor);
|
|
}
|
|
}
|
|
}
|
|
|
|
void matchWithFilter(const DynTypedNode &DynNode) {
|
|
auto Kind = DynNode.getNodeKind();
|
|
auto it = MatcherFiltersMap.find(Kind);
|
|
const auto &Filter =
|
|
it != MatcherFiltersMap.end() ? it->second : getFilterForKind(Kind);
|
|
|
|
if (Filter.empty())
|
|
return;
|
|
|
|
const bool EnableCheckProfiling = Options.CheckProfiling.hasValue();
|
|
TimeBucketRegion Timer;
|
|
auto &Matchers = this->Matchers->DeclOrStmt;
|
|
for (unsigned short I : Filter) {
|
|
auto &MP = Matchers[I];
|
|
if (EnableCheckProfiling)
|
|
Timer.setBucket(&TimeByBucket[MP.second->getID()]);
|
|
BoundNodesTreeBuilder Builder;
|
|
|
|
{
|
|
TraversalKindScope RAII(getASTContext(), MP.first.getTraversalKind());
|
|
if (getASTContext().getParentMapContext().traverseIgnored(DynNode) !=
|
|
DynNode)
|
|
continue;
|
|
}
|
|
|
|
if (MP.first.matches(DynNode, this, &Builder)) {
|
|
MatchVisitor Visitor(ActiveASTContext, MP.second);
|
|
Builder.visitMatches(&Visitor);
|
|
}
|
|
}
|
|
}
|
|
|
|
const std::vector<unsigned short> &getFilterForKind(ASTNodeKind Kind) {
|
|
auto &Filter = MatcherFiltersMap[Kind];
|
|
auto &Matchers = this->Matchers->DeclOrStmt;
|
|
assert((Matchers.size() < USHRT_MAX) && "Too many matchers.");
|
|
for (unsigned I = 0, E = Matchers.size(); I != E; ++I) {
|
|
if (Matchers[I].first.canMatchNodesOfKind(Kind)) {
|
|
Filter.push_back(I);
|
|
}
|
|
}
|
|
return Filter;
|
|
}
|
|
|
|
/// @{
|
|
/// Overloads to pair the different node types to their matchers.
|
|
void matchDispatch(const Decl *Node) {
|
|
return matchWithFilter(DynTypedNode::create(*Node));
|
|
}
|
|
void matchDispatch(const Stmt *Node) {
|
|
return matchWithFilter(DynTypedNode::create(*Node));
|
|
}
|
|
|
|
void matchDispatch(const Type *Node) {
|
|
matchWithoutFilter(QualType(Node, 0), Matchers->Type);
|
|
}
|
|
void matchDispatch(const TypeLoc *Node) {
|
|
matchWithoutFilter(*Node, Matchers->TypeLoc);
|
|
}
|
|
void matchDispatch(const QualType *Node) {
|
|
matchWithoutFilter(*Node, Matchers->Type);
|
|
}
|
|
void matchDispatch(const NestedNameSpecifier *Node) {
|
|
matchWithoutFilter(*Node, Matchers->NestedNameSpecifier);
|
|
}
|
|
void matchDispatch(const NestedNameSpecifierLoc *Node) {
|
|
matchWithoutFilter(*Node, Matchers->NestedNameSpecifierLoc);
|
|
}
|
|
void matchDispatch(const CXXCtorInitializer *Node) {
|
|
matchWithoutFilter(*Node, Matchers->CtorInit);
|
|
}
|
|
void matchDispatch(const TemplateArgumentLoc *Node) {
|
|
matchWithoutFilter(*Node, Matchers->TemplateArgumentLoc);
|
|
}
|
|
void matchDispatch(const void *) { /* Do nothing. */ }
|
|
/// @}
|
|
|
|
// Returns whether a direct parent of \p Node matches \p Matcher.
|
|
// Unlike matchesAnyAncestorOf there's no memoization: it doesn't save much.
|
|
bool matchesParentOf(const DynTypedNode &Node, const DynTypedMatcher &Matcher,
|
|
BoundNodesTreeBuilder *Builder) {
|
|
for (const auto &Parent : ActiveASTContext->getParents(Node)) {
|
|
BoundNodesTreeBuilder BuilderCopy = *Builder;
|
|
if (Matcher.matches(Parent, this, &BuilderCopy)) {
|
|
*Builder = std::move(BuilderCopy);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns whether an ancestor of \p Node matches \p Matcher.
|
|
//
|
|
// The order of matching (which can lead to different nodes being bound in
|
|
// case there are multiple matches) is breadth first search.
|
|
//
|
|
// To allow memoization in the very common case of having deeply nested
|
|
// expressions inside a template function, we first walk up the AST, memoizing
|
|
// the result of the match along the way, as long as there is only a single
|
|
// parent.
|
|
//
|
|
// Once there are multiple parents, the breadth first search order does not
|
|
// allow simple memoization on the ancestors. Thus, we only memoize as long
|
|
// as there is a single parent.
|
|
//
|
|
// We avoid a recursive implementation to prevent excessive stack use on
|
|
// very deep ASTs (similarly to RecursiveASTVisitor's data recursion).
|
|
bool matchesAnyAncestorOf(DynTypedNode Node, ASTContext &Ctx,
|
|
const DynTypedMatcher &Matcher,
|
|
BoundNodesTreeBuilder *Builder) {
|
|
|
|
// Memoization keys that can be updated with the result.
|
|
// These are the memoizable nodes in the chain of unique parents, which
|
|
// terminates when a node has multiple parents, or matches, or is the root.
|
|
std::vector<MatchKey> Keys;
|
|
// When returning, update the memoization cache.
|
|
auto Finish = [&](bool Matched) {
|
|
for (const auto &Key : Keys) {
|
|
MemoizedMatchResult &CachedResult = ResultCache[Key];
|
|
CachedResult.ResultOfMatch = Matched;
|
|
CachedResult.Nodes = *Builder;
|
|
}
|
|
return Matched;
|
|
};
|
|
|
|
// Loop while there's a single parent and we want to attempt memoization.
|
|
DynTypedNodeList Parents{ArrayRef<DynTypedNode>()}; // after loop: size != 1
|
|
for (;;) {
|
|
// A cache key only makes sense if memoization is possible.
|
|
if (Builder->isComparable()) {
|
|
Keys.emplace_back();
|
|
Keys.back().MatcherID = Matcher.getID();
|
|
Keys.back().Node = Node;
|
|
Keys.back().BoundNodes = *Builder;
|
|
Keys.back().Traversal = Ctx.getParentMapContext().getTraversalKind();
|
|
Keys.back().Type = MatchType::Ancestors;
|
|
|
|
// Check the cache.
|
|
MemoizationMap::iterator I = ResultCache.find(Keys.back());
|
|
if (I != ResultCache.end()) {
|
|
Keys.pop_back(); // Don't populate the cache for the matching node!
|
|
*Builder = I->second.Nodes;
|
|
return Finish(I->second.ResultOfMatch);
|
|
}
|
|
}
|
|
|
|
Parents = ActiveASTContext->getParents(Node);
|
|
// Either no parents or multiple parents: leave chain+memoize mode and
|
|
// enter bfs+forgetful mode.
|
|
if (Parents.size() != 1)
|
|
break;
|
|
|
|
// Check the next parent.
|
|
Node = *Parents.begin();
|
|
BoundNodesTreeBuilder BuilderCopy = *Builder;
|
|
if (Matcher.matches(Node, this, &BuilderCopy)) {
|
|
*Builder = std::move(BuilderCopy);
|
|
return Finish(true);
|
|
}
|
|
}
|
|
// We reached the end of the chain.
|
|
|
|
if (Parents.empty()) {
|
|
// Nodes may have no parents if:
|
|
// a) the node is the TranslationUnitDecl
|
|
// b) we have a limited traversal scope that excludes the parent edges
|
|
// c) there is a bug in the AST, and the node is not reachable
|
|
// Usually the traversal scope is the whole AST, which precludes b.
|
|
// Bugs are common enough that it's worthwhile asserting when we can.
|
|
#ifndef NDEBUG
|
|
if (!Node.get<TranslationUnitDecl>() &&
|
|
/* Traversal scope is full AST if any of the bounds are the TU */
|
|
llvm::any_of(ActiveASTContext->getTraversalScope(), [](Decl *D) {
|
|
return D->getKind() == Decl::TranslationUnit;
|
|
})) {
|
|
llvm::errs() << "Tried to match orphan node:\n";
|
|
Node.dump(llvm::errs(), *ActiveASTContext);
|
|
llvm_unreachable("Parent map should be complete!");
|
|
}
|
|
#endif
|
|
} else {
|
|
assert(Parents.size() > 1);
|
|
// BFS starting from the parents not yet considered.
|
|
// Memoization of newly visited nodes is not possible (but we still update
|
|
// results for the elements in the chain we found above).
|
|
std::deque<DynTypedNode> Queue(Parents.begin(), Parents.end());
|
|
llvm::DenseSet<const void *> Visited;
|
|
while (!Queue.empty()) {
|
|
BoundNodesTreeBuilder BuilderCopy = *Builder;
|
|
if (Matcher.matches(Queue.front(), this, &BuilderCopy)) {
|
|
*Builder = std::move(BuilderCopy);
|
|
return Finish(true);
|
|
}
|
|
for (const auto &Parent : ActiveASTContext->getParents(Queue.front())) {
|
|
// Make sure we do not visit the same node twice.
|
|
// Otherwise, we'll visit the common ancestors as often as there
|
|
// are splits on the way down.
|
|
if (Visited.insert(Parent.getMemoizationData()).second)
|
|
Queue.push_back(Parent);
|
|
}
|
|
Queue.pop_front();
|
|
}
|
|
}
|
|
return Finish(false);
|
|
}
|
|
|
|
// Implements a BoundNodesTree::Visitor that calls a MatchCallback with
|
|
// the aggregated bound nodes for each match.
|
|
class MatchVisitor : public BoundNodesTreeBuilder::Visitor {
|
|
public:
|
|
MatchVisitor(ASTContext* Context,
|
|
MatchFinder::MatchCallback* Callback)
|
|
: Context(Context),
|
|
Callback(Callback) {}
|
|
|
|
void visitMatch(const BoundNodes& BoundNodesView) override {
|
|
Callback->run(MatchFinder::MatchResult(BoundNodesView, Context));
|
|
}
|
|
|
|
private:
|
|
ASTContext* Context;
|
|
MatchFinder::MatchCallback* Callback;
|
|
};
|
|
|
|
// Returns true if 'TypeNode' has an alias that matches the given matcher.
|
|
bool typeHasMatchingAlias(const Type *TypeNode,
|
|
const Matcher<NamedDecl> &Matcher,
|
|
BoundNodesTreeBuilder *Builder) {
|
|
const Type *const CanonicalType =
|
|
ActiveASTContext->getCanonicalType(TypeNode);
|
|
auto Aliases = TypeAliases.find(CanonicalType);
|
|
if (Aliases == TypeAliases.end())
|
|
return false;
|
|
for (const TypedefNameDecl *Alias : Aliases->second) {
|
|
BoundNodesTreeBuilder Result(*Builder);
|
|
if (Matcher.matches(*Alias, this, &Result)) {
|
|
*Builder = std::move(Result);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
objcClassHasMatchingCompatibilityAlias(const ObjCInterfaceDecl *InterfaceDecl,
|
|
const Matcher<NamedDecl> &Matcher,
|
|
BoundNodesTreeBuilder *Builder) {
|
|
auto Aliases = CompatibleAliases.find(InterfaceDecl);
|
|
if (Aliases == CompatibleAliases.end())
|
|
return false;
|
|
for (const ObjCCompatibleAliasDecl *Alias : Aliases->second) {
|
|
BoundNodesTreeBuilder Result(*Builder);
|
|
if (Matcher.matches(*Alias, this, &Result)) {
|
|
*Builder = std::move(Result);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Bucket to record map.
|
|
///
|
|
/// Used to get the appropriate bucket for each matcher.
|
|
llvm::StringMap<llvm::TimeRecord> TimeByBucket;
|
|
|
|
const MatchFinder::MatchersByType *Matchers;
|
|
|
|
/// Filtered list of matcher indices for each matcher kind.
|
|
///
|
|
/// \c Decl and \c Stmt toplevel matchers usually apply to a specific node
|
|
/// kind (and derived kinds) so it is a waste to try every matcher on every
|
|
/// node.
|
|
/// We precalculate a list of matchers that pass the toplevel restrict check.
|
|
llvm::DenseMap<ASTNodeKind, std::vector<unsigned short>> MatcherFiltersMap;
|
|
|
|
const MatchFinder::MatchFinderOptions &Options;
|
|
ASTContext *ActiveASTContext;
|
|
|
|
// Maps a canonical type to its TypedefDecls.
|
|
llvm::DenseMap<const Type*, std::set<const TypedefNameDecl*> > TypeAliases;
|
|
|
|
// Maps an Objective-C interface to its ObjCCompatibleAliasDecls.
|
|
llvm::DenseMap<const ObjCInterfaceDecl *,
|
|
llvm::SmallPtrSet<const ObjCCompatibleAliasDecl *, 2>>
|
|
CompatibleAliases;
|
|
|
|
// Maps (matcher, node) -> the match result for memoization.
|
|
typedef std::map<MatchKey, MemoizedMatchResult> MemoizationMap;
|
|
MemoizationMap ResultCache;
|
|
};
|
|
|
|
static CXXRecordDecl *
|
|
getAsCXXRecordDeclOrPrimaryTemplate(const Type *TypeNode) {
|
|
if (auto *RD = TypeNode->getAsCXXRecordDecl())
|
|
return RD;
|
|
|
|
// Find the innermost TemplateSpecializationType that isn't an alias template.
|
|
auto *TemplateType = TypeNode->getAs<TemplateSpecializationType>();
|
|
while (TemplateType && TemplateType->isTypeAlias())
|
|
TemplateType =
|
|
TemplateType->getAliasedType()->getAs<TemplateSpecializationType>();
|
|
|
|
// If this is the name of a (dependent) template specialization, use the
|
|
// definition of the template, even though it might be specialized later.
|
|
if (TemplateType)
|
|
if (auto *ClassTemplate = dyn_cast_or_null<ClassTemplateDecl>(
|
|
TemplateType->getTemplateName().getAsTemplateDecl()))
|
|
return ClassTemplate->getTemplatedDecl();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Returns true if the given C++ class is directly or indirectly derived
|
|
// from a base type with the given name. A class is not considered to be
|
|
// derived from itself.
|
|
bool MatchASTVisitor::classIsDerivedFrom(const CXXRecordDecl *Declaration,
|
|
const Matcher<NamedDecl> &Base,
|
|
BoundNodesTreeBuilder *Builder,
|
|
bool Directly) {
|
|
if (!Declaration->hasDefinition())
|
|
return false;
|
|
for (const auto &It : Declaration->bases()) {
|
|
const Type *TypeNode = It.getType().getTypePtr();
|
|
|
|
if (typeHasMatchingAlias(TypeNode, Base, Builder))
|
|
return true;
|
|
|
|
// FIXME: Going to the primary template here isn't really correct, but
|
|
// unfortunately we accept a Decl matcher for the base class not a Type
|
|
// matcher, so it's the best thing we can do with our current interface.
|
|
CXXRecordDecl *ClassDecl = getAsCXXRecordDeclOrPrimaryTemplate(TypeNode);
|
|
if (!ClassDecl)
|
|
continue;
|
|
if (ClassDecl == Declaration) {
|
|
// This can happen for recursive template definitions.
|
|
continue;
|
|
}
|
|
BoundNodesTreeBuilder Result(*Builder);
|
|
if (Base.matches(*ClassDecl, this, &Result)) {
|
|
*Builder = std::move(Result);
|
|
return true;
|
|
}
|
|
if (!Directly && classIsDerivedFrom(ClassDecl, Base, Builder, Directly))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns true if the given Objective-C class is directly or indirectly
|
|
// derived from a matching base class. A class is not considered to be derived
|
|
// from itself.
|
|
bool MatchASTVisitor::objcClassIsDerivedFrom(
|
|
const ObjCInterfaceDecl *Declaration, const Matcher<NamedDecl> &Base,
|
|
BoundNodesTreeBuilder *Builder, bool Directly) {
|
|
// Check if any of the superclasses of the class match.
|
|
for (const ObjCInterfaceDecl *ClassDecl = Declaration->getSuperClass();
|
|
ClassDecl != nullptr; ClassDecl = ClassDecl->getSuperClass()) {
|
|
// Check if there are any matching compatibility aliases.
|
|
if (objcClassHasMatchingCompatibilityAlias(ClassDecl, Base, Builder))
|
|
return true;
|
|
|
|
// Check if there are any matching type aliases.
|
|
const Type *TypeNode = ClassDecl->getTypeForDecl();
|
|
if (typeHasMatchingAlias(TypeNode, Base, Builder))
|
|
return true;
|
|
|
|
if (Base.matches(*ClassDecl, this, Builder))
|
|
return true;
|
|
|
|
// Not `return false` as a temporary workaround for PR43879.
|
|
if (Directly)
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MatchASTVisitor::TraverseDecl(Decl *DeclNode) {
|
|
if (!DeclNode) {
|
|
return true;
|
|
}
|
|
|
|
bool ScopedTraversal =
|
|
TraversingASTNodeNotSpelledInSource || DeclNode->isImplicit();
|
|
bool ScopedChildren = TraversingASTChildrenNotSpelledInSource;
|
|
|
|
if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DeclNode)) {
|
|
auto SK = CTSD->getSpecializationKind();
|
|
if (SK == TSK_ExplicitInstantiationDeclaration ||
|
|
SK == TSK_ExplicitInstantiationDefinition)
|
|
ScopedChildren = true;
|
|
} else if (const auto *FD = dyn_cast<FunctionDecl>(DeclNode)) {
|
|
if (FD->isDefaulted())
|
|
ScopedChildren = true;
|
|
if (FD->isTemplateInstantiation())
|
|
ScopedTraversal = true;
|
|
}
|
|
|
|
ASTNodeNotSpelledInSourceScope RAII1(this, ScopedTraversal);
|
|
ASTChildrenNotSpelledInSourceScope RAII2(this, ScopedChildren);
|
|
|
|
match(*DeclNode);
|
|
return RecursiveASTVisitor<MatchASTVisitor>::TraverseDecl(DeclNode);
|
|
}
|
|
|
|
bool MatchASTVisitor::TraverseStmt(Stmt *StmtNode, DataRecursionQueue *Queue) {
|
|
if (!StmtNode) {
|
|
return true;
|
|
}
|
|
bool ScopedTraversal = TraversingASTNodeNotSpelledInSource ||
|
|
TraversingASTChildrenNotSpelledInSource;
|
|
|
|
ASTNodeNotSpelledInSourceScope RAII(this, ScopedTraversal);
|
|
match(*StmtNode);
|
|
return RecursiveASTVisitor<MatchASTVisitor>::TraverseStmt(StmtNode, Queue);
|
|
}
|
|
|
|
bool MatchASTVisitor::TraverseType(QualType TypeNode) {
|
|
match(TypeNode);
|
|
return RecursiveASTVisitor<MatchASTVisitor>::TraverseType(TypeNode);
|
|
}
|
|
|
|
bool MatchASTVisitor::TraverseTypeLoc(TypeLoc TypeLocNode) {
|
|
// The RecursiveASTVisitor only visits types if they're not within TypeLocs.
|
|
// We still want to find those types via matchers, so we match them here. Note
|
|
// that the TypeLocs are structurally a shadow-hierarchy to the expressed
|
|
// type, so we visit all involved parts of a compound type when matching on
|
|
// each TypeLoc.
|
|
match(TypeLocNode);
|
|
match(TypeLocNode.getType());
|
|
return RecursiveASTVisitor<MatchASTVisitor>::TraverseTypeLoc(TypeLocNode);
|
|
}
|
|
|
|
bool MatchASTVisitor::TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) {
|
|
match(*NNS);
|
|
return RecursiveASTVisitor<MatchASTVisitor>::TraverseNestedNameSpecifier(NNS);
|
|
}
|
|
|
|
bool MatchASTVisitor::TraverseNestedNameSpecifierLoc(
|
|
NestedNameSpecifierLoc NNS) {
|
|
if (!NNS)
|
|
return true;
|
|
|
|
match(NNS);
|
|
|
|
// We only match the nested name specifier here (as opposed to traversing it)
|
|
// because the traversal is already done in the parallel "Loc"-hierarchy.
|
|
if (NNS.hasQualifier())
|
|
match(*NNS.getNestedNameSpecifier());
|
|
return
|
|
RecursiveASTVisitor<MatchASTVisitor>::TraverseNestedNameSpecifierLoc(NNS);
|
|
}
|
|
|
|
bool MatchASTVisitor::TraverseConstructorInitializer(
|
|
CXXCtorInitializer *CtorInit) {
|
|
if (!CtorInit)
|
|
return true;
|
|
|
|
bool ScopedTraversal = TraversingASTNodeNotSpelledInSource ||
|
|
TraversingASTChildrenNotSpelledInSource;
|
|
|
|
if (!CtorInit->isWritten())
|
|
ScopedTraversal = true;
|
|
|
|
ASTNodeNotSpelledInSourceScope RAII1(this, ScopedTraversal);
|
|
|
|
match(*CtorInit);
|
|
|
|
return RecursiveASTVisitor<MatchASTVisitor>::TraverseConstructorInitializer(
|
|
CtorInit);
|
|
}
|
|
|
|
bool MatchASTVisitor::TraverseTemplateArgumentLoc(TemplateArgumentLoc Loc) {
|
|
match(Loc);
|
|
return RecursiveASTVisitor<MatchASTVisitor>::TraverseTemplateArgumentLoc(Loc);
|
|
}
|
|
|
|
class MatchASTConsumer : public ASTConsumer {
|
|
public:
|
|
MatchASTConsumer(MatchFinder *Finder,
|
|
MatchFinder::ParsingDoneTestCallback *ParsingDone)
|
|
: Finder(Finder), ParsingDone(ParsingDone) {}
|
|
|
|
private:
|
|
void HandleTranslationUnit(ASTContext &Context) override {
|
|
if (ParsingDone != nullptr) {
|
|
ParsingDone->run();
|
|
}
|
|
Finder->matchAST(Context);
|
|
}
|
|
|
|
MatchFinder *Finder;
|
|
MatchFinder::ParsingDoneTestCallback *ParsingDone;
|
|
};
|
|
|
|
} // end namespace
|
|
} // end namespace internal
|
|
|
|
MatchFinder::MatchResult::MatchResult(const BoundNodes &Nodes,
|
|
ASTContext *Context)
|
|
: Nodes(Nodes), Context(Context),
|
|
SourceManager(&Context->getSourceManager()) {}
|
|
|
|
MatchFinder::MatchCallback::~MatchCallback() {}
|
|
MatchFinder::ParsingDoneTestCallback::~ParsingDoneTestCallback() {}
|
|
|
|
MatchFinder::MatchFinder(MatchFinderOptions Options)
|
|
: Options(std::move(Options)), ParsingDone(nullptr) {}
|
|
|
|
MatchFinder::~MatchFinder() {}
|
|
|
|
void MatchFinder::addMatcher(const DeclarationMatcher &NodeMatch,
|
|
MatchCallback *Action) {
|
|
Matchers.DeclOrStmt.emplace_back(NodeMatch, Action);
|
|
Matchers.AllCallbacks.insert(Action);
|
|
}
|
|
|
|
void MatchFinder::addMatcher(const TypeMatcher &NodeMatch,
|
|
MatchCallback *Action) {
|
|
Matchers.Type.emplace_back(NodeMatch, Action);
|
|
Matchers.AllCallbacks.insert(Action);
|
|
}
|
|
|
|
void MatchFinder::addMatcher(const StatementMatcher &NodeMatch,
|
|
MatchCallback *Action) {
|
|
Matchers.DeclOrStmt.emplace_back(NodeMatch, Action);
|
|
Matchers.AllCallbacks.insert(Action);
|
|
}
|
|
|
|
void MatchFinder::addMatcher(const NestedNameSpecifierMatcher &NodeMatch,
|
|
MatchCallback *Action) {
|
|
Matchers.NestedNameSpecifier.emplace_back(NodeMatch, Action);
|
|
Matchers.AllCallbacks.insert(Action);
|
|
}
|
|
|
|
void MatchFinder::addMatcher(const NestedNameSpecifierLocMatcher &NodeMatch,
|
|
MatchCallback *Action) {
|
|
Matchers.NestedNameSpecifierLoc.emplace_back(NodeMatch, Action);
|
|
Matchers.AllCallbacks.insert(Action);
|
|
}
|
|
|
|
void MatchFinder::addMatcher(const TypeLocMatcher &NodeMatch,
|
|
MatchCallback *Action) {
|
|
Matchers.TypeLoc.emplace_back(NodeMatch, Action);
|
|
Matchers.AllCallbacks.insert(Action);
|
|
}
|
|
|
|
void MatchFinder::addMatcher(const CXXCtorInitializerMatcher &NodeMatch,
|
|
MatchCallback *Action) {
|
|
Matchers.CtorInit.emplace_back(NodeMatch, Action);
|
|
Matchers.AllCallbacks.insert(Action);
|
|
}
|
|
|
|
void MatchFinder::addMatcher(const TemplateArgumentLocMatcher &NodeMatch,
|
|
MatchCallback *Action) {
|
|
Matchers.TemplateArgumentLoc.emplace_back(NodeMatch, Action);
|
|
Matchers.AllCallbacks.insert(Action);
|
|
}
|
|
|
|
bool MatchFinder::addDynamicMatcher(const internal::DynTypedMatcher &NodeMatch,
|
|
MatchCallback *Action) {
|
|
if (NodeMatch.canConvertTo<Decl>()) {
|
|
addMatcher(NodeMatch.convertTo<Decl>(), Action);
|
|
return true;
|
|
} else if (NodeMatch.canConvertTo<QualType>()) {
|
|
addMatcher(NodeMatch.convertTo<QualType>(), Action);
|
|
return true;
|
|
} else if (NodeMatch.canConvertTo<Stmt>()) {
|
|
addMatcher(NodeMatch.convertTo<Stmt>(), Action);
|
|
return true;
|
|
} else if (NodeMatch.canConvertTo<NestedNameSpecifier>()) {
|
|
addMatcher(NodeMatch.convertTo<NestedNameSpecifier>(), Action);
|
|
return true;
|
|
} else if (NodeMatch.canConvertTo<NestedNameSpecifierLoc>()) {
|
|
addMatcher(NodeMatch.convertTo<NestedNameSpecifierLoc>(), Action);
|
|
return true;
|
|
} else if (NodeMatch.canConvertTo<TypeLoc>()) {
|
|
addMatcher(NodeMatch.convertTo<TypeLoc>(), Action);
|
|
return true;
|
|
} else if (NodeMatch.canConvertTo<CXXCtorInitializer>()) {
|
|
addMatcher(NodeMatch.convertTo<CXXCtorInitializer>(), Action);
|
|
return true;
|
|
} else if (NodeMatch.canConvertTo<TemplateArgumentLoc>()) {
|
|
addMatcher(NodeMatch.convertTo<TemplateArgumentLoc>(), Action);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<ASTConsumer> MatchFinder::newASTConsumer() {
|
|
return std::make_unique<internal::MatchASTConsumer>(this, ParsingDone);
|
|
}
|
|
|
|
void MatchFinder::match(const clang::DynTypedNode &Node, ASTContext &Context) {
|
|
internal::MatchASTVisitor Visitor(&Matchers, Options);
|
|
Visitor.set_active_ast_context(&Context);
|
|
Visitor.match(Node);
|
|
}
|
|
|
|
void MatchFinder::matchAST(ASTContext &Context) {
|
|
internal::MatchASTVisitor Visitor(&Matchers, Options);
|
|
Visitor.set_active_ast_context(&Context);
|
|
Visitor.onStartOfTranslationUnit();
|
|
Visitor.TraverseAST(Context);
|
|
Visitor.onEndOfTranslationUnit();
|
|
}
|
|
|
|
void MatchFinder::registerTestCallbackAfterParsing(
|
|
MatchFinder::ParsingDoneTestCallback *NewParsingDone) {
|
|
ParsingDone = NewParsingDone;
|
|
}
|
|
|
|
StringRef MatchFinder::MatchCallback::getID() const { return "<unknown>"; }
|
|
|
|
} // end namespace ast_matchers
|
|
} // end namespace clang
|