1580 lines
61 KiB
C++
1580 lines
61 KiB
C++
//===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This family of functions perform manipulations on basic blocks, and
|
|
// instructions contained within basic blocks.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "basicblock-utils"
|
|
|
|
void llvm::DetatchDeadBlocks(
|
|
ArrayRef<BasicBlock *> BBs,
|
|
SmallVectorImpl<DominatorTree::UpdateType> *Updates,
|
|
bool KeepOneInputPHIs) {
|
|
for (auto *BB : BBs) {
|
|
// Loop through all of our successors and make sure they know that one
|
|
// of their predecessors is going away.
|
|
SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
|
|
for (BasicBlock *Succ : successors(BB)) {
|
|
Succ->removePredecessor(BB, KeepOneInputPHIs);
|
|
if (Updates && UniqueSuccessors.insert(Succ).second)
|
|
Updates->push_back({DominatorTree::Delete, BB, Succ});
|
|
}
|
|
|
|
// Zap all the instructions in the block.
|
|
while (!BB->empty()) {
|
|
Instruction &I = BB->back();
|
|
// If this instruction is used, replace uses with an arbitrary value.
|
|
// Because control flow can't get here, we don't care what we replace the
|
|
// value with. Note that since this block is unreachable, and all values
|
|
// contained within it must dominate their uses, that all uses will
|
|
// eventually be removed (they are themselves dead).
|
|
if (!I.use_empty())
|
|
I.replaceAllUsesWith(UndefValue::get(I.getType()));
|
|
BB->getInstList().pop_back();
|
|
}
|
|
new UnreachableInst(BB->getContext(), BB);
|
|
assert(BB->getInstList().size() == 1 &&
|
|
isa<UnreachableInst>(BB->getTerminator()) &&
|
|
"The successor list of BB isn't empty before "
|
|
"applying corresponding DTU updates.");
|
|
}
|
|
}
|
|
|
|
void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
|
|
bool KeepOneInputPHIs) {
|
|
DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
|
|
}
|
|
|
|
void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
|
|
bool KeepOneInputPHIs) {
|
|
#ifndef NDEBUG
|
|
// Make sure that all predecessors of each dead block is also dead.
|
|
SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
|
|
assert(Dead.size() == BBs.size() && "Duplicating blocks?");
|
|
for (auto *BB : Dead)
|
|
for (BasicBlock *Pred : predecessors(BB))
|
|
assert(Dead.count(Pred) && "All predecessors must be dead!");
|
|
#endif
|
|
|
|
SmallVector<DominatorTree::UpdateType, 4> Updates;
|
|
DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
|
|
|
|
if (DTU)
|
|
DTU->applyUpdates(Updates);
|
|
|
|
for (BasicBlock *BB : BBs)
|
|
if (DTU)
|
|
DTU->deleteBB(BB);
|
|
else
|
|
BB->eraseFromParent();
|
|
}
|
|
|
|
bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
|
|
bool KeepOneInputPHIs) {
|
|
df_iterator_default_set<BasicBlock*> Reachable;
|
|
|
|
// Mark all reachable blocks.
|
|
for (BasicBlock *BB : depth_first_ext(&F, Reachable))
|
|
(void)BB/* Mark all reachable blocks */;
|
|
|
|
// Collect all dead blocks.
|
|
std::vector<BasicBlock*> DeadBlocks;
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
|
|
if (!Reachable.count(&*I)) {
|
|
BasicBlock *BB = &*I;
|
|
DeadBlocks.push_back(BB);
|
|
}
|
|
|
|
// Delete the dead blocks.
|
|
DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
|
|
|
|
return !DeadBlocks.empty();
|
|
}
|
|
|
|
bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
|
|
MemoryDependenceResults *MemDep) {
|
|
if (!isa<PHINode>(BB->begin()))
|
|
return false;
|
|
|
|
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
|
|
if (PN->getIncomingValue(0) != PN)
|
|
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
|
else
|
|
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
|
|
|
|
if (MemDep)
|
|
MemDep->removeInstruction(PN); // Memdep updates AA itself.
|
|
|
|
PN->eraseFromParent();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
|
|
MemorySSAUpdater *MSSAU) {
|
|
// Recursively deleting a PHI may cause multiple PHIs to be deleted
|
|
// or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
|
|
SmallVector<WeakTrackingVH, 8> PHIs;
|
|
for (PHINode &PN : BB->phis())
|
|
PHIs.push_back(&PN);
|
|
|
|
bool Changed = false;
|
|
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
|
|
if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
|
|
Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
|
|
LoopInfo *LI, MemorySSAUpdater *MSSAU,
|
|
MemoryDependenceResults *MemDep,
|
|
bool PredecessorWithTwoSuccessors) {
|
|
if (BB->hasAddressTaken())
|
|
return false;
|
|
|
|
// Can't merge if there are multiple predecessors, or no predecessors.
|
|
BasicBlock *PredBB = BB->getUniquePredecessor();
|
|
if (!PredBB) return false;
|
|
|
|
// Don't break self-loops.
|
|
if (PredBB == BB) return false;
|
|
// Don't break unwinding instructions.
|
|
if (PredBB->getTerminator()->isExceptionalTerminator())
|
|
return false;
|
|
|
|
// Can't merge if there are multiple distinct successors.
|
|
if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
|
|
return false;
|
|
|
|
// Currently only allow PredBB to have two predecessors, one being BB.
|
|
// Update BI to branch to BB's only successor instead of BB.
|
|
BranchInst *PredBB_BI;
|
|
BasicBlock *NewSucc = nullptr;
|
|
unsigned FallThruPath;
|
|
if (PredecessorWithTwoSuccessors) {
|
|
if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
|
|
return false;
|
|
BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
|
|
if (!BB_JmpI || !BB_JmpI->isUnconditional())
|
|
return false;
|
|
NewSucc = BB_JmpI->getSuccessor(0);
|
|
FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
|
|
}
|
|
|
|
// Can't merge if there is PHI loop.
|
|
for (PHINode &PN : BB->phis())
|
|
for (Value *IncValue : PN.incoming_values())
|
|
if (IncValue == &PN)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
|
|
<< PredBB->getName() << "\n");
|
|
|
|
// Begin by getting rid of unneeded PHIs.
|
|
SmallVector<AssertingVH<Value>, 4> IncomingValues;
|
|
if (isa<PHINode>(BB->front())) {
|
|
for (PHINode &PN : BB->phis())
|
|
if (!isa<PHINode>(PN.getIncomingValue(0)) ||
|
|
cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
|
|
IncomingValues.push_back(PN.getIncomingValue(0));
|
|
FoldSingleEntryPHINodes(BB, MemDep);
|
|
}
|
|
|
|
// DTU update: Collect all the edges that exit BB.
|
|
// These dominator edges will be redirected from Pred.
|
|
std::vector<DominatorTree::UpdateType> Updates;
|
|
if (DTU) {
|
|
SmallSetVector<BasicBlock *, 2> UniqueSuccessors(succ_begin(BB),
|
|
succ_end(BB));
|
|
Updates.reserve(1 + (2 * UniqueSuccessors.size()));
|
|
// Add insert edges first. Experimentally, for the particular case of two
|
|
// blocks that can be merged, with a single successor and single predecessor
|
|
// respectively, it is beneficial to have all insert updates first. Deleting
|
|
// edges first may lead to unreachable blocks, followed by inserting edges
|
|
// making the blocks reachable again. Such DT updates lead to high compile
|
|
// times. We add inserts before deletes here to reduce compile time.
|
|
for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
|
|
// This successor of BB may already have PredBB as a predecessor.
|
|
if (!llvm::is_contained(successors(PredBB), UniqueSuccessor))
|
|
Updates.push_back({DominatorTree::Insert, PredBB, UniqueSuccessor});
|
|
for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
|
|
Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
|
|
Updates.push_back({DominatorTree::Delete, PredBB, BB});
|
|
}
|
|
|
|
Instruction *PTI = PredBB->getTerminator();
|
|
Instruction *STI = BB->getTerminator();
|
|
Instruction *Start = &*BB->begin();
|
|
// If there's nothing to move, mark the starting instruction as the last
|
|
// instruction in the block. Terminator instruction is handled separately.
|
|
if (Start == STI)
|
|
Start = PTI;
|
|
|
|
// Move all definitions in the successor to the predecessor...
|
|
PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
|
|
BB->begin(), STI->getIterator());
|
|
|
|
if (MSSAU)
|
|
MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
|
|
|
|
// Make all PHI nodes that referred to BB now refer to Pred as their
|
|
// source...
|
|
BB->replaceAllUsesWith(PredBB);
|
|
|
|
if (PredecessorWithTwoSuccessors) {
|
|
// Delete the unconditional branch from BB.
|
|
BB->getInstList().pop_back();
|
|
|
|
// Update branch in the predecessor.
|
|
PredBB_BI->setSuccessor(FallThruPath, NewSucc);
|
|
} else {
|
|
// Delete the unconditional branch from the predecessor.
|
|
PredBB->getInstList().pop_back();
|
|
|
|
// Move terminator instruction.
|
|
PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
|
|
|
|
// Terminator may be a memory accessing instruction too.
|
|
if (MSSAU)
|
|
if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
|
|
MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
|
|
MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
|
|
}
|
|
// Add unreachable to now empty BB.
|
|
new UnreachableInst(BB->getContext(), BB);
|
|
|
|
// Inherit predecessors name if it exists.
|
|
if (!PredBB->hasName())
|
|
PredBB->takeName(BB);
|
|
|
|
if (LI)
|
|
LI->removeBlock(BB);
|
|
|
|
if (MemDep)
|
|
MemDep->invalidateCachedPredecessors();
|
|
|
|
// Finally, erase the old block and update dominator info.
|
|
if (DTU) {
|
|
assert(BB->getInstList().size() == 1 &&
|
|
isa<UnreachableInst>(BB->getTerminator()) &&
|
|
"The successor list of BB isn't empty before "
|
|
"applying corresponding DTU updates.");
|
|
DTU->applyUpdates(Updates);
|
|
DTU->deleteBB(BB);
|
|
} else {
|
|
BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
|
|
SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
|
|
LoopInfo *LI) {
|
|
assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
|
|
|
|
bool BlocksHaveBeenMerged = false;
|
|
while (!MergeBlocks.empty()) {
|
|
BasicBlock *BB = *MergeBlocks.begin();
|
|
BasicBlock *Dest = BB->getSingleSuccessor();
|
|
if (Dest && (!L || L->contains(Dest))) {
|
|
BasicBlock *Fold = Dest->getUniquePredecessor();
|
|
(void)Fold;
|
|
if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
|
|
assert(Fold == BB &&
|
|
"Expecting BB to be unique predecessor of the Dest block");
|
|
MergeBlocks.erase(Dest);
|
|
BlocksHaveBeenMerged = true;
|
|
} else
|
|
MergeBlocks.erase(BB);
|
|
} else
|
|
MergeBlocks.erase(BB);
|
|
}
|
|
return BlocksHaveBeenMerged;
|
|
}
|
|
|
|
/// Remove redundant instructions within sequences of consecutive dbg.value
|
|
/// instructions. This is done using a backward scan to keep the last dbg.value
|
|
/// describing a specific variable/fragment.
|
|
///
|
|
/// BackwardScan strategy:
|
|
/// ----------------------
|
|
/// Given a sequence of consecutive DbgValueInst like this
|
|
///
|
|
/// dbg.value ..., "x", FragmentX1 (*)
|
|
/// dbg.value ..., "y", FragmentY1
|
|
/// dbg.value ..., "x", FragmentX2
|
|
/// dbg.value ..., "x", FragmentX1 (**)
|
|
///
|
|
/// then the instruction marked with (*) can be removed (it is guaranteed to be
|
|
/// obsoleted by the instruction marked with (**) as the latter instruction is
|
|
/// describing the same variable using the same fragment info).
|
|
///
|
|
/// Possible improvements:
|
|
/// - Check fully overlapping fragments and not only identical fragments.
|
|
/// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
|
|
/// instructions being part of the sequence of consecutive instructions.
|
|
static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
|
|
SmallVector<DbgValueInst *, 8> ToBeRemoved;
|
|
SmallDenseSet<DebugVariable> VariableSet;
|
|
for (auto &I : reverse(*BB)) {
|
|
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
|
|
DebugVariable Key(DVI->getVariable(),
|
|
DVI->getExpression(),
|
|
DVI->getDebugLoc()->getInlinedAt());
|
|
auto R = VariableSet.insert(Key);
|
|
// If the same variable fragment is described more than once it is enough
|
|
// to keep the last one (i.e. the first found since we for reverse
|
|
// iteration).
|
|
if (!R.second)
|
|
ToBeRemoved.push_back(DVI);
|
|
continue;
|
|
}
|
|
// Sequence with consecutive dbg.value instrs ended. Clear the map to
|
|
// restart identifying redundant instructions if case we find another
|
|
// dbg.value sequence.
|
|
VariableSet.clear();
|
|
}
|
|
|
|
for (auto &Instr : ToBeRemoved)
|
|
Instr->eraseFromParent();
|
|
|
|
return !ToBeRemoved.empty();
|
|
}
|
|
|
|
/// Remove redundant dbg.value instructions using a forward scan. This can
|
|
/// remove a dbg.value instruction that is redundant due to indicating that a
|
|
/// variable has the same value as already being indicated by an earlier
|
|
/// dbg.value.
|
|
///
|
|
/// ForwardScan strategy:
|
|
/// ---------------------
|
|
/// Given two identical dbg.value instructions, separated by a block of
|
|
/// instructions that isn't describing the same variable, like this
|
|
///
|
|
/// dbg.value X1, "x", FragmentX1 (**)
|
|
/// <block of instructions, none being "dbg.value ..., "x", ...">
|
|
/// dbg.value X1, "x", FragmentX1 (*)
|
|
///
|
|
/// then the instruction marked with (*) can be removed. Variable "x" is already
|
|
/// described as being mapped to the SSA value X1.
|
|
///
|
|
/// Possible improvements:
|
|
/// - Keep track of non-overlapping fragments.
|
|
static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
|
|
SmallVector<DbgValueInst *, 8> ToBeRemoved;
|
|
DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
|
|
for (auto &I : *BB) {
|
|
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
|
|
DebugVariable Key(DVI->getVariable(),
|
|
NoneType(),
|
|
DVI->getDebugLoc()->getInlinedAt());
|
|
auto VMI = VariableMap.find(Key);
|
|
// Update the map if we found a new value/expression describing the
|
|
// variable, or if the variable wasn't mapped already.
|
|
if (VMI == VariableMap.end() ||
|
|
VMI->second.first != DVI->getValue() ||
|
|
VMI->second.second != DVI->getExpression()) {
|
|
VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
|
|
continue;
|
|
}
|
|
// Found an identical mapping. Remember the instruction for later removal.
|
|
ToBeRemoved.push_back(DVI);
|
|
}
|
|
}
|
|
|
|
for (auto &Instr : ToBeRemoved)
|
|
Instr->eraseFromParent();
|
|
|
|
return !ToBeRemoved.empty();
|
|
}
|
|
|
|
bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
|
|
bool MadeChanges = false;
|
|
// By using the "backward scan" strategy before the "forward scan" strategy we
|
|
// can remove both dbg.value (2) and (3) in a situation like this:
|
|
//
|
|
// (1) dbg.value V1, "x", DIExpression()
|
|
// ...
|
|
// (2) dbg.value V2, "x", DIExpression()
|
|
// (3) dbg.value V1, "x", DIExpression()
|
|
//
|
|
// The backward scan will remove (2), it is made obsolete by (3). After
|
|
// getting (2) out of the way, the foward scan will remove (3) since "x"
|
|
// already is described as having the value V1 at (1).
|
|
MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
|
|
MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
|
|
|
|
if (MadeChanges)
|
|
LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
|
|
<< BB->getName() << "\n");
|
|
return MadeChanges;
|
|
}
|
|
|
|
void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
|
|
BasicBlock::iterator &BI, Value *V) {
|
|
Instruction &I = *BI;
|
|
// Replaces all of the uses of the instruction with uses of the value
|
|
I.replaceAllUsesWith(V);
|
|
|
|
// Make sure to propagate a name if there is one already.
|
|
if (I.hasName() && !V->hasName())
|
|
V->takeName(&I);
|
|
|
|
// Delete the unnecessary instruction now...
|
|
BI = BIL.erase(BI);
|
|
}
|
|
|
|
void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
|
|
BasicBlock::iterator &BI, Instruction *I) {
|
|
assert(I->getParent() == nullptr &&
|
|
"ReplaceInstWithInst: Instruction already inserted into basic block!");
|
|
|
|
// Copy debug location to newly added instruction, if it wasn't already set
|
|
// by the caller.
|
|
if (!I->getDebugLoc())
|
|
I->setDebugLoc(BI->getDebugLoc());
|
|
|
|
// Insert the new instruction into the basic block...
|
|
BasicBlock::iterator New = BIL.insert(BI, I);
|
|
|
|
// Replace all uses of the old instruction, and delete it.
|
|
ReplaceInstWithValue(BIL, BI, I);
|
|
|
|
// Move BI back to point to the newly inserted instruction
|
|
BI = New;
|
|
}
|
|
|
|
void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
|
|
BasicBlock::iterator BI(From);
|
|
ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
|
|
}
|
|
|
|
BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
|
|
LoopInfo *LI, MemorySSAUpdater *MSSAU,
|
|
const Twine &BBName) {
|
|
unsigned SuccNum = GetSuccessorNumber(BB, Succ);
|
|
|
|
// If this is a critical edge, let SplitCriticalEdge do it.
|
|
Instruction *LatchTerm = BB->getTerminator();
|
|
if (SplitCriticalEdge(
|
|
LatchTerm, SuccNum,
|
|
CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(),
|
|
BBName))
|
|
return LatchTerm->getSuccessor(SuccNum);
|
|
|
|
// If the edge isn't critical, then BB has a single successor or Succ has a
|
|
// single pred. Split the block.
|
|
if (BasicBlock *SP = Succ->getSinglePredecessor()) {
|
|
// If the successor only has a single pred, split the top of the successor
|
|
// block.
|
|
assert(SP == BB && "CFG broken");
|
|
SP = nullptr;
|
|
return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
|
|
/*Before=*/true);
|
|
}
|
|
|
|
// Otherwise, if BB has a single successor, split it at the bottom of the
|
|
// block.
|
|
assert(BB->getTerminator()->getNumSuccessors() == 1 &&
|
|
"Should have a single succ!");
|
|
return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
|
|
}
|
|
|
|
unsigned
|
|
llvm::SplitAllCriticalEdges(Function &F,
|
|
const CriticalEdgeSplittingOptions &Options) {
|
|
unsigned NumBroken = 0;
|
|
for (BasicBlock &BB : F) {
|
|
Instruction *TI = BB.getTerminator();
|
|
if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
|
|
!isa<CallBrInst>(TI))
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
|
|
if (SplitCriticalEdge(TI, i, Options))
|
|
++NumBroken;
|
|
}
|
|
return NumBroken;
|
|
}
|
|
|
|
static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
|
|
DomTreeUpdater *DTU, DominatorTree *DT,
|
|
LoopInfo *LI, MemorySSAUpdater *MSSAU,
|
|
const Twine &BBName, bool Before) {
|
|
if (Before) {
|
|
DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
|
|
return splitBlockBefore(Old, SplitPt,
|
|
DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
|
|
BBName);
|
|
}
|
|
BasicBlock::iterator SplitIt = SplitPt->getIterator();
|
|
while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
|
|
++SplitIt;
|
|
std::string Name = BBName.str();
|
|
BasicBlock *New = Old->splitBasicBlock(
|
|
SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
|
|
|
|
// The new block lives in whichever loop the old one did. This preserves
|
|
// LCSSA as well, because we force the split point to be after any PHI nodes.
|
|
if (LI)
|
|
if (Loop *L = LI->getLoopFor(Old))
|
|
L->addBasicBlockToLoop(New, *LI);
|
|
|
|
if (DTU) {
|
|
SmallVector<DominatorTree::UpdateType, 8> Updates;
|
|
// Old dominates New. New node dominates all other nodes dominated by Old.
|
|
SmallSetVector<BasicBlock *, 8> UniqueSuccessorsOfOld(succ_begin(New),
|
|
succ_end(New));
|
|
Updates.push_back({DominatorTree::Insert, Old, New});
|
|
Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfOld.size());
|
|
for (BasicBlock *UniqueSuccessorOfOld : UniqueSuccessorsOfOld) {
|
|
Updates.push_back({DominatorTree::Insert, New, UniqueSuccessorOfOld});
|
|
Updates.push_back({DominatorTree::Delete, Old, UniqueSuccessorOfOld});
|
|
}
|
|
|
|
DTU->applyUpdates(Updates);
|
|
} else if (DT)
|
|
// Old dominates New. New node dominates all other nodes dominated by Old.
|
|
if (DomTreeNode *OldNode = DT->getNode(Old)) {
|
|
std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
|
|
|
|
DomTreeNode *NewNode = DT->addNewBlock(New, Old);
|
|
for (DomTreeNode *I : Children)
|
|
DT->changeImmediateDominator(I, NewNode);
|
|
}
|
|
|
|
// Move MemoryAccesses still tracked in Old, but part of New now.
|
|
// Update accesses in successor blocks accordingly.
|
|
if (MSSAU)
|
|
MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
|
|
|
|
return New;
|
|
}
|
|
|
|
BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
|
|
DominatorTree *DT, LoopInfo *LI,
|
|
MemorySSAUpdater *MSSAU, const Twine &BBName,
|
|
bool Before) {
|
|
return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
|
|
Before);
|
|
}
|
|
BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
|
|
DomTreeUpdater *DTU, LoopInfo *LI,
|
|
MemorySSAUpdater *MSSAU, const Twine &BBName,
|
|
bool Before) {
|
|
return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
|
|
Before);
|
|
}
|
|
|
|
BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
|
|
DomTreeUpdater *DTU, LoopInfo *LI,
|
|
MemorySSAUpdater *MSSAU,
|
|
const Twine &BBName) {
|
|
|
|
BasicBlock::iterator SplitIt = SplitPt->getIterator();
|
|
while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
|
|
++SplitIt;
|
|
std::string Name = BBName.str();
|
|
BasicBlock *New = Old->splitBasicBlock(
|
|
SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
|
|
/* Before=*/true);
|
|
|
|
// The new block lives in whichever loop the old one did. This preserves
|
|
// LCSSA as well, because we force the split point to be after any PHI nodes.
|
|
if (LI)
|
|
if (Loop *L = LI->getLoopFor(Old))
|
|
L->addBasicBlockToLoop(New, *LI);
|
|
|
|
if (DTU) {
|
|
SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
|
|
// New dominates Old. The predecessor nodes of the Old node dominate
|
|
// New node.
|
|
SmallSetVector<BasicBlock *, 8> UniquePredecessorsOfOld(pred_begin(New),
|
|
pred_end(New));
|
|
DTUpdates.push_back({DominatorTree::Insert, New, Old});
|
|
DTUpdates.reserve(DTUpdates.size() + 2 * UniquePredecessorsOfOld.size());
|
|
for (BasicBlock *UniquePredecessorOfOld : UniquePredecessorsOfOld) {
|
|
DTUpdates.push_back({DominatorTree::Insert, UniquePredecessorOfOld, New});
|
|
DTUpdates.push_back({DominatorTree::Delete, UniquePredecessorOfOld, Old});
|
|
}
|
|
|
|
DTU->applyUpdates(DTUpdates);
|
|
|
|
// Move MemoryAccesses still tracked in Old, but part of New now.
|
|
// Update accesses in successor blocks accordingly.
|
|
if (MSSAU) {
|
|
MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
|
|
if (VerifyMemorySSA)
|
|
MSSAU->getMemorySSA()->verifyMemorySSA();
|
|
}
|
|
}
|
|
return New;
|
|
}
|
|
|
|
/// Update DominatorTree, LoopInfo, and LCCSA analysis information.
|
|
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
|
|
ArrayRef<BasicBlock *> Preds,
|
|
DomTreeUpdater *DTU, DominatorTree *DT,
|
|
LoopInfo *LI, MemorySSAUpdater *MSSAU,
|
|
bool PreserveLCSSA, bool &HasLoopExit) {
|
|
// Update dominator tree if available.
|
|
if (DTU) {
|
|
// Recalculation of DomTree is needed when updating a forward DomTree and
|
|
// the Entry BB is replaced.
|
|
if (NewBB == &NewBB->getParent()->getEntryBlock() && DTU->hasDomTree()) {
|
|
// The entry block was removed and there is no external interface for
|
|
// the dominator tree to be notified of this change. In this corner-case
|
|
// we recalculate the entire tree.
|
|
DTU->recalculate(*NewBB->getParent());
|
|
} else {
|
|
// Split block expects NewBB to have a non-empty set of predecessors.
|
|
SmallVector<DominatorTree::UpdateType, 8> Updates;
|
|
SmallSetVector<BasicBlock *, 8> UniquePreds(Preds.begin(), Preds.end());
|
|
Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
|
|
Updates.reserve(Updates.size() + 2 * UniquePreds.size());
|
|
for (auto *UniquePred : UniquePreds) {
|
|
Updates.push_back({DominatorTree::Insert, UniquePred, NewBB});
|
|
Updates.push_back({DominatorTree::Delete, UniquePred, OldBB});
|
|
}
|
|
DTU->applyUpdates(Updates);
|
|
}
|
|
} else if (DT) {
|
|
if (OldBB == DT->getRootNode()->getBlock()) {
|
|
assert(NewBB == &NewBB->getParent()->getEntryBlock());
|
|
DT->setNewRoot(NewBB);
|
|
} else {
|
|
// Split block expects NewBB to have a non-empty set of predecessors.
|
|
DT->splitBlock(NewBB);
|
|
}
|
|
}
|
|
|
|
// Update MemoryPhis after split if MemorySSA is available
|
|
if (MSSAU)
|
|
MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
|
|
|
|
// The rest of the logic is only relevant for updating the loop structures.
|
|
if (!LI)
|
|
return;
|
|
|
|
if (DTU && DTU->hasDomTree())
|
|
DT = &DTU->getDomTree();
|
|
assert(DT && "DT should be available to update LoopInfo!");
|
|
Loop *L = LI->getLoopFor(OldBB);
|
|
|
|
// If we need to preserve loop analyses, collect some information about how
|
|
// this split will affect loops.
|
|
bool IsLoopEntry = !!L;
|
|
bool SplitMakesNewLoopHeader = false;
|
|
for (BasicBlock *Pred : Preds) {
|
|
// Preds that are not reachable from entry should not be used to identify if
|
|
// OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
|
|
// are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
|
|
// as true and make the NewBB the header of some loop. This breaks LI.
|
|
if (!DT->isReachableFromEntry(Pred))
|
|
continue;
|
|
// If we need to preserve LCSSA, determine if any of the preds is a loop
|
|
// exit.
|
|
if (PreserveLCSSA)
|
|
if (Loop *PL = LI->getLoopFor(Pred))
|
|
if (!PL->contains(OldBB))
|
|
HasLoopExit = true;
|
|
|
|
// If we need to preserve LoopInfo, note whether any of the preds crosses
|
|
// an interesting loop boundary.
|
|
if (!L)
|
|
continue;
|
|
if (L->contains(Pred))
|
|
IsLoopEntry = false;
|
|
else
|
|
SplitMakesNewLoopHeader = true;
|
|
}
|
|
|
|
// Unless we have a loop for OldBB, nothing else to do here.
|
|
if (!L)
|
|
return;
|
|
|
|
if (IsLoopEntry) {
|
|
// Add the new block to the nearest enclosing loop (and not an adjacent
|
|
// loop). To find this, examine each of the predecessors and determine which
|
|
// loops enclose them, and select the most-nested loop which contains the
|
|
// loop containing the block being split.
|
|
Loop *InnermostPredLoop = nullptr;
|
|
for (BasicBlock *Pred : Preds) {
|
|
if (Loop *PredLoop = LI->getLoopFor(Pred)) {
|
|
// Seek a loop which actually contains the block being split (to avoid
|
|
// adjacent loops).
|
|
while (PredLoop && !PredLoop->contains(OldBB))
|
|
PredLoop = PredLoop->getParentLoop();
|
|
|
|
// Select the most-nested of these loops which contains the block.
|
|
if (PredLoop && PredLoop->contains(OldBB) &&
|
|
(!InnermostPredLoop ||
|
|
InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
|
|
InnermostPredLoop = PredLoop;
|
|
}
|
|
}
|
|
|
|
if (InnermostPredLoop)
|
|
InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
|
|
} else {
|
|
L->addBasicBlockToLoop(NewBB, *LI);
|
|
if (SplitMakesNewLoopHeader)
|
|
L->moveToHeader(NewBB);
|
|
}
|
|
}
|
|
|
|
/// Update the PHI nodes in OrigBB to include the values coming from NewBB.
|
|
/// This also updates AliasAnalysis, if available.
|
|
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
|
|
ArrayRef<BasicBlock *> Preds, BranchInst *BI,
|
|
bool HasLoopExit) {
|
|
// Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
|
|
SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
|
|
for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
|
|
PHINode *PN = cast<PHINode>(I++);
|
|
|
|
// Check to see if all of the values coming in are the same. If so, we
|
|
// don't need to create a new PHI node, unless it's needed for LCSSA.
|
|
Value *InVal = nullptr;
|
|
if (!HasLoopExit) {
|
|
InVal = PN->getIncomingValueForBlock(Preds[0]);
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
if (!PredSet.count(PN->getIncomingBlock(i)))
|
|
continue;
|
|
if (!InVal)
|
|
InVal = PN->getIncomingValue(i);
|
|
else if (InVal != PN->getIncomingValue(i)) {
|
|
InVal = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (InVal) {
|
|
// If all incoming values for the new PHI would be the same, just don't
|
|
// make a new PHI. Instead, just remove the incoming values from the old
|
|
// PHI.
|
|
|
|
// NOTE! This loop walks backwards for a reason! First off, this minimizes
|
|
// the cost of removal if we end up removing a large number of values, and
|
|
// second off, this ensures that the indices for the incoming values
|
|
// aren't invalidated when we remove one.
|
|
for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
|
|
if (PredSet.count(PN->getIncomingBlock(i)))
|
|
PN->removeIncomingValue(i, false);
|
|
|
|
// Add an incoming value to the PHI node in the loop for the preheader
|
|
// edge.
|
|
PN->addIncoming(InVal, NewBB);
|
|
continue;
|
|
}
|
|
|
|
// If the values coming into the block are not the same, we need a new
|
|
// PHI.
|
|
// Create the new PHI node, insert it into NewBB at the end of the block
|
|
PHINode *NewPHI =
|
|
PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
|
|
|
|
// NOTE! This loop walks backwards for a reason! First off, this minimizes
|
|
// the cost of removal if we end up removing a large number of values, and
|
|
// second off, this ensures that the indices for the incoming values aren't
|
|
// invalidated when we remove one.
|
|
for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
|
|
BasicBlock *IncomingBB = PN->getIncomingBlock(i);
|
|
if (PredSet.count(IncomingBB)) {
|
|
Value *V = PN->removeIncomingValue(i, false);
|
|
NewPHI->addIncoming(V, IncomingBB);
|
|
}
|
|
}
|
|
|
|
PN->addIncoming(NewPHI, NewBB);
|
|
}
|
|
}
|
|
|
|
static void SplitLandingPadPredecessorsImpl(
|
|
BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
|
|
const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
|
|
DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
|
|
MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
|
|
|
|
static BasicBlock *
|
|
SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
|
|
const char *Suffix, DomTreeUpdater *DTU,
|
|
DominatorTree *DT, LoopInfo *LI,
|
|
MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
|
|
// Do not attempt to split that which cannot be split.
|
|
if (!BB->canSplitPredecessors())
|
|
return nullptr;
|
|
|
|
// For the landingpads we need to act a bit differently.
|
|
// Delegate this work to the SplitLandingPadPredecessors.
|
|
if (BB->isLandingPad()) {
|
|
SmallVector<BasicBlock*, 2> NewBBs;
|
|
std::string NewName = std::string(Suffix) + ".split-lp";
|
|
|
|
SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
|
|
DTU, DT, LI, MSSAU, PreserveLCSSA);
|
|
return NewBBs[0];
|
|
}
|
|
|
|
// Create new basic block, insert right before the original block.
|
|
BasicBlock *NewBB = BasicBlock::Create(
|
|
BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
|
|
|
|
// The new block unconditionally branches to the old block.
|
|
BranchInst *BI = BranchInst::Create(BB, NewBB);
|
|
|
|
Loop *L = nullptr;
|
|
BasicBlock *OldLatch = nullptr;
|
|
// Splitting the predecessors of a loop header creates a preheader block.
|
|
if (LI && LI->isLoopHeader(BB)) {
|
|
L = LI->getLoopFor(BB);
|
|
// Using the loop start line number prevents debuggers stepping into the
|
|
// loop body for this instruction.
|
|
BI->setDebugLoc(L->getStartLoc());
|
|
|
|
// If BB is the header of the Loop, it is possible that the loop is
|
|
// modified, such that the current latch does not remain the latch of the
|
|
// loop. If that is the case, the loop metadata from the current latch needs
|
|
// to be applied to the new latch.
|
|
OldLatch = L->getLoopLatch();
|
|
} else
|
|
BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
|
|
|
|
// Move the edges from Preds to point to NewBB instead of BB.
|
|
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
|
|
// This is slightly more strict than necessary; the minimum requirement
|
|
// is that there be no more than one indirectbr branching to BB. And
|
|
// all BlockAddress uses would need to be updated.
|
|
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
|
|
"Cannot split an edge from an IndirectBrInst");
|
|
assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
|
|
"Cannot split an edge from a CallBrInst");
|
|
Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
|
|
}
|
|
|
|
// Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
|
|
// node becomes an incoming value for BB's phi node. However, if the Preds
|
|
// list is empty, we need to insert dummy entries into the PHI nodes in BB to
|
|
// account for the newly created predecessor.
|
|
if (Preds.empty()) {
|
|
// Insert dummy values as the incoming value.
|
|
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
|
|
cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
|
|
}
|
|
|
|
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
|
|
bool HasLoopExit = false;
|
|
UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
|
|
HasLoopExit);
|
|
|
|
if (!Preds.empty()) {
|
|
// Update the PHI nodes in BB with the values coming from NewBB.
|
|
UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
|
|
}
|
|
|
|
if (OldLatch) {
|
|
BasicBlock *NewLatch = L->getLoopLatch();
|
|
if (NewLatch != OldLatch) {
|
|
MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
|
|
NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
|
|
OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
|
|
}
|
|
}
|
|
|
|
return NewBB;
|
|
}
|
|
|
|
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
|
|
ArrayRef<BasicBlock *> Preds,
|
|
const char *Suffix, DominatorTree *DT,
|
|
LoopInfo *LI, MemorySSAUpdater *MSSAU,
|
|
bool PreserveLCSSA) {
|
|
return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
|
|
MSSAU, PreserveLCSSA);
|
|
}
|
|
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
|
|
ArrayRef<BasicBlock *> Preds,
|
|
const char *Suffix,
|
|
DomTreeUpdater *DTU, LoopInfo *LI,
|
|
MemorySSAUpdater *MSSAU,
|
|
bool PreserveLCSSA) {
|
|
return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
|
|
/*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
|
|
}
|
|
|
|
static void SplitLandingPadPredecessorsImpl(
|
|
BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
|
|
const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
|
|
DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
|
|
MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
|
|
assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
|
|
|
|
// Create a new basic block for OrigBB's predecessors listed in Preds. Insert
|
|
// it right before the original block.
|
|
BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
|
|
OrigBB->getName() + Suffix1,
|
|
OrigBB->getParent(), OrigBB);
|
|
NewBBs.push_back(NewBB1);
|
|
|
|
// The new block unconditionally branches to the old block.
|
|
BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
|
|
BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
|
|
|
|
// Move the edges from Preds to point to NewBB1 instead of OrigBB.
|
|
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
|
|
// This is slightly more strict than necessary; the minimum requirement
|
|
// is that there be no more than one indirectbr branching to BB. And
|
|
// all BlockAddress uses would need to be updated.
|
|
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
|
|
"Cannot split an edge from an IndirectBrInst");
|
|
Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
|
|
}
|
|
|
|
bool HasLoopExit = false;
|
|
UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
|
|
PreserveLCSSA, HasLoopExit);
|
|
|
|
// Update the PHI nodes in OrigBB with the values coming from NewBB1.
|
|
UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
|
|
|
|
// Move the remaining edges from OrigBB to point to NewBB2.
|
|
SmallVector<BasicBlock*, 8> NewBB2Preds;
|
|
for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
|
|
i != e; ) {
|
|
BasicBlock *Pred = *i++;
|
|
if (Pred == NewBB1) continue;
|
|
assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
|
|
"Cannot split an edge from an IndirectBrInst");
|
|
NewBB2Preds.push_back(Pred);
|
|
e = pred_end(OrigBB);
|
|
}
|
|
|
|
BasicBlock *NewBB2 = nullptr;
|
|
if (!NewBB2Preds.empty()) {
|
|
// Create another basic block for the rest of OrigBB's predecessors.
|
|
NewBB2 = BasicBlock::Create(OrigBB->getContext(),
|
|
OrigBB->getName() + Suffix2,
|
|
OrigBB->getParent(), OrigBB);
|
|
NewBBs.push_back(NewBB2);
|
|
|
|
// The new block unconditionally branches to the old block.
|
|
BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
|
|
BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
|
|
|
|
// Move the remaining edges from OrigBB to point to NewBB2.
|
|
for (BasicBlock *NewBB2Pred : NewBB2Preds)
|
|
NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
|
|
|
|
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
|
|
HasLoopExit = false;
|
|
UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
|
|
PreserveLCSSA, HasLoopExit);
|
|
|
|
// Update the PHI nodes in OrigBB with the values coming from NewBB2.
|
|
UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
|
|
}
|
|
|
|
LandingPadInst *LPad = OrigBB->getLandingPadInst();
|
|
Instruction *Clone1 = LPad->clone();
|
|
Clone1->setName(Twine("lpad") + Suffix1);
|
|
NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
|
|
|
|
if (NewBB2) {
|
|
Instruction *Clone2 = LPad->clone();
|
|
Clone2->setName(Twine("lpad") + Suffix2);
|
|
NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
|
|
|
|
// Create a PHI node for the two cloned landingpad instructions only
|
|
// if the original landingpad instruction has some uses.
|
|
if (!LPad->use_empty()) {
|
|
assert(!LPad->getType()->isTokenTy() &&
|
|
"Split cannot be applied if LPad is token type. Otherwise an "
|
|
"invalid PHINode of token type would be created.");
|
|
PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
|
|
PN->addIncoming(Clone1, NewBB1);
|
|
PN->addIncoming(Clone2, NewBB2);
|
|
LPad->replaceAllUsesWith(PN);
|
|
}
|
|
LPad->eraseFromParent();
|
|
} else {
|
|
// There is no second clone. Just replace the landing pad with the first
|
|
// clone.
|
|
LPad->replaceAllUsesWith(Clone1);
|
|
LPad->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
|
|
ArrayRef<BasicBlock *> Preds,
|
|
const char *Suffix1, const char *Suffix2,
|
|
SmallVectorImpl<BasicBlock *> &NewBBs,
|
|
DominatorTree *DT, LoopInfo *LI,
|
|
MemorySSAUpdater *MSSAU,
|
|
bool PreserveLCSSA) {
|
|
return SplitLandingPadPredecessorsImpl(
|
|
OrigBB, Preds, Suffix1, Suffix2, NewBBs,
|
|
/*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
|
|
}
|
|
void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
|
|
ArrayRef<BasicBlock *> Preds,
|
|
const char *Suffix1, const char *Suffix2,
|
|
SmallVectorImpl<BasicBlock *> &NewBBs,
|
|
DomTreeUpdater *DTU, LoopInfo *LI,
|
|
MemorySSAUpdater *MSSAU,
|
|
bool PreserveLCSSA) {
|
|
return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
|
|
NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
|
|
PreserveLCSSA);
|
|
}
|
|
|
|
ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
|
|
BasicBlock *Pred,
|
|
DomTreeUpdater *DTU) {
|
|
Instruction *UncondBranch = Pred->getTerminator();
|
|
// Clone the return and add it to the end of the predecessor.
|
|
Instruction *NewRet = RI->clone();
|
|
Pred->getInstList().push_back(NewRet);
|
|
|
|
// If the return instruction returns a value, and if the value was a
|
|
// PHI node in "BB", propagate the right value into the return.
|
|
for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
|
|
i != e; ++i) {
|
|
Value *V = *i;
|
|
Instruction *NewBC = nullptr;
|
|
if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
|
|
// Return value might be bitcasted. Clone and insert it before the
|
|
// return instruction.
|
|
V = BCI->getOperand(0);
|
|
NewBC = BCI->clone();
|
|
Pred->getInstList().insert(NewRet->getIterator(), NewBC);
|
|
*i = NewBC;
|
|
}
|
|
|
|
Instruction *NewEV = nullptr;
|
|
if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
|
|
V = EVI->getOperand(0);
|
|
NewEV = EVI->clone();
|
|
if (NewBC) {
|
|
NewBC->setOperand(0, NewEV);
|
|
Pred->getInstList().insert(NewBC->getIterator(), NewEV);
|
|
} else {
|
|
Pred->getInstList().insert(NewRet->getIterator(), NewEV);
|
|
*i = NewEV;
|
|
}
|
|
}
|
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(V)) {
|
|
if (PN->getParent() == BB) {
|
|
if (NewEV) {
|
|
NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
|
|
} else if (NewBC)
|
|
NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
|
|
else
|
|
*i = PN->getIncomingValueForBlock(Pred);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update any PHI nodes in the returning block to realize that we no
|
|
// longer branch to them.
|
|
BB->removePredecessor(Pred);
|
|
UncondBranch->eraseFromParent();
|
|
|
|
if (DTU)
|
|
DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
|
|
|
|
return cast<ReturnInst>(NewRet);
|
|
}
|
|
|
|
static Instruction *
|
|
SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
|
|
bool Unreachable, MDNode *BranchWeights,
|
|
DomTreeUpdater *DTU, DominatorTree *DT,
|
|
LoopInfo *LI, BasicBlock *ThenBlock) {
|
|
SmallVector<DominatorTree::UpdateType, 8> Updates;
|
|
BasicBlock *Head = SplitBefore->getParent();
|
|
BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
|
|
if (DTU) {
|
|
SmallSetVector<BasicBlock *, 8> UniqueSuccessorsOfHead(succ_begin(Tail),
|
|
succ_end(Tail));
|
|
Updates.push_back({DominatorTree::Insert, Head, Tail});
|
|
Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfHead.size());
|
|
for (BasicBlock *UniqueSuccessorOfHead : UniqueSuccessorsOfHead) {
|
|
Updates.push_back({DominatorTree::Insert, Tail, UniqueSuccessorOfHead});
|
|
Updates.push_back({DominatorTree::Delete, Head, UniqueSuccessorOfHead});
|
|
}
|
|
}
|
|
Instruction *HeadOldTerm = Head->getTerminator();
|
|
LLVMContext &C = Head->getContext();
|
|
Instruction *CheckTerm;
|
|
bool CreateThenBlock = (ThenBlock == nullptr);
|
|
if (CreateThenBlock) {
|
|
ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
|
|
if (Unreachable)
|
|
CheckTerm = new UnreachableInst(C, ThenBlock);
|
|
else {
|
|
CheckTerm = BranchInst::Create(Tail, ThenBlock);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
|
|
}
|
|
CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
|
|
} else
|
|
CheckTerm = ThenBlock->getTerminator();
|
|
BranchInst *HeadNewTerm =
|
|
BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
|
|
HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
|
|
ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
|
|
|
|
if (DTU)
|
|
DTU->applyUpdates(Updates);
|
|
else if (DT) {
|
|
if (DomTreeNode *OldNode = DT->getNode(Head)) {
|
|
std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
|
|
|
|
DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
|
|
for (DomTreeNode *Child : Children)
|
|
DT->changeImmediateDominator(Child, NewNode);
|
|
|
|
// Head dominates ThenBlock.
|
|
if (CreateThenBlock)
|
|
DT->addNewBlock(ThenBlock, Head);
|
|
else
|
|
DT->changeImmediateDominator(ThenBlock, Head);
|
|
}
|
|
}
|
|
|
|
if (LI) {
|
|
if (Loop *L = LI->getLoopFor(Head)) {
|
|
L->addBasicBlockToLoop(ThenBlock, *LI);
|
|
L->addBasicBlockToLoop(Tail, *LI);
|
|
}
|
|
}
|
|
|
|
return CheckTerm;
|
|
}
|
|
|
|
Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
|
|
Instruction *SplitBefore,
|
|
bool Unreachable,
|
|
MDNode *BranchWeights,
|
|
DominatorTree *DT, LoopInfo *LI,
|
|
BasicBlock *ThenBlock) {
|
|
return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
|
|
BranchWeights,
|
|
/*DTU=*/nullptr, DT, LI, ThenBlock);
|
|
}
|
|
Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
|
|
Instruction *SplitBefore,
|
|
bool Unreachable,
|
|
MDNode *BranchWeights,
|
|
DomTreeUpdater *DTU, LoopInfo *LI,
|
|
BasicBlock *ThenBlock) {
|
|
return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
|
|
BranchWeights, DTU, /*DT=*/nullptr, LI,
|
|
ThenBlock);
|
|
}
|
|
|
|
void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
|
|
Instruction **ThenTerm,
|
|
Instruction **ElseTerm,
|
|
MDNode *BranchWeights) {
|
|
BasicBlock *Head = SplitBefore->getParent();
|
|
BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
|
|
Instruction *HeadOldTerm = Head->getTerminator();
|
|
LLVMContext &C = Head->getContext();
|
|
BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
|
|
BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
|
|
*ThenTerm = BranchInst::Create(Tail, ThenBlock);
|
|
(*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
|
|
*ElseTerm = BranchInst::Create(Tail, ElseBlock);
|
|
(*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
|
|
BranchInst *HeadNewTerm =
|
|
BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
|
|
HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
|
|
ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
|
|
}
|
|
|
|
Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
|
|
BasicBlock *&IfFalse) {
|
|
PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
|
|
BasicBlock *Pred1 = nullptr;
|
|
BasicBlock *Pred2 = nullptr;
|
|
|
|
if (SomePHI) {
|
|
if (SomePHI->getNumIncomingValues() != 2)
|
|
return nullptr;
|
|
Pred1 = SomePHI->getIncomingBlock(0);
|
|
Pred2 = SomePHI->getIncomingBlock(1);
|
|
} else {
|
|
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
if (PI == PE) // No predecessor
|
|
return nullptr;
|
|
Pred1 = *PI++;
|
|
if (PI == PE) // Only one predecessor
|
|
return nullptr;
|
|
Pred2 = *PI++;
|
|
if (PI != PE) // More than two predecessors
|
|
return nullptr;
|
|
}
|
|
|
|
// We can only handle branches. Other control flow will be lowered to
|
|
// branches if possible anyway.
|
|
BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
|
|
BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
|
|
if (!Pred1Br || !Pred2Br)
|
|
return nullptr;
|
|
|
|
// Eliminate code duplication by ensuring that Pred1Br is conditional if
|
|
// either are.
|
|
if (Pred2Br->isConditional()) {
|
|
// If both branches are conditional, we don't have an "if statement". In
|
|
// reality, we could transform this case, but since the condition will be
|
|
// required anyway, we stand no chance of eliminating it, so the xform is
|
|
// probably not profitable.
|
|
if (Pred1Br->isConditional())
|
|
return nullptr;
|
|
|
|
std::swap(Pred1, Pred2);
|
|
std::swap(Pred1Br, Pred2Br);
|
|
}
|
|
|
|
if (Pred1Br->isConditional()) {
|
|
// The only thing we have to watch out for here is to make sure that Pred2
|
|
// doesn't have incoming edges from other blocks. If it does, the condition
|
|
// doesn't dominate BB.
|
|
if (!Pred2->getSinglePredecessor())
|
|
return nullptr;
|
|
|
|
// If we found a conditional branch predecessor, make sure that it branches
|
|
// to BB and Pred2Br. If it doesn't, this isn't an "if statement".
|
|
if (Pred1Br->getSuccessor(0) == BB &&
|
|
Pred1Br->getSuccessor(1) == Pred2) {
|
|
IfTrue = Pred1;
|
|
IfFalse = Pred2;
|
|
} else if (Pred1Br->getSuccessor(0) == Pred2 &&
|
|
Pred1Br->getSuccessor(1) == BB) {
|
|
IfTrue = Pred2;
|
|
IfFalse = Pred1;
|
|
} else {
|
|
// We know that one arm of the conditional goes to BB, so the other must
|
|
// go somewhere unrelated, and this must not be an "if statement".
|
|
return nullptr;
|
|
}
|
|
|
|
return Pred1Br->getCondition();
|
|
}
|
|
|
|
// Ok, if we got here, both predecessors end with an unconditional branch to
|
|
// BB. Don't panic! If both blocks only have a single (identical)
|
|
// predecessor, and THAT is a conditional branch, then we're all ok!
|
|
BasicBlock *CommonPred = Pred1->getSinglePredecessor();
|
|
if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
|
|
return nullptr;
|
|
|
|
// Otherwise, if this is a conditional branch, then we can use it!
|
|
BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
|
|
if (!BI) return nullptr;
|
|
|
|
assert(BI->isConditional() && "Two successors but not conditional?");
|
|
if (BI->getSuccessor(0) == Pred1) {
|
|
IfTrue = Pred1;
|
|
IfFalse = Pred2;
|
|
} else {
|
|
IfTrue = Pred2;
|
|
IfFalse = Pred1;
|
|
}
|
|
return BI->getCondition();
|
|
}
|
|
|
|
// After creating a control flow hub, the operands of PHINodes in an outgoing
|
|
// block Out no longer match the predecessors of that block. Predecessors of Out
|
|
// that are incoming blocks to the hub are now replaced by just one edge from
|
|
// the hub. To match this new control flow, the corresponding values from each
|
|
// PHINode must now be moved a new PHINode in the first guard block of the hub.
|
|
//
|
|
// This operation cannot be performed with SSAUpdater, because it involves one
|
|
// new use: If the block Out is in the list of Incoming blocks, then the newly
|
|
// created PHI in the Hub will use itself along that edge from Out to Hub.
|
|
static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
|
|
const SetVector<BasicBlock *> &Incoming,
|
|
BasicBlock *FirstGuardBlock) {
|
|
auto I = Out->begin();
|
|
while (I != Out->end() && isa<PHINode>(I)) {
|
|
auto Phi = cast<PHINode>(I);
|
|
auto NewPhi =
|
|
PHINode::Create(Phi->getType(), Incoming.size(),
|
|
Phi->getName() + ".moved", &FirstGuardBlock->back());
|
|
for (auto In : Incoming) {
|
|
Value *V = UndefValue::get(Phi->getType());
|
|
if (In == Out) {
|
|
V = NewPhi;
|
|
} else if (Phi->getBasicBlockIndex(In) != -1) {
|
|
V = Phi->removeIncomingValue(In, false);
|
|
}
|
|
NewPhi->addIncoming(V, In);
|
|
}
|
|
assert(NewPhi->getNumIncomingValues() == Incoming.size());
|
|
if (Phi->getNumOperands() == 0) {
|
|
Phi->replaceAllUsesWith(NewPhi);
|
|
I = Phi->eraseFromParent();
|
|
continue;
|
|
}
|
|
Phi->addIncoming(NewPhi, GuardBlock);
|
|
++I;
|
|
}
|
|
}
|
|
|
|
using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
|
|
using BBSetVector = SetVector<BasicBlock *>;
|
|
|
|
// Redirects the terminator of the incoming block to the first guard
|
|
// block in the hub. The condition of the original terminator (if it
|
|
// was conditional) and its original successors are returned as a
|
|
// tuple <condition, succ0, succ1>. The function additionally filters
|
|
// out successors that are not in the set of outgoing blocks.
|
|
//
|
|
// - condition is non-null iff the branch is conditional.
|
|
// - Succ1 is non-null iff the sole/taken target is an outgoing block.
|
|
// - Succ2 is non-null iff condition is non-null and the fallthrough
|
|
// target is an outgoing block.
|
|
static std::tuple<Value *, BasicBlock *, BasicBlock *>
|
|
redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
|
|
const BBSetVector &Outgoing) {
|
|
auto Branch = cast<BranchInst>(BB->getTerminator());
|
|
auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
|
|
|
|
BasicBlock *Succ0 = Branch->getSuccessor(0);
|
|
BasicBlock *Succ1 = nullptr;
|
|
Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
|
|
|
|
if (Branch->isUnconditional()) {
|
|
Branch->setSuccessor(0, FirstGuardBlock);
|
|
assert(Succ0);
|
|
} else {
|
|
Succ1 = Branch->getSuccessor(1);
|
|
Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
|
|
assert(Succ0 || Succ1);
|
|
if (Succ0 && !Succ1) {
|
|
Branch->setSuccessor(0, FirstGuardBlock);
|
|
} else if (Succ1 && !Succ0) {
|
|
Branch->setSuccessor(1, FirstGuardBlock);
|
|
} else {
|
|
Branch->eraseFromParent();
|
|
BranchInst::Create(FirstGuardBlock, BB);
|
|
}
|
|
}
|
|
|
|
assert(Succ0 || Succ1);
|
|
return std::make_tuple(Condition, Succ0, Succ1);
|
|
}
|
|
|
|
// Capture the existing control flow as guard predicates, and redirect
|
|
// control flow from every incoming block to the first guard block in
|
|
// the hub.
|
|
//
|
|
// There is one guard predicate for each outgoing block OutBB. The
|
|
// predicate is a PHINode with one input for each InBB which
|
|
// represents whether the hub should transfer control flow to OutBB if
|
|
// it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
|
|
// evaluates them in the same order as the Outgoing set-vector, and
|
|
// control branches to the first outgoing block whose predicate
|
|
// evaluates to true.
|
|
static void convertToGuardPredicates(
|
|
BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
|
|
SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
|
|
const BBSetVector &Outgoing) {
|
|
auto &Context = Incoming.front()->getContext();
|
|
auto BoolTrue = ConstantInt::getTrue(Context);
|
|
auto BoolFalse = ConstantInt::getFalse(Context);
|
|
|
|
// The predicate for the last outgoing is trivially true, and so we
|
|
// process only the first N-1 successors.
|
|
for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
|
|
auto Out = Outgoing[i];
|
|
LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
|
|
auto Phi =
|
|
PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
|
|
StringRef("Guard.") + Out->getName(), FirstGuardBlock);
|
|
GuardPredicates[Out] = Phi;
|
|
}
|
|
|
|
for (auto In : Incoming) {
|
|
Value *Condition;
|
|
BasicBlock *Succ0;
|
|
BasicBlock *Succ1;
|
|
std::tie(Condition, Succ0, Succ1) =
|
|
redirectToHub(In, FirstGuardBlock, Outgoing);
|
|
|
|
// Optimization: Consider an incoming block A with both successors
|
|
// Succ0 and Succ1 in the set of outgoing blocks. The predicates
|
|
// for Succ0 and Succ1 complement each other. If Succ0 is visited
|
|
// first in the loop below, control will branch to Succ0 using the
|
|
// corresponding predicate. But if that branch is not taken, then
|
|
// control must reach Succ1, which means that the predicate for
|
|
// Succ1 is always true.
|
|
bool OneSuccessorDone = false;
|
|
for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
|
|
auto Out = Outgoing[i];
|
|
auto Phi = GuardPredicates[Out];
|
|
if (Out != Succ0 && Out != Succ1) {
|
|
Phi->addIncoming(BoolFalse, In);
|
|
continue;
|
|
}
|
|
// Optimization: When only one successor is an outgoing block,
|
|
// the predicate is always true.
|
|
if (!Succ0 || !Succ1 || OneSuccessorDone) {
|
|
Phi->addIncoming(BoolTrue, In);
|
|
continue;
|
|
}
|
|
assert(Succ0 && Succ1);
|
|
OneSuccessorDone = true;
|
|
if (Out == Succ0) {
|
|
Phi->addIncoming(Condition, In);
|
|
continue;
|
|
}
|
|
auto Inverted = invertCondition(Condition);
|
|
DeletionCandidates.push_back(Condition);
|
|
Phi->addIncoming(Inverted, In);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For each outgoing block OutBB, create a guard block in the Hub. The
|
|
// first guard block was already created outside, and available as the
|
|
// first element in the vector of guard blocks.
|
|
//
|
|
// Each guard block terminates in a conditional branch that transfers
|
|
// control to the corresponding outgoing block or the next guard
|
|
// block. The last guard block has two outgoing blocks as successors
|
|
// since the condition for the final outgoing block is trivially
|
|
// true. So we create one less block (including the first guard block)
|
|
// than the number of outgoing blocks.
|
|
static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
|
|
Function *F, const BBSetVector &Outgoing,
|
|
BBPredicates &GuardPredicates, StringRef Prefix) {
|
|
for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
|
|
GuardBlocks.push_back(
|
|
BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
|
|
}
|
|
assert(GuardBlocks.size() == GuardPredicates.size());
|
|
|
|
// To help keep the loop simple, temporarily append the last
|
|
// outgoing block to the list of guard blocks.
|
|
GuardBlocks.push_back(Outgoing.back());
|
|
|
|
for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
|
|
auto Out = Outgoing[i];
|
|
assert(GuardPredicates.count(Out));
|
|
BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
|
|
GuardBlocks[i]);
|
|
}
|
|
|
|
// Remove the last block from the guard list.
|
|
GuardBlocks.pop_back();
|
|
}
|
|
|
|
BasicBlock *llvm::CreateControlFlowHub(
|
|
DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
|
|
const BBSetVector &Incoming, const BBSetVector &Outgoing,
|
|
const StringRef Prefix) {
|
|
auto F = Incoming.front()->getParent();
|
|
auto FirstGuardBlock =
|
|
BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
|
|
|
|
SmallVector<DominatorTree::UpdateType, 16> Updates;
|
|
if (DTU) {
|
|
for (auto In : Incoming) {
|
|
Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
|
|
for (auto Succ : successors(In)) {
|
|
if (Outgoing.count(Succ))
|
|
Updates.push_back({DominatorTree::Delete, In, Succ});
|
|
}
|
|
}
|
|
}
|
|
|
|
BBPredicates GuardPredicates;
|
|
SmallVector<WeakVH, 8> DeletionCandidates;
|
|
convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
|
|
Incoming, Outgoing);
|
|
|
|
GuardBlocks.push_back(FirstGuardBlock);
|
|
createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
|
|
|
|
// Update the PHINodes in each outgoing block to match the new control flow.
|
|
for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
|
|
reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
|
|
}
|
|
reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
|
|
|
|
if (DTU) {
|
|
int NumGuards = GuardBlocks.size();
|
|
assert((int)Outgoing.size() == NumGuards + 1);
|
|
for (int i = 0; i != NumGuards - 1; ++i) {
|
|
Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
|
|
Updates.push_back(
|
|
{DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
|
|
}
|
|
Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
|
|
Outgoing[NumGuards - 1]});
|
|
Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
|
|
Outgoing[NumGuards]});
|
|
DTU->applyUpdates(Updates);
|
|
}
|
|
|
|
for (auto I : DeletionCandidates) {
|
|
if (I->use_empty())
|
|
if (auto Inst = dyn_cast_or_null<Instruction>(I))
|
|
Inst->eraseFromParent();
|
|
}
|
|
|
|
return FirstGuardBlock;
|
|
}
|