llvm-for-llvmta/lib/Target/Hexagon/MCTargetDesc/HexagonMCChecker.cpp

755 lines
26 KiB
C++

//===----- HexagonMCChecker.cpp - Instruction bundle checking -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the checking of insns inside a bundle according to the
// packet constraint rules of the Hexagon ISA.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/HexagonMCChecker.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCShuffler.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/SourceMgr.h"
#include <cassert>
using namespace llvm;
static cl::opt<bool>
RelaxNVChecks("relax-nv-checks", cl::init(false), cl::ZeroOrMore,
cl::Hidden, cl::desc("Relax checks of new-value validity"));
const HexagonMCChecker::PredSense
HexagonMCChecker::Unconditional(Hexagon::NoRegister, false);
void HexagonMCChecker::init() {
// Initialize read-only registers set.
ReadOnly.insert(Hexagon::PC);
ReadOnly.insert(Hexagon::C9_8);
// Figure out the loop-registers definitions.
if (HexagonMCInstrInfo::isInnerLoop(MCB)) {
Defs[Hexagon::SA0].insert(Unconditional); // FIXME: define or change SA0?
Defs[Hexagon::LC0].insert(Unconditional);
}
if (HexagonMCInstrInfo::isOuterLoop(MCB)) {
Defs[Hexagon::SA1].insert(Unconditional); // FIXME: define or change SA0?
Defs[Hexagon::LC1].insert(Unconditional);
}
if (HexagonMCInstrInfo::isBundle(MCB))
// Unfurl a bundle.
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
MCInst const &Inst = *I.getInst();
if (HexagonMCInstrInfo::isDuplex(MCII, Inst)) {
init(*Inst.getOperand(0).getInst());
init(*Inst.getOperand(1).getInst());
} else
init(Inst);
}
else
init(MCB);
}
void HexagonMCChecker::initReg(MCInst const &MCI, unsigned R, unsigned &PredReg,
bool &isTrue) {
if (HexagonMCInstrInfo::isPredicated(MCII, MCI) && isPredicateRegister(R)) {
// Note an used predicate register.
PredReg = R;
isTrue = HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI);
// Note use of new predicate register.
if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
NewPreds.insert(PredReg);
} else
// Note register use. Super-registers are not tracked directly,
// but their components.
for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
SRI.isValid(); ++SRI)
if (!MCSubRegIterator(*SRI, &RI).isValid())
// Skip super-registers used indirectly.
Uses.insert(*SRI);
if (HexagonMCInstrInfo::IsReverseVecRegPair(R))
ReversePairs.insert(R);
}
void HexagonMCChecker::init(MCInst const &MCI) {
const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MCI);
unsigned PredReg = Hexagon::NoRegister;
bool isTrue = false;
// Get used registers.
for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
if (MCI.getOperand(i).isReg())
initReg(MCI, MCI.getOperand(i).getReg(), PredReg, isTrue);
for (unsigned i = 0; i < MCID.getNumImplicitUses(); ++i)
initReg(MCI, MCID.getImplicitUses()[i], PredReg, isTrue);
// Get implicit register definitions.
if (const MCPhysReg *ImpDef = MCID.getImplicitDefs())
for (; *ImpDef; ++ImpDef) {
unsigned R = *ImpDef;
if (Hexagon::R31 != R && MCID.isCall())
// Any register other than the LR and the PC are actually volatile ones
// as defined by the ABI, not modified implicitly by the call insn.
continue;
if (Hexagon::PC == R)
// Branches are the only insns that can change the PC,
// otherwise a read-only register.
continue;
if (Hexagon::USR_OVF == R)
// Many insns change the USR implicitly, but only one or another flag.
// The instruction table models the USR.OVF flag, which can be
// implicitly modified more than once, but cannot be modified in the
// same packet with an instruction that modifies is explicitly. Deal
// with such situations individually.
SoftDefs.insert(R);
else if (isPredicateRegister(R) &&
HexagonMCInstrInfo::isPredicateLate(MCII, MCI))
// Include implicit late predicates.
LatePreds.insert(R);
else
Defs[R].insert(PredSense(PredReg, isTrue));
}
// Figure out explicit register definitions.
for (unsigned i = 0; i < MCID.getNumDefs(); ++i) {
unsigned R = MCI.getOperand(i).getReg(), S = Hexagon::NoRegister;
// USR has subregisters (while C8 does not for technical reasons), so
// reset R to USR, since we know how to handle multiple defs of USR,
// taking into account its subregisters.
if (R == Hexagon::C8)
R = Hexagon::USR;
if (HexagonMCInstrInfo::IsReverseVecRegPair(R))
ReversePairs.insert(R);
// Note register definitions, direct ones as well as indirect side-effects.
// Super-registers are not tracked directly, but their components.
for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
SRI.isValid(); ++SRI) {
if (MCSubRegIterator(*SRI, &RI).isValid())
// Skip super-registers defined indirectly.
continue;
if (R == *SRI) {
if (S == R)
// Avoid scoring the defined register multiple times.
continue;
else
// Note that the defined register has already been scored.
S = R;
}
if (Hexagon::P3_0 != R && Hexagon::P3_0 == *SRI)
// P3:0 is a special case, since multiple predicate register definitions
// in a packet is allowed as the equivalent of their logical "and".
// Only an explicit definition of P3:0 is noted as such; if a
// side-effect, then note as a soft definition.
SoftDefs.insert(*SRI);
else if (HexagonMCInstrInfo::isPredicateLate(MCII, MCI) &&
isPredicateRegister(*SRI))
// Some insns produce predicates too late to be used in the same packet.
LatePreds.insert(*SRI);
else if (i == 0 && HexagonMCInstrInfo::getType(MCII, MCI) ==
HexagonII::TypeCVI_VM_TMP_LD)
// Temporary loads should be used in the same packet, but don't commit
// results, so it should be disregarded if another insn changes the same
// register.
// TODO: relies on the impossibility of a current and a temporary loads
// in the same packet.
TmpDefs.insert(*SRI);
else if (i <= 1 && HexagonMCInstrInfo::hasNewValue2(MCII, MCI))
// vshuff(Vx, Vy, Rx) <- Vx(0) and Vy(1) are both source and
// destination registers with this instruction. same for vdeal(Vx,Vy,Rx)
Uses.insert(*SRI);
else
Defs[*SRI].insert(PredSense(PredReg, isTrue));
}
}
// Figure out definitions of new predicate registers.
if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
if (MCI.getOperand(i).isReg()) {
unsigned P = MCI.getOperand(i).getReg();
if (isPredicateRegister(P))
NewPreds.insert(P);
}
}
HexagonMCChecker::HexagonMCChecker(MCContext &Context, MCInstrInfo const &MCII,
MCSubtargetInfo const &STI, MCInst &mcb,
MCRegisterInfo const &ri, bool ReportErrors)
: Context(Context), MCB(mcb), RI(ri), MCII(MCII), STI(STI),
ReportErrors(ReportErrors), ReversePairs() {
init();
}
HexagonMCChecker::HexagonMCChecker(HexagonMCChecker const &Other,
MCSubtargetInfo const &STI,
bool CopyReportErrors)
: Context(Other.Context), MCB(Other.MCB), RI(Other.RI), MCII(Other.MCII),
STI(STI), ReportErrors(CopyReportErrors ? Other.ReportErrors : false),
ReversePairs() {
init();
}
bool HexagonMCChecker::check(bool FullCheck) {
bool chkP = checkPredicates();
bool chkNV = checkNewValues();
bool chkR = checkRegisters();
bool chkRRO = checkRegistersReadOnly();
checkRegisterCurDefs();
bool chkS = checkSolo();
bool chkSh = true;
if (FullCheck)
chkSh = checkShuffle();
bool chkSl = true;
if (FullCheck)
chkSl = checkSlots();
bool chkAXOK = checkAXOK();
bool chkCofMax1 = checkCOFMax1();
bool chkHWLoop = checkHWLoop();
bool chkLegalVecRegPair = checkLegalVecRegPair();
bool chk = chkP && chkNV && chkR && chkRRO && chkS && chkSh && chkSl &&
chkAXOK && chkCofMax1 && chkHWLoop && chkLegalVecRegPair;
return chk;
}
static bool isDuplexAGroup(unsigned Opcode) {
switch (Opcode) {
case Hexagon::SA1_addi:
case Hexagon::SA1_addrx:
case Hexagon::SA1_addsp:
case Hexagon::SA1_and1:
case Hexagon::SA1_clrf:
case Hexagon::SA1_clrfnew:
case Hexagon::SA1_clrt:
case Hexagon::SA1_clrtnew:
case Hexagon::SA1_cmpeqi:
case Hexagon::SA1_combine0i:
case Hexagon::SA1_combine1i:
case Hexagon::SA1_combine2i:
case Hexagon::SA1_combine3i:
case Hexagon::SA1_combinerz:
case Hexagon::SA1_combinezr:
case Hexagon::SA1_dec:
case Hexagon::SA1_inc:
case Hexagon::SA1_seti:
case Hexagon::SA1_setin1:
case Hexagon::SA1_sxtb:
case Hexagon::SA1_sxth:
case Hexagon::SA1_tfr:
case Hexagon::SA1_zxtb:
case Hexagon::SA1_zxth:
return true;
break;
default:
return false;
}
}
static bool isNeitherAnorX(MCInstrInfo const &MCII, MCInst const &ID) {
unsigned Result = 0;
unsigned Type = HexagonMCInstrInfo::getType(MCII, ID);
if (Type == HexagonII::TypeDUPLEX) {
unsigned subInst0Opcode = ID.getOperand(0).getInst()->getOpcode();
unsigned subInst1Opcode = ID.getOperand(1).getInst()->getOpcode();
Result += !isDuplexAGroup(subInst0Opcode);
Result += !isDuplexAGroup(subInst1Opcode);
} else
Result +=
Type != HexagonII::TypeALU32_2op && Type != HexagonII::TypeALU32_3op &&
Type != HexagonII::TypeALU32_ADDI && Type != HexagonII::TypeS_2op &&
Type != HexagonII::TypeS_3op &&
(Type != HexagonII::TypeALU64 || HexagonMCInstrInfo::isFloat(MCII, ID));
return Result != 0;
}
bool HexagonMCChecker::checkAXOK() {
MCInst const *HasSoloAXInst = nullptr;
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
if (HexagonMCInstrInfo::isSoloAX(MCII, I)) {
HasSoloAXInst = &I;
}
}
if (!HasSoloAXInst)
return true;
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
if (&I != HasSoloAXInst && isNeitherAnorX(MCII, I)) {
reportError(
HasSoloAXInst->getLoc(),
Twine("Instruction can only be in a packet with ALU or non-FPU XTYPE "
"instructions"));
reportError(I.getLoc(),
Twine("Not an ALU or non-FPU XTYPE instruction"));
return false;
}
}
return true;
}
void HexagonMCChecker::reportBranchErrors() {
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
if (Desc.isBranch() || Desc.isCall() || Desc.isReturn())
reportNote(I.getLoc(), "Branching instruction");
}
}
bool HexagonMCChecker::checkHWLoop() {
if (!HexagonMCInstrInfo::isInnerLoop(MCB) &&
!HexagonMCInstrInfo::isOuterLoop(MCB))
return true;
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
if (Desc.isBranch() || Desc.isCall() || Desc.isReturn()) {
reportError(MCB.getLoc(),
"Branches cannot be in a packet with hardware loops");
reportBranchErrors();
return false;
}
}
return true;
}
bool HexagonMCChecker::checkCOFMax1() {
SmallVector<MCInst const *, 2> BranchLocations;
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
if (Desc.isBranch() || Desc.isCall() || Desc.isReturn())
BranchLocations.push_back(&I);
}
for (unsigned J = 0, N = BranchLocations.size(); J < N; ++J) {
MCInst const &I = *BranchLocations[J];
if (HexagonMCInstrInfo::isCofMax1(MCII, I)) {
bool Relax1 = HexagonMCInstrInfo::isCofRelax1(MCII, I);
bool Relax2 = HexagonMCInstrInfo::isCofRelax2(MCII, I);
if (N > 1 && !Relax1 && !Relax2) {
reportError(I.getLoc(),
"Instruction may not be in a packet with other branches");
reportBranchErrors();
return false;
}
if (N > 1 && J == 0 && !Relax1) {
reportError(I.getLoc(),
"Instruction may not be the first branch in packet");
reportBranchErrors();
return false;
}
if (N > 1 && J == 1 && !Relax2) {
reportError(I.getLoc(),
"Instruction may not be the second branch in packet");
reportBranchErrors();
return false;
}
}
}
return true;
}
bool HexagonMCChecker::checkSlots() {
unsigned slotsUsed = 0;
for (auto HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) {
MCInst const &MCI = *HMI.getInst();
if (HexagonMCInstrInfo::isImmext(MCI))
continue;
if (HexagonMCInstrInfo::isDuplex(MCII, MCI))
slotsUsed += 2;
else
++slotsUsed;
}
if (slotsUsed > HEXAGON_PACKET_SIZE) {
reportError("invalid instruction packet: out of slots");
return false;
}
return true;
}
// Check legal use of predicate registers.
bool HexagonMCChecker::checkPredicates() {
// Check for proper use of new predicate registers.
for (const auto &I : NewPreds) {
unsigned P = I;
if (!Defs.count(P) || LatePreds.count(P) || Defs.count(Hexagon::P3_0)) {
// Error out if the new predicate register is not defined,
// or defined "late"
// (e.g., "{ if (p3.new)... ; p3 = sp1loop0(#r7:2, Rs) }").
reportErrorNewValue(P);
return false;
}
}
// Check for proper use of auto-anded of predicate registers.
for (const auto &I : LatePreds) {
unsigned P = I;
if (LatePreds.count(P) > 1 || Defs.count(P)) {
// Error out if predicate register defined "late" multiple times or
// defined late and regularly defined
// (e.g., "{ p3 = sp1loop0(...); p3 = cmp.eq(...) }".
reportErrorRegisters(P);
return false;
}
}
return true;
}
// Check legal use of new values.
bool HexagonMCChecker::checkNewValues() {
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
if (!HexagonMCInstrInfo::isNewValue(MCII, I))
continue;
auto Consumer = HexagonMCInstrInfo::predicateInfo(MCII, I);
bool Branch = HexagonMCInstrInfo::getDesc(MCII, I).isBranch();
MCOperand const &Op = HexagonMCInstrInfo::getNewValueOperand(MCII, I);
assert(Op.isReg());
auto Producer = registerProducer(Op.getReg(), Consumer);
if (std::get<0>(Producer) == nullptr) {
reportError(I.getLoc(), "New value register consumer has no producer");
return false;
}
if (!RelaxNVChecks) {
// Checks that statically prove correct new value consumption
if (std::get<2>(Producer).isPredicated() &&
(!Consumer.isPredicated() ||
llvm::HexagonMCInstrInfo::getType(MCII, I) == HexagonII::TypeNCJ)) {
reportNote(
std::get<0>(Producer)->getLoc(),
"Register producer is predicated and consumer is unconditional");
reportError(I.getLoc(),
"Instruction does not have a valid new register producer");
return false;
}
if (std::get<2>(Producer).Register != Hexagon::NoRegister &&
std::get<2>(Producer).Register != Consumer.Register) {
reportNote(std::get<0>(Producer)->getLoc(),
"Register producer does not use the same predicate "
"register as the consumer");
reportError(I.getLoc(),
"Instruction does not have a valid new register producer");
return false;
}
}
if (std::get<2>(Producer).Register == Consumer.Register &&
Consumer.PredicatedTrue != std::get<2>(Producer).PredicatedTrue) {
reportNote(
std::get<0>(Producer)->getLoc(),
"Register producer has the opposite predicate sense as consumer");
reportError(I.getLoc(),
"Instruction does not have a valid new register producer");
return false;
}
MCInstrDesc const &Desc =
HexagonMCInstrInfo::getDesc(MCII, *std::get<0>(Producer));
if (Desc.OpInfo[std::get<1>(Producer)].RegClass ==
Hexagon::DoubleRegsRegClassID) {
reportNote(std::get<0>(Producer)->getLoc(),
"Double registers cannot be new-value producers");
reportError(I.getLoc(),
"Instruction does not have a valid new register producer");
return false;
}
if ((Desc.mayLoad() && std::get<1>(Producer) == 1) ||
(Desc.mayStore() && std::get<1>(Producer) == 0)) {
unsigned Mode =
HexagonMCInstrInfo::getAddrMode(MCII, *std::get<0>(Producer));
StringRef ModeError;
if (Mode == HexagonII::AbsoluteSet)
ModeError = "Absolute-set";
if (Mode == HexagonII::PostInc)
ModeError = "Auto-increment";
if (!ModeError.empty()) {
reportNote(std::get<0>(Producer)->getLoc(),
ModeError + " registers cannot be a new-value "
"producer");
reportError(I.getLoc(),
"Instruction does not have a valid new register producer");
return false;
}
}
if (Branch && HexagonMCInstrInfo::isFloat(MCII, *std::get<0>(Producer))) {
reportNote(std::get<0>(Producer)->getLoc(),
"FPU instructions cannot be new-value producers for jumps");
reportError(I.getLoc(),
"Instruction does not have a valid new register producer");
return false;
}
}
return true;
}
bool HexagonMCChecker::checkRegistersReadOnly() {
for (auto I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
MCInst const &Inst = *I.getInst();
unsigned Defs = HexagonMCInstrInfo::getDesc(MCII, Inst).getNumDefs();
for (unsigned j = 0; j < Defs; ++j) {
MCOperand const &Operand = Inst.getOperand(j);
assert(Operand.isReg() && "Def is not a register");
unsigned Register = Operand.getReg();
if (ReadOnly.find(Register) != ReadOnly.end()) {
reportError(Inst.getLoc(), "Cannot write to read-only register `" +
Twine(RI.getName(Register)) + "'");
return false;
}
}
}
return true;
}
bool HexagonMCChecker::registerUsed(unsigned Register) {
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB))
for (unsigned j = HexagonMCInstrInfo::getDesc(MCII, I).getNumDefs(),
n = I.getNumOperands();
j < n; ++j) {
MCOperand const &Operand = I.getOperand(j);
if (Operand.isReg() && Operand.getReg() == Register)
return true;
}
return false;
}
std::tuple<MCInst const *, unsigned, HexagonMCInstrInfo::PredicateInfo>
HexagonMCChecker::registerProducer(
unsigned Register, HexagonMCInstrInfo::PredicateInfo ConsumerPredicate) {
std::tuple<MCInst const *, unsigned, HexagonMCInstrInfo::PredicateInfo>
WrongSense;
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
auto ProducerPredicate = HexagonMCInstrInfo::predicateInfo(MCII, I);
for (unsigned J = 0, N = Desc.getNumDefs(); J < N; ++J)
for (auto K = MCRegAliasIterator(I.getOperand(J).getReg(), &RI, true);
K.isValid(); ++K)
if (*K == Register) {
if (RelaxNVChecks ||
(ProducerPredicate.Register == ConsumerPredicate.Register &&
(ProducerPredicate.Register == Hexagon::NoRegister ||
ProducerPredicate.PredicatedTrue ==
ConsumerPredicate.PredicatedTrue)))
return std::make_tuple(&I, J, ProducerPredicate);
std::get<0>(WrongSense) = &I;
std::get<1>(WrongSense) = J;
std::get<2>(WrongSense) = ProducerPredicate;
}
if (Register == Hexagon::VTMP && HexagonMCInstrInfo::hasTmpDst(MCII, I))
return std::make_tuple(&I, 0, HexagonMCInstrInfo::PredicateInfo());
}
return WrongSense;
}
void HexagonMCChecker::checkRegisterCurDefs() {
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
if (HexagonMCInstrInfo::isCVINew(MCII, I) &&
HexagonMCInstrInfo::getDesc(MCII, I).mayLoad()) {
unsigned Register = I.getOperand(0).getReg();
if (!registerUsed(Register))
reportWarning("Register `" + Twine(RI.getName(Register)) +
"' used with `.cur' "
"but not used in the same packet");
}
}
}
// Check for legal register uses and definitions.
bool HexagonMCChecker::checkRegisters() {
// Check for proper register definitions.
for (const auto &I : Defs) {
unsigned R = I.first;
if (isLoopRegister(R) && Defs.count(R) > 1 &&
(HexagonMCInstrInfo::isInnerLoop(MCB) ||
HexagonMCInstrInfo::isOuterLoop(MCB))) {
// Error out for definitions of loop registers at the end of a loop.
reportError("loop-setup and some branch instructions "
"cannot be in the same packet");
return false;
}
if (SoftDefs.count(R)) {
// Error out for explicit changes to registers also weakly defined
// (e.g., "{ usr = r0; r0 = sfadd(...) }").
unsigned UsrR = Hexagon::USR; // Silence warning about mixed types in ?:.
unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
reportErrorRegisters(BadR);
return false;
}
if (!isPredicateRegister(R) && Defs[R].size() > 1) {
// Check for multiple register definitions.
PredSet &PM = Defs[R];
// Check for multiple unconditional register definitions.
if (PM.count(Unconditional)) {
// Error out on an unconditional change when there are any other
// changes, conditional or not.
unsigned UsrR = Hexagon::USR;
unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
reportErrorRegisters(BadR);
return false;
}
// Check for multiple conditional register definitions.
for (const auto &J : PM) {
PredSense P = J;
// Check for multiple uses of the same condition.
if (PM.count(P) > 1) {
// Error out on conditional changes based on the same predicate
// (e.g., "{ if (!p0) r0 =...; if (!p0) r0 =... }").
reportErrorRegisters(R);
return false;
}
// Check for the use of the complementary condition.
P.second = !P.second;
if (PM.count(P) && PM.size() > 2) {
// Error out on conditional changes based on the same predicate
// multiple times
// (e.g., "if (p0) r0 =...; if (!p0) r0 =... }; if (!p0) r0 =...").
reportErrorRegisters(R);
return false;
}
}
}
}
// Check for use of temporary definitions.
for (const auto &I : TmpDefs) {
unsigned R = I;
if (!Uses.count(R)) {
// special case for vhist
bool vHistFound = false;
for (auto const &HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) {
if (HexagonMCInstrInfo::getType(MCII, *HMI.getInst()) ==
HexagonII::TypeCVI_HIST) {
vHistFound = true; // vhist() implicitly uses ALL REGxx.tmp
break;
}
}
// Warn on an unused temporary definition.
if (!vHistFound) {
reportWarning("register `" + Twine(RI.getName(R)) +
"' used with `.tmp' but not used in the same packet");
return true;
}
}
}
return true;
}
// Check for legal use of solo insns.
bool HexagonMCChecker::checkSolo() {
if (HexagonMCInstrInfo::bundleSize(MCB) > 1)
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
if (HexagonMCInstrInfo::isSolo(MCII, I)) {
reportError(I.getLoc(), "Instruction is marked `isSolo' and "
"cannot have other instructions in "
"the same packet");
return false;
}
}
return true;
}
bool HexagonMCChecker::checkShuffle() {
HexagonMCShuffler MCSDX(Context, ReportErrors, MCII, STI, MCB);
return MCSDX.check();
}
void HexagonMCChecker::compoundRegisterMap(unsigned &Register) {
switch (Register) {
default:
break;
case Hexagon::R15:
Register = Hexagon::R23;
break;
case Hexagon::R14:
Register = Hexagon::R22;
break;
case Hexagon::R13:
Register = Hexagon::R21;
break;
case Hexagon::R12:
Register = Hexagon::R20;
break;
case Hexagon::R11:
Register = Hexagon::R19;
break;
case Hexagon::R10:
Register = Hexagon::R18;
break;
case Hexagon::R9:
Register = Hexagon::R17;
break;
case Hexagon::R8:
Register = Hexagon::R16;
break;
}
}
void HexagonMCChecker::reportErrorRegisters(unsigned Register) {
reportError("register `" + Twine(RI.getName(Register)) +
"' modified more than once");
}
void HexagonMCChecker::reportErrorNewValue(unsigned Register) {
reportError("register `" + Twine(RI.getName(Register)) +
"' used with `.new' "
"but not validly modified in the same packet");
}
void HexagonMCChecker::reportError(Twine const &Msg) {
reportError(MCB.getLoc(), Msg);
}
void HexagonMCChecker::reportError(SMLoc Loc, Twine const &Msg) {
if (ReportErrors)
Context.reportError(Loc, Msg);
}
void HexagonMCChecker::reportNote(SMLoc Loc, llvm::Twine const &Msg) {
if (ReportErrors) {
auto SM = Context.getSourceManager();
if (SM)
SM->PrintMessage(Loc, SourceMgr::DK_Note, Msg);
}
}
void HexagonMCChecker::reportWarning(Twine const &Msg) {
if (ReportErrors)
Context.reportWarning(MCB.getLoc(), Msg);
}
bool HexagonMCChecker::checkLegalVecRegPair() {
const bool IsPermitted = STI.getFeatureBits()[Hexagon::ArchV67];
const bool HasReversePairs = ReversePairs.size() != 0;
if (!IsPermitted && HasReversePairs) {
for (auto R : ReversePairs)
reportError("register pair `" + Twine(RI.getName(R)) +
"' is not permitted for this architecture");
return false;
}
return true;
}