llvm-for-llvmta/lib/Target/AMDGPU/VOP3PInstructions.td

589 lines
28 KiB
TableGen

//===-- VOP3PInstructions.td - Vector Instruction Definitions -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// VOP3P Classes
//===----------------------------------------------------------------------===//
class VOP3PInst<string OpName, VOPProfile P,
SDPatternOperator node = null_frag,
bit HasExplicitClamp = 0> :
VOP3P_Pseudo<OpName, P,
!if(P.HasModifiers, getVOP3PModPat<P, node, HasExplicitClamp>.ret, getVOP3Pat<P, node>.ret)
>;
// Non-packed instructions that use the VOP3P encoding.
// VOP3 neg/abs and VOP3P opsel/opsel_hi modifiers are allowed.
class VOP3_VOP3PInst<string OpName, VOPProfile P, bit UseTiedOutput = 0,
SDPatternOperator node = null_frag> :
VOP3P_Pseudo<OpName, P> {
// These operands are only sort of f16 operands. Depending on
// op_sel_hi, these may be interpreted as f32. The inline immediate
// values are really f16 converted to f32, so we treat these as f16
// operands.
let InOperandList =
!con(
!con(
(ins FP16InputMods:$src0_modifiers, VCSrc_f16:$src0,
FP16InputMods:$src1_modifiers, VCSrc_f16:$src1,
FP16InputMods:$src2_modifiers, VCSrc_f16:$src2),
// FIXME: clampmod0 misbehaves with the non-default vdst_in
// following it. For now workaround this by requiring clamp
// in tied patterns. This should use undef_tied_input, but it
// seems underdeveloped and doesn't apply the right register
// class constraints.
!if(UseTiedOutput, (ins clampmod:$clamp, VGPR_32:$vdst_in),
(ins clampmod0:$clamp))),
(ins op_sel0:$op_sel, op_sel_hi0:$op_sel_hi));
let Constraints = !if(UseTiedOutput, "$vdst = $vdst_in", "");
let DisableEncoding = !if(UseTiedOutput, "$vdst_in", "");
let AsmOperands =
" $vdst, $src0_modifiers, $src1_modifiers, $src2_modifiers$op_sel$op_sel_hi$clamp";
}
let isCommutable = 1 in {
def V_PK_MAD_I16 : VOP3PInst<"v_pk_mad_i16", VOP3_Profile<VOP_V2I16_V2I16_V2I16_V2I16>>;
def V_PK_MAD_U16 : VOP3PInst<"v_pk_mad_u16", VOP3_Profile<VOP_V2I16_V2I16_V2I16_V2I16>>;
let FPDPRounding = 1 in {
def V_PK_FMA_F16 : VOP3PInst<"v_pk_fma_f16", VOP3_Profile<VOP_V2F16_V2F16_V2F16_V2F16>, any_fma>;
def V_PK_ADD_F16 : VOP3PInst<"v_pk_add_f16", VOP3_Profile<VOP_V2F16_V2F16_V2F16>, any_fadd>;
def V_PK_MUL_F16 : VOP3PInst<"v_pk_mul_f16", VOP3_Profile<VOP_V2F16_V2F16_V2F16>, any_fmul>;
} // End FPDPRounding = 1
def V_PK_MAX_F16 : VOP3PInst<"v_pk_max_f16", VOP3_Profile<VOP_V2F16_V2F16_V2F16>, fmaxnum_like>;
def V_PK_MIN_F16 : VOP3PInst<"v_pk_min_f16", VOP3_Profile<VOP_V2F16_V2F16_V2F16>, fminnum_like>;
def V_PK_ADD_U16 : VOP3PInst<"v_pk_add_u16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, add>;
def V_PK_ADD_I16 : VOP3PInst<"v_pk_add_i16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>>;
def V_PK_MUL_LO_U16 : VOP3PInst<"v_pk_mul_lo_u16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, mul>;
def V_PK_MIN_I16 : VOP3PInst<"v_pk_min_i16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, smin>;
def V_PK_MIN_U16 : VOP3PInst<"v_pk_min_u16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, umin>;
def V_PK_MAX_I16 : VOP3PInst<"v_pk_max_i16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, smax>;
def V_PK_MAX_U16 : VOP3PInst<"v_pk_max_u16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, umax>;
}
def V_PK_SUB_U16 : VOP3PInst<"v_pk_sub_u16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>>;
def V_PK_SUB_I16 : VOP3PInst<"v_pk_sub_i16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, sub>;
def V_PK_LSHLREV_B16 : VOP3PInst<"v_pk_lshlrev_b16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, lshl_rev>;
def V_PK_ASHRREV_I16 : VOP3PInst<"v_pk_ashrrev_i16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, ashr_rev>;
def V_PK_LSHRREV_B16 : VOP3PInst<"v_pk_lshrrev_b16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, lshr_rev>;
let SubtargetPredicate = HasVOP3PInsts in {
// Undo sub x, c -> add x, -c canonicalization since c is more likely
// an inline immediate than -c.
// The constant will be emitted as a mov, and folded later.
// TODO: We could directly encode the immediate now
def : GCNPat<
(add (v2i16 (VOP3PMods v2i16:$src0, i32:$src0_modifiers)), NegSubInlineConstV216:$src1),
(V_PK_SUB_U16 $src0_modifiers, $src0, SRCMODS.OP_SEL_1, NegSubInlineConstV216:$src1)
>;
// Integer operations with clamp bit set.
class VOP3PSatPat<SDPatternOperator pat, Instruction inst> : GCNPat<
(pat (v2i16 (VOP3PMods v2i16:$src0, i32:$src0_modifiers)),
(v2i16 (VOP3PMods v2i16:$src1, i32:$src1_modifiers))),
(inst $src0_modifiers, $src0, $src1_modifiers, $src1, DSTCLAMP.ENABLE)
>;
def : VOP3PSatPat<uaddsat, V_PK_ADD_U16>;
def : VOP3PSatPat<saddsat, V_PK_ADD_I16>;
def : VOP3PSatPat<usubsat, V_PK_SUB_U16>;
def : VOP3PSatPat<ssubsat, V_PK_SUB_I16>;
} // End SubtargetPredicate = HasVOP3PInsts
multiclass MadFmaMixPats<SDPatternOperator fma_like,
Instruction mix_inst,
Instruction mixlo_inst,
Instruction mixhi_inst> {
def : GCNPat <
(f16 (fpround (fma_like (f32 (VOP3PMadMixMods f16:$src0, i32:$src0_modifiers)),
(f32 (VOP3PMadMixMods f16:$src1, i32:$src1_modifiers)),
(f32 (VOP3PMadMixMods f16:$src2, i32:$src2_modifiers))))),
(mixlo_inst $src0_modifiers, $src0,
$src1_modifiers, $src1,
$src2_modifiers, $src2,
DSTCLAMP.NONE,
(i32 (IMPLICIT_DEF)))
>;
// FIXME: Special case handling for maxhi (especially for clamp)
// because dealing with the write to high half of the register is
// difficult.
def : GCNPat <
(build_vector f16:$elt0, (fpround (fma_like (f32 (VOP3PMadMixMods f16:$src0, i32:$src0_modifiers)),
(f32 (VOP3PMadMixMods f16:$src1, i32:$src1_modifiers)),
(f32 (VOP3PMadMixMods f16:$src2, i32:$src2_modifiers))))),
(v2f16 (mixhi_inst $src0_modifiers, $src0,
$src1_modifiers, $src1,
$src2_modifiers, $src2,
DSTCLAMP.NONE,
$elt0))
>;
def : GCNPat <
(build_vector
f16:$elt0,
(AMDGPUclamp (fpround (fma_like (f32 (VOP3PMadMixMods f16:$src0, i32:$src0_modifiers)),
(f32 (VOP3PMadMixMods f16:$src1, i32:$src1_modifiers)),
(f32 (VOP3PMadMixMods f16:$src2, i32:$src2_modifiers)))))),
(v2f16 (mixhi_inst $src0_modifiers, $src0,
$src1_modifiers, $src1,
$src2_modifiers, $src2,
DSTCLAMP.ENABLE,
$elt0))
>;
def : GCNPat <
(AMDGPUclamp (build_vector
(fpround (fma_like (f32 (VOP3PMadMixMods f16:$lo_src0, i32:$lo_src0_modifiers)),
(f32 (VOP3PMadMixMods f16:$lo_src1, i32:$lo_src1_modifiers)),
(f32 (VOP3PMadMixMods f16:$lo_src2, i32:$lo_src2_modifiers)))),
(fpround (fma_like (f32 (VOP3PMadMixMods f16:$hi_src0, i32:$hi_src0_modifiers)),
(f32 (VOP3PMadMixMods f16:$hi_src1, i32:$hi_src1_modifiers)),
(f32 (VOP3PMadMixMods f16:$hi_src2, i32:$hi_src2_modifiers)))))),
(v2f16 (mixhi_inst $hi_src0_modifiers, $hi_src0,
$hi_src1_modifiers, $hi_src1,
$hi_src2_modifiers, $hi_src2,
DSTCLAMP.ENABLE,
(mixlo_inst $lo_src0_modifiers, $lo_src0,
$lo_src1_modifiers, $lo_src1,
$lo_src2_modifiers, $lo_src2,
DSTCLAMP.ENABLE,
(i32 (IMPLICIT_DEF)))))
>;
}
let SubtargetPredicate = HasMadMixInsts in {
// These are VOP3a-like opcodes which accept no omod.
// Size of src arguments (16/32) is controlled by op_sel.
// For 16-bit src arguments their location (hi/lo) are controlled by op_sel_hi.
let isCommutable = 1, mayRaiseFPException = 0 in {
def V_MAD_MIX_F32 : VOP3_VOP3PInst<"v_mad_mix_f32", VOP3_Profile<VOP_F32_F16_F16_F16, VOP3_OPSEL>>;
let FPDPRounding = 1 in {
// Clamp modifier is applied after conversion to f16.
def V_MAD_MIXLO_F16 : VOP3_VOP3PInst<"v_mad_mixlo_f16", VOP3_Profile<VOP_F16_F16_F16_F16, VOP3_OPSEL>, 1>;
let ClampLo = 0, ClampHi = 1 in {
def V_MAD_MIXHI_F16 : VOP3_VOP3PInst<"v_mad_mixhi_f16", VOP3_Profile<VOP_F16_F16_F16_F16, VOP3_OPSEL>, 1>;
}
} // End FPDPRounding = 1
}
defm : MadFmaMixPats<fmad, V_MAD_MIX_F32, V_MAD_MIXLO_F16, V_MAD_MIXHI_F16>;
} // End SubtargetPredicate = HasMadMixInsts
// Essentially the same as the mad_mix versions
let SubtargetPredicate = HasFmaMixInsts in {
let isCommutable = 1 in {
def V_FMA_MIX_F32 : VOP3_VOP3PInst<"v_fma_mix_f32", VOP3_Profile<VOP_F32_F16_F16_F16, VOP3_OPSEL>>;
let FPDPRounding = 1 in {
// Clamp modifier is applied after conversion to f16.
def V_FMA_MIXLO_F16 : VOP3_VOP3PInst<"v_fma_mixlo_f16", VOP3_Profile<VOP_F16_F16_F16_F16, VOP3_OPSEL>, 1>;
let ClampLo = 0, ClampHi = 1 in {
def V_FMA_MIXHI_F16 : VOP3_VOP3PInst<"v_fma_mixhi_f16", VOP3_Profile<VOP_F16_F16_F16_F16, VOP3_OPSEL>, 1>;
}
} // End FPDPRounding = 1
}
defm : MadFmaMixPats<fma, V_FMA_MIX_F32, V_FMA_MIXLO_F16, V_FMA_MIXHI_F16>;
}
// Defines patterns that extract signed 4bit from each Idx[0].
foreach Idx = [[0,28],[4,24],[8,20],[12,16],[16,12],[20,8],[24,4]] in
def ExtractSigned4bit_#Idx[0] : PatFrag<(ops node:$src),
(sra (shl node:$src, (i32 Idx[1])), (i32 28))>;
// Defines code pattern that extracts U(unsigned/signed) 4/8bit from FromBitIndex.
class Extract<int FromBitIndex, int BitMask, bit U>: PatFrag<
(ops node:$src),
!if (!or (!and (!eq (BitMask, 255), !eq (FromBitIndex, 24)), !eq (FromBitIndex, 28)), // last element
!if (U, (srl node:$src, (i32 FromBitIndex)), (sra node:$src, (i32 FromBitIndex))),
!if (!eq (FromBitIndex, 0), // first element
!if (U, (and node:$src, (i32 BitMask)),
!if (!eq (BitMask, 15), (!cast<PatFrag>("ExtractSigned4bit_"#FromBitIndex) node:$src),
(sext_inreg node:$src, i8))),
!if (U, (and (srl node:$src, (i32 FromBitIndex)), (i32 BitMask)),
!if (!eq (BitMask, 15), (!cast<PatFrag>("ExtractSigned4bit_"#FromBitIndex) node:$src),
(sext_inreg (srl node:$src, (i32 FromBitIndex)), i8)))))>;
foreach Type = ["I", "U"] in
foreach Index = 0-3 in {
// Defines patterns that extract each Index'ed 8bit from an unsigned
// 32bit scalar value;
def Type#Index#"_8bit" : Extract<!shl(Index, 3), 255, !eq (Type, "U")>;
// Defines multiplication patterns where the multiplication is happening on each
// Index'ed 8bit of a 32bit scalar value.
def Mul#Type#_Elt#Index : PatFrag<
(ops node:$src0, node:$src1),
(!cast<HasOneUseBinOp>(!if (!eq (Type, "I"), AMDGPUmul_i24_oneuse, AMDGPUmul_u24_oneuse))
(!cast<Extract>(Type#Index#"_8bit") node:$src0),
(!cast<Extract>(Type#Index#"_8bit") node:$src1))>;
}
// Different variants of dot8 patterns cause a huge increase in the compile time.
// Define non-associative/commutative add/mul to prevent permutation in the dot8
// pattern.
def NonACAdd : SDNode<"ISD::ADD" , SDTIntBinOp>;
def NonACAdd_oneuse : HasOneUseBinOp<NonACAdd>;
def NonACAMDGPUmul_u24 : SDNode<"AMDGPUISD::MUL_U24" , SDTIntBinOp>;
def NonACAMDGPUmul_u24_oneuse : HasOneUseBinOp<NonACAMDGPUmul_u24>;
def NonACAMDGPUmul_i24 : SDNode<"AMDGPUISD::MUL_I24" , SDTIntBinOp>;
def NonACAMDGPUmul_i24_oneuse : HasOneUseBinOp<NonACAMDGPUmul_i24>;
foreach Type = ["I", "U"] in
foreach Index = 0-7 in {
// Defines patterns that extract each Index'ed 4bit from an unsigned
// 32bit scalar value;
def Type#Index#"_4bit" : Extract<!shl(Index, 2), 15, !eq (Type, "U")>;
// Defines multiplication patterns where the multiplication is happening on each
// Index'ed 8bit of a 32bit scalar value.
def Mul#Type#Index#"_4bit" : PatFrag<
(ops node:$src0, node:$src1),
(!cast<HasOneUseBinOp>(!if (!eq (Type, "I"), NonACAMDGPUmul_i24_oneuse, NonACAMDGPUmul_u24_oneuse))
(!cast<Extract>(Type#Index#"_4bit") node:$src0),
(!cast<Extract>(Type#Index#"_4bit") node:$src1))>;
}
class UDot2Pat<Instruction Inst> : GCNPat <
(add (add_oneuse (AMDGPUmul_u24_oneuse (srl i32:$src0, (i32 16)),
(srl i32:$src1, (i32 16))), i32:$src2),
(AMDGPUmul_u24_oneuse (and i32:$src0, (i32 65535)),
(and i32:$src1, (i32 65535)))
),
(Inst (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))> {
let SubtargetPredicate = !cast<VOP_Pseudo>(Inst).SubtargetPredicate;
}
class SDot2Pat<Instruction Inst> : GCNPat <
(add (add_oneuse (AMDGPUmul_i24_oneuse (sra i32:$src0, (i32 16)),
(sra i32:$src1, (i32 16))), i32:$src2),
(AMDGPUmul_i24_oneuse (sext_inreg i32:$src0, i16),
(sext_inreg i32:$src1, i16))),
(Inst (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))> {
let SubtargetPredicate = !cast<VOP_Pseudo>(Inst).SubtargetPredicate;
}
let IsDOT = 1 in {
let SubtargetPredicate = HasDot2Insts in {
def V_DOT2_F32_F16 : VOP3PInst<"v_dot2_f32_f16",
VOP3_Profile<VOP_F32_V2F16_V2F16_F32>,
AMDGPUfdot2, 1/*ExplicitClamp*/>;
def V_DOT2_I32_I16 : VOP3PInst<"v_dot2_i32_i16",
VOP3_Profile<VOP_I32_V2I16_V2I16_I32>, int_amdgcn_sdot2, 1>;
def V_DOT2_U32_U16 : VOP3PInst<"v_dot2_u32_u16",
VOP3_Profile<VOP_I32_V2I16_V2I16_I32>, int_amdgcn_udot2, 1>;
def V_DOT4_U32_U8 : VOP3PInst<"v_dot4_u32_u8",
VOP3_Profile<VOP_I32_I32_I32_I32, VOP3_PACKED>, int_amdgcn_udot4, 1>;
def V_DOT8_U32_U4 : VOP3PInst<"v_dot8_u32_u4",
VOP3_Profile<VOP_I32_I32_I32_I32, VOP3_PACKED>, int_amdgcn_udot8, 1>;
} // End SubtargetPredicate = HasDot2Insts
let SubtargetPredicate = HasDot1Insts in {
def V_DOT4_I32_I8 : VOP3PInst<"v_dot4_i32_i8",
VOP3_Profile<VOP_I32_I32_I32_I32, VOP3_PACKED>, int_amdgcn_sdot4, 1>;
def V_DOT8_I32_I4 : VOP3PInst<"v_dot8_i32_i4",
VOP3_Profile<VOP_I32_I32_I32_I32, VOP3_PACKED>, int_amdgcn_sdot8, 1>;
} // End SubtargetPredicate = HasDot1Insts
} // End let IsDOT = 1
def : UDot2Pat<V_DOT2_U32_U16>;
def : SDot2Pat<V_DOT2_I32_I16>;
foreach Type = ["U", "I"] in
let SubtargetPredicate = !cast<VOP_Pseudo>("V_DOT4_"#Type#"32_"#Type#8).SubtargetPredicate in
def : GCNPat <
!cast<dag>(!foldl((i32 i32:$src2), [0, 1, 2, 3], lhs, y,
(add_oneuse lhs, (!cast<PatFrag>("Mul"#Type#"_Elt"#y) i32:$src0, i32:$src1)))),
(!cast<VOP3PInst>("V_DOT4_"#Type#"32_"#Type#8) (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))>;
foreach Type = ["U", "I"] in
let SubtargetPredicate = !cast<VOP_Pseudo>("V_DOT8_"#Type#"32_"#Type#4).SubtargetPredicate in
def : GCNPat <
!cast<dag>(!foldl((add_oneuse i32:$src2, (!cast<PatFrag>("Mul"#Type#"0_4bit") i32:$src0, i32:$src1)),
[1, 2, 3, 4, 5, 6, 7], lhs, y,
(NonACAdd_oneuse lhs, (!cast<PatFrag>("Mul"#Type#y#"_4bit") i32:$src0, i32:$src1)))),
(!cast<VOP3PInst>("V_DOT8_"#Type#"32_"#Type#4) (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))>;
// Different variants of dot8 code-gen dag patterns are not generated through table-gen due to a huge increase
// in the compile time. Directly handle the pattern generated by the FE here.
foreach Type = ["U", "I"] in
let SubtargetPredicate = !cast<VOP_Pseudo>("V_DOT8_"#Type#"32_"#Type#4).SubtargetPredicate in
def : GCNPat <
!cast<dag>(!foldl((add_oneuse i32:$src2, (!cast<PatFrag>("Mul"#Type#"0_4bit") i32:$src0, i32:$src1)),
[7, 1, 2, 3, 4, 5, 6], lhs, y,
(NonACAdd_oneuse lhs, (!cast<PatFrag>("Mul"#Type#y#"_4bit") i32:$src0, i32:$src1)))),
(!cast<VOP3PInst>("V_DOT8_"#Type#"32_"#Type#4) (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))>;
def ADst_32 : VOPDstOperand<AGPR_32>;
def ADst_128 : VOPDstOperand<AReg_128>;
def ADst_512 : VOPDstOperand<AReg_512>;
def ADst_1024 : VOPDstOperand<AReg_1024>;
def VOPProfileAccRead : VOP3_Profile<VOP_I32_I32, VOP3_MAI> {
let Src0RC64 = ARegSrc_32;
}
def VOPProfileAccWrite : VOP3_Profile<VOP_I32_I32, VOP3_MAI> {
let DstRC = ADst_32;
let Src0RC64 = VISrc_b32;
}
class VOPProfileMAI<VOPProfile P, RegisterOperand _SrcRC, RegisterOperand _DstRC,
RegisterOperand SrcABRC = AVSrc_32>
: VOP3_Profile<P, VOP3_MAI> {
let DstRC = _DstRC;
let Src0RC64 = SrcABRC;
let Src1RC64 = SrcABRC;
let Src2RC64 = _SrcRC;
let HasOpSel = 0;
let HasClamp = 0;
let Asm64 = " $vdst, $src0, $src1, $src2$cbsz$abid$blgp";
let Ins64 = (ins Src0RC64:$src0, Src1RC64:$src1, Src2RC64:$src2, cbsz:$cbsz, abid:$abid, blgp:$blgp);
}
def VOPProfileMAI_F32_F32_X4 : VOPProfileMAI<VOP_V4F32_F32_F32_V4F32, AISrc_128_f32, ADst_128>;
def VOPProfileMAI_F32_F32_X16 : VOPProfileMAI<VOP_V16F32_F32_F32_V16F32, AISrc_512_f32, ADst_512>;
def VOPProfileMAI_F32_F32_X32 : VOPProfileMAI<VOP_V32F32_F32_F32_V32F32, AISrc_1024_f32, ADst_1024>;
def VOPProfileMAI_I32_I32_X4 : VOPProfileMAI<VOP_V4I32_I32_I32_V4I32, AISrc_128_b32, ADst_128>;
def VOPProfileMAI_I32_I32_X16 : VOPProfileMAI<VOP_V16I32_I32_I32_V16I32, AISrc_512_b32, ADst_512>;
def VOPProfileMAI_I32_I32_X32 : VOPProfileMAI<VOP_V32I32_I32_I32_V32I32, AISrc_1024_b32, ADst_1024>;
def VOPProfileMAI_F32_V2I16_X4 : VOPProfileMAI<VOP_V4F32_V2I16_V2I16_V4F32, AISrc_128_b32, ADst_128>;
def VOPProfileMAI_F32_V2I16_X16 : VOPProfileMAI<VOP_V16F32_V2I16_V2I16_V16F32, AISrc_512_b32, ADst_512>;
def VOPProfileMAI_F32_V2I16_X32 : VOPProfileMAI<VOP_V32F32_V2I16_V2I16_V32F32, AISrc_1024_b32, ADst_1024>;
def VOPProfileMAI_F32_V4F16_X4 : VOPProfileMAI<VOP_V4F32_V4F16_V4F16_V4F32, AISrc_128_b32, ADst_128, AVSrc_64>;
def VOPProfileMAI_F32_V4F16_X16 : VOPProfileMAI<VOP_V16F32_V4F16_V4F16_V16F32, AISrc_512_b32, ADst_512, AVSrc_64>;
def VOPProfileMAI_F32_V4F16_X32 : VOPProfileMAI<VOP_V32F32_V4F16_V4F16_V32F32, AISrc_1024_b32, ADst_1024, AVSrc_64>;
let Predicates = [HasMAIInsts] in {
let isAsCheapAsAMove = 1, isReMaterializable = 1 in {
defm V_ACCVGPR_READ_B32 : VOP3Inst<"v_accvgpr_read_b32", VOPProfileAccRead>;
let isMoveImm = 1 in {
defm V_ACCVGPR_WRITE_B32 : VOP3Inst<"v_accvgpr_write_b32", VOPProfileAccWrite>;
} // End isMoveImm = 1
} // End isAsCheapAsAMove = 1, isReMaterializable = 1
// FP32 denorm mode is respected, rounding mode is not. Exceptions are not supported.
let isConvergent = 1, mayRaiseFPException = 0, ReadsModeReg = 1 in {
defm V_MFMA_F32_4X4X1F32 : VOP3Inst<"v_mfma_f32_4x4x1f32", VOPProfileMAI_F32_F32_X4, int_amdgcn_mfma_f32_4x4x1f32>;
defm V_MFMA_F32_4X4X4F16 : VOP3Inst<"v_mfma_f32_4x4x4f16", VOPProfileMAI_F32_V4F16_X4, int_amdgcn_mfma_f32_4x4x4f16>;
defm V_MFMA_I32_4X4X4I8 : VOP3Inst<"v_mfma_i32_4x4x4i8", VOPProfileMAI_I32_I32_X4, int_amdgcn_mfma_i32_4x4x4i8>;
defm V_MFMA_F32_4X4X2BF16 : VOP3Inst<"v_mfma_f32_4x4x2bf16", VOPProfileMAI_F32_V2I16_X4, int_amdgcn_mfma_f32_4x4x2bf16>;
defm V_MFMA_F32_16X16X1F32 : VOP3Inst<"v_mfma_f32_16x16x1f32", VOPProfileMAI_F32_F32_X16, int_amdgcn_mfma_f32_16x16x1f32>;
defm V_MFMA_F32_16X16X4F32 : VOP3Inst<"v_mfma_f32_16x16x4f32", VOPProfileMAI_F32_F32_X4, int_amdgcn_mfma_f32_16x16x4f32>;
defm V_MFMA_F32_16X16X4F16 : VOP3Inst<"v_mfma_f32_16x16x4f16", VOPProfileMAI_F32_V4F16_X16, int_amdgcn_mfma_f32_16x16x4f16>;
defm V_MFMA_F32_16X16X16F16 : VOP3Inst<"v_mfma_f32_16x16x16f16", VOPProfileMAI_F32_V4F16_X4, int_amdgcn_mfma_f32_16x16x16f16>;
defm V_MFMA_I32_16X16X4I8 : VOP3Inst<"v_mfma_i32_16x16x4i8", VOPProfileMAI_I32_I32_X16, int_amdgcn_mfma_i32_16x16x4i8>;
defm V_MFMA_I32_16X16X16I8 : VOP3Inst<"v_mfma_i32_16x16x16i8", VOPProfileMAI_I32_I32_X4, int_amdgcn_mfma_i32_16x16x16i8>;
defm V_MFMA_F32_16X16X2BF16 : VOP3Inst<"v_mfma_f32_16x16x2bf16", VOPProfileMAI_F32_V2I16_X16, int_amdgcn_mfma_f32_16x16x2bf16>;
defm V_MFMA_F32_16X16X8BF16 : VOP3Inst<"v_mfma_f32_16x16x8bf16", VOPProfileMAI_F32_V2I16_X4, int_amdgcn_mfma_f32_16x16x8bf16>;
defm V_MFMA_F32_32X32X1F32 : VOP3Inst<"v_mfma_f32_32x32x1f32", VOPProfileMAI_F32_F32_X32, int_amdgcn_mfma_f32_32x32x1f32>;
defm V_MFMA_F32_32X32X2F32 : VOP3Inst<"v_mfma_f32_32x32x2f32", VOPProfileMAI_F32_F32_X16, int_amdgcn_mfma_f32_32x32x2f32>;
defm V_MFMA_F32_32X32X4F16 : VOP3Inst<"v_mfma_f32_32x32x4f16", VOPProfileMAI_F32_V4F16_X32, int_amdgcn_mfma_f32_32x32x4f16>;
defm V_MFMA_F32_32X32X8F16 : VOP3Inst<"v_mfma_f32_32x32x8f16", VOPProfileMAI_F32_V4F16_X16, int_amdgcn_mfma_f32_32x32x8f16>;
defm V_MFMA_I32_32X32X4I8 : VOP3Inst<"v_mfma_i32_32x32x4i8", VOPProfileMAI_I32_I32_X32, int_amdgcn_mfma_i32_32x32x4i8>;
defm V_MFMA_I32_32X32X8I8 : VOP3Inst<"v_mfma_i32_32x32x8i8", VOPProfileMAI_I32_I32_X16, int_amdgcn_mfma_i32_32x32x8i8>;
defm V_MFMA_F32_32X32X2BF16 : VOP3Inst<"v_mfma_f32_32x32x2bf16", VOPProfileMAI_F32_V2I16_X32, int_amdgcn_mfma_f32_32x32x2bf16>;
defm V_MFMA_F32_32X32X4BF16 : VOP3Inst<"v_mfma_f32_32x32x4bf16", VOPProfileMAI_F32_V2I16_X16, int_amdgcn_mfma_f32_32x32x4bf16>;
} // End isConvergent = 1, mayRaiseFPException = 0, ReadsModeReg = 1
} // End SubtargetPredicate = HasMAIInsts
def : MnemonicAlias<"v_accvgpr_read", "v_accvgpr_read_b32">;
def : MnemonicAlias<"v_accvgpr_write", "v_accvgpr_write_b32">;
//===----------------------------------------------------------------------===//
// Begin Real Encodings
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// GFX8 (VI)
//===----------------------------------------------------------------------===//
multiclass VOP3P_Real_vi<bits<7> op> {
def _vi : VOP3P_Real<!cast<VOP3_Pseudo>(NAME), SIEncodingFamily.VI>,
VOP3Pe <op, !cast<VOP3_Pseudo>(NAME).Pfl> {
let AssemblerPredicate = HasVOP3PInsts;
let DecoderNamespace = "GFX8";
}
}
multiclass VOP3P_Real_MAI<bits<7> op> {
def _vi : VOP3P_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.VI>,
VOP3Pe_MAI <op, !cast<VOP3_Pseudo>(NAME#"_e64").Pfl> {
let AssemblerPredicate = HasMAIInsts;
let DecoderNamespace = "GFX8";
let Inst{14} = 1; // op_sel_hi(2) default value
let Inst{59} = 1; // op_sel_hi(0) default value
let Inst{60} = 1; // op_sel_hi(1) default value
}
}
multiclass VOP3P_Real_MFMA<bits<7> op> {
def _vi : VOP3P_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.VI>,
VOP3Pe_MAI <op, !cast<VOP3_Pseudo>(NAME#"_e64").Pfl> {
let AssemblerPredicate = HasMAIInsts;
let DecoderNamespace = "GFX8";
}
}
defm V_PK_MAD_I16 : VOP3P_Real_vi <0x00>;
defm V_PK_MUL_LO_U16 : VOP3P_Real_vi <0x01>;
defm V_PK_ADD_I16 : VOP3P_Real_vi <0x02>;
defm V_PK_SUB_I16 : VOP3P_Real_vi <0x03>;
defm V_PK_LSHLREV_B16 : VOP3P_Real_vi <0x04>;
defm V_PK_LSHRREV_B16 : VOP3P_Real_vi <0x05>;
defm V_PK_ASHRREV_I16 : VOP3P_Real_vi <0x06>;
defm V_PK_MAX_I16 : VOP3P_Real_vi <0x07>;
defm V_PK_MIN_I16 : VOP3P_Real_vi <0x08>;
defm V_PK_MAD_U16 : VOP3P_Real_vi <0x09>;
defm V_PK_ADD_U16 : VOP3P_Real_vi <0x0a>;
defm V_PK_SUB_U16 : VOP3P_Real_vi <0x0b>;
defm V_PK_MAX_U16 : VOP3P_Real_vi <0x0c>;
defm V_PK_MIN_U16 : VOP3P_Real_vi <0x0d>;
defm V_PK_FMA_F16 : VOP3P_Real_vi <0x0e>;
defm V_PK_ADD_F16 : VOP3P_Real_vi <0x0f>;
defm V_PK_MUL_F16 : VOP3P_Real_vi <0x10>;
defm V_PK_MIN_F16 : VOP3P_Real_vi <0x11>;
defm V_PK_MAX_F16 : VOP3P_Real_vi <0x12>;
let SubtargetPredicate = HasMadMixInsts in {
defm V_MAD_MIX_F32 : VOP3P_Real_vi <0x20>;
defm V_MAD_MIXLO_F16 : VOP3P_Real_vi <0x21>;
defm V_MAD_MIXHI_F16 : VOP3P_Real_vi <0x22>;
}
let SubtargetPredicate = HasFmaMixInsts in {
let DecoderNamespace = "GFX9_DL" in {
// The mad_mix instructions were renamed and their behaviors changed,
// but the opcode stayed the same so we need to put these in a
// different DecoderNamespace to avoid the ambiguity.
defm V_FMA_MIX_F32 : VOP3P_Real_vi <0x20>;
defm V_FMA_MIXLO_F16 : VOP3P_Real_vi <0x21>;
defm V_FMA_MIXHI_F16 : VOP3P_Real_vi <0x22>;
}
}
let SubtargetPredicate = HasDot2Insts in {
defm V_DOT2_F32_F16 : VOP3P_Real_vi <0x23>;
defm V_DOT2_I32_I16 : VOP3P_Real_vi <0x26>;
defm V_DOT2_U32_U16 : VOP3P_Real_vi <0x27>;
defm V_DOT4_U32_U8 : VOP3P_Real_vi <0x29>;
defm V_DOT8_U32_U4 : VOP3P_Real_vi <0x2b>;
} // End SubtargetPredicate = HasDot2Insts
let SubtargetPredicate = HasDot1Insts in {
defm V_DOT4_I32_I8 : VOP3P_Real_vi <0x28>;
defm V_DOT8_I32_I4 : VOP3P_Real_vi <0x2a>;
} // End SubtargetPredicate = HasDot1Insts
let SubtargetPredicate = HasMAIInsts in {
defm V_ACCVGPR_READ_B32 : VOP3P_Real_MAI <0x58>;
defm V_ACCVGPR_WRITE_B32 : VOP3P_Real_MAI <0x59>;
defm V_MFMA_F32_32X32X1F32 : VOP3P_Real_MFMA <0x40>;
defm V_MFMA_F32_16X16X1F32 : VOP3P_Real_MFMA <0x41>;
defm V_MFMA_F32_4X4X1F32 : VOP3P_Real_MFMA <0x42>;
defm V_MFMA_F32_32X32X2F32 : VOP3P_Real_MFMA <0x44>;
defm V_MFMA_F32_16X16X4F32 : VOP3P_Real_MFMA <0x45>;
defm V_MFMA_F32_32X32X4F16 : VOP3P_Real_MFMA <0x48>;
defm V_MFMA_F32_16X16X4F16 : VOP3P_Real_MFMA <0x49>;
defm V_MFMA_F32_4X4X4F16 : VOP3P_Real_MFMA <0x4a>;
defm V_MFMA_F32_32X32X8F16 : VOP3P_Real_MFMA <0x4c>;
defm V_MFMA_F32_16X16X16F16 : VOP3P_Real_MFMA <0x4d>;
defm V_MFMA_I32_32X32X4I8 : VOP3P_Real_MFMA <0x50>;
defm V_MFMA_I32_16X16X4I8 : VOP3P_Real_MFMA <0x51>;
defm V_MFMA_I32_4X4X4I8 : VOP3P_Real_MFMA <0x52>;
defm V_MFMA_I32_16X16X16I8 : VOP3P_Real_MFMA <0x55>;
defm V_MFMA_I32_32X32X8I8 : VOP3P_Real_MFMA <0x54>;
defm V_MFMA_F32_32X32X2BF16 : VOP3P_Real_MFMA <0x68>;
defm V_MFMA_F32_16X16X2BF16 : VOP3P_Real_MFMA <0x69>;
defm V_MFMA_F32_4X4X2BF16 : VOP3P_Real_MFMA <0x6b>;
defm V_MFMA_F32_32X32X4BF16 : VOP3P_Real_MFMA <0x6c>;
defm V_MFMA_F32_16X16X8BF16 : VOP3P_Real_MFMA <0x6d>;
} // End SubtargetPredicate = HasMAIInsts
//===----------------------------------------------------------------------===//
// GFX10.
//===----------------------------------------------------------------------===//
let AssemblerPredicate = isGFX10Plus, DecoderNamespace = "GFX10" in {
multiclass VOP3P_Real_gfx10<bits<7> op> {
def _gfx10 : VOP3P_Real<!cast<VOP3P_Pseudo>(NAME), SIEncodingFamily.GFX10>,
VOP3Pe_gfx10 <op, !cast<VOP3P_Pseudo>(NAME).Pfl>;
}
} // End AssemblerPredicate = isGFX10Plus, DecoderNamespace = "GFX10"
defm V_PK_MAD_I16 : VOP3P_Real_gfx10<0x00>;
defm V_PK_MUL_LO_U16 : VOP3P_Real_gfx10<0x01>;
defm V_PK_ADD_I16 : VOP3P_Real_gfx10<0x02>;
defm V_PK_SUB_I16 : VOP3P_Real_gfx10<0x03>;
defm V_PK_LSHLREV_B16 : VOP3P_Real_gfx10<0x04>;
defm V_PK_LSHRREV_B16 : VOP3P_Real_gfx10<0x05>;
defm V_PK_ASHRREV_I16 : VOP3P_Real_gfx10<0x06>;
defm V_PK_MAX_I16 : VOP3P_Real_gfx10<0x07>;
defm V_PK_MIN_I16 : VOP3P_Real_gfx10<0x08>;
defm V_PK_MAD_U16 : VOP3P_Real_gfx10<0x09>;
defm V_PK_ADD_U16 : VOP3P_Real_gfx10<0x0a>;
defm V_PK_SUB_U16 : VOP3P_Real_gfx10<0x0b>;
defm V_PK_MAX_U16 : VOP3P_Real_gfx10<0x0c>;
defm V_PK_MIN_U16 : VOP3P_Real_gfx10<0x0d>;
defm V_PK_FMA_F16 : VOP3P_Real_gfx10<0x0e>;
defm V_PK_ADD_F16 : VOP3P_Real_gfx10<0x0f>;
defm V_PK_MUL_F16 : VOP3P_Real_gfx10<0x10>;
defm V_PK_MIN_F16 : VOP3P_Real_gfx10<0x11>;
defm V_PK_MAX_F16 : VOP3P_Real_gfx10<0x12>;
defm V_FMA_MIX_F32 : VOP3P_Real_gfx10<0x20>;
defm V_FMA_MIXLO_F16 : VOP3P_Real_gfx10<0x21>;
defm V_FMA_MIXHI_F16 : VOP3P_Real_gfx10<0x22>;
let SubtargetPredicate = HasDot2Insts in {
defm V_DOT2_F32_F16 : VOP3P_Real_gfx10 <0x13>;
defm V_DOT2_I32_I16 : VOP3P_Real_gfx10 <0x14>;
defm V_DOT2_U32_U16 : VOP3P_Real_gfx10 <0x15>;
defm V_DOT4_U32_U8 : VOP3P_Real_gfx10 <0x17>;
defm V_DOT8_U32_U4 : VOP3P_Real_gfx10 <0x19>;
} // End SubtargetPredicate = HasDot2Insts
let SubtargetPredicate = HasDot1Insts in {
defm V_DOT4_I32_I8 : VOP3P_Real_gfx10 <0x16>;
defm V_DOT8_I32_I4 : VOP3P_Real_gfx10 <0x18>;
} // End SubtargetPredicate = HasDot1Insts