7868 lines
384 KiB
TableGen
7868 lines
384 KiB
TableGen
//=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// AArch64 Instruction definitions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM Instruction Predicate Definitions.
|
|
//
|
|
def HasV8_1a : Predicate<"Subtarget->hasV8_1aOps()">,
|
|
AssemblerPredicate<(all_of HasV8_1aOps), "armv8.1a">;
|
|
def HasV8_2a : Predicate<"Subtarget->hasV8_2aOps()">,
|
|
AssemblerPredicate<(all_of HasV8_2aOps), "armv8.2a">;
|
|
def HasV8_3a : Predicate<"Subtarget->hasV8_3aOps()">,
|
|
AssemblerPredicate<(all_of HasV8_3aOps), "armv8.3a">;
|
|
def HasV8_4a : Predicate<"Subtarget->hasV8_4aOps()">,
|
|
AssemblerPredicate<(all_of HasV8_4aOps), "armv8.4a">;
|
|
def HasV8_5a : Predicate<"Subtarget->hasV8_5aOps()">,
|
|
AssemblerPredicate<(all_of HasV8_5aOps), "armv8.5a">;
|
|
def HasV8_6a : Predicate<"Subtarget->hasV8_6aOps()">,
|
|
AssemblerPredicate<(all_of HasV8_6aOps), "armv8.6a">;
|
|
def HasV8_7a : Predicate<"Subtarget->hasV8_7aOps()">,
|
|
AssemblerPredicate<(all_of HasV8_7aOps), "armv8.7a">;
|
|
def HasVH : Predicate<"Subtarget->hasVH()">,
|
|
AssemblerPredicate<(all_of FeatureVH), "vh">;
|
|
|
|
def HasLOR : Predicate<"Subtarget->hasLOR()">,
|
|
AssemblerPredicate<(all_of FeatureLOR), "lor">;
|
|
|
|
def HasPAuth : Predicate<"Subtarget->hasPAuth()">,
|
|
AssemblerPredicate<(all_of FeaturePAuth), "pauth">;
|
|
|
|
def HasJS : Predicate<"Subtarget->hasJS()">,
|
|
AssemblerPredicate<(all_of FeatureJS), "jsconv">;
|
|
|
|
def HasCCIDX : Predicate<"Subtarget->hasCCIDX()">,
|
|
AssemblerPredicate<(all_of FeatureCCIDX), "ccidx">;
|
|
|
|
def HasComplxNum : Predicate<"Subtarget->hasComplxNum()">,
|
|
AssemblerPredicate<(all_of FeatureComplxNum), "complxnum">;
|
|
|
|
def HasNV : Predicate<"Subtarget->hasNV()">,
|
|
AssemblerPredicate<(all_of FeatureNV), "nv">;
|
|
|
|
def HasMPAM : Predicate<"Subtarget->hasMPAM()">,
|
|
AssemblerPredicate<(all_of FeatureMPAM), "mpam">;
|
|
|
|
def HasDIT : Predicate<"Subtarget->hasDIT()">,
|
|
AssemblerPredicate<(all_of FeatureDIT), "dit">;
|
|
|
|
def HasTRACEV8_4 : Predicate<"Subtarget->hasTRACEV8_4()">,
|
|
AssemblerPredicate<(all_of FeatureTRACEV8_4), "tracev8.4">;
|
|
|
|
def HasAM : Predicate<"Subtarget->hasAM()">,
|
|
AssemblerPredicate<(all_of FeatureAM), "am">;
|
|
|
|
def HasSEL2 : Predicate<"Subtarget->hasSEL2()">,
|
|
AssemblerPredicate<(all_of FeatureSEL2), "sel2">;
|
|
|
|
def HasPMU : Predicate<"Subtarget->hasPMU()">,
|
|
AssemblerPredicate<(all_of FeaturePMU), "pmu">;
|
|
|
|
def HasTLB_RMI : Predicate<"Subtarget->hasTLB_RMI()">,
|
|
AssemblerPredicate<(all_of FeatureTLB_RMI), "tlb-rmi">;
|
|
|
|
def HasFlagM : Predicate<"Subtarget->hasFlagM()">,
|
|
AssemblerPredicate<(all_of FeatureFlagM), "flagm">;
|
|
|
|
def HasRCPC_IMMO : Predicate<"Subtarget->hasRCPCImm()">,
|
|
AssemblerPredicate<(all_of FeatureRCPC_IMMO), "rcpc-immo">;
|
|
|
|
def HasFPARMv8 : Predicate<"Subtarget->hasFPARMv8()">,
|
|
AssemblerPredicate<(all_of FeatureFPARMv8), "fp-armv8">;
|
|
def HasNEON : Predicate<"Subtarget->hasNEON()">,
|
|
AssemblerPredicate<(all_of FeatureNEON), "neon">;
|
|
def HasCrypto : Predicate<"Subtarget->hasCrypto()">,
|
|
AssemblerPredicate<(all_of FeatureCrypto), "crypto">;
|
|
def HasSM4 : Predicate<"Subtarget->hasSM4()">,
|
|
AssemblerPredicate<(all_of FeatureSM4), "sm4">;
|
|
def HasSHA3 : Predicate<"Subtarget->hasSHA3()">,
|
|
AssemblerPredicate<(all_of FeatureSHA3), "sha3">;
|
|
def HasSHA2 : Predicate<"Subtarget->hasSHA2()">,
|
|
AssemblerPredicate<(all_of FeatureSHA2), "sha2">;
|
|
def HasAES : Predicate<"Subtarget->hasAES()">,
|
|
AssemblerPredicate<(all_of FeatureAES), "aes">;
|
|
def HasDotProd : Predicate<"Subtarget->hasDotProd()">,
|
|
AssemblerPredicate<(all_of FeatureDotProd), "dotprod">;
|
|
def HasCRC : Predicate<"Subtarget->hasCRC()">,
|
|
AssemblerPredicate<(all_of FeatureCRC), "crc">;
|
|
def HasLSE : Predicate<"Subtarget->hasLSE()">,
|
|
AssemblerPredicate<(all_of FeatureLSE), "lse">;
|
|
def HasRAS : Predicate<"Subtarget->hasRAS()">,
|
|
AssemblerPredicate<(all_of FeatureRAS), "ras">;
|
|
def HasRDM : Predicate<"Subtarget->hasRDM()">,
|
|
AssemblerPredicate<(all_of FeatureRDM), "rdm">;
|
|
def HasPerfMon : Predicate<"Subtarget->hasPerfMon()">;
|
|
def HasFullFP16 : Predicate<"Subtarget->hasFullFP16()">,
|
|
AssemblerPredicate<(all_of FeatureFullFP16), "fullfp16">;
|
|
def HasFP16FML : Predicate<"Subtarget->hasFP16FML()">,
|
|
AssemblerPredicate<(all_of FeatureFP16FML), "fp16fml">;
|
|
def HasSPE : Predicate<"Subtarget->hasSPE()">,
|
|
AssemblerPredicate<(all_of FeatureSPE), "spe">;
|
|
def HasFuseAES : Predicate<"Subtarget->hasFuseAES()">,
|
|
AssemblerPredicate<(all_of FeatureFuseAES),
|
|
"fuse-aes">;
|
|
def HasSVE : Predicate<"Subtarget->hasSVE()">,
|
|
AssemblerPredicate<(all_of FeatureSVE), "sve">;
|
|
def HasSVE2 : Predicate<"Subtarget->hasSVE2()">,
|
|
AssemblerPredicate<(all_of FeatureSVE2), "sve2">;
|
|
def HasSVE2AES : Predicate<"Subtarget->hasSVE2AES()">,
|
|
AssemblerPredicate<(all_of FeatureSVE2AES), "sve2-aes">;
|
|
def HasSVE2SM4 : Predicate<"Subtarget->hasSVE2SM4()">,
|
|
AssemblerPredicate<(all_of FeatureSVE2SM4), "sve2-sm4">;
|
|
def HasSVE2SHA3 : Predicate<"Subtarget->hasSVE2SHA3()">,
|
|
AssemblerPredicate<(all_of FeatureSVE2SHA3), "sve2-sha3">;
|
|
def HasSVE2BitPerm : Predicate<"Subtarget->hasSVE2BitPerm()">,
|
|
AssemblerPredicate<(all_of FeatureSVE2BitPerm), "sve2-bitperm">;
|
|
def HasRCPC : Predicate<"Subtarget->hasRCPC()">,
|
|
AssemblerPredicate<(all_of FeatureRCPC), "rcpc">;
|
|
def HasAltNZCV : Predicate<"Subtarget->hasAlternativeNZCV()">,
|
|
AssemblerPredicate<(all_of FeatureAltFPCmp), "altnzcv">;
|
|
def HasFRInt3264 : Predicate<"Subtarget->hasFRInt3264()">,
|
|
AssemblerPredicate<(all_of FeatureFRInt3264), "frint3264">;
|
|
def HasSB : Predicate<"Subtarget->hasSB()">,
|
|
AssemblerPredicate<(all_of FeatureSB), "sb">;
|
|
def HasPredRes : Predicate<"Subtarget->hasPredRes()">,
|
|
AssemblerPredicate<(all_of FeaturePredRes), "predres">;
|
|
def HasCCDP : Predicate<"Subtarget->hasCCDP()">,
|
|
AssemblerPredicate<(all_of FeatureCacheDeepPersist), "ccdp">;
|
|
def HasBTI : Predicate<"Subtarget->hasBTI()">,
|
|
AssemblerPredicate<(all_of FeatureBranchTargetId), "bti">;
|
|
def HasMTE : Predicate<"Subtarget->hasMTE()">,
|
|
AssemblerPredicate<(all_of FeatureMTE), "mte">;
|
|
def HasTME : Predicate<"Subtarget->hasTME()">,
|
|
AssemblerPredicate<(all_of FeatureTME), "tme">;
|
|
def HasETE : Predicate<"Subtarget->hasETE()">,
|
|
AssemblerPredicate<(all_of FeatureETE), "ete">;
|
|
def HasTRBE : Predicate<"Subtarget->hasTRBE()">,
|
|
AssemblerPredicate<(all_of FeatureTRBE), "trbe">;
|
|
def HasBF16 : Predicate<"Subtarget->hasBF16()">,
|
|
AssemblerPredicate<(all_of FeatureBF16), "bf16">;
|
|
def HasMatMulInt8 : Predicate<"Subtarget->hasMatMulInt8()">,
|
|
AssemblerPredicate<(all_of FeatureMatMulInt8), "i8mm">;
|
|
def HasMatMulFP32 : Predicate<"Subtarget->hasMatMulFP32()">,
|
|
AssemblerPredicate<(all_of FeatureMatMulFP32), "f32mm">;
|
|
def HasMatMulFP64 : Predicate<"Subtarget->hasMatMulFP64()">,
|
|
AssemblerPredicate<(all_of FeatureMatMulFP64), "f64mm">;
|
|
def HasXS : Predicate<"Subtarget->hasXS()">,
|
|
AssemblerPredicate<(all_of FeatureXS), "xs">;
|
|
def HasWFxT : Predicate<"Subtarget->hasWFxT()">,
|
|
AssemblerPredicate<(all_of FeatureWFxT), "wfxt">;
|
|
def HasLS64 : Predicate<"Subtarget->hasLS64()">,
|
|
AssemblerPredicate<(all_of FeatureLS64), "ls64">;
|
|
def HasBRBE : Predicate<"Subtarget->hasBRBE()">,
|
|
AssemblerPredicate<(all_of FeatureBRBE), "brbe">;
|
|
def HasSPE_EEF : Predicate<"Subtarget->hasSPE_EEF()">,
|
|
AssemblerPredicate<(all_of FeatureSPE_EEF), "spe-eef">;
|
|
def IsLE : Predicate<"Subtarget->isLittleEndian()">;
|
|
def IsBE : Predicate<"!Subtarget->isLittleEndian()">;
|
|
def IsWindows : Predicate<"Subtarget->isTargetWindows()">;
|
|
def UseExperimentalZeroingPseudos
|
|
: Predicate<"Subtarget->useExperimentalZeroingPseudos()">;
|
|
def UseAlternateSExtLoadCVTF32
|
|
: Predicate<"Subtarget->useAlternateSExtLoadCVTF32Pattern()">;
|
|
|
|
def UseNegativeImmediates
|
|
: Predicate<"false">, AssemblerPredicate<(all_of (not FeatureNoNegativeImmediates)),
|
|
"NegativeImmediates">;
|
|
|
|
def AArch64LocalRecover : SDNode<"ISD::LOCAL_RECOVER",
|
|
SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>,
|
|
SDTCisInt<1>]>>;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AArch64-specific DAG Nodes.
|
|
//
|
|
|
|
// SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS
|
|
def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2,
|
|
[SDTCisSameAs<0, 2>,
|
|
SDTCisSameAs<0, 3>,
|
|
SDTCisInt<0>, SDTCisVT<1, i32>]>;
|
|
|
|
// SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS
|
|
def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3,
|
|
[SDTCisSameAs<0, 1>,
|
|
SDTCisSameAs<0, 2>,
|
|
SDTCisInt<0>,
|
|
SDTCisVT<3, i32>]>;
|
|
|
|
// SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS
|
|
def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
|
|
[SDTCisSameAs<0, 2>,
|
|
SDTCisSameAs<0, 3>,
|
|
SDTCisInt<0>,
|
|
SDTCisVT<1, i32>,
|
|
SDTCisVT<4, i32>]>;
|
|
|
|
def SDT_AArch64Brcond : SDTypeProfile<0, 3,
|
|
[SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
|
|
SDTCisVT<2, i32>]>;
|
|
def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>;
|
|
def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>,
|
|
SDTCisVT<2, OtherVT>]>;
|
|
|
|
|
|
def SDT_AArch64CSel : SDTypeProfile<1, 4,
|
|
[SDTCisSameAs<0, 1>,
|
|
SDTCisSameAs<0, 2>,
|
|
SDTCisInt<3>,
|
|
SDTCisVT<4, i32>]>;
|
|
def SDT_AArch64CCMP : SDTypeProfile<1, 5,
|
|
[SDTCisVT<0, i32>,
|
|
SDTCisInt<1>,
|
|
SDTCisSameAs<1, 2>,
|
|
SDTCisInt<3>,
|
|
SDTCisInt<4>,
|
|
SDTCisVT<5, i32>]>;
|
|
def SDT_AArch64FCCMP : SDTypeProfile<1, 5,
|
|
[SDTCisVT<0, i32>,
|
|
SDTCisFP<1>,
|
|
SDTCisSameAs<1, 2>,
|
|
SDTCisInt<3>,
|
|
SDTCisInt<4>,
|
|
SDTCisVT<5, i32>]>;
|
|
def SDT_AArch64FCmp : SDTypeProfile<0, 2,
|
|
[SDTCisFP<0>,
|
|
SDTCisSameAs<0, 1>]>;
|
|
def SDT_AArch64Dup : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
|
|
def SDT_AArch64DupLane : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>;
|
|
def SDT_AArch64Insr : SDTypeProfile<1, 2, [SDTCisVec<0>]>;
|
|
def SDT_AArch64Zip : SDTypeProfile<1, 2, [SDTCisVec<0>,
|
|
SDTCisSameAs<0, 1>,
|
|
SDTCisSameAs<0, 2>]>;
|
|
def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>;
|
|
def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
|
|
def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
|
|
SDTCisInt<2>, SDTCisInt<3>]>;
|
|
def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
|
|
def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
|
|
SDTCisSameAs<0,2>, SDTCisInt<3>]>;
|
|
def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>;
|
|
|
|
def SDT_AArch64vshiftinsert : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisInt<3>,
|
|
SDTCisSameAs<0,1>,
|
|
SDTCisSameAs<0,2>]>;
|
|
|
|
def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
|
|
def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>;
|
|
def SDT_AArch64fcmp : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>;
|
|
def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
|
|
SDTCisSameAs<0,2>]>;
|
|
def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
|
|
SDTCisSameAs<0,2>,
|
|
SDTCisSameAs<0,3>]>;
|
|
def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>;
|
|
def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>;
|
|
|
|
def SDT_AArch64ITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>;
|
|
|
|
def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>,
|
|
SDTCisPtrTy<1>]>;
|
|
|
|
def SDT_AArch64ldp : SDTypeProfile<2, 1, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
|
|
def SDT_AArch64stp : SDTypeProfile<0, 3, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
|
|
def SDT_AArch64stnp : SDTypeProfile<0, 3, [SDTCisVT<0, v4i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
|
|
|
|
// Generates the general dynamic sequences, i.e.
|
|
// adrp x0, :tlsdesc:var
|
|
// ldr x1, [x0, #:tlsdesc_lo12:var]
|
|
// add x0, x0, #:tlsdesc_lo12:var
|
|
// .tlsdesccall var
|
|
// blr x1
|
|
|
|
// (the TPIDR_EL0 offset is put directly in X0, hence no "result" here)
|
|
// number of operands (the variable)
|
|
def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1,
|
|
[SDTCisPtrTy<0>]>;
|
|
|
|
def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4,
|
|
[SDTCisVT<0, i64>, SDTCisVT<1, i32>,
|
|
SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>,
|
|
SDTCisSameAs<1, 4>]>;
|
|
|
|
def SDT_AArch64TBL : SDTypeProfile<1, 2, [
|
|
SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisInt<2>
|
|
]>;
|
|
|
|
// non-extending masked load fragment.
|
|
def nonext_masked_load :
|
|
PatFrag<(ops node:$ptr, node:$pred, node:$def),
|
|
(masked_ld node:$ptr, undef, node:$pred, node:$def), [{
|
|
return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD &&
|
|
cast<MaskedLoadSDNode>(N)->isUnindexed() &&
|
|
!cast<MaskedLoadSDNode>(N)->isNonTemporal();
|
|
}]>;
|
|
// sign extending masked load fragments.
|
|
def asext_masked_load :
|
|
PatFrag<(ops node:$ptr, node:$pred, node:$def),
|
|
(masked_ld node:$ptr, undef, node:$pred, node:$def),[{
|
|
return (cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD ||
|
|
cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD) &&
|
|
cast<MaskedLoadSDNode>(N)->isUnindexed();
|
|
}]>;
|
|
def asext_masked_load_i8 :
|
|
PatFrag<(ops node:$ptr, node:$pred, node:$def),
|
|
(asext_masked_load node:$ptr, node:$pred, node:$def), [{
|
|
return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
|
|
}]>;
|
|
def asext_masked_load_i16 :
|
|
PatFrag<(ops node:$ptr, node:$pred, node:$def),
|
|
(asext_masked_load node:$ptr, node:$pred, node:$def), [{
|
|
return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
|
|
}]>;
|
|
def asext_masked_load_i32 :
|
|
PatFrag<(ops node:$ptr, node:$pred, node:$def),
|
|
(asext_masked_load node:$ptr, node:$pred, node:$def), [{
|
|
return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
|
|
}]>;
|
|
// zero extending masked load fragments.
|
|
def zext_masked_load :
|
|
PatFrag<(ops node:$ptr, node:$pred, node:$def),
|
|
(masked_ld node:$ptr, undef, node:$pred, node:$def), [{
|
|
return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD &&
|
|
cast<MaskedLoadSDNode>(N)->isUnindexed();
|
|
}]>;
|
|
def zext_masked_load_i8 :
|
|
PatFrag<(ops node:$ptr, node:$pred, node:$def),
|
|
(zext_masked_load node:$ptr, node:$pred, node:$def), [{
|
|
return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
|
|
}]>;
|
|
def zext_masked_load_i16 :
|
|
PatFrag<(ops node:$ptr, node:$pred, node:$def),
|
|
(zext_masked_load node:$ptr, node:$pred, node:$def), [{
|
|
return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
|
|
}]>;
|
|
def zext_masked_load_i32 :
|
|
PatFrag<(ops node:$ptr, node:$pred, node:$def),
|
|
(zext_masked_load node:$ptr, node:$pred, node:$def), [{
|
|
return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
|
|
}]>;
|
|
|
|
def non_temporal_load :
|
|
PatFrag<(ops node:$ptr, node:$pred, node:$def),
|
|
(masked_ld node:$ptr, undef, node:$pred, node:$def), [{
|
|
return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD &&
|
|
cast<MaskedLoadSDNode>(N)->isUnindexed() &&
|
|
cast<MaskedLoadSDNode>(N)->isNonTemporal();
|
|
}]>;
|
|
|
|
// non-truncating masked store fragment.
|
|
def nontrunc_masked_store :
|
|
PatFrag<(ops node:$val, node:$ptr, node:$pred),
|
|
(masked_st node:$val, node:$ptr, undef, node:$pred), [{
|
|
return !cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
|
|
cast<MaskedStoreSDNode>(N)->isUnindexed() &&
|
|
!cast<MaskedStoreSDNode>(N)->isNonTemporal();
|
|
}]>;
|
|
// truncating masked store fragments.
|
|
def trunc_masked_store :
|
|
PatFrag<(ops node:$val, node:$ptr, node:$pred),
|
|
(masked_st node:$val, node:$ptr, undef, node:$pred), [{
|
|
return cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
|
|
cast<MaskedStoreSDNode>(N)->isUnindexed();
|
|
}]>;
|
|
def trunc_masked_store_i8 :
|
|
PatFrag<(ops node:$val, node:$ptr, node:$pred),
|
|
(trunc_masked_store node:$val, node:$ptr, node:$pred), [{
|
|
return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
|
|
}]>;
|
|
def trunc_masked_store_i16 :
|
|
PatFrag<(ops node:$val, node:$ptr, node:$pred),
|
|
(trunc_masked_store node:$val, node:$ptr, node:$pred), [{
|
|
return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
|
|
}]>;
|
|
def trunc_masked_store_i32 :
|
|
PatFrag<(ops node:$val, node:$ptr, node:$pred),
|
|
(trunc_masked_store node:$val, node:$ptr, node:$pred), [{
|
|
return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
|
|
}]>;
|
|
|
|
def non_temporal_store :
|
|
PatFrag<(ops node:$val, node:$ptr, node:$pred),
|
|
(masked_st node:$val, node:$ptr, undef, node:$pred), [{
|
|
return !cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
|
|
cast<MaskedStoreSDNode>(N)->isUnindexed() &&
|
|
cast<MaskedStoreSDNode>(N)->isNonTemporal();
|
|
}]>;
|
|
|
|
// Node definitions.
|
|
def AArch64adrp : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>;
|
|
def AArch64adr : SDNode<"AArch64ISD::ADR", SDTIntUnaryOp, []>;
|
|
def AArch64addlow : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>;
|
|
def AArch64LOADgot : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>;
|
|
def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START",
|
|
SDCallSeqStart<[ SDTCisVT<0, i32>,
|
|
SDTCisVT<1, i32> ]>,
|
|
[SDNPHasChain, SDNPOutGlue]>;
|
|
def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END",
|
|
SDCallSeqEnd<[ SDTCisVT<0, i32>,
|
|
SDTCisVT<1, i32> ]>,
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
|
|
def AArch64call : SDNode<"AArch64ISD::CALL",
|
|
SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
|
|
SDNPVariadic]>;
|
|
|
|
def AArch64call_rvmarker: SDNode<"AArch64ISD::CALL_RVMARKER",
|
|
SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
|
|
SDNPVariadic]>;
|
|
|
|
def AArch64brcond : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond,
|
|
[SDNPHasChain]>;
|
|
def AArch64cbz : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz,
|
|
[SDNPHasChain]>;
|
|
def AArch64cbnz : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz,
|
|
[SDNPHasChain]>;
|
|
def AArch64tbz : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz,
|
|
[SDNPHasChain]>;
|
|
def AArch64tbnz : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz,
|
|
[SDNPHasChain]>;
|
|
|
|
|
|
def AArch64csel : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>;
|
|
def AArch64csinv : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>;
|
|
def AArch64csneg : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>;
|
|
def AArch64csinc : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>;
|
|
def AArch64retflag : SDNode<"AArch64ISD::RET_FLAG", SDTNone,
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
|
|
def AArch64adc : SDNode<"AArch64ISD::ADC", SDTBinaryArithWithFlagsIn >;
|
|
def AArch64sbc : SDNode<"AArch64ISD::SBC", SDTBinaryArithWithFlagsIn>;
|
|
def AArch64add_flag : SDNode<"AArch64ISD::ADDS", SDTBinaryArithWithFlagsOut,
|
|
[SDNPCommutative]>;
|
|
def AArch64sub_flag : SDNode<"AArch64ISD::SUBS", SDTBinaryArithWithFlagsOut>;
|
|
def AArch64and_flag : SDNode<"AArch64ISD::ANDS", SDTBinaryArithWithFlagsOut,
|
|
[SDNPCommutative]>;
|
|
def AArch64adc_flag : SDNode<"AArch64ISD::ADCS", SDTBinaryArithWithFlagsInOut>;
|
|
def AArch64sbc_flag : SDNode<"AArch64ISD::SBCS", SDTBinaryArithWithFlagsInOut>;
|
|
|
|
def AArch64ccmp : SDNode<"AArch64ISD::CCMP", SDT_AArch64CCMP>;
|
|
def AArch64ccmn : SDNode<"AArch64ISD::CCMN", SDT_AArch64CCMP>;
|
|
def AArch64fccmp : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>;
|
|
|
|
def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
|
|
|
|
def AArch64fcmp : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>;
|
|
def AArch64strict_fcmp : SDNode<"AArch64ISD::STRICT_FCMP", SDT_AArch64FCmp,
|
|
[SDNPHasChain]>;
|
|
def AArch64strict_fcmpe : SDNode<"AArch64ISD::STRICT_FCMPE", SDT_AArch64FCmp,
|
|
[SDNPHasChain]>;
|
|
def AArch64any_fcmp : PatFrags<(ops node:$lhs, node:$rhs),
|
|
[(AArch64strict_fcmp node:$lhs, node:$rhs),
|
|
(AArch64fcmp node:$lhs, node:$rhs)]>;
|
|
|
|
def AArch64dup : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>;
|
|
def AArch64duplane8 : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>;
|
|
def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>;
|
|
def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>;
|
|
def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>;
|
|
|
|
def AArch64insr : SDNode<"AArch64ISD::INSR", SDT_AArch64Insr>;
|
|
|
|
def AArch64zip1 : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>;
|
|
def AArch64zip2 : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>;
|
|
def AArch64uzp1 : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>;
|
|
def AArch64uzp2 : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>;
|
|
def AArch64trn1 : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>;
|
|
def AArch64trn2 : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>;
|
|
|
|
def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>;
|
|
def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>;
|
|
def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>;
|
|
def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>;
|
|
def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>;
|
|
def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>;
|
|
def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>;
|
|
|
|
def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>;
|
|
def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>;
|
|
def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>;
|
|
def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>;
|
|
|
|
def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>;
|
|
def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>;
|
|
def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>;
|
|
def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>;
|
|
def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>;
|
|
def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>;
|
|
def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>;
|
|
def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>;
|
|
def AArch64vsli : SDNode<"AArch64ISD::VSLI", SDT_AArch64vshiftinsert>;
|
|
def AArch64vsri : SDNode<"AArch64ISD::VSRI", SDT_AArch64vshiftinsert>;
|
|
|
|
def AArch64bit: SDNode<"AArch64ISD::BIT", SDT_AArch64trivec>;
|
|
def AArch64bsp: SDNode<"AArch64ISD::BSP", SDT_AArch64trivec>;
|
|
|
|
def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>;
|
|
def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>;
|
|
def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>;
|
|
def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>;
|
|
def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>;
|
|
|
|
def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>;
|
|
def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>;
|
|
def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>;
|
|
|
|
def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>;
|
|
def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>;
|
|
def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>;
|
|
def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>;
|
|
def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>;
|
|
def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS),
|
|
(vnot (AArch64cmeqz (and node:$LHS, node:$RHS)))>;
|
|
|
|
def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>;
|
|
def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>;
|
|
def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>;
|
|
def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>;
|
|
def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>;
|
|
|
|
def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>;
|
|
def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>;
|
|
|
|
def AArch64neg : SDNode<"AArch64ISD::NEG", SDT_AArch64unvec>;
|
|
|
|
def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET,
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
|
|
|
|
def AArch64Prefetch : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH,
|
|
[SDNPHasChain, SDNPSideEffect]>;
|
|
|
|
def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>;
|
|
def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>;
|
|
|
|
def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ",
|
|
SDT_AArch64TLSDescCallSeq,
|
|
[SDNPInGlue, SDNPOutGlue, SDNPHasChain,
|
|
SDNPVariadic]>;
|
|
|
|
|
|
def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge",
|
|
SDT_AArch64WrapperLarge>;
|
|
|
|
def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>;
|
|
|
|
def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
|
|
SDTCisSameAs<1, 2>]>;
|
|
def AArch64smull : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull>;
|
|
def AArch64umull : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>;
|
|
|
|
def AArch64frecpe : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>;
|
|
def AArch64frecps : SDNode<"AArch64ISD::FRECPS", SDTFPBinOp>;
|
|
def AArch64frsqrte : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>;
|
|
def AArch64frsqrts : SDNode<"AArch64ISD::FRSQRTS", SDTFPBinOp>;
|
|
|
|
def AArch64saddv : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>;
|
|
def AArch64uaddv : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>;
|
|
def AArch64sminv : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>;
|
|
def AArch64uminv : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>;
|
|
def AArch64smaxv : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>;
|
|
def AArch64umaxv : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>;
|
|
|
|
def AArch64srhadd : SDNode<"AArch64ISD::SRHADD", SDT_AArch64binvec>;
|
|
def AArch64urhadd : SDNode<"AArch64ISD::URHADD", SDT_AArch64binvec>;
|
|
def AArch64shadd : SDNode<"AArch64ISD::SHADD", SDT_AArch64binvec>;
|
|
def AArch64uhadd : SDNode<"AArch64ISD::UHADD", SDT_AArch64binvec>;
|
|
|
|
def AArch64uabd_n : SDNode<"AArch64ISD::UABD", SDT_AArch64binvec>;
|
|
def AArch64sabd_n : SDNode<"AArch64ISD::SABD", SDT_AArch64binvec>;
|
|
|
|
def AArch64uabd : PatFrags<(ops node:$lhs, node:$rhs),
|
|
[(AArch64uabd_n node:$lhs, node:$rhs),
|
|
(int_aarch64_neon_uabd node:$lhs, node:$rhs)]>;
|
|
def AArch64sabd : PatFrags<(ops node:$lhs, node:$rhs),
|
|
[(AArch64sabd_n node:$lhs, node:$rhs),
|
|
(int_aarch64_neon_sabd node:$lhs, node:$rhs)]>;
|
|
|
|
def SDT_AArch64SETTAG : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
|
|
def AArch64stg : SDNode<"AArch64ISD::STG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
|
|
def AArch64stzg : SDNode<"AArch64ISD::STZG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
|
|
def AArch64st2g : SDNode<"AArch64ISD::ST2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
|
|
def AArch64stz2g : SDNode<"AArch64ISD::STZ2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
|
|
|
|
def SDT_AArch64unpk : SDTypeProfile<1, 1, [
|
|
SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>
|
|
]>;
|
|
def AArch64sunpkhi : SDNode<"AArch64ISD::SUNPKHI", SDT_AArch64unpk>;
|
|
def AArch64sunpklo : SDNode<"AArch64ISD::SUNPKLO", SDT_AArch64unpk>;
|
|
def AArch64uunpkhi : SDNode<"AArch64ISD::UUNPKHI", SDT_AArch64unpk>;
|
|
def AArch64uunpklo : SDNode<"AArch64ISD::UUNPKLO", SDT_AArch64unpk>;
|
|
|
|
def AArch64ldp : SDNode<"AArch64ISD::LDP", SDT_AArch64ldp, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
|
|
def AArch64stp : SDNode<"AArch64ISD::STP", SDT_AArch64stp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
|
|
def AArch64stnp : SDNode<"AArch64ISD::STNP", SDT_AArch64stnp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
|
|
|
|
def AArch64tbl : SDNode<"AArch64ISD::TBL", SDT_AArch64TBL>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// AArch64 Instruction Predicate Definitions.
|
|
// We could compute these on a per-module basis but doing so requires accessing
|
|
// the Function object through the <Target>Subtarget and objections were raised
|
|
// to that (see post-commit review comments for r301750).
|
|
let RecomputePerFunction = 1 in {
|
|
def ForCodeSize : Predicate<"shouldOptForSize(MF)">;
|
|
def NotForCodeSize : Predicate<"!shouldOptForSize(MF)">;
|
|
// Avoid generating STRQro if it is slow, unless we're optimizing for code size.
|
|
def UseSTRQro : Predicate<"!Subtarget->isSTRQroSlow() || shouldOptForSize(MF)">;
|
|
|
|
def UseBTI : Predicate<[{ MF->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement() }]>;
|
|
def NotUseBTI : Predicate<[{ !MF->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement() }]>;
|
|
|
|
def SLSBLRMitigation : Predicate<[{ MF->getSubtarget<AArch64Subtarget>().hardenSlsBlr() }]>;
|
|
def NoSLSBLRMitigation : Predicate<[{ !MF->getSubtarget<AArch64Subtarget>().hardenSlsBlr() }]>;
|
|
// Toggles patterns which aren't beneficial in GlobalISel when we aren't
|
|
// optimizing. This allows us to selectively use patterns without impacting
|
|
// SelectionDAG's behaviour.
|
|
// FIXME: One day there will probably be a nicer way to check for this, but
|
|
// today is not that day.
|
|
def OptimizedGISelOrOtherSelector : Predicate<"!MF->getFunction().hasOptNone() || MF->getProperties().hasProperty(MachineFunctionProperties::Property::FailedISel) || !MF->getProperties().hasProperty(MachineFunctionProperties::Property::Legalized)">;
|
|
}
|
|
|
|
include "AArch64InstrFormats.td"
|
|
include "SVEInstrFormats.td"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Miscellaneous instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in {
|
|
// We set Sched to empty list because we expect these instructions to simply get
|
|
// removed in most cases.
|
|
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
|
|
[(AArch64callseq_start timm:$amt1, timm:$amt2)]>,
|
|
Sched<[]>;
|
|
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
|
|
[(AArch64callseq_end timm:$amt1, timm:$amt2)]>,
|
|
Sched<[]>;
|
|
} // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1
|
|
|
|
let isReMaterializable = 1, isCodeGenOnly = 1 in {
|
|
// FIXME: The following pseudo instructions are only needed because remat
|
|
// cannot handle multiple instructions. When that changes, they can be
|
|
// removed, along with the AArch64Wrapper node.
|
|
|
|
let AddedComplexity = 10 in
|
|
def LOADgot : Pseudo<(outs GPR64:$dst), (ins i64imm:$addr),
|
|
[(set GPR64:$dst, (AArch64LOADgot tglobaladdr:$addr))]>,
|
|
Sched<[WriteLDAdr]>;
|
|
|
|
// The MOVaddr instruction should match only when the add is not folded
|
|
// into a load or store address.
|
|
def MOVaddr
|
|
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
|
|
[(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi),
|
|
tglobaladdr:$low))]>,
|
|
Sched<[WriteAdrAdr]>;
|
|
def MOVaddrJT
|
|
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
|
|
[(set GPR64:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi),
|
|
tjumptable:$low))]>,
|
|
Sched<[WriteAdrAdr]>;
|
|
def MOVaddrCP
|
|
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
|
|
[(set GPR64:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi),
|
|
tconstpool:$low))]>,
|
|
Sched<[WriteAdrAdr]>;
|
|
def MOVaddrBA
|
|
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
|
|
[(set GPR64:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi),
|
|
tblockaddress:$low))]>,
|
|
Sched<[WriteAdrAdr]>;
|
|
def MOVaddrTLS
|
|
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
|
|
[(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi),
|
|
tglobaltlsaddr:$low))]>,
|
|
Sched<[WriteAdrAdr]>;
|
|
def MOVaddrEXT
|
|
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
|
|
[(set GPR64:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi),
|
|
texternalsym:$low))]>,
|
|
Sched<[WriteAdrAdr]>;
|
|
// Normally AArch64addlow either gets folded into a following ldr/str,
|
|
// or together with an adrp into MOVaddr above. For cases with TLS, it
|
|
// might appear without either of them, so allow lowering it into a plain
|
|
// add.
|
|
def ADDlowTLS
|
|
: Pseudo<(outs GPR64:$dst), (ins GPR64:$src, i64imm:$low),
|
|
[(set GPR64:$dst, (AArch64addlow GPR64:$src,
|
|
tglobaltlsaddr:$low))]>,
|
|
Sched<[WriteAdr]>;
|
|
|
|
} // isReMaterializable, isCodeGenOnly
|
|
|
|
def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr),
|
|
(LOADgot tglobaltlsaddr:$addr)>;
|
|
|
|
def : Pat<(AArch64LOADgot texternalsym:$addr),
|
|
(LOADgot texternalsym:$addr)>;
|
|
|
|
def : Pat<(AArch64LOADgot tconstpool:$addr),
|
|
(LOADgot tconstpool:$addr)>;
|
|
|
|
// 32-bit jump table destination is actually only 2 instructions since we can
|
|
// use the table itself as a PC-relative base. But optimization occurs after
|
|
// branch relaxation so be pessimistic.
|
|
let Size = 12, Constraints = "@earlyclobber $dst,@earlyclobber $scratch",
|
|
isNotDuplicable = 1 in {
|
|
def JumpTableDest32 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
|
|
(ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
|
|
Sched<[]>;
|
|
def JumpTableDest16 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
|
|
(ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
|
|
Sched<[]>;
|
|
def JumpTableDest8 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
|
|
(ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
|
|
Sched<[]>;
|
|
}
|
|
|
|
// Space-consuming pseudo to aid testing of placement and reachability
|
|
// algorithms. Immediate operand is the number of bytes this "instruction"
|
|
// occupies; register operands can be used to enforce dependency and constrain
|
|
// the scheduler.
|
|
let hasSideEffects = 1, mayLoad = 1, mayStore = 1 in
|
|
def SPACE : Pseudo<(outs GPR64:$Rd), (ins i32imm:$size, GPR64:$Rn),
|
|
[(set GPR64:$Rd, (int_aarch64_space imm:$size, GPR64:$Rn))]>,
|
|
Sched<[]>;
|
|
|
|
let hasSideEffects = 1, isCodeGenOnly = 1 in {
|
|
def SpeculationSafeValueX
|
|
: Pseudo<(outs GPR64:$dst), (ins GPR64:$src), []>, Sched<[]>;
|
|
def SpeculationSafeValueW
|
|
: Pseudo<(outs GPR32:$dst), (ins GPR32:$src), []>, Sched<[]>;
|
|
}
|
|
|
|
// SpeculationBarrierEndBB must only be used after an unconditional control
|
|
// flow, i.e. after a terminator for which isBarrier is True.
|
|
let hasSideEffects = 1, isCodeGenOnly = 1, isTerminator = 1, isBarrier = 1 in {
|
|
def SpeculationBarrierISBDSBEndBB
|
|
: Pseudo<(outs), (ins), []>, Sched<[]>;
|
|
def SpeculationBarrierSBEndBB
|
|
: Pseudo<(outs), (ins), []>, Sched<[]>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// System instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def HINT : HintI<"hint">;
|
|
def : InstAlias<"nop", (HINT 0b000)>;
|
|
def : InstAlias<"yield",(HINT 0b001)>;
|
|
def : InstAlias<"wfe", (HINT 0b010)>;
|
|
def : InstAlias<"wfi", (HINT 0b011)>;
|
|
def : InstAlias<"sev", (HINT 0b100)>;
|
|
def : InstAlias<"sevl", (HINT 0b101)>;
|
|
def : InstAlias<"dgh", (HINT 0b110)>;
|
|
def : InstAlias<"esb", (HINT 0b10000)>, Requires<[HasRAS]>;
|
|
def : InstAlias<"csdb", (HINT 20)>;
|
|
// In order to be able to write readable assembly, LLVM should accept assembly
|
|
// inputs that use Branch Target Indentification mnemonics, even with BTI disabled.
|
|
// However, in order to be compatible with other assemblers (e.g. GAS), LLVM
|
|
// should not emit these mnemonics unless BTI is enabled.
|
|
def : InstAlias<"bti", (HINT 32), 0>;
|
|
def : InstAlias<"bti $op", (HINT btihint_op:$op), 0>;
|
|
def : InstAlias<"bti", (HINT 32)>, Requires<[HasBTI]>;
|
|
def : InstAlias<"bti $op", (HINT btihint_op:$op)>, Requires<[HasBTI]>;
|
|
|
|
// v8.2a Statistical Profiling extension
|
|
def : InstAlias<"psb $op", (HINT psbhint_op:$op)>, Requires<[HasSPE]>;
|
|
|
|
// As far as LLVM is concerned this writes to the system's exclusive monitors.
|
|
let mayLoad = 1, mayStore = 1 in
|
|
def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">;
|
|
|
|
// NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot
|
|
// model patterns with sufficiently fine granularity.
|
|
let mayLoad = ?, mayStore = ? in {
|
|
def DMB : CRmSystemI<barrier_op, 0b101, "dmb",
|
|
[(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>;
|
|
|
|
def DSB : CRmSystemI<barrier_op, 0b100, "dsb",
|
|
[(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>;
|
|
|
|
def ISB : CRmSystemI<barrier_op, 0b110, "isb",
|
|
[(int_aarch64_isb (i32 imm32_0_15:$CRm))]>;
|
|
|
|
def TSB : CRmSystemI<barrier_op, 0b010, "tsb", []> {
|
|
let CRm = 0b0010;
|
|
let Inst{12} = 0;
|
|
let Predicates = [HasTRACEV8_4];
|
|
}
|
|
|
|
def DSBnXS : CRmSystemI<barrier_nxs_op, 0b001, "dsb"> {
|
|
let CRm{1-0} = 0b11;
|
|
let Inst{9-8} = 0b10;
|
|
let Predicates = [HasXS];
|
|
}
|
|
|
|
let Predicates = [HasWFxT] in {
|
|
def WFET : RegInputSystemI<0b0000, 0b000, "wfet">;
|
|
def WFIT : RegInputSystemI<0b0000, 0b001, "wfit">;
|
|
}
|
|
|
|
// Branch Record Buffer two-word mnemonic instructions
|
|
class BRBEI<bits<3> op2, string keyword>
|
|
: SimpleSystemI<0, (ins), "brb", keyword>, Sched<[WriteSys]> {
|
|
let Inst{31-8} = 0b110101010000100101110010;
|
|
let Inst{7-5} = op2;
|
|
let Predicates = [HasBRBE];
|
|
}
|
|
def BRB_IALL: BRBEI<0b100, "\tiall">;
|
|
def BRB_INJ: BRBEI<0b101, "\tinj">;
|
|
|
|
}
|
|
|
|
// Allow uppercase and lowercase keyword arguments for BRB IALL and BRB INJ
|
|
def : TokenAlias<"INJ", "inj">;
|
|
def : TokenAlias<"IALL", "iall">;
|
|
|
|
// ARMv8.2-A Dot Product
|
|
let Predicates = [HasDotProd] in {
|
|
defm SDOT : SIMDThreeSameVectorDot<0, 0, "sdot", int_aarch64_neon_sdot>;
|
|
defm UDOT : SIMDThreeSameVectorDot<1, 0, "udot", int_aarch64_neon_udot>;
|
|
defm SDOTlane : SIMDThreeSameVectorDotIndex<0, 0, 0b10, "sdot", int_aarch64_neon_sdot>;
|
|
defm UDOTlane : SIMDThreeSameVectorDotIndex<1, 0, 0b10, "udot", int_aarch64_neon_udot>;
|
|
}
|
|
|
|
// ARMv8.6-A BFloat
|
|
let Predicates = [HasBF16] in {
|
|
defm BFDOT : SIMDThreeSameVectorBFDot<1, "bfdot">;
|
|
defm BF16DOTlane : SIMDThreeSameVectorBF16DotI<0, "bfdot">;
|
|
def BFMMLA : SIMDThreeSameVectorBF16MatrixMul<"bfmmla">;
|
|
def BFMLALB : SIMDBF16MLAL<0, "bfmlalb", int_aarch64_neon_bfmlalb>;
|
|
def BFMLALT : SIMDBF16MLAL<1, "bfmlalt", int_aarch64_neon_bfmlalt>;
|
|
def BFMLALBIdx : SIMDBF16MLALIndex<0, "bfmlalb", int_aarch64_neon_bfmlalb>;
|
|
def BFMLALTIdx : SIMDBF16MLALIndex<1, "bfmlalt", int_aarch64_neon_bfmlalt>;
|
|
def BFCVTN : SIMD_BFCVTN;
|
|
def BFCVTN2 : SIMD_BFCVTN2;
|
|
def BFCVT : BF16ToSinglePrecision<"bfcvt">;
|
|
|
|
// Vector-scalar BFDOT:
|
|
// The second source operand of the 64-bit variant of BF16DOTlane is a 128-bit
|
|
// register (the instruction uses a single 32-bit lane from it), so the pattern
|
|
// is a bit tricky.
|
|
def : Pat<(v2f32 (int_aarch64_neon_bfdot
|
|
(v2f32 V64:$Rd), (v4bf16 V64:$Rn),
|
|
(v4bf16 (bitconvert
|
|
(v2i32 (AArch64duplane32
|
|
(v4i32 (bitconvert
|
|
(v8bf16 (insert_subvector undef,
|
|
(v4bf16 V64:$Rm),
|
|
(i64 0))))),
|
|
VectorIndexS:$idx)))))),
|
|
(BF16DOTlanev4bf16 (v2f32 V64:$Rd), (v4bf16 V64:$Rn),
|
|
(SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
|
|
VectorIndexS:$idx)>;
|
|
}
|
|
|
|
// ARMv8.6A AArch64 matrix multiplication
|
|
let Predicates = [HasMatMulInt8] in {
|
|
def SMMLA : SIMDThreeSameVectorMatMul<0, 0, "smmla", int_aarch64_neon_smmla>;
|
|
def UMMLA : SIMDThreeSameVectorMatMul<0, 1, "ummla", int_aarch64_neon_ummla>;
|
|
def USMMLA : SIMDThreeSameVectorMatMul<1, 0, "usmmla", int_aarch64_neon_usmmla>;
|
|
defm USDOT : SIMDThreeSameVectorDot<0, 1, "usdot", int_aarch64_neon_usdot>;
|
|
defm USDOTlane : SIMDThreeSameVectorDotIndex<0, 1, 0b10, "usdot", int_aarch64_neon_usdot>;
|
|
|
|
// sudot lane has a pattern where usdot is expected (there is no sudot).
|
|
// The second operand is used in the dup operation to repeat the indexed
|
|
// element.
|
|
class BaseSIMDSUDOTIndex<bit Q, string dst_kind, string lhs_kind,
|
|
string rhs_kind, RegisterOperand RegType,
|
|
ValueType AccumType, ValueType InputType>
|
|
: BaseSIMDThreeSameVectorDotIndex<Q, 0, 1, 0b00, "sudot", dst_kind,
|
|
lhs_kind, rhs_kind, RegType, AccumType,
|
|
InputType, null_frag> {
|
|
let Pattern = [(set (AccumType RegType:$dst),
|
|
(AccumType (int_aarch64_neon_usdot (AccumType RegType:$Rd),
|
|
(InputType (bitconvert (AccumType
|
|
(AArch64duplane32 (v4i32 V128:$Rm),
|
|
VectorIndexS:$idx)))),
|
|
(InputType RegType:$Rn))))];
|
|
}
|
|
|
|
multiclass SIMDSUDOTIndex {
|
|
def v8i8 : BaseSIMDSUDOTIndex<0, ".2s", ".8b", ".4b", V64, v2i32, v8i8>;
|
|
def v16i8 : BaseSIMDSUDOTIndex<1, ".4s", ".16b", ".4b", V128, v4i32, v16i8>;
|
|
}
|
|
|
|
defm SUDOTlane : SIMDSUDOTIndex;
|
|
|
|
}
|
|
|
|
// ARMv8.2-A FP16 Fused Multiply-Add Long
|
|
let Predicates = [HasNEON, HasFP16FML] in {
|
|
defm FMLAL : SIMDThreeSameVectorFML<0, 1, 0b001, "fmlal", int_aarch64_neon_fmlal>;
|
|
defm FMLSL : SIMDThreeSameVectorFML<0, 1, 0b101, "fmlsl", int_aarch64_neon_fmlsl>;
|
|
defm FMLAL2 : SIMDThreeSameVectorFML<1, 0, 0b001, "fmlal2", int_aarch64_neon_fmlal2>;
|
|
defm FMLSL2 : SIMDThreeSameVectorFML<1, 0, 0b101, "fmlsl2", int_aarch64_neon_fmlsl2>;
|
|
defm FMLALlane : SIMDThreeSameVectorFMLIndex<0, 0b0000, "fmlal", int_aarch64_neon_fmlal>;
|
|
defm FMLSLlane : SIMDThreeSameVectorFMLIndex<0, 0b0100, "fmlsl", int_aarch64_neon_fmlsl>;
|
|
defm FMLAL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1000, "fmlal2", int_aarch64_neon_fmlal2>;
|
|
defm FMLSL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1100, "fmlsl2", int_aarch64_neon_fmlsl2>;
|
|
}
|
|
|
|
// Armv8.2-A Crypto extensions
|
|
let Predicates = [HasSHA3] in {
|
|
def SHA512H : CryptoRRRTied<0b0, 0b00, "sha512h">;
|
|
def SHA512H2 : CryptoRRRTied<0b0, 0b01, "sha512h2">;
|
|
def SHA512SU0 : CryptoRRTied_2D<0b0, 0b00, "sha512su0">;
|
|
def SHA512SU1 : CryptoRRRTied_2D<0b0, 0b10, "sha512su1">;
|
|
def RAX1 : CryptoRRR_2D<0b0,0b11, "rax1">;
|
|
def EOR3 : CryptoRRRR_16B<0b00, "eor3">;
|
|
def BCAX : CryptoRRRR_16B<0b01, "bcax">;
|
|
def XAR : CryptoRRRi6<"xar">;
|
|
} // HasSHA3
|
|
|
|
let Predicates = [HasSM4] in {
|
|
def SM3TT1A : CryptoRRRi2Tied<0b0, 0b00, "sm3tt1a">;
|
|
def SM3TT1B : CryptoRRRi2Tied<0b0, 0b01, "sm3tt1b">;
|
|
def SM3TT2A : CryptoRRRi2Tied<0b0, 0b10, "sm3tt2a">;
|
|
def SM3TT2B : CryptoRRRi2Tied<0b0, 0b11, "sm3tt2b">;
|
|
def SM3SS1 : CryptoRRRR_4S<0b10, "sm3ss1">;
|
|
def SM3PARTW1 : CryptoRRRTied_4S<0b1, 0b00, "sm3partw1">;
|
|
def SM3PARTW2 : CryptoRRRTied_4S<0b1, 0b01, "sm3partw2">;
|
|
def SM4ENCKEY : CryptoRRR_4S<0b1, 0b10, "sm4ekey">;
|
|
def SM4E : CryptoRRTied_4S<0b0, 0b01, "sm4e">;
|
|
} // HasSM4
|
|
|
|
let Predicates = [HasRCPC] in {
|
|
// v8.3 Release Consistent Processor Consistent support, optional in v8.2.
|
|
def LDAPRB : RCPCLoad<0b00, "ldaprb", GPR32>;
|
|
def LDAPRH : RCPCLoad<0b01, "ldaprh", GPR32>;
|
|
def LDAPRW : RCPCLoad<0b10, "ldapr", GPR32>;
|
|
def LDAPRX : RCPCLoad<0b11, "ldapr", GPR64>;
|
|
}
|
|
|
|
// v8.3a complex add and multiply-accumulate. No predicate here, that is done
|
|
// inside the multiclass as the FP16 versions need different predicates.
|
|
defm FCMLA : SIMDThreeSameVectorTiedComplexHSD<1, 0b110, complexrotateop,
|
|
"fcmla", null_frag>;
|
|
defm FCADD : SIMDThreeSameVectorComplexHSD<1, 0b111, complexrotateopodd,
|
|
"fcadd", null_frag>;
|
|
defm FCMLA : SIMDIndexedTiedComplexHSD<1, 0, 1, complexrotateop, "fcmla",
|
|
null_frag>;
|
|
|
|
let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in {
|
|
def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot90 (v4f16 V64:$Rn), (v4f16 V64:$Rm))),
|
|
(FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 0))>;
|
|
def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot270 (v4f16 V64:$Rn), (v4f16 V64:$Rm))),
|
|
(FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 1))>;
|
|
def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot90 (v8f16 V128:$Rn), (v8f16 V128:$Rm))),
|
|
(FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 0))>;
|
|
def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot270 (v8f16 V128:$Rn), (v8f16 V128:$Rm))),
|
|
(FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 1))>;
|
|
}
|
|
|
|
let Predicates = [HasComplxNum, HasNEON] in {
|
|
def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot90 (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
|
|
(FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 0))>;
|
|
def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot270 (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
|
|
(FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 1))>;
|
|
foreach Ty = [v4f32, v2f64] in {
|
|
def : Pat<(Ty (int_aarch64_neon_vcadd_rot90 (Ty V128:$Rn), (Ty V128:$Rm))),
|
|
(!cast<Instruction>("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 0))>;
|
|
def : Pat<(Ty (int_aarch64_neon_vcadd_rot270 (Ty V128:$Rn), (Ty V128:$Rm))),
|
|
(!cast<Instruction>("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 1))>;
|
|
}
|
|
}
|
|
|
|
multiclass FCMLA_PATS<ValueType ty, RegisterClass Reg> {
|
|
def : Pat<(ty (int_aarch64_neon_vcmla_rot0 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))),
|
|
(!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 0)>;
|
|
def : Pat<(ty (int_aarch64_neon_vcmla_rot90 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))),
|
|
(!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 1)>;
|
|
def : Pat<(ty (int_aarch64_neon_vcmla_rot180 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))),
|
|
(!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 2)>;
|
|
def : Pat<(ty (int_aarch64_neon_vcmla_rot270 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))),
|
|
(!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 3)>;
|
|
}
|
|
|
|
multiclass FCMLA_LANE_PATS<ValueType ty, RegisterClass Reg, dag RHSDup> {
|
|
def : Pat<(ty (int_aarch64_neon_vcmla_rot0 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)),
|
|
(!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 0)>;
|
|
def : Pat<(ty (int_aarch64_neon_vcmla_rot90 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)),
|
|
(!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 1)>;
|
|
def : Pat<(ty (int_aarch64_neon_vcmla_rot180 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)),
|
|
(!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 2)>;
|
|
def : Pat<(ty (int_aarch64_neon_vcmla_rot270 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)),
|
|
(!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 3)>;
|
|
}
|
|
|
|
|
|
let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in {
|
|
defm : FCMLA_PATS<v4f16, V64>;
|
|
defm : FCMLA_PATS<v8f16, V128>;
|
|
|
|
defm : FCMLA_LANE_PATS<v4f16, V64,
|
|
(v4f16 (bitconvert (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexD:$idx))))>;
|
|
defm : FCMLA_LANE_PATS<v8f16, V128,
|
|
(v8f16 (bitconvert (v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))>;
|
|
}
|
|
let Predicates = [HasComplxNum, HasNEON] in {
|
|
defm : FCMLA_PATS<v2f32, V64>;
|
|
defm : FCMLA_PATS<v4f32, V128>;
|
|
defm : FCMLA_PATS<v2f64, V128>;
|
|
|
|
defm : FCMLA_LANE_PATS<v4f32, V128,
|
|
(v4f32 (bitconvert (v2i64 (AArch64duplane64 (v2i64 V128:$Rm), VectorIndexD:$idx))))>;
|
|
}
|
|
|
|
// v8.3a Pointer Authentication
|
|
// These instructions inhabit part of the hint space and so can be used for
|
|
// armv8 targets. Keeping the old HINT mnemonic when compiling without PA is
|
|
// important for compatibility with other assemblers (e.g. GAS) when building
|
|
// software compatible with both CPUs that do or don't implement PA.
|
|
let Uses = [LR], Defs = [LR] in {
|
|
def PACIAZ : SystemNoOperands<0b000, "hint\t#24">;
|
|
def PACIBZ : SystemNoOperands<0b010, "hint\t#26">;
|
|
let isAuthenticated = 1 in {
|
|
def AUTIAZ : SystemNoOperands<0b100, "hint\t#28">;
|
|
def AUTIBZ : SystemNoOperands<0b110, "hint\t#30">;
|
|
}
|
|
}
|
|
let Uses = [LR, SP], Defs = [LR] in {
|
|
def PACIASP : SystemNoOperands<0b001, "hint\t#25">;
|
|
def PACIBSP : SystemNoOperands<0b011, "hint\t#27">;
|
|
let isAuthenticated = 1 in {
|
|
def AUTIASP : SystemNoOperands<0b101, "hint\t#29">;
|
|
def AUTIBSP : SystemNoOperands<0b111, "hint\t#31">;
|
|
}
|
|
}
|
|
let Uses = [X16, X17], Defs = [X17], CRm = 0b0001 in {
|
|
def PACIA1716 : SystemNoOperands<0b000, "hint\t#8">;
|
|
def PACIB1716 : SystemNoOperands<0b010, "hint\t#10">;
|
|
let isAuthenticated = 1 in {
|
|
def AUTIA1716 : SystemNoOperands<0b100, "hint\t#12">;
|
|
def AUTIB1716 : SystemNoOperands<0b110, "hint\t#14">;
|
|
}
|
|
}
|
|
|
|
let Uses = [LR], Defs = [LR], CRm = 0b0000 in {
|
|
def XPACLRI : SystemNoOperands<0b111, "hint\t#7">;
|
|
}
|
|
|
|
// In order to be able to write readable assembly, LLVM should accept assembly
|
|
// inputs that use pointer authentication mnemonics, even with PA disabled.
|
|
// However, in order to be compatible with other assemblers (e.g. GAS), LLVM
|
|
// should not emit these mnemonics unless PA is enabled.
|
|
def : InstAlias<"paciaz", (PACIAZ), 0>;
|
|
def : InstAlias<"pacibz", (PACIBZ), 0>;
|
|
def : InstAlias<"autiaz", (AUTIAZ), 0>;
|
|
def : InstAlias<"autibz", (AUTIBZ), 0>;
|
|
def : InstAlias<"paciasp", (PACIASP), 0>;
|
|
def : InstAlias<"pacibsp", (PACIBSP), 0>;
|
|
def : InstAlias<"autiasp", (AUTIASP), 0>;
|
|
def : InstAlias<"autibsp", (AUTIBSP), 0>;
|
|
def : InstAlias<"pacia1716", (PACIA1716), 0>;
|
|
def : InstAlias<"pacib1716", (PACIB1716), 0>;
|
|
def : InstAlias<"autia1716", (AUTIA1716), 0>;
|
|
def : InstAlias<"autib1716", (AUTIB1716), 0>;
|
|
def : InstAlias<"xpaclri", (XPACLRI), 0>;
|
|
|
|
// These pointer authentication instructions require armv8.3a
|
|
let Predicates = [HasPAuth] in {
|
|
|
|
// When PA is enabled, a better mnemonic should be emitted.
|
|
def : InstAlias<"paciaz", (PACIAZ), 1>;
|
|
def : InstAlias<"pacibz", (PACIBZ), 1>;
|
|
def : InstAlias<"autiaz", (AUTIAZ), 1>;
|
|
def : InstAlias<"autibz", (AUTIBZ), 1>;
|
|
def : InstAlias<"paciasp", (PACIASP), 1>;
|
|
def : InstAlias<"pacibsp", (PACIBSP), 1>;
|
|
def : InstAlias<"autiasp", (AUTIASP), 1>;
|
|
def : InstAlias<"autibsp", (AUTIBSP), 1>;
|
|
def : InstAlias<"pacia1716", (PACIA1716), 1>;
|
|
def : InstAlias<"pacib1716", (PACIB1716), 1>;
|
|
def : InstAlias<"autia1716", (AUTIA1716), 1>;
|
|
def : InstAlias<"autib1716", (AUTIB1716), 1>;
|
|
def : InstAlias<"xpaclri", (XPACLRI), 1>;
|
|
|
|
multiclass SignAuth<bits<3> prefix, bits<3> prefix_z, string asm> {
|
|
def IA : SignAuthOneData<prefix, 0b00, !strconcat(asm, "ia")>;
|
|
def IB : SignAuthOneData<prefix, 0b01, !strconcat(asm, "ib")>;
|
|
def DA : SignAuthOneData<prefix, 0b10, !strconcat(asm, "da")>;
|
|
def DB : SignAuthOneData<prefix, 0b11, !strconcat(asm, "db")>;
|
|
def IZA : SignAuthZero<prefix_z, 0b00, !strconcat(asm, "iza")>;
|
|
def DZA : SignAuthZero<prefix_z, 0b10, !strconcat(asm, "dza")>;
|
|
def IZB : SignAuthZero<prefix_z, 0b01, !strconcat(asm, "izb")>;
|
|
def DZB : SignAuthZero<prefix_z, 0b11, !strconcat(asm, "dzb")>;
|
|
}
|
|
|
|
defm PAC : SignAuth<0b000, 0b010, "pac">;
|
|
defm AUT : SignAuth<0b001, 0b011, "aut">;
|
|
|
|
def XPACI : ClearAuth<0, "xpaci">;
|
|
def XPACD : ClearAuth<1, "xpacd">;
|
|
def PACGA : SignAuthTwoOperand<0b1100, "pacga", null_frag>;
|
|
|
|
// Combined Instructions
|
|
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
|
|
def BRAA : AuthBranchTwoOperands<0, 0, "braa">;
|
|
def BRAB : AuthBranchTwoOperands<0, 1, "brab">;
|
|
}
|
|
let isCall = 1, Defs = [LR], Uses = [SP] in {
|
|
def BLRAA : AuthBranchTwoOperands<1, 0, "blraa">;
|
|
def BLRAB : AuthBranchTwoOperands<1, 1, "blrab">;
|
|
}
|
|
|
|
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
|
|
def BRAAZ : AuthOneOperand<0b000, 0, "braaz">;
|
|
def BRABZ : AuthOneOperand<0b000, 1, "brabz">;
|
|
}
|
|
let isCall = 1, Defs = [LR], Uses = [SP] in {
|
|
def BLRAAZ : AuthOneOperand<0b001, 0, "blraaz">;
|
|
def BLRABZ : AuthOneOperand<0b001, 1, "blrabz">;
|
|
}
|
|
|
|
let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
|
|
def RETAA : AuthReturn<0b010, 0, "retaa">;
|
|
def RETAB : AuthReturn<0b010, 1, "retab">;
|
|
def ERETAA : AuthReturn<0b100, 0, "eretaa">;
|
|
def ERETAB : AuthReturn<0b100, 1, "eretab">;
|
|
}
|
|
|
|
defm LDRAA : AuthLoad<0, "ldraa", simm10Scaled>;
|
|
defm LDRAB : AuthLoad<1, "ldrab", simm10Scaled>;
|
|
|
|
}
|
|
|
|
// v8.3a floating point conversion for javascript
|
|
let Predicates = [HasJS, HasFPARMv8], Defs = [NZCV] in
|
|
def FJCVTZS : BaseFPToIntegerUnscaled<0b01, 0b11, 0b110, FPR64, GPR32,
|
|
"fjcvtzs",
|
|
[(set GPR32:$Rd,
|
|
(int_aarch64_fjcvtzs FPR64:$Rn))]> {
|
|
let Inst{31} = 0;
|
|
} // HasJS, HasFPARMv8
|
|
|
|
// v8.4 Flag manipulation instructions
|
|
let Predicates = [HasFlagM], Defs = [NZCV], Uses = [NZCV] in {
|
|
def CFINV : SimpleSystemI<0, (ins), "cfinv", "">, Sched<[WriteSys]> {
|
|
let Inst{20-5} = 0b0000001000000000;
|
|
}
|
|
def SETF8 : BaseFlagManipulation<0, 0, (ins GPR32:$Rn), "setf8", "{\t$Rn}">;
|
|
def SETF16 : BaseFlagManipulation<0, 1, (ins GPR32:$Rn), "setf16", "{\t$Rn}">;
|
|
def RMIF : FlagRotate<(ins GPR64:$Rn, uimm6:$imm, imm0_15:$mask), "rmif",
|
|
"{\t$Rn, $imm, $mask}">;
|
|
} // HasFlagM
|
|
|
|
// v8.5 flag manipulation instructions
|
|
let Predicates = [HasAltNZCV], Uses = [NZCV], Defs = [NZCV] in {
|
|
|
|
def XAFLAG : PstateWriteSimple<(ins), "xaflag", "">, Sched<[WriteSys]> {
|
|
let Inst{18-16} = 0b000;
|
|
let Inst{11-8} = 0b0000;
|
|
let Unpredictable{11-8} = 0b1111;
|
|
let Inst{7-5} = 0b001;
|
|
}
|
|
|
|
def AXFLAG : PstateWriteSimple<(ins), "axflag", "">, Sched<[WriteSys]> {
|
|
let Inst{18-16} = 0b000;
|
|
let Inst{11-8} = 0b0000;
|
|
let Unpredictable{11-8} = 0b1111;
|
|
let Inst{7-5} = 0b010;
|
|
}
|
|
} // HasAltNZCV
|
|
|
|
|
|
// Armv8.5-A speculation barrier
|
|
def SB : SimpleSystemI<0, (ins), "sb", "">, Sched<[]> {
|
|
let Inst{20-5} = 0b0001100110000111;
|
|
let Unpredictable{11-8} = 0b1111;
|
|
let Predicates = [HasSB];
|
|
let hasSideEffects = 1;
|
|
}
|
|
|
|
def : InstAlias<"clrex", (CLREX 0xf)>;
|
|
def : InstAlias<"isb", (ISB 0xf)>;
|
|
def : InstAlias<"ssbb", (DSB 0)>;
|
|
def : InstAlias<"pssbb", (DSB 4)>;
|
|
|
|
def MRS : MRSI;
|
|
def MSR : MSRI;
|
|
def MSRpstateImm1 : MSRpstateImm0_1;
|
|
def MSRpstateImm4 : MSRpstateImm0_15;
|
|
|
|
// The thread pointer (on Linux, at least, where this has been implemented) is
|
|
// TPIDR_EL0.
|
|
def MOVbaseTLS : Pseudo<(outs GPR64:$dst), (ins),
|
|
[(set GPR64:$dst, AArch64threadpointer)]>, Sched<[WriteSys]>;
|
|
|
|
let Uses = [ X9 ], Defs = [ X16, X17, LR, NZCV ] in {
|
|
def HWASAN_CHECK_MEMACCESS : Pseudo<
|
|
(outs), (ins GPR64noip:$ptr, i32imm:$accessinfo),
|
|
[(int_hwasan_check_memaccess X9, GPR64noip:$ptr, (i32 timm:$accessinfo))]>,
|
|
Sched<[]>;
|
|
}
|
|
|
|
let Uses = [ X20 ], Defs = [ X16, X17, LR, NZCV ] in {
|
|
def HWASAN_CHECK_MEMACCESS_SHORTGRANULES : Pseudo<
|
|
(outs), (ins GPR64noip:$ptr, i32imm:$accessinfo),
|
|
[(int_hwasan_check_memaccess_shortgranules X20, GPR64noip:$ptr, (i32 timm:$accessinfo))]>,
|
|
Sched<[]>;
|
|
}
|
|
|
|
// The cycle counter PMC register is PMCCNTR_EL0.
|
|
let Predicates = [HasPerfMon] in
|
|
def : Pat<(readcyclecounter), (MRS 0xdce8)>;
|
|
|
|
// FPCR register
|
|
def : Pat<(i64 (int_aarch64_get_fpcr)), (MRS 0xda20)>;
|
|
|
|
// Generic system instructions
|
|
def SYSxt : SystemXtI<0, "sys">;
|
|
def SYSLxt : SystemLXtI<1, "sysl">;
|
|
|
|
def : InstAlias<"sys $op1, $Cn, $Cm, $op2",
|
|
(SYSxt imm0_7:$op1, sys_cr_op:$Cn,
|
|
sys_cr_op:$Cm, imm0_7:$op2, XZR)>;
|
|
|
|
|
|
let Predicates = [HasTME] in {
|
|
|
|
def TSTART : TMSystemI<0b0000, "tstart",
|
|
[(set GPR64:$Rt, (int_aarch64_tstart))]>;
|
|
|
|
def TCOMMIT : TMSystemINoOperand<0b0000, "tcommit", [(int_aarch64_tcommit)]>;
|
|
|
|
def TCANCEL : TMSystemException<0b011, "tcancel",
|
|
[(int_aarch64_tcancel i64_imm0_65535:$imm)]>;
|
|
|
|
def TTEST : TMSystemI<0b0001, "ttest", [(set GPR64:$Rt, (int_aarch64_ttest))]> {
|
|
let mayLoad = 0;
|
|
let mayStore = 0;
|
|
}
|
|
} // HasTME
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Move immediate instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm MOVK : InsertImmediate<0b11, "movk">;
|
|
defm MOVN : MoveImmediate<0b00, "movn">;
|
|
|
|
let PostEncoderMethod = "fixMOVZ" in
|
|
defm MOVZ : MoveImmediate<0b10, "movz">;
|
|
|
|
// First group of aliases covers an implicit "lsl #0".
|
|
def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, i32_imm0_65535:$imm, 0), 0>;
|
|
def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, i32_imm0_65535:$imm, 0), 0>;
|
|
def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, i32_imm0_65535:$imm, 0)>;
|
|
def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, i32_imm0_65535:$imm, 0)>;
|
|
def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, i32_imm0_65535:$imm, 0)>;
|
|
def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, i32_imm0_65535:$imm, 0)>;
|
|
|
|
// Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax.
|
|
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>;
|
|
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>;
|
|
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>;
|
|
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>;
|
|
|
|
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>;
|
|
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>;
|
|
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>;
|
|
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>;
|
|
|
|
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g3:$sym, 48), 0>;
|
|
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g2:$sym, 32), 0>;
|
|
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g1:$sym, 16), 0>;
|
|
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g0:$sym, 0), 0>;
|
|
|
|
def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>;
|
|
def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>;
|
|
|
|
def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>;
|
|
def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>;
|
|
|
|
def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g1:$sym, 16), 0>;
|
|
def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g0:$sym, 0), 0>;
|
|
|
|
// Final group of aliases covers true "mov $Rd, $imm" cases.
|
|
multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR,
|
|
int width, int shift> {
|
|
def _asmoperand : AsmOperandClass {
|
|
let Name = basename # width # "_lsl" # shift # "MovAlias";
|
|
let PredicateMethod = "is" # basename # "MovAlias<" # width # ", "
|
|
# shift # ">";
|
|
let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">";
|
|
}
|
|
|
|
def _movimm : Operand<i32> {
|
|
let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand");
|
|
}
|
|
|
|
def : InstAlias<"mov $Rd, $imm",
|
|
(INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>;
|
|
}
|
|
|
|
defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>;
|
|
defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>;
|
|
|
|
defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>;
|
|
defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>;
|
|
defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>;
|
|
defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>;
|
|
|
|
defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>;
|
|
defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>;
|
|
|
|
defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>;
|
|
defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>;
|
|
defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>;
|
|
defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>;
|
|
|
|
let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1,
|
|
isAsCheapAsAMove = 1 in {
|
|
// FIXME: The following pseudo instructions are only needed because remat
|
|
// cannot handle multiple instructions. When that changes, we can select
|
|
// directly to the real instructions and get rid of these pseudos.
|
|
|
|
def MOVi32imm
|
|
: Pseudo<(outs GPR32:$dst), (ins i32imm:$src),
|
|
[(set GPR32:$dst, imm:$src)]>,
|
|
Sched<[WriteImm]>;
|
|
def MOVi64imm
|
|
: Pseudo<(outs GPR64:$dst), (ins i64imm:$src),
|
|
[(set GPR64:$dst, imm:$src)]>,
|
|
Sched<[WriteImm]>;
|
|
} // isReMaterializable, isCodeGenOnly
|
|
|
|
// If possible, we want to use MOVi32imm even for 64-bit moves. This gives the
|
|
// eventual expansion code fewer bits to worry about getting right. Marshalling
|
|
// the types is a little tricky though:
|
|
def i64imm_32bit : ImmLeaf<i64, [{
|
|
return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm);
|
|
}]>;
|
|
|
|
def s64imm_32bit : ImmLeaf<i64, [{
|
|
int64_t Imm64 = static_cast<int64_t>(Imm);
|
|
return Imm64 >= std::numeric_limits<int32_t>::min() &&
|
|
Imm64 <= std::numeric_limits<int32_t>::max();
|
|
}]>;
|
|
|
|
def trunc_imm : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32);
|
|
}]>;
|
|
|
|
def gi_trunc_imm : GICustomOperandRenderer<"renderTruncImm">,
|
|
GISDNodeXFormEquiv<trunc_imm>;
|
|
|
|
let Predicates = [OptimizedGISelOrOtherSelector] in {
|
|
// The SUBREG_TO_REG isn't eliminated at -O0, which can result in pointless
|
|
// copies.
|
|
def : Pat<(i64 i64imm_32bit:$src),
|
|
(SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>;
|
|
}
|
|
|
|
// Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model).
|
|
def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{
|
|
return CurDAG->getTargetConstant(
|
|
N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32);
|
|
}]>;
|
|
|
|
def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{
|
|
return CurDAG->getTargetConstant(
|
|
N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64);
|
|
}]>;
|
|
|
|
|
|
def : Pat<(f32 fpimm:$in),
|
|
(COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>;
|
|
def : Pat<(f64 fpimm:$in),
|
|
(COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>;
|
|
|
|
|
|
// Deal with the various forms of (ELF) large addressing with MOVZ/MOVK
|
|
// sequences.
|
|
def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2,
|
|
tglobaladdr:$g1, tglobaladdr:$g0),
|
|
(MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g0, 0),
|
|
tglobaladdr:$g1, 16),
|
|
tglobaladdr:$g2, 32),
|
|
tglobaladdr:$g3, 48)>;
|
|
|
|
def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2,
|
|
tblockaddress:$g1, tblockaddress:$g0),
|
|
(MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g0, 0),
|
|
tblockaddress:$g1, 16),
|
|
tblockaddress:$g2, 32),
|
|
tblockaddress:$g3, 48)>;
|
|
|
|
def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2,
|
|
tconstpool:$g1, tconstpool:$g0),
|
|
(MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g0, 0),
|
|
tconstpool:$g1, 16),
|
|
tconstpool:$g2, 32),
|
|
tconstpool:$g3, 48)>;
|
|
|
|
def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2,
|
|
tjumptable:$g1, tjumptable:$g0),
|
|
(MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g0, 0),
|
|
tjumptable:$g1, 16),
|
|
tjumptable:$g2, 32),
|
|
tjumptable:$g3, 48)>;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Arithmetic instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Add/subtract with carry.
|
|
defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>;
|
|
defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>;
|
|
|
|
def : InstAlias<"ngc $dst, $src", (SBCWr GPR32:$dst, WZR, GPR32:$src)>;
|
|
def : InstAlias<"ngc $dst, $src", (SBCXr GPR64:$dst, XZR, GPR64:$src)>;
|
|
def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>;
|
|
def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>;
|
|
|
|
// Add/subtract
|
|
defm ADD : AddSub<0, "add", "sub", add>;
|
|
defm SUB : AddSub<1, "sub", "add">;
|
|
|
|
def : InstAlias<"mov $dst, $src",
|
|
(ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>;
|
|
def : InstAlias<"mov $dst, $src",
|
|
(ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>;
|
|
def : InstAlias<"mov $dst, $src",
|
|
(ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>;
|
|
def : InstAlias<"mov $dst, $src",
|
|
(ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>;
|
|
|
|
defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">;
|
|
defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">;
|
|
|
|
// Use SUBS instead of SUB to enable CSE between SUBS and SUB.
|
|
def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm),
|
|
(SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>;
|
|
def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm),
|
|
(SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>;
|
|
def : Pat<(sub GPR32:$Rn, GPR32:$Rm),
|
|
(SUBSWrr GPR32:$Rn, GPR32:$Rm)>;
|
|
def : Pat<(sub GPR64:$Rn, GPR64:$Rm),
|
|
(SUBSXrr GPR64:$Rn, GPR64:$Rm)>;
|
|
def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm),
|
|
(SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>;
|
|
def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm),
|
|
(SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>;
|
|
let AddedComplexity = 1 in {
|
|
def : Pat<(sub GPR32sp:$R2, arith_extended_reg32_i32:$R3),
|
|
(SUBSWrx GPR32sp:$R2, arith_extended_reg32_i32:$R3)>;
|
|
def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64_i64:$R3),
|
|
(SUBSXrx GPR64sp:$R2, arith_extended_reg32to64_i64:$R3)>;
|
|
}
|
|
|
|
// Because of the immediate format for add/sub-imm instructions, the
|
|
// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
|
|
// These patterns capture that transformation.
|
|
let AddedComplexity = 1 in {
|
|
def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
|
|
(SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
|
|
def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
|
|
(SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
|
|
def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
|
|
(ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
|
|
def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
|
|
(ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
|
|
}
|
|
|
|
// Because of the immediate format for add/sub-imm instructions, the
|
|
// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
|
|
// These patterns capture that transformation.
|
|
let AddedComplexity = 1 in {
|
|
def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
|
|
(SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
|
|
def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
|
|
(SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
|
|
def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
|
|
(ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
|
|
def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
|
|
(ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
|
|
}
|
|
|
|
def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
|
|
def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
|
|
def : InstAlias<"neg $dst, $src$shift",
|
|
(SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
|
|
def : InstAlias<"neg $dst, $src$shift",
|
|
(SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
|
|
|
|
def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
|
|
def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
|
|
def : InstAlias<"negs $dst, $src$shift",
|
|
(SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
|
|
def : InstAlias<"negs $dst, $src$shift",
|
|
(SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
|
|
|
|
|
|
// Unsigned/Signed divide
|
|
defm UDIV : Div<0, "udiv", udiv>;
|
|
defm SDIV : Div<1, "sdiv", sdiv>;
|
|
|
|
def : Pat<(int_aarch64_udiv GPR32:$Rn, GPR32:$Rm), (UDIVWr GPR32:$Rn, GPR32:$Rm)>;
|
|
def : Pat<(int_aarch64_udiv GPR64:$Rn, GPR64:$Rm), (UDIVXr GPR64:$Rn, GPR64:$Rm)>;
|
|
def : Pat<(int_aarch64_sdiv GPR32:$Rn, GPR32:$Rm), (SDIVWr GPR32:$Rn, GPR32:$Rm)>;
|
|
def : Pat<(int_aarch64_sdiv GPR64:$Rn, GPR64:$Rm), (SDIVXr GPR64:$Rn, GPR64:$Rm)>;
|
|
|
|
// Variable shift
|
|
defm ASRV : Shift<0b10, "asr", sra>;
|
|
defm LSLV : Shift<0b00, "lsl", shl>;
|
|
defm LSRV : Shift<0b01, "lsr", srl>;
|
|
defm RORV : Shift<0b11, "ror", rotr>;
|
|
|
|
def : ShiftAlias<"asrv", ASRVWr, GPR32>;
|
|
def : ShiftAlias<"asrv", ASRVXr, GPR64>;
|
|
def : ShiftAlias<"lslv", LSLVWr, GPR32>;
|
|
def : ShiftAlias<"lslv", LSLVXr, GPR64>;
|
|
def : ShiftAlias<"lsrv", LSRVWr, GPR32>;
|
|
def : ShiftAlias<"lsrv", LSRVXr, GPR64>;
|
|
def : ShiftAlias<"rorv", RORVWr, GPR32>;
|
|
def : ShiftAlias<"rorv", RORVXr, GPR64>;
|
|
|
|
// Multiply-add
|
|
let AddedComplexity = 5 in {
|
|
defm MADD : MulAccum<0, "madd", add>;
|
|
defm MSUB : MulAccum<1, "msub", sub>;
|
|
|
|
def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)),
|
|
(MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
|
|
def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)),
|
|
(MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
|
|
|
|
def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))),
|
|
(MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
|
|
def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))),
|
|
(MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
|
|
def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)),
|
|
(MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
|
|
def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)),
|
|
(MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
|
|
} // AddedComplexity = 5
|
|
|
|
let AddedComplexity = 5 in {
|
|
def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>;
|
|
def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>;
|
|
def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>;
|
|
def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>;
|
|
|
|
def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (sext_inreg GPR64:$Rm, i32))),
|
|
(SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>;
|
|
def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (sext GPR32:$Rm))),
|
|
(SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>;
|
|
def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))),
|
|
(SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
|
|
def : Pat<(i64 (mul (and GPR64:$Rn, 0xFFFFFFFF), (and GPR64:$Rm, 0xFFFFFFFF))),
|
|
(UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>;
|
|
def : Pat<(i64 (mul (and GPR64:$Rn, 0xFFFFFFFF), (zext GPR32:$Rm))),
|
|
(UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>;
|
|
def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))),
|
|
(UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
|
|
|
|
def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))),
|
|
(SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
|
|
def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))),
|
|
(UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
|
|
|
|
def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))),
|
|
(SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
|
|
def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))),
|
|
(UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
|
|
def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))),
|
|
(SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
|
|
(MOVi32imm (trunc_imm imm:$C)), XZR)>;
|
|
|
|
def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
|
|
(SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
|
|
def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
|
|
(UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
|
|
def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))),
|
|
(SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
|
|
(MOVi32imm (trunc_imm imm:$C)), XZR)>;
|
|
|
|
def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)),
|
|
(SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
|
|
def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)),
|
|
(UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
|
|
def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)),
|
|
GPR64:$Ra)),
|
|
(SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
|
|
(MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
|
|
|
|
def : Pat<(i64 (sub GPR64:$Ra, (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
|
|
(SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
|
|
def : Pat<(i64 (sub GPR64:$Ra, (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
|
|
(UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
|
|
def : Pat<(i64 (sub GPR64:$Ra, (mul (sext_inreg GPR64:$Rn, i32),
|
|
(s64imm_32bit:$C)))),
|
|
(SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
|
|
(MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
|
|
} // AddedComplexity = 5
|
|
|
|
def : MulAccumWAlias<"mul", MADDWrrr>;
|
|
def : MulAccumXAlias<"mul", MADDXrrr>;
|
|
def : MulAccumWAlias<"mneg", MSUBWrrr>;
|
|
def : MulAccumXAlias<"mneg", MSUBXrrr>;
|
|
def : WideMulAccumAlias<"smull", SMADDLrrr>;
|
|
def : WideMulAccumAlias<"smnegl", SMSUBLrrr>;
|
|
def : WideMulAccumAlias<"umull", UMADDLrrr>;
|
|
def : WideMulAccumAlias<"umnegl", UMSUBLrrr>;
|
|
|
|
// Multiply-high
|
|
def SMULHrr : MulHi<0b010, "smulh", mulhs>;
|
|
def UMULHrr : MulHi<0b110, "umulh", mulhu>;
|
|
|
|
// CRC32
|
|
def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">;
|
|
def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">;
|
|
def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">;
|
|
def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">;
|
|
|
|
def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">;
|
|
def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">;
|
|
def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">;
|
|
def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">;
|
|
|
|
// v8.1 atomic CAS
|
|
defm CAS : CompareAndSwap<0, 0, "">;
|
|
defm CASA : CompareAndSwap<1, 0, "a">;
|
|
defm CASL : CompareAndSwap<0, 1, "l">;
|
|
defm CASAL : CompareAndSwap<1, 1, "al">;
|
|
|
|
// v8.1 atomic CASP
|
|
defm CASP : CompareAndSwapPair<0, 0, "">;
|
|
defm CASPA : CompareAndSwapPair<1, 0, "a">;
|
|
defm CASPL : CompareAndSwapPair<0, 1, "l">;
|
|
defm CASPAL : CompareAndSwapPair<1, 1, "al">;
|
|
|
|
// v8.1 atomic SWP
|
|
defm SWP : Swap<0, 0, "">;
|
|
defm SWPA : Swap<1, 0, "a">;
|
|
defm SWPL : Swap<0, 1, "l">;
|
|
defm SWPAL : Swap<1, 1, "al">;
|
|
|
|
// v8.1 atomic LD<OP>(register). Performs load and then ST<OP>(register)
|
|
defm LDADD : LDOPregister<0b000, "add", 0, 0, "">;
|
|
defm LDADDA : LDOPregister<0b000, "add", 1, 0, "a">;
|
|
defm LDADDL : LDOPregister<0b000, "add", 0, 1, "l">;
|
|
defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">;
|
|
|
|
defm LDCLR : LDOPregister<0b001, "clr", 0, 0, "">;
|
|
defm LDCLRA : LDOPregister<0b001, "clr", 1, 0, "a">;
|
|
defm LDCLRL : LDOPregister<0b001, "clr", 0, 1, "l">;
|
|
defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">;
|
|
|
|
defm LDEOR : LDOPregister<0b010, "eor", 0, 0, "">;
|
|
defm LDEORA : LDOPregister<0b010, "eor", 1, 0, "a">;
|
|
defm LDEORL : LDOPregister<0b010, "eor", 0, 1, "l">;
|
|
defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">;
|
|
|
|
defm LDSET : LDOPregister<0b011, "set", 0, 0, "">;
|
|
defm LDSETA : LDOPregister<0b011, "set", 1, 0, "a">;
|
|
defm LDSETL : LDOPregister<0b011, "set", 0, 1, "l">;
|
|
defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">;
|
|
|
|
defm LDSMAX : LDOPregister<0b100, "smax", 0, 0, "">;
|
|
defm LDSMAXA : LDOPregister<0b100, "smax", 1, 0, "a">;
|
|
defm LDSMAXL : LDOPregister<0b100, "smax", 0, 1, "l">;
|
|
defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">;
|
|
|
|
defm LDSMIN : LDOPregister<0b101, "smin", 0, 0, "">;
|
|
defm LDSMINA : LDOPregister<0b101, "smin", 1, 0, "a">;
|
|
defm LDSMINL : LDOPregister<0b101, "smin", 0, 1, "l">;
|
|
defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">;
|
|
|
|
defm LDUMAX : LDOPregister<0b110, "umax", 0, 0, "">;
|
|
defm LDUMAXA : LDOPregister<0b110, "umax", 1, 0, "a">;
|
|
defm LDUMAXL : LDOPregister<0b110, "umax", 0, 1, "l">;
|
|
defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">;
|
|
|
|
defm LDUMIN : LDOPregister<0b111, "umin", 0, 0, "">;
|
|
defm LDUMINA : LDOPregister<0b111, "umin", 1, 0, "a">;
|
|
defm LDUMINL : LDOPregister<0b111, "umin", 0, 1, "l">;
|
|
defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">;
|
|
|
|
// v8.1 atomic ST<OP>(register) as aliases to "LD<OP>(register) when Rt=xZR"
|
|
defm : STOPregister<"stadd","LDADD">; // STADDx
|
|
defm : STOPregister<"stclr","LDCLR">; // STCLRx
|
|
defm : STOPregister<"steor","LDEOR">; // STEORx
|
|
defm : STOPregister<"stset","LDSET">; // STSETx
|
|
defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx
|
|
defm : STOPregister<"stsmin","LDSMIN">;// STSMINx
|
|
defm : STOPregister<"stumax","LDUMAX">;// STUMAXx
|
|
defm : STOPregister<"stumin","LDUMIN">;// STUMINx
|
|
|
|
// v8.5 Memory Tagging Extension
|
|
let Predicates = [HasMTE] in {
|
|
|
|
def IRG : BaseTwoOperand<0b0100, GPR64sp, "irg", int_aarch64_irg, GPR64sp, GPR64>,
|
|
Sched<[]>{
|
|
let Inst{31} = 1;
|
|
}
|
|
def GMI : BaseTwoOperand<0b0101, GPR64, "gmi", int_aarch64_gmi, GPR64sp>, Sched<[]>{
|
|
let Inst{31} = 1;
|
|
let isNotDuplicable = 1;
|
|
}
|
|
def ADDG : AddSubG<0, "addg", null_frag>;
|
|
def SUBG : AddSubG<1, "subg", null_frag>;
|
|
|
|
def : InstAlias<"irg $dst, $src", (IRG GPR64sp:$dst, GPR64sp:$src, XZR), 1>;
|
|
|
|
def SUBP : SUBP<0, "subp", int_aarch64_subp>, Sched<[]>;
|
|
def SUBPS : SUBP<1, "subps", null_frag>, Sched<[]>{
|
|
let Defs = [NZCV];
|
|
}
|
|
|
|
def : InstAlias<"cmpp $lhs, $rhs", (SUBPS XZR, GPR64sp:$lhs, GPR64sp:$rhs), 0>;
|
|
|
|
def LDG : MemTagLoad<"ldg", "\t$Rt, [$Rn, $offset]">;
|
|
|
|
def : Pat<(int_aarch64_addg (am_indexedu6s128 GPR64sp:$Rn, uimm6s16:$imm6), imm0_15:$imm4),
|
|
(ADDG GPR64sp:$Rn, imm0_63:$imm6, imm0_15:$imm4)>;
|
|
def : Pat<(int_aarch64_ldg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn, simm9s16:$offset)),
|
|
(LDG GPR64:$Rt, GPR64sp:$Rn, simm9s16:$offset)>;
|
|
|
|
def : InstAlias<"ldg $Rt, [$Rn]", (LDG GPR64:$Rt, GPR64sp:$Rn, 0), 1>;
|
|
|
|
def LDGM : MemTagVector<1, "ldgm", "\t$Rt, [$Rn]",
|
|
(outs GPR64:$Rt), (ins GPR64sp:$Rn)>;
|
|
def STGM : MemTagVector<0, "stgm", "\t$Rt, [$Rn]",
|
|
(outs), (ins GPR64:$Rt, GPR64sp:$Rn)>;
|
|
def STZGM : MemTagVector<0, "stzgm", "\t$Rt, [$Rn]",
|
|
(outs), (ins GPR64:$Rt, GPR64sp:$Rn)> {
|
|
let Inst{23} = 0;
|
|
}
|
|
|
|
defm STG : MemTagStore<0b00, "stg">;
|
|
defm STZG : MemTagStore<0b01, "stzg">;
|
|
defm ST2G : MemTagStore<0b10, "st2g">;
|
|
defm STZ2G : MemTagStore<0b11, "stz2g">;
|
|
|
|
def : Pat<(AArch64stg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
|
|
(STGOffset $Rn, $Rm, $imm)>;
|
|
def : Pat<(AArch64stzg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
|
|
(STZGOffset $Rn, $Rm, $imm)>;
|
|
def : Pat<(AArch64st2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
|
|
(ST2GOffset $Rn, $Rm, $imm)>;
|
|
def : Pat<(AArch64stz2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
|
|
(STZ2GOffset $Rn, $Rm, $imm)>;
|
|
|
|
defm STGP : StorePairOffset <0b01, 0, GPR64z, simm7s16, "stgp">;
|
|
def STGPpre : StorePairPreIdx <0b01, 0, GPR64z, simm7s16, "stgp">;
|
|
def STGPpost : StorePairPostIdx<0b01, 0, GPR64z, simm7s16, "stgp">;
|
|
|
|
def : Pat<(int_aarch64_stg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn, simm9s16:$offset)),
|
|
(STGOffset GPR64:$Rt, GPR64sp:$Rn, simm9s16:$offset)>;
|
|
|
|
def : Pat<(int_aarch64_stgp (am_indexed7s128 GPR64sp:$Rn, simm7s16:$imm), GPR64:$Rt, GPR64:$Rt2),
|
|
(STGPi $Rt, $Rt2, $Rn, $imm)>;
|
|
|
|
def IRGstack
|
|
: Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rsp, GPR64:$Rm), []>,
|
|
Sched<[]>;
|
|
def TAGPstack
|
|
: Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rn, uimm6s16:$imm6, GPR64sp:$Rm, imm0_15:$imm4), []>,
|
|
Sched<[]>;
|
|
|
|
// Explicit SP in the first operand prevents ShrinkWrap optimization
|
|
// from leaving this instruction out of the stack frame. When IRGstack
|
|
// is transformed into IRG, this operand is replaced with the actual
|
|
// register / expression for the tagged base pointer of the current function.
|
|
def : Pat<(int_aarch64_irg_sp i64:$Rm), (IRGstack SP, i64:$Rm)>;
|
|
|
|
// Large STG to be expanded into a loop. $sz is the size, $Rn is start address.
|
|
// $Rn_wback is one past the end of the range. $Rm is the loop counter.
|
|
let isCodeGenOnly=1, mayStore=1 in {
|
|
def STGloop_wback
|
|
: Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn),
|
|
[], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >,
|
|
Sched<[WriteAdr, WriteST]>;
|
|
|
|
def STZGloop_wback
|
|
: Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn),
|
|
[], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >,
|
|
Sched<[WriteAdr, WriteST]>;
|
|
|
|
// A variant of the above where $Rn2 is an independent register not tied to the input register $Rn.
|
|
// Their purpose is to use a FrameIndex operand as $Rn (which of course can not be written back).
|
|
def STGloop
|
|
: Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn),
|
|
[], "@earlyclobber $Rn2,@earlyclobber $Rm" >,
|
|
Sched<[WriteAdr, WriteST]>;
|
|
|
|
def STZGloop
|
|
: Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn),
|
|
[], "@earlyclobber $Rn2,@earlyclobber $Rm" >,
|
|
Sched<[WriteAdr, WriteST]>;
|
|
}
|
|
|
|
} // Predicates = [HasMTE]
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Logical instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// (immediate)
|
|
defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">;
|
|
defm AND : LogicalImm<0b00, "and", and, "bic">;
|
|
defm EOR : LogicalImm<0b10, "eor", xor, "eon">;
|
|
defm ORR : LogicalImm<0b01, "orr", or, "orn">;
|
|
|
|
// FIXME: these aliases *are* canonical sometimes (when movz can't be
|
|
// used). Actually, it seems to be working right now, but putting logical_immXX
|
|
// here is a bit dodgy on the AsmParser side too.
|
|
def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR,
|
|
logical_imm32:$imm), 0>;
|
|
def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR,
|
|
logical_imm64:$imm), 0>;
|
|
|
|
|
|
// (register)
|
|
defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>;
|
|
defm BICS : LogicalRegS<0b11, 1, "bics",
|
|
BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>;
|
|
defm AND : LogicalReg<0b00, 0, "and", and>;
|
|
defm BIC : LogicalReg<0b00, 1, "bic",
|
|
BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
|
|
defm EON : LogicalReg<0b10, 1, "eon",
|
|
BinOpFrag<(not (xor node:$LHS, node:$RHS))>>;
|
|
defm EOR : LogicalReg<0b10, 0, "eor", xor>;
|
|
defm ORN : LogicalReg<0b01, 1, "orn",
|
|
BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
|
|
defm ORR : LogicalReg<0b01, 0, "orr", or>;
|
|
|
|
def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>;
|
|
def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>;
|
|
|
|
def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>;
|
|
def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>;
|
|
|
|
def : InstAlias<"mvn $Wd, $Wm$sh",
|
|
(ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>;
|
|
def : InstAlias<"mvn $Xd, $Xm$sh",
|
|
(ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>;
|
|
|
|
def : InstAlias<"tst $src1, $src2",
|
|
(ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>;
|
|
def : InstAlias<"tst $src1, $src2",
|
|
(ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>;
|
|
|
|
def : InstAlias<"tst $src1, $src2",
|
|
(ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>;
|
|
def : InstAlias<"tst $src1, $src2",
|
|
(ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>;
|
|
|
|
def : InstAlias<"tst $src1, $src2$sh",
|
|
(ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>;
|
|
def : InstAlias<"tst $src1, $src2$sh",
|
|
(ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>;
|
|
|
|
|
|
def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>;
|
|
def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// One operand data processing instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm CLS : OneOperandData<0b101, "cls">;
|
|
defm CLZ : OneOperandData<0b100, "clz", ctlz>;
|
|
defm RBIT : OneOperandData<0b000, "rbit", bitreverse>;
|
|
|
|
def REV16Wr : OneWRegData<0b001, "rev16",
|
|
UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
|
|
def REV16Xr : OneXRegData<0b001, "rev16", null_frag>;
|
|
|
|
def : Pat<(cttz GPR32:$Rn),
|
|
(CLZWr (RBITWr GPR32:$Rn))>;
|
|
def : Pat<(cttz GPR64:$Rn),
|
|
(CLZXr (RBITXr GPR64:$Rn))>;
|
|
def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)),
|
|
(i32 1))),
|
|
(CLSWr GPR32:$Rn)>;
|
|
def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)),
|
|
(i64 1))),
|
|
(CLSXr GPR64:$Rn)>;
|
|
def : Pat<(int_aarch64_cls GPR32:$Rn), (CLSWr GPR32:$Rn)>;
|
|
def : Pat<(int_aarch64_cls64 GPR64:$Rm), (EXTRACT_SUBREG (CLSXr GPR64:$Rm), sub_32)>;
|
|
|
|
// Unlike the other one operand instructions, the instructions with the "rev"
|
|
// mnemonic do *not* just different in the size bit, but actually use different
|
|
// opcode bits for the different sizes.
|
|
def REVWr : OneWRegData<0b010, "rev", bswap>;
|
|
def REVXr : OneXRegData<0b011, "rev", bswap>;
|
|
def REV32Xr : OneXRegData<0b010, "rev32",
|
|
UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>;
|
|
|
|
def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>;
|
|
|
|
// The bswap commutes with the rotr so we want a pattern for both possible
|
|
// orders.
|
|
def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>;
|
|
def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bitfield immediate extraction instruction.
|
|
//===----------------------------------------------------------------------===//
|
|
let hasSideEffects = 0 in
|
|
defm EXTR : ExtractImm<"extr">;
|
|
def : InstAlias<"ror $dst, $src, $shift",
|
|
(EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>;
|
|
def : InstAlias<"ror $dst, $src, $shift",
|
|
(EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>;
|
|
|
|
def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)),
|
|
(EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>;
|
|
def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
|
|
(EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Other bitfield immediate instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
let hasSideEffects = 0 in {
|
|
defm BFM : BitfieldImmWith2RegArgs<0b01, "bfm">;
|
|
defm SBFM : BitfieldImm<0b00, "sbfm">;
|
|
defm UBFM : BitfieldImm<0b10, "ubfm">;
|
|
}
|
|
|
|
def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{
|
|
uint64_t enc = (32 - N->getZExtValue()) & 0x1f;
|
|
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
|
|
}]>;
|
|
|
|
def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{
|
|
uint64_t enc = 31 - N->getZExtValue();
|
|
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
|
|
}]>;
|
|
|
|
// min(7, 31 - shift_amt)
|
|
def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
|
|
uint64_t enc = 31 - N->getZExtValue();
|
|
enc = enc > 7 ? 7 : enc;
|
|
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
|
|
}]>;
|
|
|
|
// min(15, 31 - shift_amt)
|
|
def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
|
|
uint64_t enc = 31 - N->getZExtValue();
|
|
enc = enc > 15 ? 15 : enc;
|
|
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
|
|
}]>;
|
|
|
|
def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{
|
|
uint64_t enc = (64 - N->getZExtValue()) & 0x3f;
|
|
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
|
|
}]>;
|
|
|
|
def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{
|
|
uint64_t enc = 63 - N->getZExtValue();
|
|
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
|
|
}]>;
|
|
|
|
// min(7, 63 - shift_amt)
|
|
def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
|
|
uint64_t enc = 63 - N->getZExtValue();
|
|
enc = enc > 7 ? 7 : enc;
|
|
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
|
|
}]>;
|
|
|
|
// min(15, 63 - shift_amt)
|
|
def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
|
|
uint64_t enc = 63 - N->getZExtValue();
|
|
enc = enc > 15 ? 15 : enc;
|
|
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
|
|
}]>;
|
|
|
|
// min(31, 63 - shift_amt)
|
|
def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{
|
|
uint64_t enc = 63 - N->getZExtValue();
|
|
enc = enc > 31 ? 31 : enc;
|
|
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
|
|
}]>;
|
|
|
|
def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)),
|
|
(UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
|
|
(i64 (i32shift_b imm0_31:$imm)))>;
|
|
def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)),
|
|
(UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
|
|
(i64 (i64shift_b imm0_63:$imm)))>;
|
|
|
|
let AddedComplexity = 10 in {
|
|
def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)),
|
|
(SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
|
|
def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)),
|
|
(SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
|
|
}
|
|
|
|
def : InstAlias<"asr $dst, $src, $shift",
|
|
(SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
|
|
def : InstAlias<"asr $dst, $src, $shift",
|
|
(SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
|
|
def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
|
|
def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
|
|
def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
|
|
def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
|
|
def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
|
|
|
|
def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)),
|
|
(UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
|
|
def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)),
|
|
(UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
|
|
|
|
def : InstAlias<"lsr $dst, $src, $shift",
|
|
(UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
|
|
def : InstAlias<"lsr $dst, $src, $shift",
|
|
(UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
|
|
def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
|
|
def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
|
|
def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
|
|
def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
|
|
def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conditional comparison instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>;
|
|
defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conditional select instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
defm CSEL : CondSelect<0, 0b00, "csel">;
|
|
|
|
def inc : PatFrag<(ops node:$in), (add node:$in, 1)>;
|
|
defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>;
|
|
defm CSINV : CondSelectOp<1, 0b00, "csinv", not>;
|
|
defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>;
|
|
|
|
def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
|
|
(CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
|
|
def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
|
|
(CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
|
|
def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
|
|
(CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
|
|
def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
|
|
(CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
|
|
def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
|
|
(CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
|
|
def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
|
|
(CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
|
|
|
|
def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV),
|
|
(CSINCWr WZR, WZR, (i32 imm:$cc))>;
|
|
def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV),
|
|
(CSINCXr XZR, XZR, (i32 imm:$cc))>;
|
|
def : Pat<(AArch64csel GPR32:$tval, (i32 1), (i32 imm:$cc), NZCV),
|
|
(CSINCWr GPR32:$tval, WZR, (i32 imm:$cc))>;
|
|
def : Pat<(AArch64csel GPR64:$tval, (i64 1), (i32 imm:$cc), NZCV),
|
|
(CSINCXr GPR64:$tval, XZR, (i32 imm:$cc))>;
|
|
def : Pat<(AArch64csel (i32 1), GPR32:$fval, (i32 imm:$cc), NZCV),
|
|
(CSINCWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
|
|
def : Pat<(AArch64csel (i64 1), GPR64:$fval, (i32 imm:$cc), NZCV),
|
|
(CSINCXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
|
|
def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV),
|
|
(CSINVWr WZR, WZR, (i32 imm:$cc))>;
|
|
def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV),
|
|
(CSINVXr XZR, XZR, (i32 imm:$cc))>;
|
|
def : Pat<(AArch64csel GPR32:$tval, (i32 -1), (i32 imm:$cc), NZCV),
|
|
(CSINVWr GPR32:$tval, WZR, (i32 imm:$cc))>;
|
|
def : Pat<(AArch64csel GPR64:$tval, (i64 -1), (i32 imm:$cc), NZCV),
|
|
(CSINVXr GPR64:$tval, XZR, (i32 imm:$cc))>;
|
|
def : Pat<(AArch64csel (i32 -1), GPR32:$fval, (i32 imm:$cc), NZCV),
|
|
(CSINVWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
|
|
def : Pat<(AArch64csel (i64 -1), GPR64:$fval, (i32 imm:$cc), NZCV),
|
|
(CSINVXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
|
|
|
|
// The inverse of the condition code from the alias instruction is what is used
|
|
// in the aliased instruction. The parser all ready inverts the condition code
|
|
// for these aliases.
|
|
def : InstAlias<"cset $dst, $cc",
|
|
(CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
|
|
def : InstAlias<"cset $dst, $cc",
|
|
(CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
|
|
|
|
def : InstAlias<"csetm $dst, $cc",
|
|
(CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
|
|
def : InstAlias<"csetm $dst, $cc",
|
|
(CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
|
|
|
|
def : InstAlias<"cinc $dst, $src, $cc",
|
|
(CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
|
|
def : InstAlias<"cinc $dst, $src, $cc",
|
|
(CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
|
|
|
|
def : InstAlias<"cinv $dst, $src, $cc",
|
|
(CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
|
|
def : InstAlias<"cinv $dst, $src, $cc",
|
|
(CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
|
|
|
|
def : InstAlias<"cneg $dst, $src, $cc",
|
|
(CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
|
|
def : InstAlias<"cneg $dst, $src, $cc",
|
|
(CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PC-relative instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
let isReMaterializable = 1 in {
|
|
let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
|
|
def ADR : ADRI<0, "adr", adrlabel,
|
|
[(set GPR64:$Xd, (AArch64adr tglobaladdr:$label))]>;
|
|
} // hasSideEffects = 0
|
|
|
|
def ADRP : ADRI<1, "adrp", adrplabel,
|
|
[(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>;
|
|
} // isReMaterializable = 1
|
|
|
|
// page address of a constant pool entry, block address
|
|
def : Pat<(AArch64adr tconstpool:$cp), (ADR tconstpool:$cp)>;
|
|
def : Pat<(AArch64adr tblockaddress:$cp), (ADR tblockaddress:$cp)>;
|
|
def : Pat<(AArch64adr texternalsym:$sym), (ADR texternalsym:$sym)>;
|
|
def : Pat<(AArch64adr tjumptable:$sym), (ADR tjumptable:$sym)>;
|
|
def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>;
|
|
def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>;
|
|
def : Pat<(AArch64adrp texternalsym:$sym), (ADRP texternalsym:$sym)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Unconditional branch (register) instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
|
|
def RET : BranchReg<0b0010, "ret", []>;
|
|
def DRPS : SpecialReturn<0b0101, "drps">;
|
|
def ERET : SpecialReturn<0b0100, "eret">;
|
|
} // isReturn = 1, isTerminator = 1, isBarrier = 1
|
|
|
|
// Default to the LR register.
|
|
def : InstAlias<"ret", (RET LR)>;
|
|
|
|
let isCall = 1, Defs = [LR], Uses = [SP] in {
|
|
def BLR : BranchReg<0b0001, "blr", []>;
|
|
def BLRNoIP : Pseudo<(outs), (ins GPR64noip:$Rn), []>,
|
|
Sched<[WriteBrReg]>,
|
|
PseudoInstExpansion<(BLR GPR64:$Rn)>;
|
|
def BLR_RVMARKER : Pseudo<(outs), (ins variable_ops), []>,
|
|
Sched<[WriteBrReg]>;
|
|
} // isCall
|
|
|
|
def : Pat<(AArch64call GPR64:$Rn),
|
|
(BLR GPR64:$Rn)>,
|
|
Requires<[NoSLSBLRMitigation]>;
|
|
def : Pat<(AArch64call GPR64noip:$Rn),
|
|
(BLRNoIP GPR64noip:$Rn)>,
|
|
Requires<[SLSBLRMitigation]>;
|
|
|
|
def : Pat<(AArch64call_rvmarker GPR64:$Rn),
|
|
(BLR_RVMARKER GPR64:$Rn)>,
|
|
Requires<[NoSLSBLRMitigation]>;
|
|
|
|
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
|
|
def BR : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>;
|
|
} // isBranch, isTerminator, isBarrier, isIndirectBranch
|
|
|
|
// Create a separate pseudo-instruction for codegen to use so that we don't
|
|
// flag lr as used in every function. It'll be restored before the RET by the
|
|
// epilogue if it's legitimately used.
|
|
def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retflag)]>,
|
|
Sched<[WriteBrReg]> {
|
|
let isTerminator = 1;
|
|
let isBarrier = 1;
|
|
let isReturn = 1;
|
|
}
|
|
|
|
// This is a directive-like pseudo-instruction. The purpose is to insert an
|
|
// R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction
|
|
// (which in the usual case is a BLR).
|
|
let hasSideEffects = 1 in
|
|
def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []>, Sched<[]> {
|
|
let AsmString = ".tlsdesccall $sym";
|
|
}
|
|
|
|
// Pseudo instruction to tell the streamer to emit a 'B' character into the
|
|
// augmentation string.
|
|
def EMITBKEY : Pseudo<(outs), (ins), []>, Sched<[]> {}
|
|
|
|
// FIXME: maybe the scratch register used shouldn't be fixed to X1?
|
|
// FIXME: can "hasSideEffects be dropped?
|
|
let isCall = 1, Defs = [LR, X0, X1], hasSideEffects = 1,
|
|
isCodeGenOnly = 1 in
|
|
def TLSDESC_CALLSEQ
|
|
: Pseudo<(outs), (ins i64imm:$sym),
|
|
[(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>,
|
|
Sched<[WriteI, WriteLD, WriteI, WriteBrReg]>;
|
|
def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym),
|
|
(TLSDESC_CALLSEQ texternalsym:$sym)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conditional branch (immediate) instruction.
|
|
//===----------------------------------------------------------------------===//
|
|
def Bcc : BranchCond;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Compare-and-branch instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
defm CBZ : CmpBranch<0, "cbz", AArch64cbz>;
|
|
defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Test-bit-and-branch instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
defm TBZ : TestBranch<0, "tbz", AArch64tbz>;
|
|
defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Unconditional branch (immediate) instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
|
|
def B : BranchImm<0, "b", [(br bb:$addr)]>;
|
|
} // isBranch, isTerminator, isBarrier
|
|
|
|
let isCall = 1, Defs = [LR], Uses = [SP] in {
|
|
def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>;
|
|
} // isCall
|
|
def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Exception generation instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
let isTrap = 1 in {
|
|
def BRK : ExceptionGeneration<0b001, 0b00, "brk">;
|
|
}
|
|
def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">;
|
|
def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">;
|
|
def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">;
|
|
def HLT : ExceptionGeneration<0b010, 0b00, "hlt">;
|
|
def HVC : ExceptionGeneration<0b000, 0b10, "hvc">;
|
|
def SMC : ExceptionGeneration<0b000, 0b11, "smc">;
|
|
def SVC : ExceptionGeneration<0b000, 0b01, "svc">;
|
|
|
|
// DCPSn defaults to an immediate operand of zero if unspecified.
|
|
def : InstAlias<"dcps1", (DCPS1 0)>;
|
|
def : InstAlias<"dcps2", (DCPS2 0)>;
|
|
def : InstAlias<"dcps3", (DCPS3 0)>;
|
|
|
|
def UDF : UDFType<0, "udf">;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Load instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Pair (indexed, offset)
|
|
defm LDPW : LoadPairOffset<0b00, 0, GPR32z, simm7s4, "ldp">;
|
|
defm LDPX : LoadPairOffset<0b10, 0, GPR64z, simm7s8, "ldp">;
|
|
defm LDPS : LoadPairOffset<0b00, 1, FPR32Op, simm7s4, "ldp">;
|
|
defm LDPD : LoadPairOffset<0b01, 1, FPR64Op, simm7s8, "ldp">;
|
|
defm LDPQ : LoadPairOffset<0b10, 1, FPR128Op, simm7s16, "ldp">;
|
|
|
|
defm LDPSW : LoadPairOffset<0b01, 0, GPR64z, simm7s4, "ldpsw">;
|
|
|
|
// Pair (pre-indexed)
|
|
def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
|
|
def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
|
|
def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
|
|
def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
|
|
def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
|
|
|
|
def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
|
|
|
|
// Pair (post-indexed)
|
|
def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
|
|
def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
|
|
def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
|
|
def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
|
|
def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
|
|
|
|
def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
|
|
|
|
|
|
// Pair (no allocate)
|
|
defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32z, simm7s4, "ldnp">;
|
|
defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64z, simm7s8, "ldnp">;
|
|
defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32Op, simm7s4, "ldnp">;
|
|
defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64Op, simm7s8, "ldnp">;
|
|
defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128Op, simm7s16, "ldnp">;
|
|
|
|
def : Pat<(AArch64ldp (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
|
|
(LDPXi GPR64sp:$Rn, simm7s8:$offset)>;
|
|
|
|
//---
|
|
// (register offset)
|
|
//---
|
|
|
|
// Integer
|
|
defm LDRBB : Load8RO<0b00, 0, 0b01, GPR32, "ldrb", i32, zextloadi8>;
|
|
defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>;
|
|
defm LDRW : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>;
|
|
defm LDRX : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>;
|
|
|
|
// Floating-point
|
|
defm LDRB : Load8RO<0b00, 1, 0b01, FPR8Op, "ldr", untyped, load>;
|
|
defm LDRH : Load16RO<0b01, 1, 0b01, FPR16Op, "ldr", f16, load>;
|
|
defm LDRS : Load32RO<0b10, 1, 0b01, FPR32Op, "ldr", f32, load>;
|
|
defm LDRD : Load64RO<0b11, 1, 0b01, FPR64Op, "ldr", f64, load>;
|
|
defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128Op, "ldr", f128, load>;
|
|
|
|
// Load sign-extended half-word
|
|
defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>;
|
|
defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>;
|
|
|
|
// Load sign-extended byte
|
|
defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>;
|
|
defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>;
|
|
|
|
// Load sign-extended word
|
|
defm LDRSW : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>;
|
|
|
|
// Pre-fetch.
|
|
defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">;
|
|
|
|
// For regular load, we do not have any alignment requirement.
|
|
// Thus, it is safe to directly map the vector loads with interesting
|
|
// addressing modes.
|
|
// FIXME: We could do the same for bitconvert to floating point vectors.
|
|
multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop,
|
|
ValueType ScalTy, ValueType VecTy,
|
|
Instruction LOADW, Instruction LOADX,
|
|
SubRegIndex sub> {
|
|
def : Pat<(VecTy (scalar_to_vector (ScalTy
|
|
(loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))),
|
|
(INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
|
|
(LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset),
|
|
sub)>;
|
|
|
|
def : Pat<(VecTy (scalar_to_vector (ScalTy
|
|
(loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))),
|
|
(INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
|
|
(LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset),
|
|
sub)>;
|
|
}
|
|
|
|
let AddedComplexity = 10 in {
|
|
defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v8i8, LDRBroW, LDRBroX, bsub>;
|
|
defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v16i8, LDRBroW, LDRBroX, bsub>;
|
|
|
|
defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>;
|
|
defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>;
|
|
|
|
defm : ScalToVecROLoadPat<ro16, load, i32, v4f16, LDRHroW, LDRHroX, hsub>;
|
|
defm : ScalToVecROLoadPat<ro16, load, i32, v8f16, LDRHroW, LDRHroX, hsub>;
|
|
|
|
defm : ScalToVecROLoadPat<ro32, load, i32, v2i32, LDRSroW, LDRSroX, ssub>;
|
|
defm : ScalToVecROLoadPat<ro32, load, i32, v4i32, LDRSroW, LDRSroX, ssub>;
|
|
|
|
defm : ScalToVecROLoadPat<ro32, load, f32, v2f32, LDRSroW, LDRSroX, ssub>;
|
|
defm : ScalToVecROLoadPat<ro32, load, f32, v4f32, LDRSroW, LDRSroX, ssub>;
|
|
|
|
defm : ScalToVecROLoadPat<ro64, load, i64, v2i64, LDRDroW, LDRDroX, dsub>;
|
|
|
|
defm : ScalToVecROLoadPat<ro64, load, f64, v2f64, LDRDroW, LDRDroX, dsub>;
|
|
|
|
|
|
def : Pat <(v1i64 (scalar_to_vector (i64
|
|
(load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
|
|
ro_Wextend64:$extend))))),
|
|
(LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
|
|
|
|
def : Pat <(v1i64 (scalar_to_vector (i64
|
|
(load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
|
|
ro_Xextend64:$extend))))),
|
|
(LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
|
|
}
|
|
|
|
// Match all load 64 bits width whose type is compatible with FPR64
|
|
multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy,
|
|
Instruction LOADW, Instruction LOADX> {
|
|
|
|
def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
|
|
(LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
|
|
|
|
def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
|
|
(LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
|
|
}
|
|
|
|
let AddedComplexity = 10 in {
|
|
let Predicates = [IsLE] in {
|
|
// We must do vector loads with LD1 in big-endian.
|
|
defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>;
|
|
defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>;
|
|
defm : VecROLoadPat<ro64, v8i8, LDRDroW, LDRDroX>;
|
|
defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>;
|
|
defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>;
|
|
defm : VecROLoadPat<ro64, v4bf16, LDRDroW, LDRDroX>;
|
|
}
|
|
|
|
defm : VecROLoadPat<ro64, v1i64, LDRDroW, LDRDroX>;
|
|
defm : VecROLoadPat<ro64, v1f64, LDRDroW, LDRDroX>;
|
|
|
|
// Match all load 128 bits width whose type is compatible with FPR128
|
|
let Predicates = [IsLE] in {
|
|
// We must do vector loads with LD1 in big-endian.
|
|
defm : VecROLoadPat<ro128, v2i64, LDRQroW, LDRQroX>;
|
|
defm : VecROLoadPat<ro128, v2f64, LDRQroW, LDRQroX>;
|
|
defm : VecROLoadPat<ro128, v4i32, LDRQroW, LDRQroX>;
|
|
defm : VecROLoadPat<ro128, v4f32, LDRQroW, LDRQroX>;
|
|
defm : VecROLoadPat<ro128, v8i16, LDRQroW, LDRQroX>;
|
|
defm : VecROLoadPat<ro128, v8f16, LDRQroW, LDRQroX>;
|
|
defm : VecROLoadPat<ro128, v8bf16, LDRQroW, LDRQroX>;
|
|
defm : VecROLoadPat<ro128, v16i8, LDRQroW, LDRQroX>;
|
|
}
|
|
} // AddedComplexity = 10
|
|
|
|
// zextload -> i64
|
|
multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop,
|
|
Instruction INSTW, Instruction INSTX> {
|
|
def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
|
|
(SUBREG_TO_REG (i64 0),
|
|
(INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
|
|
sub_32)>;
|
|
|
|
def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
|
|
(SUBREG_TO_REG (i64 0),
|
|
(INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
|
|
sub_32)>;
|
|
}
|
|
|
|
let AddedComplexity = 10 in {
|
|
defm : ExtLoadTo64ROPat<ro8, zextloadi8, LDRBBroW, LDRBBroX>;
|
|
defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>;
|
|
defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW, LDRWroX>;
|
|
|
|
// zextloadi1 -> zextloadi8
|
|
defm : ExtLoadTo64ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
|
|
|
|
// extload -> zextload
|
|
defm : ExtLoadTo64ROPat<ro8, extloadi8, LDRBBroW, LDRBBroX>;
|
|
defm : ExtLoadTo64ROPat<ro16, extloadi16, LDRHHroW, LDRHHroX>;
|
|
defm : ExtLoadTo64ROPat<ro32, extloadi32, LDRWroW, LDRWroX>;
|
|
|
|
// extloadi1 -> zextloadi8
|
|
defm : ExtLoadTo64ROPat<ro8, extloadi1, LDRBBroW, LDRBBroX>;
|
|
}
|
|
|
|
|
|
// zextload -> i64
|
|
multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop,
|
|
Instruction INSTW, Instruction INSTX> {
|
|
def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
|
|
(INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
|
|
|
|
def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
|
|
(INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
|
|
|
|
}
|
|
|
|
let AddedComplexity = 10 in {
|
|
// extload -> zextload
|
|
defm : ExtLoadTo32ROPat<ro8, extloadi8, LDRBBroW, LDRBBroX>;
|
|
defm : ExtLoadTo32ROPat<ro16, extloadi16, LDRHHroW, LDRHHroX>;
|
|
defm : ExtLoadTo32ROPat<ro32, extloadi32, LDRWroW, LDRWroX>;
|
|
|
|
// zextloadi1 -> zextloadi8
|
|
defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
|
|
}
|
|
|
|
//---
|
|
// (unsigned immediate)
|
|
//---
|
|
defm LDRX : LoadUI<0b11, 0, 0b01, GPR64z, uimm12s8, "ldr",
|
|
[(set GPR64z:$Rt,
|
|
(load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
|
|
defm LDRW : LoadUI<0b10, 0, 0b01, GPR32z, uimm12s4, "ldr",
|
|
[(set GPR32z:$Rt,
|
|
(load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
|
|
defm LDRB : LoadUI<0b00, 1, 0b01, FPR8Op, uimm12s1, "ldr",
|
|
[(set FPR8Op:$Rt,
|
|
(load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>;
|
|
defm LDRH : LoadUI<0b01, 1, 0b01, FPR16Op, uimm12s2, "ldr",
|
|
[(set (f16 FPR16Op:$Rt),
|
|
(load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>;
|
|
defm LDRS : LoadUI<0b10, 1, 0b01, FPR32Op, uimm12s4, "ldr",
|
|
[(set (f32 FPR32Op:$Rt),
|
|
(load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
|
|
defm LDRD : LoadUI<0b11, 1, 0b01, FPR64Op, uimm12s8, "ldr",
|
|
[(set (f64 FPR64Op:$Rt),
|
|
(load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
|
|
defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128Op, uimm12s16, "ldr",
|
|
[(set (f128 FPR128Op:$Rt),
|
|
(load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>;
|
|
|
|
// bf16 load pattern
|
|
def : Pat <(bf16 (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
|
|
(LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
|
|
|
|
// For regular load, we do not have any alignment requirement.
|
|
// Thus, it is safe to directly map the vector loads with interesting
|
|
// addressing modes.
|
|
// FIXME: We could do the same for bitconvert to floating point vectors.
|
|
def : Pat <(v8i8 (scalar_to_vector (i32
|
|
(extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
|
|
(INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
|
|
(LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
|
|
def : Pat <(v16i8 (scalar_to_vector (i32
|
|
(extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
|
|
def : Pat <(v4i16 (scalar_to_vector (i32
|
|
(extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
|
|
(INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
|
|
(LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
|
|
def : Pat <(v8i16 (scalar_to_vector (i32
|
|
(extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
|
|
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
|
|
(LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
|
|
def : Pat <(v2i32 (scalar_to_vector (i32
|
|
(load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
|
|
(INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
|
|
(LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
|
|
def : Pat <(v4i32 (scalar_to_vector (i32
|
|
(load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
|
|
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
|
|
(LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
|
|
def : Pat <(v1i64 (scalar_to_vector (i64
|
|
(load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
|
|
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
def : Pat <(v2i64 (scalar_to_vector (i64
|
|
(load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
|
|
(INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
|
|
(LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>;
|
|
|
|
// Match all load 64 bits width whose type is compatible with FPR64
|
|
let Predicates = [IsLE] in {
|
|
// We must use LD1 to perform vector loads in big-endian.
|
|
def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
|
|
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
|
|
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
|
|
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
|
|
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
|
|
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
def : Pat<(v4bf16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
|
|
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
}
|
|
def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
|
|
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
|
|
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
|
|
// Match all load 128 bits width whose type is compatible with FPR128
|
|
let Predicates = [IsLE] in {
|
|
// We must use LD1 to perform vector loads in big-endian.
|
|
def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
|
|
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
|
|
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
|
|
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
|
|
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
|
|
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
|
|
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
|
|
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
def : Pat<(v8bf16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
|
|
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
}
|
|
def : Pat<(f128 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
|
|
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
|
|
defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh",
|
|
[(set GPR32:$Rt,
|
|
(zextloadi16 (am_indexed16 GPR64sp:$Rn,
|
|
uimm12s2:$offset)))]>;
|
|
defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb",
|
|
[(set GPR32:$Rt,
|
|
(zextloadi8 (am_indexed8 GPR64sp:$Rn,
|
|
uimm12s1:$offset)))]>;
|
|
// zextload -> i64
|
|
def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
|
|
def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
|
|
|
|
// zextloadi1 -> zextloadi8
|
|
def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
|
|
(LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
|
|
def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
|
|
|
|
// extload -> zextload
|
|
def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
|
|
(LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
|
|
def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
|
|
(LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
|
|
def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
|
|
(LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
|
|
def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
|
|
def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
|
|
def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
|
|
def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
|
|
|
|
// load sign-extended half-word
|
|
defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh",
|
|
[(set GPR32:$Rt,
|
|
(sextloadi16 (am_indexed16 GPR64sp:$Rn,
|
|
uimm12s2:$offset)))]>;
|
|
defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh",
|
|
[(set GPR64:$Rt,
|
|
(sextloadi16 (am_indexed16 GPR64sp:$Rn,
|
|
uimm12s2:$offset)))]>;
|
|
|
|
// load sign-extended byte
|
|
defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb",
|
|
[(set GPR32:$Rt,
|
|
(sextloadi8 (am_indexed8 GPR64sp:$Rn,
|
|
uimm12s1:$offset)))]>;
|
|
defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb",
|
|
[(set GPR64:$Rt,
|
|
(sextloadi8 (am_indexed8 GPR64sp:$Rn,
|
|
uimm12s1:$offset)))]>;
|
|
|
|
// load sign-extended word
|
|
defm LDRSW : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw",
|
|
[(set GPR64:$Rt,
|
|
(sextloadi32 (am_indexed32 GPR64sp:$Rn,
|
|
uimm12s4:$offset)))]>;
|
|
|
|
// load zero-extended word
|
|
def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
|
|
|
|
// Pre-fetch.
|
|
def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm",
|
|
[(AArch64Prefetch imm:$Rt,
|
|
(am_indexed64 GPR64sp:$Rn,
|
|
uimm12s8:$offset))]>;
|
|
|
|
def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>;
|
|
|
|
//---
|
|
// (literal)
|
|
|
|
def alignedglobal : PatLeaf<(iPTR iPTR:$label), [{
|
|
if (auto *G = dyn_cast<GlobalAddressSDNode>(N)) {
|
|
const DataLayout &DL = MF->getDataLayout();
|
|
Align Align = G->getGlobal()->getPointerAlignment(DL);
|
|
return Align >= 4 && G->getOffset() % 4 == 0;
|
|
}
|
|
if (auto *C = dyn_cast<ConstantPoolSDNode>(N))
|
|
return C->getAlign() >= 4 && C->getOffset() % 4 == 0;
|
|
return false;
|
|
}]>;
|
|
|
|
def LDRWl : LoadLiteral<0b00, 0, GPR32z, "ldr",
|
|
[(set GPR32z:$Rt, (load (AArch64adr alignedglobal:$label)))]>;
|
|
def LDRXl : LoadLiteral<0b01, 0, GPR64z, "ldr",
|
|
[(set GPR64z:$Rt, (load (AArch64adr alignedglobal:$label)))]>;
|
|
def LDRSl : LoadLiteral<0b00, 1, FPR32Op, "ldr",
|
|
[(set (f32 FPR32Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;
|
|
def LDRDl : LoadLiteral<0b01, 1, FPR64Op, "ldr",
|
|
[(set (f64 FPR64Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;
|
|
def LDRQl : LoadLiteral<0b10, 1, FPR128Op, "ldr",
|
|
[(set (f128 FPR128Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;
|
|
|
|
// load sign-extended word
|
|
def LDRSWl : LoadLiteral<0b10, 0, GPR64z, "ldrsw",
|
|
[(set GPR64z:$Rt, (sextloadi32 (AArch64adr alignedglobal:$label)))]>;
|
|
|
|
let AddedComplexity = 20 in {
|
|
def : Pat<(i64 (zextloadi32 (AArch64adr alignedglobal:$label))),
|
|
(SUBREG_TO_REG (i64 0), (LDRWl $label), sub_32)>;
|
|
}
|
|
|
|
// prefetch
|
|
def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>;
|
|
// [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>;
|
|
|
|
//---
|
|
// (unscaled immediate)
|
|
defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64z, "ldur",
|
|
[(set GPR64z:$Rt,
|
|
(load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
|
|
defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32z, "ldur",
|
|
[(set GPR32z:$Rt,
|
|
(load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
|
|
defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8Op, "ldur",
|
|
[(set FPR8Op:$Rt,
|
|
(load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
|
|
defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16Op, "ldur",
|
|
[(set (f16 FPR16Op:$Rt),
|
|
(load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
|
|
defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32Op, "ldur",
|
|
[(set (f32 FPR32Op:$Rt),
|
|
(load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
|
|
defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64Op, "ldur",
|
|
[(set (f64 FPR64Op:$Rt),
|
|
(load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
|
|
defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128Op, "ldur",
|
|
[(set (f128 FPR128Op:$Rt),
|
|
(load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>;
|
|
|
|
defm LDURHH
|
|
: LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh",
|
|
[(set GPR32:$Rt,
|
|
(zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
|
|
defm LDURBB
|
|
: LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb",
|
|
[(set GPR32:$Rt,
|
|
(zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
|
|
|
|
// Match all load 64 bits width whose type is compatible with FPR64
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
|
|
}
|
|
def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
|
|
|
|
// Match all load 128 bits width whose type is compatible with FPR128
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
|
|
}
|
|
|
|
// anyext -> zext
|
|
def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURHHi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURBBi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURBBi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
|
|
def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
|
|
def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
|
|
def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
|
|
// unscaled zext
|
|
def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURHHi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURBBi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
|
|
(LDURBBi GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
|
|
def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
|
|
def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
|
|
def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
|
|
|
|
|
|
//---
|
|
// LDR mnemonics fall back to LDUR for negative or unaligned offsets.
|
|
|
|
// Define new assembler match classes as we want to only match these when
|
|
// the don't otherwise match the scaled addressing mode for LDR/STR. Don't
|
|
// associate a DiagnosticType either, as we want the diagnostic for the
|
|
// canonical form (the scaled operand) to take precedence.
|
|
class SImm9OffsetOperand<int Width> : AsmOperandClass {
|
|
let Name = "SImm9OffsetFB" # Width;
|
|
let PredicateMethod = "isSImm9OffsetFB<" # Width # ">";
|
|
let RenderMethod = "addImmOperands";
|
|
}
|
|
|
|
def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>;
|
|
def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>;
|
|
def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>;
|
|
def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>;
|
|
def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>;
|
|
|
|
def simm9_offset_fb8 : Operand<i64> {
|
|
let ParserMatchClass = SImm9OffsetFB8Operand;
|
|
}
|
|
def simm9_offset_fb16 : Operand<i64> {
|
|
let ParserMatchClass = SImm9OffsetFB16Operand;
|
|
}
|
|
def simm9_offset_fb32 : Operand<i64> {
|
|
let ParserMatchClass = SImm9OffsetFB32Operand;
|
|
}
|
|
def simm9_offset_fb64 : Operand<i64> {
|
|
let ParserMatchClass = SImm9OffsetFB64Operand;
|
|
}
|
|
def simm9_offset_fb128 : Operand<i64> {
|
|
let ParserMatchClass = SImm9OffsetFB128Operand;
|
|
}
|
|
|
|
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
|
|
(LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
|
|
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
|
|
(LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
|
|
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
|
|
(LDURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
|
|
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
|
|
(LDURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
|
|
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
|
|
(LDURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
|
|
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
|
|
(LDURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
|
|
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
|
|
(LDURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
|
|
|
|
// zextload -> i64
|
|
def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
|
|
def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
|
|
(SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
|
|
|
|
// load sign-extended half-word
|
|
defm LDURSHW
|
|
: LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh",
|
|
[(set GPR32:$Rt,
|
|
(sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
|
|
defm LDURSHX
|
|
: LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh",
|
|
[(set GPR64:$Rt,
|
|
(sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
|
|
|
|
// load sign-extended byte
|
|
defm LDURSBW
|
|
: LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb",
|
|
[(set GPR32:$Rt,
|
|
(sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
|
|
defm LDURSBX
|
|
: LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb",
|
|
[(set GPR64:$Rt,
|
|
(sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
|
|
|
|
// load sign-extended word
|
|
defm LDURSW
|
|
: LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw",
|
|
[(set GPR64:$Rt,
|
|
(sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
|
|
|
|
// zero and sign extending aliases from generic LDR* mnemonics to LDUR*.
|
|
def : InstAlias<"ldrb $Rt, [$Rn, $offset]",
|
|
(LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
|
|
def : InstAlias<"ldrh $Rt, [$Rn, $offset]",
|
|
(LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
|
|
def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
|
|
(LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
|
|
def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
|
|
(LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
|
|
def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
|
|
(LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
|
|
def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
|
|
(LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
|
|
def : InstAlias<"ldrsw $Rt, [$Rn, $offset]",
|
|
(LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
|
|
|
|
// Pre-fetch.
|
|
defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum",
|
|
[(AArch64Prefetch imm:$Rt,
|
|
(am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
|
|
|
|
//---
|
|
// (unscaled immediate, unprivileged)
|
|
defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">;
|
|
defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">;
|
|
|
|
defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">;
|
|
defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">;
|
|
|
|
// load sign-extended half-word
|
|
defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">;
|
|
defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">;
|
|
|
|
// load sign-extended byte
|
|
defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">;
|
|
defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">;
|
|
|
|
// load sign-extended word
|
|
defm LDTRSW : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">;
|
|
|
|
//---
|
|
// (immediate pre-indexed)
|
|
def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32z, "ldr">;
|
|
def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64z, "ldr">;
|
|
def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8Op, "ldr">;
|
|
def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
|
|
def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
|
|
def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
|
|
def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
|
|
|
|
// load sign-extended half-word
|
|
def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
|
|
def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
|
|
|
|
// load sign-extended byte
|
|
def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
|
|
def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
|
|
|
|
// load zero-extended byte
|
|
def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
|
|
def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
|
|
|
|
// load sign-extended word
|
|
def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
|
|
|
|
//---
|
|
// (immediate post-indexed)
|
|
def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32z, "ldr">;
|
|
def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64z, "ldr">;
|
|
def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8Op, "ldr">;
|
|
def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
|
|
def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
|
|
def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
|
|
def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
|
|
|
|
// load sign-extended half-word
|
|
def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
|
|
def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
|
|
|
|
// load sign-extended byte
|
|
def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
|
|
def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
|
|
|
|
// load zero-extended byte
|
|
def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
|
|
def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
|
|
|
|
// load sign-extended word
|
|
def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Store instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Pair (indexed, offset)
|
|
// FIXME: Use dedicated range-checked addressing mode operand here.
|
|
defm STPW : StorePairOffset<0b00, 0, GPR32z, simm7s4, "stp">;
|
|
defm STPX : StorePairOffset<0b10, 0, GPR64z, simm7s8, "stp">;
|
|
defm STPS : StorePairOffset<0b00, 1, FPR32Op, simm7s4, "stp">;
|
|
defm STPD : StorePairOffset<0b01, 1, FPR64Op, simm7s8, "stp">;
|
|
defm STPQ : StorePairOffset<0b10, 1, FPR128Op, simm7s16, "stp">;
|
|
|
|
// Pair (pre-indexed)
|
|
def STPWpre : StorePairPreIdx<0b00, 0, GPR32z, simm7s4, "stp">;
|
|
def STPXpre : StorePairPreIdx<0b10, 0, GPR64z, simm7s8, "stp">;
|
|
def STPSpre : StorePairPreIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
|
|
def STPDpre : StorePairPreIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
|
|
def STPQpre : StorePairPreIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
|
|
|
|
// Pair (pre-indexed)
|
|
def STPWpost : StorePairPostIdx<0b00, 0, GPR32z, simm7s4, "stp">;
|
|
def STPXpost : StorePairPostIdx<0b10, 0, GPR64z, simm7s8, "stp">;
|
|
def STPSpost : StorePairPostIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
|
|
def STPDpost : StorePairPostIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
|
|
def STPQpost : StorePairPostIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
|
|
|
|
// Pair (no allocate)
|
|
defm STNPW : StorePairNoAlloc<0b00, 0, GPR32z, simm7s4, "stnp">;
|
|
defm STNPX : StorePairNoAlloc<0b10, 0, GPR64z, simm7s8, "stnp">;
|
|
defm STNPS : StorePairNoAlloc<0b00, 1, FPR32Op, simm7s4, "stnp">;
|
|
defm STNPD : StorePairNoAlloc<0b01, 1, FPR64Op, simm7s8, "stnp">;
|
|
defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128Op, simm7s16, "stnp">;
|
|
|
|
def : Pat<(AArch64stp GPR64z:$Rt, GPR64z:$Rt2, (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
|
|
(STPXi GPR64z:$Rt, GPR64z:$Rt2, GPR64sp:$Rn, simm7s8:$offset)>;
|
|
|
|
def : Pat<(AArch64stnp FPR128:$Rt, FPR128:$Rt2, (am_indexed7s128 GPR64sp:$Rn, simm7s16:$offset)),
|
|
(STNPQi FPR128:$Rt, FPR128:$Rt2, GPR64sp:$Rn, simm7s16:$offset)>;
|
|
|
|
|
|
//---
|
|
// (Register offset)
|
|
|
|
// Integer
|
|
defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>;
|
|
defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>;
|
|
defm STRW : Store32RO<0b10, 0, 0b00, GPR32, "str", i32, store>;
|
|
defm STRX : Store64RO<0b11, 0, 0b00, GPR64, "str", i64, store>;
|
|
|
|
|
|
// Floating-point
|
|
defm STRB : Store8RO< 0b00, 1, 0b00, FPR8Op, "str", untyped, store>;
|
|
defm STRH : Store16RO<0b01, 1, 0b00, FPR16Op, "str", f16, store>;
|
|
defm STRS : Store32RO<0b10, 1, 0b00, FPR32Op, "str", f32, store>;
|
|
defm STRD : Store64RO<0b11, 1, 0b00, FPR64Op, "str", f64, store>;
|
|
defm STRQ : Store128RO<0b00, 1, 0b10, FPR128Op, "str", f128, store>;
|
|
|
|
let Predicates = [UseSTRQro], AddedComplexity = 10 in {
|
|
def : Pat<(store (f128 FPR128:$Rt),
|
|
(ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm,
|
|
ro_Wextend128:$extend)),
|
|
(STRQroW FPR128:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend)>;
|
|
def : Pat<(store (f128 FPR128:$Rt),
|
|
(ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm,
|
|
ro_Xextend128:$extend)),
|
|
(STRQroX FPR128:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Wextend128:$extend)>;
|
|
}
|
|
|
|
multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop,
|
|
Instruction STRW, Instruction STRX> {
|
|
|
|
def : Pat<(storeop GPR64:$Rt,
|
|
(ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
|
|
(STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32),
|
|
GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
|
|
|
|
def : Pat<(storeop GPR64:$Rt,
|
|
(ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
|
|
(STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32),
|
|
GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
|
|
}
|
|
|
|
let AddedComplexity = 10 in {
|
|
// truncstore i64
|
|
defm : TruncStoreFrom64ROPat<ro8, truncstorei8, STRBBroW, STRBBroX>;
|
|
defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>;
|
|
defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW, STRWroX>;
|
|
}
|
|
|
|
multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR,
|
|
Instruction STRW, Instruction STRX> {
|
|
def : Pat<(store (VecTy FPR:$Rt),
|
|
(ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
|
|
(STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
|
|
|
|
def : Pat<(store (VecTy FPR:$Rt),
|
|
(ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
|
|
(STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
|
|
}
|
|
|
|
let AddedComplexity = 10 in {
|
|
// Match all store 64 bits width whose type is compatible with FPR64
|
|
let Predicates = [IsLE] in {
|
|
// We must use ST1 to store vectors in big-endian.
|
|
defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>;
|
|
defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>;
|
|
defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>;
|
|
defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>;
|
|
defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>;
|
|
defm : VecROStorePat<ro64, v4bf16, FPR64, STRDroW, STRDroX>;
|
|
}
|
|
|
|
defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>;
|
|
defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>;
|
|
|
|
// Match all store 128 bits width whose type is compatible with FPR128
|
|
let Predicates = [IsLE, UseSTRQro] in {
|
|
// We must use ST1 to store vectors in big-endian.
|
|
defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>;
|
|
defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>;
|
|
defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>;
|
|
defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>;
|
|
defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>;
|
|
defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>;
|
|
defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>;
|
|
defm : VecROStorePat<ro128, v8bf16, FPR128, STRQroW, STRQroX>;
|
|
}
|
|
} // AddedComplexity = 10
|
|
|
|
// Match stores from lane 0 to the appropriate subreg's store.
|
|
multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop,
|
|
ValueType VecTy, ValueType STy,
|
|
SubRegIndex SubRegIdx,
|
|
Instruction STRW, Instruction STRX> {
|
|
|
|
def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
|
|
(ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
|
|
(STRW (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
|
|
GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
|
|
|
|
def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
|
|
(ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
|
|
(STRX (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
|
|
GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
|
|
}
|
|
|
|
let AddedComplexity = 19 in {
|
|
defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, hsub, STRHroW, STRHroX>;
|
|
defm : VecROStoreLane0Pat<ro16, store, v8f16, f16, hsub, STRHroW, STRHroX>;
|
|
defm : VecROStoreLane0Pat<ro32, store, v4i32, i32, ssub, STRSroW, STRSroX>;
|
|
defm : VecROStoreLane0Pat<ro32, store, v4f32, f32, ssub, STRSroW, STRSroX>;
|
|
defm : VecROStoreLane0Pat<ro64, store, v2i64, i64, dsub, STRDroW, STRDroX>;
|
|
defm : VecROStoreLane0Pat<ro64, store, v2f64, f64, dsub, STRDroW, STRDroX>;
|
|
}
|
|
|
|
//---
|
|
// (unsigned immediate)
|
|
defm STRX : StoreUIz<0b11, 0, 0b00, GPR64z, uimm12s8, "str",
|
|
[(store GPR64z:$Rt,
|
|
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
|
|
defm STRW : StoreUIz<0b10, 0, 0b00, GPR32z, uimm12s4, "str",
|
|
[(store GPR32z:$Rt,
|
|
(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
|
|
defm STRB : StoreUI<0b00, 1, 0b00, FPR8Op, uimm12s1, "str",
|
|
[(store FPR8Op:$Rt,
|
|
(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>;
|
|
defm STRH : StoreUI<0b01, 1, 0b00, FPR16Op, uimm12s2, "str",
|
|
[(store (f16 FPR16Op:$Rt),
|
|
(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>;
|
|
defm STRS : StoreUI<0b10, 1, 0b00, FPR32Op, uimm12s4, "str",
|
|
[(store (f32 FPR32Op:$Rt),
|
|
(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
|
|
defm STRD : StoreUI<0b11, 1, 0b00, FPR64Op, uimm12s8, "str",
|
|
[(store (f64 FPR64Op:$Rt),
|
|
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
|
|
defm STRQ : StoreUI<0b00, 1, 0b10, FPR128Op, uimm12s16, "str", []>;
|
|
|
|
defm STRHH : StoreUIz<0b01, 0, 0b00, GPR32z, uimm12s2, "strh",
|
|
[(truncstorei16 GPR32z:$Rt,
|
|
(am_indexed16 GPR64sp:$Rn,
|
|
uimm12s2:$offset))]>;
|
|
defm STRBB : StoreUIz<0b00, 0, 0b00, GPR32z, uimm12s1, "strb",
|
|
[(truncstorei8 GPR32z:$Rt,
|
|
(am_indexed8 GPR64sp:$Rn,
|
|
uimm12s1:$offset))]>;
|
|
|
|
// bf16 store pattern
|
|
def : Pat<(store (bf16 FPR16Op:$Rt),
|
|
(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
|
|
(STRHui FPR16:$Rt, GPR64sp:$Rn, uimm12s2:$offset)>;
|
|
|
|
let AddedComplexity = 10 in {
|
|
|
|
// Match all store 64 bits width whose type is compatible with FPR64
|
|
def : Pat<(store (v1i64 FPR64:$Rt),
|
|
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
|
|
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
def : Pat<(store (v1f64 FPR64:$Rt),
|
|
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
|
|
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
// We must use ST1 to store vectors in big-endian.
|
|
def : Pat<(store (v2f32 FPR64:$Rt),
|
|
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
|
|
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
def : Pat<(store (v8i8 FPR64:$Rt),
|
|
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
|
|
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
def : Pat<(store (v4i16 FPR64:$Rt),
|
|
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
|
|
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
def : Pat<(store (v2i32 FPR64:$Rt),
|
|
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
|
|
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
def : Pat<(store (v4f16 FPR64:$Rt),
|
|
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
|
|
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
def : Pat<(store (v4bf16 FPR64:$Rt),
|
|
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
|
|
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
|
|
}
|
|
|
|
// Match all store 128 bits width whose type is compatible with FPR128
|
|
def : Pat<(store (f128 FPR128:$Rt),
|
|
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
|
|
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
// We must use ST1 to store vectors in big-endian.
|
|
def : Pat<(store (v4f32 FPR128:$Rt),
|
|
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
|
|
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
def : Pat<(store (v2f64 FPR128:$Rt),
|
|
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
|
|
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
def : Pat<(store (v16i8 FPR128:$Rt),
|
|
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
|
|
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
def : Pat<(store (v8i16 FPR128:$Rt),
|
|
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
|
|
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
def : Pat<(store (v4i32 FPR128:$Rt),
|
|
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
|
|
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
def : Pat<(store (v2i64 FPR128:$Rt),
|
|
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
|
|
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
def : Pat<(store (v8f16 FPR128:$Rt),
|
|
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
|
|
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
def : Pat<(store (v8bf16 FPR128:$Rt),
|
|
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
|
|
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
|
|
}
|
|
|
|
// truncstore i64
|
|
def : Pat<(truncstorei32 GPR64:$Rt,
|
|
(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)),
|
|
(STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>;
|
|
def : Pat<(truncstorei16 GPR64:$Rt,
|
|
(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
|
|
(STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>;
|
|
def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)),
|
|
(STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>;
|
|
|
|
} // AddedComplexity = 10
|
|
|
|
// Match stores from lane 0 to the appropriate subreg's store.
|
|
multiclass VecStoreLane0Pat<Operand UIAddrMode, SDPatternOperator storeop,
|
|
ValueType VTy, ValueType STy,
|
|
SubRegIndex SubRegIdx, Operand IndexType,
|
|
Instruction STR> {
|
|
def : Pat<(storeop (STy (vector_extract (VTy VecListOne128:$Vt), 0)),
|
|
(UIAddrMode GPR64sp:$Rn, IndexType:$offset)),
|
|
(STR (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
|
|
GPR64sp:$Rn, IndexType:$offset)>;
|
|
}
|
|
|
|
let AddedComplexity = 19 in {
|
|
defm : VecStoreLane0Pat<am_indexed16, truncstorei16, v8i16, i32, hsub, uimm12s2, STRHui>;
|
|
defm : VecStoreLane0Pat<am_indexed16, store, v8f16, f16, hsub, uimm12s2, STRHui>;
|
|
defm : VecStoreLane0Pat<am_indexed32, store, v4i32, i32, ssub, uimm12s4, STRSui>;
|
|
defm : VecStoreLane0Pat<am_indexed32, store, v4f32, f32, ssub, uimm12s4, STRSui>;
|
|
defm : VecStoreLane0Pat<am_indexed64, store, v2i64, i64, dsub, uimm12s8, STRDui>;
|
|
defm : VecStoreLane0Pat<am_indexed64, store, v2f64, f64, dsub, uimm12s8, STRDui>;
|
|
}
|
|
|
|
//---
|
|
// (unscaled immediate)
|
|
defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64z, "stur",
|
|
[(store GPR64z:$Rt,
|
|
(am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
|
|
defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32z, "stur",
|
|
[(store GPR32z:$Rt,
|
|
(am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
|
|
defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8Op, "stur",
|
|
[(store FPR8Op:$Rt,
|
|
(am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
|
|
defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16Op, "stur",
|
|
[(store (f16 FPR16Op:$Rt),
|
|
(am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
|
|
defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32Op, "stur",
|
|
[(store (f32 FPR32Op:$Rt),
|
|
(am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
|
|
defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64Op, "stur",
|
|
[(store (f64 FPR64Op:$Rt),
|
|
(am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
|
|
defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128Op, "stur",
|
|
[(store (f128 FPR128Op:$Rt),
|
|
(am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>;
|
|
defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32z, "sturh",
|
|
[(truncstorei16 GPR32z:$Rt,
|
|
(am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
|
|
defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32z, "sturb",
|
|
[(truncstorei8 GPR32z:$Rt,
|
|
(am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
|
|
|
|
// Armv8.4 Weaker Release Consistency enhancements
|
|
// LDAPR & STLR with Immediate Offset instructions
|
|
let Predicates = [HasRCPC_IMMO] in {
|
|
defm STLURB : BaseStoreUnscaleV84<"stlurb", 0b00, 0b00, GPR32>;
|
|
defm STLURH : BaseStoreUnscaleV84<"stlurh", 0b01, 0b00, GPR32>;
|
|
defm STLURW : BaseStoreUnscaleV84<"stlur", 0b10, 0b00, GPR32>;
|
|
defm STLURX : BaseStoreUnscaleV84<"stlur", 0b11, 0b00, GPR64>;
|
|
defm LDAPURB : BaseLoadUnscaleV84<"ldapurb", 0b00, 0b01, GPR32>;
|
|
defm LDAPURSBW : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b11, GPR32>;
|
|
defm LDAPURSBX : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b10, GPR64>;
|
|
defm LDAPURH : BaseLoadUnscaleV84<"ldapurh", 0b01, 0b01, GPR32>;
|
|
defm LDAPURSHW : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b11, GPR32>;
|
|
defm LDAPURSHX : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b10, GPR64>;
|
|
defm LDAPUR : BaseLoadUnscaleV84<"ldapur", 0b10, 0b01, GPR32>;
|
|
defm LDAPURSW : BaseLoadUnscaleV84<"ldapursw", 0b10, 0b10, GPR64>;
|
|
defm LDAPURX : BaseLoadUnscaleV84<"ldapur", 0b11, 0b01, GPR64>;
|
|
}
|
|
|
|
// Match all store 64 bits width whose type is compatible with FPR64
|
|
def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
|
|
let AddedComplexity = 10 in {
|
|
|
|
let Predicates = [IsLE] in {
|
|
// We must use ST1 to store vectors in big-endian.
|
|
def : Pat<(store (v2f32 FPR64:$Rt),
|
|
(am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(store (v8i8 FPR64:$Rt),
|
|
(am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(store (v4i16 FPR64:$Rt),
|
|
(am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(store (v2i32 FPR64:$Rt),
|
|
(am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(store (v4f16 FPR64:$Rt),
|
|
(am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(store (v4bf16 FPR64:$Rt),
|
|
(am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
}
|
|
|
|
// Match all store 128 bits width whose type is compatible with FPR128
|
|
def : Pat<(store (f128 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
// We must use ST1 to store vectors in big-endian.
|
|
def : Pat<(store (v4f32 FPR128:$Rt),
|
|
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(store (v2f64 FPR128:$Rt),
|
|
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(store (v16i8 FPR128:$Rt),
|
|
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(store (v8i16 FPR128:$Rt),
|
|
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(store (v4i32 FPR128:$Rt),
|
|
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(store (v2i64 FPR128:$Rt),
|
|
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(store (v2f64 FPR128:$Rt),
|
|
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(store (v8f16 FPR128:$Rt),
|
|
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(store (v8bf16 FPR128:$Rt),
|
|
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
|
|
}
|
|
|
|
} // AddedComplexity = 10
|
|
|
|
// unscaled i64 truncating stores
|
|
def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
|
|
def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
|
|
(STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
|
|
|
|
// Match stores from lane 0 to the appropriate subreg's store.
|
|
multiclass VecStoreULane0Pat<SDPatternOperator StoreOp,
|
|
ValueType VTy, ValueType STy,
|
|
SubRegIndex SubRegIdx, Instruction STR> {
|
|
defm : VecStoreLane0Pat<am_unscaled128, StoreOp, VTy, STy, SubRegIdx, simm9, STR>;
|
|
}
|
|
|
|
let AddedComplexity = 19 in {
|
|
defm : VecStoreULane0Pat<truncstorei16, v8i16, i32, hsub, STURHi>;
|
|
defm : VecStoreULane0Pat<store, v8f16, f16, hsub, STURHi>;
|
|
defm : VecStoreULane0Pat<store, v4i32, i32, ssub, STURSi>;
|
|
defm : VecStoreULane0Pat<store, v4f32, f32, ssub, STURSi>;
|
|
defm : VecStoreULane0Pat<store, v2i64, i64, dsub, STURDi>;
|
|
defm : VecStoreULane0Pat<store, v2f64, f64, dsub, STURDi>;
|
|
}
|
|
|
|
//---
|
|
// STR mnemonics fall back to STUR for negative or unaligned offsets.
|
|
def : InstAlias<"str $Rt, [$Rn, $offset]",
|
|
(STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
|
|
def : InstAlias<"str $Rt, [$Rn, $offset]",
|
|
(STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
|
|
def : InstAlias<"str $Rt, [$Rn, $offset]",
|
|
(STURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
|
|
def : InstAlias<"str $Rt, [$Rn, $offset]",
|
|
(STURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
|
|
def : InstAlias<"str $Rt, [$Rn, $offset]",
|
|
(STURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
|
|
def : InstAlias<"str $Rt, [$Rn, $offset]",
|
|
(STURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
|
|
def : InstAlias<"str $Rt, [$Rn, $offset]",
|
|
(STURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
|
|
|
|
def : InstAlias<"strb $Rt, [$Rn, $offset]",
|
|
(STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
|
|
def : InstAlias<"strh $Rt, [$Rn, $offset]",
|
|
(STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
|
|
|
|
//---
|
|
// (unscaled immediate, unprivileged)
|
|
defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">;
|
|
defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">;
|
|
|
|
defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">;
|
|
defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">;
|
|
|
|
//---
|
|
// (immediate pre-indexed)
|
|
def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32z, "str", pre_store, i32>;
|
|
def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64z, "str", pre_store, i64>;
|
|
def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8Op, "str", pre_store, untyped>;
|
|
def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16Op, "str", pre_store, f16>;
|
|
def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32Op, "str", pre_store, f32>;
|
|
def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64Op, "str", pre_store, f64>;
|
|
def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128Op, "str", pre_store, f128>;
|
|
|
|
def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32z, "strb", pre_truncsti8, i32>;
|
|
def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32z, "strh", pre_truncsti16, i32>;
|
|
|
|
// truncstore i64
|
|
def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
|
|
(STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
|
|
simm9:$off)>;
|
|
def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
|
|
(STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
|
|
simm9:$off)>;
|
|
def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
|
|
(STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
|
|
simm9:$off)>;
|
|
|
|
def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
|
|
def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
|
|
//---
|
|
// (immediate post-indexed)
|
|
def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32z, "str", post_store, i32>;
|
|
def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64z, "str", post_store, i64>;
|
|
def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8Op, "str", post_store, untyped>;
|
|
def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16Op, "str", post_store, f16>;
|
|
def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32Op, "str", post_store, f32>;
|
|
def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64Op, "str", post_store, f64>;
|
|
def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128Op, "str", post_store, f128>;
|
|
|
|
def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32z, "strb", post_truncsti8, i32>;
|
|
def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32z, "strh", post_truncsti16, i32>;
|
|
|
|
// truncstore i64
|
|
def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
|
|
(STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
|
|
simm9:$off)>;
|
|
def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
|
|
(STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
|
|
simm9:$off)>;
|
|
def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
|
|
(STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
|
|
simm9:$off)>;
|
|
|
|
def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
|
|
def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
|
|
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Load/store exclusive instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def LDARW : LoadAcquire <0b10, 1, 1, 0, 1, GPR32, "ldar">;
|
|
def LDARX : LoadAcquire <0b11, 1, 1, 0, 1, GPR64, "ldar">;
|
|
def LDARB : LoadAcquire <0b00, 1, 1, 0, 1, GPR32, "ldarb">;
|
|
def LDARH : LoadAcquire <0b01, 1, 1, 0, 1, GPR32, "ldarh">;
|
|
|
|
def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">;
|
|
def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">;
|
|
def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">;
|
|
def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">;
|
|
|
|
def LDXRW : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">;
|
|
def LDXRX : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">;
|
|
def LDXRB : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">;
|
|
def LDXRH : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">;
|
|
|
|
def STLRW : StoreRelease <0b10, 1, 0, 0, 1, GPR32, "stlr">;
|
|
def STLRX : StoreRelease <0b11, 1, 0, 0, 1, GPR64, "stlr">;
|
|
def STLRB : StoreRelease <0b00, 1, 0, 0, 1, GPR32, "stlrb">;
|
|
def STLRH : StoreRelease <0b01, 1, 0, 0, 1, GPR32, "stlrh">;
|
|
|
|
def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">;
|
|
def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">;
|
|
def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">;
|
|
def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">;
|
|
|
|
def STXRW : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">;
|
|
def STXRX : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">;
|
|
def STXRB : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">;
|
|
def STXRH : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">;
|
|
|
|
def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">;
|
|
def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">;
|
|
|
|
def LDXPW : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">;
|
|
def LDXPX : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">;
|
|
|
|
def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">;
|
|
def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">;
|
|
|
|
def STXPW : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">;
|
|
def STXPX : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">;
|
|
|
|
let Predicates = [HasLOR] in {
|
|
// v8.1a "Limited Order Region" extension load-acquire instructions
|
|
def LDLARW : LoadAcquire <0b10, 1, 1, 0, 0, GPR32, "ldlar">;
|
|
def LDLARX : LoadAcquire <0b11, 1, 1, 0, 0, GPR64, "ldlar">;
|
|
def LDLARB : LoadAcquire <0b00, 1, 1, 0, 0, GPR32, "ldlarb">;
|
|
def LDLARH : LoadAcquire <0b01, 1, 1, 0, 0, GPR32, "ldlarh">;
|
|
|
|
// v8.1a "Limited Order Region" extension store-release instructions
|
|
def STLLRW : StoreRelease <0b10, 1, 0, 0, 0, GPR32, "stllr">;
|
|
def STLLRX : StoreRelease <0b11, 1, 0, 0, 0, GPR64, "stllr">;
|
|
def STLLRB : StoreRelease <0b00, 1, 0, 0, 0, GPR32, "stllrb">;
|
|
def STLLRH : StoreRelease <0b01, 1, 0, 0, 0, GPR32, "stllrh">;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Scaled floating point to integer conversion instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>;
|
|
defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>;
|
|
defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>;
|
|
defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>;
|
|
defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>;
|
|
defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>;
|
|
defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>;
|
|
defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>;
|
|
defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", any_fp_to_sint>;
|
|
defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", any_fp_to_uint>;
|
|
defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", any_fp_to_sint>;
|
|
defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", any_fp_to_uint>;
|
|
|
|
multiclass FPToIntegerIntPats<Intrinsic round, string INST> {
|
|
def : Pat<(i32 (round f16:$Rn)), (!cast<Instruction>(INST # UWHr) $Rn)>;
|
|
def : Pat<(i64 (round f16:$Rn)), (!cast<Instruction>(INST # UXHr) $Rn)>;
|
|
def : Pat<(i32 (round f32:$Rn)), (!cast<Instruction>(INST # UWSr) $Rn)>;
|
|
def : Pat<(i64 (round f32:$Rn)), (!cast<Instruction>(INST # UXSr) $Rn)>;
|
|
def : Pat<(i32 (round f64:$Rn)), (!cast<Instruction>(INST # UWDr) $Rn)>;
|
|
def : Pat<(i64 (round f64:$Rn)), (!cast<Instruction>(INST # UXDr) $Rn)>;
|
|
|
|
def : Pat<(i32 (round (fmul f16:$Rn, fixedpoint_f16_i32:$scale))),
|
|
(!cast<Instruction>(INST # SWHri) $Rn, $scale)>;
|
|
def : Pat<(i64 (round (fmul f16:$Rn, fixedpoint_f16_i64:$scale))),
|
|
(!cast<Instruction>(INST # SXHri) $Rn, $scale)>;
|
|
def : Pat<(i32 (round (fmul f32:$Rn, fixedpoint_f32_i32:$scale))),
|
|
(!cast<Instruction>(INST # SWSri) $Rn, $scale)>;
|
|
def : Pat<(i64 (round (fmul f32:$Rn, fixedpoint_f32_i64:$scale))),
|
|
(!cast<Instruction>(INST # SXSri) $Rn, $scale)>;
|
|
def : Pat<(i32 (round (fmul f64:$Rn, fixedpoint_f64_i32:$scale))),
|
|
(!cast<Instruction>(INST # SWDri) $Rn, $scale)>;
|
|
def : Pat<(i64 (round (fmul f64:$Rn, fixedpoint_f64_i64:$scale))),
|
|
(!cast<Instruction>(INST # SXDri) $Rn, $scale)>;
|
|
}
|
|
|
|
defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzs, "FCVTZS">;
|
|
defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzu, "FCVTZU">;
|
|
|
|
multiclass FPToIntegerPats<SDNode to_int, SDNode round, string INST> {
|
|
def : Pat<(i32 (to_int (round f32:$Rn))),
|
|
(!cast<Instruction>(INST # UWSr) f32:$Rn)>;
|
|
def : Pat<(i64 (to_int (round f32:$Rn))),
|
|
(!cast<Instruction>(INST # UXSr) f32:$Rn)>;
|
|
def : Pat<(i32 (to_int (round f64:$Rn))),
|
|
(!cast<Instruction>(INST # UWDr) f64:$Rn)>;
|
|
def : Pat<(i64 (to_int (round f64:$Rn))),
|
|
(!cast<Instruction>(INST # UXDr) f64:$Rn)>;
|
|
}
|
|
|
|
defm : FPToIntegerPats<fp_to_sint, fceil, "FCVTPS">;
|
|
defm : FPToIntegerPats<fp_to_uint, fceil, "FCVTPU">;
|
|
defm : FPToIntegerPats<fp_to_sint, ffloor, "FCVTMS">;
|
|
defm : FPToIntegerPats<fp_to_uint, ffloor, "FCVTMU">;
|
|
defm : FPToIntegerPats<fp_to_sint, ftrunc, "FCVTZS">;
|
|
defm : FPToIntegerPats<fp_to_uint, ftrunc, "FCVTZU">;
|
|
defm : FPToIntegerPats<fp_to_sint, fround, "FCVTAS">;
|
|
defm : FPToIntegerPats<fp_to_uint, fround, "FCVTAU">;
|
|
|
|
let Predicates = [HasFullFP16] in {
|
|
def : Pat<(i32 (lround f16:$Rn)),
|
|
(!cast<Instruction>(FCVTASUWHr) f16:$Rn)>;
|
|
def : Pat<(i64 (lround f16:$Rn)),
|
|
(!cast<Instruction>(FCVTASUXHr) f16:$Rn)>;
|
|
def : Pat<(i64 (llround f16:$Rn)),
|
|
(!cast<Instruction>(FCVTASUXHr) f16:$Rn)>;
|
|
}
|
|
def : Pat<(i32 (lround f32:$Rn)),
|
|
(!cast<Instruction>(FCVTASUWSr) f32:$Rn)>;
|
|
def : Pat<(i32 (lround f64:$Rn)),
|
|
(!cast<Instruction>(FCVTASUWDr) f64:$Rn)>;
|
|
def : Pat<(i64 (lround f32:$Rn)),
|
|
(!cast<Instruction>(FCVTASUXSr) f32:$Rn)>;
|
|
def : Pat<(i64 (lround f64:$Rn)),
|
|
(!cast<Instruction>(FCVTASUXDr) f64:$Rn)>;
|
|
def : Pat<(i64 (llround f32:$Rn)),
|
|
(!cast<Instruction>(FCVTASUXSr) f32:$Rn)>;
|
|
def : Pat<(i64 (llround f64:$Rn)),
|
|
(!cast<Instruction>(FCVTASUXDr) f64:$Rn)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Scaled integer to floating point conversion instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm SCVTF : IntegerToFP<0, "scvtf", any_sint_to_fp>;
|
|
defm UCVTF : IntegerToFP<1, "ucvtf", any_uint_to_fp>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Unscaled integer to floating point conversion instruction.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm FMOV : UnscaledConversion<"fmov">;
|
|
|
|
// Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable
|
|
let isReMaterializable = 1, isCodeGenOnly = 1, isAsCheapAsAMove = 1 in {
|
|
def FMOVH0 : Pseudo<(outs FPR16:$Rd), (ins), [(set f16:$Rd, (fpimm0))]>,
|
|
Sched<[WriteF]>, Requires<[HasFullFP16]>;
|
|
def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>,
|
|
Sched<[WriteF]>;
|
|
def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>,
|
|
Sched<[WriteF]>;
|
|
}
|
|
// Similarly add aliases
|
|
def : InstAlias<"fmov $Rd, #0.0", (FMOVWHr FPR16:$Rd, WZR), 0>,
|
|
Requires<[HasFullFP16]>;
|
|
def : InstAlias<"fmov $Rd, #0.0", (FMOVWSr FPR32:$Rd, WZR), 0>;
|
|
def : InstAlias<"fmov $Rd, #0.0", (FMOVXDr FPR64:$Rd, XZR), 0>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating point conversion instruction.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm FCVT : FPConversion<"fcvt">;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating point single operand instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm FABS : SingleOperandFPData<0b0001, "fabs", fabs>;
|
|
defm FMOV : SingleOperandFPData<0b0000, "fmov">;
|
|
defm FNEG : SingleOperandFPData<0b0010, "fneg", fneg>;
|
|
defm FRINTA : SingleOperandFPData<0b1100, "frinta", fround>;
|
|
defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>;
|
|
defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>;
|
|
defm FRINTN : SingleOperandFPData<0b1000, "frintn", int_aarch64_neon_frintn>;
|
|
defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>;
|
|
|
|
def : Pat<(v1f64 (int_aarch64_neon_frintn (v1f64 FPR64:$Rn))),
|
|
(FRINTNDr FPR64:$Rn)>;
|
|
|
|
defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>;
|
|
defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>;
|
|
|
|
let SchedRW = [WriteFDiv] in {
|
|
defm FSQRT : SingleOperandFPData<0b0011, "fsqrt", fsqrt>;
|
|
}
|
|
|
|
let Predicates = [HasFRInt3264] in {
|
|
defm FRINT32Z : FRIntNNT<0b00, "frint32z">;
|
|
defm FRINT64Z : FRIntNNT<0b10, "frint64z">;
|
|
defm FRINT32X : FRIntNNT<0b01, "frint32x">;
|
|
defm FRINT64X : FRIntNNT<0b11, "frint64x">;
|
|
} // HasFRInt3264
|
|
|
|
let Predicates = [HasFullFP16] in {
|
|
def : Pat<(i32 (lrint f16:$Rn)),
|
|
(FCVTZSUWHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
|
|
def : Pat<(i64 (lrint f16:$Rn)),
|
|
(FCVTZSUXHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
|
|
def : Pat<(i64 (llrint f16:$Rn)),
|
|
(FCVTZSUXHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
|
|
}
|
|
def : Pat<(i32 (lrint f32:$Rn)),
|
|
(FCVTZSUWSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
|
|
def : Pat<(i32 (lrint f64:$Rn)),
|
|
(FCVTZSUWDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;
|
|
def : Pat<(i64 (lrint f32:$Rn)),
|
|
(FCVTZSUXSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
|
|
def : Pat<(i64 (lrint f64:$Rn)),
|
|
(FCVTZSUXDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;
|
|
def : Pat<(i64 (llrint f32:$Rn)),
|
|
(FCVTZSUXSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
|
|
def : Pat<(i64 (llrint f64:$Rn)),
|
|
(FCVTZSUXDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating point two operand instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm FADD : TwoOperandFPData<0b0010, "fadd", fadd>;
|
|
let SchedRW = [WriteFDiv] in {
|
|
defm FDIV : TwoOperandFPData<0b0001, "fdiv", fdiv>;
|
|
}
|
|
defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", fmaxnum>;
|
|
defm FMAX : TwoOperandFPData<0b0100, "fmax", fmaximum>;
|
|
defm FMINNM : TwoOperandFPData<0b0111, "fminnm", fminnum>;
|
|
defm FMIN : TwoOperandFPData<0b0101, "fmin", fminimum>;
|
|
let SchedRW = [WriteFMul] in {
|
|
defm FMUL : TwoOperandFPData<0b0000, "fmul", fmul>;
|
|
defm FNMUL : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>;
|
|
}
|
|
defm FSUB : TwoOperandFPData<0b0011, "fsub", fsub>;
|
|
|
|
def : Pat<(v1f64 (fmaximum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
|
|
(FMAXDrr FPR64:$Rn, FPR64:$Rm)>;
|
|
def : Pat<(v1f64 (fminimum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
|
|
(FMINDrr FPR64:$Rn, FPR64:$Rm)>;
|
|
def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
|
|
(FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>;
|
|
def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
|
|
(FMINNMDrr FPR64:$Rn, FPR64:$Rm)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating point three operand instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm FMADD : ThreeOperandFPData<0, 0, "fmadd", fma>;
|
|
defm FMSUB : ThreeOperandFPData<0, 1, "fmsub",
|
|
TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >;
|
|
defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd",
|
|
TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >;
|
|
defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub",
|
|
TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >;
|
|
|
|
// The following def pats catch the case where the LHS of an FMA is negated.
|
|
// The TriOpFrag above catches the case where the middle operand is negated.
|
|
|
|
// N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike
|
|
// the NEON variant.
|
|
|
|
// Here we handle first -(a + b*c) for FNMADD:
|
|
|
|
let Predicates = [HasNEON, HasFullFP16] in
|
|
def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, FPR16:$Ra)),
|
|
(FMSUBHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>;
|
|
|
|
def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)),
|
|
(FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
|
|
|
|
def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)),
|
|
(FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
|
|
|
|
// Now it's time for "(-a) + (-b)*c"
|
|
|
|
let Predicates = [HasNEON, HasFullFP16] in
|
|
def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, (fneg FPR16:$Ra))),
|
|
(FNMADDHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>;
|
|
|
|
def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))),
|
|
(FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
|
|
|
|
def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))),
|
|
(FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating point comparison instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm FCMPE : FPComparison<1, "fcmpe", AArch64strict_fcmpe>;
|
|
defm FCMP : FPComparison<0, "fcmp", AArch64any_fcmp>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating point conditional comparison instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm FCCMPE : FPCondComparison<1, "fccmpe">;
|
|
defm FCCMP : FPCondComparison<0, "fccmp", AArch64fccmp>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating point conditional select instruction.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm FCSEL : FPCondSelect<"fcsel">;
|
|
|
|
// CSEL instructions providing f128 types need to be handled by a
|
|
// pseudo-instruction since the eventual code will need to introduce basic
|
|
// blocks and control flow.
|
|
def F128CSEL : Pseudo<(outs FPR128:$Rd),
|
|
(ins FPR128:$Rn, FPR128:$Rm, ccode:$cond),
|
|
[(set (f128 FPR128:$Rd),
|
|
(AArch64csel FPR128:$Rn, FPR128:$Rm,
|
|
(i32 imm:$cond), NZCV))]> {
|
|
let Uses = [NZCV];
|
|
let usesCustomInserter = 1;
|
|
let hasNoSchedulingInfo = 1;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instructions used for emitting unwind opcodes on ARM64 Windows.
|
|
//===----------------------------------------------------------------------===//
|
|
let isPseudo = 1 in {
|
|
def SEH_StackAlloc : Pseudo<(outs), (ins i32imm:$size), []>, Sched<[]>;
|
|
def SEH_SaveFPLR : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
|
|
def SEH_SaveFPLR_X : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
|
|
def SEH_SaveReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
|
|
def SEH_SaveReg_X : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
|
|
def SEH_SaveRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
|
|
def SEH_SaveRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
|
|
def SEH_SaveFReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
|
|
def SEH_SaveFReg_X : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
|
|
def SEH_SaveFRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
|
|
def SEH_SaveFRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
|
|
def SEH_SetFP : Pseudo<(outs), (ins), []>, Sched<[]>;
|
|
def SEH_AddFP : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
|
|
def SEH_Nop : Pseudo<(outs), (ins), []>, Sched<[]>;
|
|
def SEH_PrologEnd : Pseudo<(outs), (ins), []>, Sched<[]>;
|
|
def SEH_EpilogStart : Pseudo<(outs), (ins), []>, Sched<[]>;
|
|
def SEH_EpilogEnd : Pseudo<(outs), (ins), []>, Sched<[]>;
|
|
}
|
|
|
|
// Pseudo instructions for Windows EH
|
|
//===----------------------------------------------------------------------===//
|
|
let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
|
|
isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1, isPseudo = 1 in {
|
|
def CLEANUPRET : Pseudo<(outs), (ins), [(cleanupret)]>, Sched<[]>;
|
|
let usesCustomInserter = 1 in
|
|
def CATCHRET : Pseudo<(outs), (ins am_brcond:$dst, am_brcond:$src), [(catchret bb:$dst, bb:$src)]>,
|
|
Sched<[]>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating point immediate move.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
|
|
defm FMOV : FPMoveImmediate<"fmov">;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Advanced SIMD two vector instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm UABDL : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl",
|
|
AArch64uabd>;
|
|
// Match UABDL in log2-shuffle patterns.
|
|
def : Pat<(abs (v8i16 (sub (zext (v8i8 V64:$opA)),
|
|
(zext (v8i8 V64:$opB))))),
|
|
(UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
|
|
def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
|
|
(v8i16 (add (sub (zext (v8i8 V64:$opA)),
|
|
(zext (v8i8 V64:$opB))),
|
|
(AArch64vashr v8i16:$src, (i32 15))))),
|
|
(UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
|
|
def : Pat<(abs (v8i16 (sub (zext (extract_high_v16i8 V128:$opA)),
|
|
(zext (extract_high_v16i8 V128:$opB))))),
|
|
(UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
|
|
def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
|
|
(v8i16 (add (sub (zext (extract_high_v16i8 V128:$opA)),
|
|
(zext (extract_high_v16i8 V128:$opB))),
|
|
(AArch64vashr v8i16:$src, (i32 15))))),
|
|
(UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
|
|
def : Pat<(abs (v4i32 (sub (zext (v4i16 V64:$opA)),
|
|
(zext (v4i16 V64:$opB))))),
|
|
(UABDLv4i16_v4i32 V64:$opA, V64:$opB)>;
|
|
def : Pat<(abs (v4i32 (sub (zext (extract_high_v8i16 V128:$opA)),
|
|
(zext (extract_high_v8i16 V128:$opB))))),
|
|
(UABDLv8i16_v4i32 V128:$opA, V128:$opB)>;
|
|
def : Pat<(abs (v2i64 (sub (zext (v2i32 V64:$opA)),
|
|
(zext (v2i32 V64:$opB))))),
|
|
(UABDLv2i32_v2i64 V64:$opA, V64:$opB)>;
|
|
def : Pat<(abs (v2i64 (sub (zext (extract_high_v4i32 V128:$opA)),
|
|
(zext (extract_high_v4i32 V128:$opB))))),
|
|
(UABDLv4i32_v2i64 V128:$opA, V128:$opB)>;
|
|
|
|
defm ABS : SIMDTwoVectorBHSD<0, 0b01011, "abs", abs>;
|
|
defm CLS : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>;
|
|
defm CLZ : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>;
|
|
defm CMEQ : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>;
|
|
defm CMGE : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>;
|
|
defm CMGT : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>;
|
|
defm CMLE : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>;
|
|
defm CMLT : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>;
|
|
defm CNT : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>;
|
|
defm FABS : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>;
|
|
|
|
defm FCMEQ : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
|
|
defm FCMGE : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
|
|
defm FCMGT : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
|
|
defm FCMLE : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
|
|
defm FCMLT : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
|
|
defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>;
|
|
defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>;
|
|
defm FCVTL : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">;
|
|
def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))),
|
|
(FCVTLv4i16 V64:$Rn)>;
|
|
def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn),
|
|
(i64 4)))),
|
|
(FCVTLv8i16 V128:$Rn)>;
|
|
def : Pat<(v2f64 (fpextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>;
|
|
|
|
def : Pat<(v4f32 (fpextend (v4f16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>;
|
|
|
|
defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>;
|
|
defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>;
|
|
defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>;
|
|
defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>;
|
|
defm FCVTN : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">;
|
|
def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))),
|
|
(FCVTNv4i16 V128:$Rn)>;
|
|
def : Pat<(concat_vectors V64:$Rd,
|
|
(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))),
|
|
(FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
|
|
def : Pat<(v2f32 (fpround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>;
|
|
def : Pat<(v4f16 (fpround (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>;
|
|
def : Pat<(concat_vectors V64:$Rd, (v2f32 (fpround (v2f64 V128:$Rn)))),
|
|
(FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
|
|
defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>;
|
|
defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>;
|
|
defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn",
|
|
int_aarch64_neon_fcvtxn>;
|
|
defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>;
|
|
defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>;
|
|
|
|
def : Pat<(v4i16 (int_aarch64_neon_fcvtzs v4f16:$Rn)), (FCVTZSv4f16 $Rn)>;
|
|
def : Pat<(v8i16 (int_aarch64_neon_fcvtzs v8f16:$Rn)), (FCVTZSv8f16 $Rn)>;
|
|
def : Pat<(v2i32 (int_aarch64_neon_fcvtzs v2f32:$Rn)), (FCVTZSv2f32 $Rn)>;
|
|
def : Pat<(v4i32 (int_aarch64_neon_fcvtzs v4f32:$Rn)), (FCVTZSv4f32 $Rn)>;
|
|
def : Pat<(v2i64 (int_aarch64_neon_fcvtzs v2f64:$Rn)), (FCVTZSv2f64 $Rn)>;
|
|
|
|
def : Pat<(v4i16 (int_aarch64_neon_fcvtzu v4f16:$Rn)), (FCVTZUv4f16 $Rn)>;
|
|
def : Pat<(v8i16 (int_aarch64_neon_fcvtzu v8f16:$Rn)), (FCVTZUv8f16 $Rn)>;
|
|
def : Pat<(v2i32 (int_aarch64_neon_fcvtzu v2f32:$Rn)), (FCVTZUv2f32 $Rn)>;
|
|
def : Pat<(v4i32 (int_aarch64_neon_fcvtzu v4f32:$Rn)), (FCVTZUv4f32 $Rn)>;
|
|
def : Pat<(v2i64 (int_aarch64_neon_fcvtzu v2f64:$Rn)), (FCVTZUv2f64 $Rn)>;
|
|
|
|
defm FNEG : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>;
|
|
defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>;
|
|
defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", fround>;
|
|
defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>;
|
|
defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>;
|
|
defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", int_aarch64_neon_frintn>;
|
|
defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>;
|
|
defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>;
|
|
defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>;
|
|
|
|
let Predicates = [HasFRInt3264] in {
|
|
defm FRINT32Z : FRIntNNTVector<0, 0, "frint32z">;
|
|
defm FRINT64Z : FRIntNNTVector<0, 1, "frint64z">;
|
|
defm FRINT32X : FRIntNNTVector<1, 0, "frint32x">;
|
|
defm FRINT64X : FRIntNNTVector<1, 1, "frint64x">;
|
|
} // HasFRInt3264
|
|
|
|
defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>;
|
|
defm FSQRT : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>;
|
|
defm NEG : SIMDTwoVectorBHSD<1, 0b01011, "neg",
|
|
UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
|
|
defm NOT : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>;
|
|
// Aliases for MVN -> NOT.
|
|
def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}",
|
|
(NOTv8i8 V64:$Vd, V64:$Vn)>;
|
|
def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}",
|
|
(NOTv16i8 V128:$Vd, V128:$Vn)>;
|
|
|
|
def : Pat<(AArch64neg (v8i8 V64:$Rn)), (NEGv8i8 V64:$Rn)>;
|
|
def : Pat<(AArch64neg (v16i8 V128:$Rn)), (NEGv16i8 V128:$Rn)>;
|
|
def : Pat<(AArch64neg (v4i16 V64:$Rn)), (NEGv4i16 V64:$Rn)>;
|
|
def : Pat<(AArch64neg (v8i16 V128:$Rn)), (NEGv8i16 V128:$Rn)>;
|
|
def : Pat<(AArch64neg (v2i32 V64:$Rn)), (NEGv2i32 V64:$Rn)>;
|
|
def : Pat<(AArch64neg (v4i32 V128:$Rn)), (NEGv4i32 V128:$Rn)>;
|
|
def : Pat<(AArch64neg (v2i64 V128:$Rn)), (NEGv2i64 V128:$Rn)>;
|
|
|
|
def : Pat<(vnot (v4i16 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
|
|
def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
|
|
def : Pat<(vnot (v2i32 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
|
|
def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
|
|
def : Pat<(vnot (v1i64 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
|
|
def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
|
|
|
|
defm RBIT : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", int_aarch64_neon_rbit>;
|
|
defm REV16 : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>;
|
|
defm REV32 : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>;
|
|
defm REV64 : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>;
|
|
defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp",
|
|
BinOpFrag<(add node:$LHS, (int_aarch64_neon_saddlp node:$RHS))> >;
|
|
defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_aarch64_neon_saddlp>;
|
|
defm SCVTF : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>;
|
|
defm SHLL : SIMDVectorLShiftLongBySizeBHS;
|
|
defm SQABS : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
|
|
defm SQNEG : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
|
|
defm SQXTN : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>;
|
|
defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>;
|
|
defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>;
|
|
defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp",
|
|
BinOpFrag<(add node:$LHS, (int_aarch64_neon_uaddlp node:$RHS))> >;
|
|
defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp",
|
|
int_aarch64_neon_uaddlp>;
|
|
defm UCVTF : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>;
|
|
defm UQXTN : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>;
|
|
defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>;
|
|
defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>;
|
|
defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>;
|
|
defm XTN : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>;
|
|
|
|
def : Pat<(v4f16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>;
|
|
def : Pat<(v4f16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>;
|
|
def : Pat<(v4bf16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>;
|
|
def : Pat<(v4bf16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>;
|
|
def : Pat<(v8f16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
|
|
def : Pat<(v8f16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
|
|
def : Pat<(v8bf16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
|
|
def : Pat<(v8bf16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
|
|
def : Pat<(v2f32 (AArch64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>;
|
|
def : Pat<(v4f32 (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>;
|
|
|
|
// Patterns for vector long shift (by element width). These need to match all
|
|
// three of zext, sext and anyext so it's easier to pull the patterns out of the
|
|
// definition.
|
|
multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> {
|
|
def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)),
|
|
(SHLLv8i8 V64:$Rn)>;
|
|
def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)),
|
|
(SHLLv16i8 V128:$Rn)>;
|
|
def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)),
|
|
(SHLLv4i16 V64:$Rn)>;
|
|
def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)),
|
|
(SHLLv8i16 V128:$Rn)>;
|
|
def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)),
|
|
(SHLLv2i32 V64:$Rn)>;
|
|
def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)),
|
|
(SHLLv4i32 V128:$Rn)>;
|
|
}
|
|
|
|
defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>;
|
|
defm : SIMDVectorLShiftLongBySizeBHSPats<zext>;
|
|
defm : SIMDVectorLShiftLongBySizeBHSPats<sext>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Advanced SIMD three vector instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm ADD : SIMDThreeSameVector<0, 0b10000, "add", add>;
|
|
defm ADDP : SIMDThreeSameVector<0, 0b10111, "addp", int_aarch64_neon_addp>;
|
|
defm CMEQ : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>;
|
|
defm CMGE : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>;
|
|
defm CMGT : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>;
|
|
defm CMHI : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>;
|
|
defm CMHS : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>;
|
|
defm CMTST : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>;
|
|
defm FABD : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>;
|
|
let Predicates = [HasNEON] in {
|
|
foreach VT = [ v2f32, v4f32, v2f64 ] in
|
|
def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
|
|
}
|
|
let Predicates = [HasNEON, HasFullFP16] in {
|
|
foreach VT = [ v4f16, v8f16 ] in
|
|
def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
|
|
}
|
|
defm FACGE : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",int_aarch64_neon_facge>;
|
|
defm FACGT : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",int_aarch64_neon_facgt>;
|
|
defm FADDP : SIMDThreeSameVectorFP<1,0,0b010,"faddp",int_aarch64_neon_faddp>;
|
|
defm FADD : SIMDThreeSameVectorFP<0,0,0b010,"fadd", fadd>;
|
|
defm FCMEQ : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
|
|
defm FCMGE : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
|
|
defm FCMGT : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
|
|
defm FDIV : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", fdiv>;
|
|
defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>;
|
|
defm FMAXNM : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", fmaxnum>;
|
|
defm FMAXP : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>;
|
|
defm FMAX : SIMDThreeSameVectorFP<0,0,0b110,"fmax", fmaximum>;
|
|
defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>;
|
|
defm FMINNM : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", fminnum>;
|
|
defm FMINP : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>;
|
|
defm FMIN : SIMDThreeSameVectorFP<0,1,0b110,"fmin", fminimum>;
|
|
|
|
// NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the
|
|
// instruction expects the addend first, while the fma intrinsic puts it last.
|
|
defm FMLA : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla",
|
|
TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
|
|
defm FMLS : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls",
|
|
TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
|
|
|
|
defm FMULX : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>;
|
|
defm FMUL : SIMDThreeSameVectorFP<1,0,0b011,"fmul", fmul>;
|
|
defm FRECPS : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>;
|
|
defm FRSQRTS : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>;
|
|
defm FSUB : SIMDThreeSameVectorFP<0,1,0b010,"fsub", fsub>;
|
|
|
|
// MLA and MLS are generated in MachineCombine
|
|
defm MLA : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla", null_frag>;
|
|
defm MLS : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls", null_frag>;
|
|
|
|
defm MUL : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>;
|
|
defm PMUL : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>;
|
|
defm SABA : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba",
|
|
TriOpFrag<(add node:$LHS, (AArch64sabd node:$MHS, node:$RHS))> >;
|
|
defm SABD : SIMDThreeSameVectorBHS<0,0b01110,"sabd", AArch64sabd>;
|
|
defm SHADD : SIMDThreeSameVectorBHS<0,0b00000,"shadd", AArch64shadd>;
|
|
defm SHSUB : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>;
|
|
defm SMAXP : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>;
|
|
defm SMAX : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>;
|
|
defm SMINP : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>;
|
|
defm SMIN : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>;
|
|
defm SQADD : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>;
|
|
defm SQDMULH : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>;
|
|
defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>;
|
|
defm SQRSHL : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>;
|
|
defm SQSHL : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>;
|
|
defm SQSUB : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>;
|
|
defm SRHADD : SIMDThreeSameVectorBHS<0,0b00010,"srhadd", AArch64srhadd>;
|
|
defm SRSHL : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>;
|
|
defm SSHL : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>;
|
|
defm SUB : SIMDThreeSameVector<1,0b10000,"sub", sub>;
|
|
defm UABA : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba",
|
|
TriOpFrag<(add node:$LHS, (AArch64uabd node:$MHS, node:$RHS))> >;
|
|
defm UABD : SIMDThreeSameVectorBHS<1,0b01110,"uabd", AArch64uabd>;
|
|
defm UHADD : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", AArch64uhadd>;
|
|
defm UHSUB : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>;
|
|
defm UMAXP : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>;
|
|
defm UMAX : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>;
|
|
defm UMINP : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>;
|
|
defm UMIN : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>;
|
|
defm UQADD : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>;
|
|
defm UQRSHL : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>;
|
|
defm UQSHL : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>;
|
|
defm UQSUB : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>;
|
|
defm URHADD : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", AArch64urhadd>;
|
|
defm URSHL : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>;
|
|
defm USHL : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>;
|
|
defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah",
|
|
int_aarch64_neon_sqadd>;
|
|
defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh",
|
|
int_aarch64_neon_sqsub>;
|
|
|
|
// Extra saturate patterns, other than the intrinsics matches above
|
|
defm : SIMDThreeSameVectorExtraPatterns<"SQADD", saddsat>;
|
|
defm : SIMDThreeSameVectorExtraPatterns<"UQADD", uaddsat>;
|
|
defm : SIMDThreeSameVectorExtraPatterns<"SQSUB", ssubsat>;
|
|
defm : SIMDThreeSameVectorExtraPatterns<"UQSUB", usubsat>;
|
|
|
|
defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>;
|
|
defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic",
|
|
BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >;
|
|
defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>;
|
|
defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn",
|
|
BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >;
|
|
defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>;
|
|
|
|
// Pseudo bitwise select pattern BSP.
|
|
// It is expanded into BSL/BIT/BIF after register allocation.
|
|
defm BSP : SIMDLogicalThreeVectorPseudo<TriOpFrag<(or (and node:$LHS, node:$MHS),
|
|
(and (vnot node:$LHS), node:$RHS))>>;
|
|
defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl">;
|
|
defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", AArch64bit>;
|
|
defm BIF : SIMDLogicalThreeVectorTied<1, 0b11, "bif">;
|
|
|
|
def : Pat<(AArch64bsp (v8i8 V64:$Rd), V64:$Rn, V64:$Rm),
|
|
(BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
|
|
def : Pat<(AArch64bsp (v4i16 V64:$Rd), V64:$Rn, V64:$Rm),
|
|
(BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
|
|
def : Pat<(AArch64bsp (v2i32 V64:$Rd), V64:$Rn, V64:$Rm),
|
|
(BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
|
|
def : Pat<(AArch64bsp (v1i64 V64:$Rd), V64:$Rn, V64:$Rm),
|
|
(BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
|
|
|
|
def : Pat<(AArch64bsp (v16i8 V128:$Rd), V128:$Rn, V128:$Rm),
|
|
(BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(AArch64bsp (v8i16 V128:$Rd), V128:$Rn, V128:$Rm),
|
|
(BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(AArch64bsp (v4i32 V128:$Rd), V128:$Rn, V128:$Rm),
|
|
(BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(AArch64bsp (v2i64 V128:$Rd), V128:$Rn, V128:$Rm),
|
|
(BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
|
|
|
|
def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}",
|
|
(ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>;
|
|
def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}",
|
|
(ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
|
|
def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}",
|
|
(ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
|
|
def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}",
|
|
(ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
|
|
|
|
def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}",
|
|
(ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>;
|
|
def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}",
|
|
(ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
|
|
def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}",
|
|
(ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
|
|
def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}",
|
|
(ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
|
|
|
|
def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" #
|
|
"|cmls.8b\t$dst, $src1, $src2}",
|
|
(CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" #
|
|
"|cmls.16b\t$dst, $src1, $src2}",
|
|
(CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" #
|
|
"|cmls.4h\t$dst, $src1, $src2}",
|
|
(CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" #
|
|
"|cmls.8h\t$dst, $src1, $src2}",
|
|
(CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" #
|
|
"|cmls.2s\t$dst, $src1, $src2}",
|
|
(CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" #
|
|
"|cmls.4s\t$dst, $src1, $src2}",
|
|
(CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" #
|
|
"|cmls.2d\t$dst, $src1, $src2}",
|
|
(CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
|
|
def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" #
|
|
"|cmlo.8b\t$dst, $src1, $src2}",
|
|
(CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" #
|
|
"|cmlo.16b\t$dst, $src1, $src2}",
|
|
(CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" #
|
|
"|cmlo.4h\t$dst, $src1, $src2}",
|
|
(CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" #
|
|
"|cmlo.8h\t$dst, $src1, $src2}",
|
|
(CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" #
|
|
"|cmlo.2s\t$dst, $src1, $src2}",
|
|
(CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" #
|
|
"|cmlo.4s\t$dst, $src1, $src2}",
|
|
(CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" #
|
|
"|cmlo.2d\t$dst, $src1, $src2}",
|
|
(CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
|
|
def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" #
|
|
"|cmle.8b\t$dst, $src1, $src2}",
|
|
(CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" #
|
|
"|cmle.16b\t$dst, $src1, $src2}",
|
|
(CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" #
|
|
"|cmle.4h\t$dst, $src1, $src2}",
|
|
(CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" #
|
|
"|cmle.8h\t$dst, $src1, $src2}",
|
|
(CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" #
|
|
"|cmle.2s\t$dst, $src1, $src2}",
|
|
(CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" #
|
|
"|cmle.4s\t$dst, $src1, $src2}",
|
|
(CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" #
|
|
"|cmle.2d\t$dst, $src1, $src2}",
|
|
(CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
|
|
def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" #
|
|
"|cmlt.8b\t$dst, $src1, $src2}",
|
|
(CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" #
|
|
"|cmlt.16b\t$dst, $src1, $src2}",
|
|
(CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" #
|
|
"|cmlt.4h\t$dst, $src1, $src2}",
|
|
(CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" #
|
|
"|cmlt.8h\t$dst, $src1, $src2}",
|
|
(CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" #
|
|
"|cmlt.2s\t$dst, $src1, $src2}",
|
|
(CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" #
|
|
"|cmlt.4s\t$dst, $src1, $src2}",
|
|
(CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" #
|
|
"|cmlt.2d\t$dst, $src1, $src2}",
|
|
(CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
|
|
let Predicates = [HasNEON, HasFullFP16] in {
|
|
def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" #
|
|
"|fcmle.4h\t$dst, $src1, $src2}",
|
|
(FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" #
|
|
"|fcmle.8h\t$dst, $src1, $src2}",
|
|
(FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
}
|
|
def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" #
|
|
"|fcmle.2s\t$dst, $src1, $src2}",
|
|
(FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" #
|
|
"|fcmle.4s\t$dst, $src1, $src2}",
|
|
(FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" #
|
|
"|fcmle.2d\t$dst, $src1, $src2}",
|
|
(FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
|
|
let Predicates = [HasNEON, HasFullFP16] in {
|
|
def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" #
|
|
"|fcmlt.4h\t$dst, $src1, $src2}",
|
|
(FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" #
|
|
"|fcmlt.8h\t$dst, $src1, $src2}",
|
|
(FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
}
|
|
def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" #
|
|
"|fcmlt.2s\t$dst, $src1, $src2}",
|
|
(FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" #
|
|
"|fcmlt.4s\t$dst, $src1, $src2}",
|
|
(FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" #
|
|
"|fcmlt.2d\t$dst, $src1, $src2}",
|
|
(FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
|
|
let Predicates = [HasNEON, HasFullFP16] in {
|
|
def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" #
|
|
"|facle.4h\t$dst, $src1, $src2}",
|
|
(FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" #
|
|
"|facle.8h\t$dst, $src1, $src2}",
|
|
(FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
}
|
|
def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" #
|
|
"|facle.2s\t$dst, $src1, $src2}",
|
|
(FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" #
|
|
"|facle.4s\t$dst, $src1, $src2}",
|
|
(FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" #
|
|
"|facle.2d\t$dst, $src1, $src2}",
|
|
(FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
|
|
let Predicates = [HasNEON, HasFullFP16] in {
|
|
def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" #
|
|
"|faclt.4h\t$dst, $src1, $src2}",
|
|
(FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" #
|
|
"|faclt.8h\t$dst, $src1, $src2}",
|
|
(FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
}
|
|
def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" #
|
|
"|faclt.2s\t$dst, $src1, $src2}",
|
|
(FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
|
|
def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" #
|
|
"|faclt.4s\t$dst, $src1, $src2}",
|
|
(FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" #
|
|
"|faclt.2d\t$dst, $src1, $src2}",
|
|
(FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Advanced SIMD three scalar instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm ADD : SIMDThreeScalarD<0, 0b10000, "add", add>;
|
|
defm CMEQ : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>;
|
|
defm CMGE : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>;
|
|
defm CMGT : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>;
|
|
defm CMHI : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>;
|
|
defm CMHS : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>;
|
|
defm CMTST : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>;
|
|
defm FABD : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>;
|
|
def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
|
|
(FABD64 FPR64:$Rn, FPR64:$Rm)>;
|
|
let Predicates = [HasFullFP16] in {
|
|
def : Pat<(fabs (fsub f16:$Rn, f16:$Rm)), (FABD16 f16:$Rn, f16:$Rm)>;
|
|
}
|
|
def : Pat<(fabs (fsub f32:$Rn, f32:$Rm)), (FABD32 f32:$Rn, f32:$Rm)>;
|
|
def : Pat<(fabs (fsub f64:$Rn, f64:$Rm)), (FABD64 f64:$Rn, f64:$Rm)>;
|
|
defm FACGE : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge",
|
|
int_aarch64_neon_facge>;
|
|
defm FACGT : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt",
|
|
int_aarch64_neon_facgt>;
|
|
defm FCMEQ : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
|
|
defm FCMGE : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
|
|
defm FCMGT : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
|
|
defm FMULX : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx>;
|
|
defm FRECPS : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps>;
|
|
defm FRSQRTS : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts>;
|
|
defm SQADD : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>;
|
|
defm SQDMULH : SIMDThreeScalarHS< 0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>;
|
|
defm SQRDMULH : SIMDThreeScalarHS< 1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
|
|
defm SQRSHL : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>;
|
|
defm SQSHL : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>;
|
|
defm SQSUB : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>;
|
|
defm SRSHL : SIMDThreeScalarD< 0, 0b01010, "srshl", int_aarch64_neon_srshl>;
|
|
defm SSHL : SIMDThreeScalarD< 0, 0b01000, "sshl", int_aarch64_neon_sshl>;
|
|
defm SUB : SIMDThreeScalarD< 1, 0b10000, "sub", sub>;
|
|
defm UQADD : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>;
|
|
defm UQRSHL : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>;
|
|
defm UQSHL : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>;
|
|
defm UQSUB : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>;
|
|
defm URSHL : SIMDThreeScalarD< 1, 0b01010, "urshl", int_aarch64_neon_urshl>;
|
|
defm USHL : SIMDThreeScalarD< 1, 0b01000, "ushl", int_aarch64_neon_ushl>;
|
|
let Predicates = [HasRDM] in {
|
|
defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">;
|
|
defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">;
|
|
def : Pat<(i32 (int_aarch64_neon_sqadd
|
|
(i32 FPR32:$Rd),
|
|
(i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
|
|
(i32 FPR32:$Rm))))),
|
|
(SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
|
|
def : Pat<(i32 (int_aarch64_neon_sqsub
|
|
(i32 FPR32:$Rd),
|
|
(i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
|
|
(i32 FPR32:$Rm))))),
|
|
(SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
|
|
}
|
|
|
|
def : InstAlias<"cmls $dst, $src1, $src2",
|
|
(CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
|
|
def : InstAlias<"cmle $dst, $src1, $src2",
|
|
(CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
|
|
def : InstAlias<"cmlo $dst, $src1, $src2",
|
|
(CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
|
|
def : InstAlias<"cmlt $dst, $src1, $src2",
|
|
(CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
|
|
def : InstAlias<"fcmle $dst, $src1, $src2",
|
|
(FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
|
|
def : InstAlias<"fcmle $dst, $src1, $src2",
|
|
(FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
|
|
def : InstAlias<"fcmlt $dst, $src1, $src2",
|
|
(FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
|
|
def : InstAlias<"fcmlt $dst, $src1, $src2",
|
|
(FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
|
|
def : InstAlias<"facle $dst, $src1, $src2",
|
|
(FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
|
|
def : InstAlias<"facle $dst, $src1, $src2",
|
|
(FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
|
|
def : InstAlias<"faclt $dst, $src1, $src2",
|
|
(FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
|
|
def : InstAlias<"faclt $dst, $src1, $src2",
|
|
(FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Advanced SIMD three scalar instructions (mixed operands).
|
|
//===----------------------------------------------------------------------===//
|
|
defm SQDMULL : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull",
|
|
int_aarch64_neon_sqdmulls_scalar>;
|
|
defm SQDMLAL : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">;
|
|
defm SQDMLSL : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">;
|
|
|
|
def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd),
|
|
(i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
|
|
(i32 FPR32:$Rm))))),
|
|
(SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
|
|
def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd),
|
|
(i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
|
|
(i32 FPR32:$Rm))))),
|
|
(SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Advanced SIMD two scalar instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm ABS : SIMDTwoScalarD< 0, 0b01011, "abs", abs>;
|
|
defm CMEQ : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>;
|
|
defm CMGE : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>;
|
|
defm CMGT : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>;
|
|
defm CMLE : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>;
|
|
defm CMLT : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>;
|
|
defm FCMEQ : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
|
|
defm FCMGE : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
|
|
defm FCMGT : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
|
|
defm FCMLE : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
|
|
defm FCMLT : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
|
|
defm FCVTAS : SIMDFPTwoScalar< 0, 0, 0b11100, "fcvtas">;
|
|
defm FCVTAU : SIMDFPTwoScalar< 1, 0, 0b11100, "fcvtau">;
|
|
defm FCVTMS : SIMDFPTwoScalar< 0, 0, 0b11011, "fcvtms">;
|
|
defm FCVTMU : SIMDFPTwoScalar< 1, 0, 0b11011, "fcvtmu">;
|
|
defm FCVTNS : SIMDFPTwoScalar< 0, 0, 0b11010, "fcvtns">;
|
|
defm FCVTNU : SIMDFPTwoScalar< 1, 0, 0b11010, "fcvtnu">;
|
|
defm FCVTPS : SIMDFPTwoScalar< 0, 1, 0b11010, "fcvtps">;
|
|
defm FCVTPU : SIMDFPTwoScalar< 1, 1, 0b11010, "fcvtpu">;
|
|
def FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">;
|
|
defm FCVTZS : SIMDFPTwoScalar< 0, 1, 0b11011, "fcvtzs">;
|
|
defm FCVTZU : SIMDFPTwoScalar< 1, 1, 0b11011, "fcvtzu">;
|
|
defm FRECPE : SIMDFPTwoScalar< 0, 1, 0b11101, "frecpe">;
|
|
defm FRECPX : SIMDFPTwoScalar< 0, 1, 0b11111, "frecpx">;
|
|
defm FRSQRTE : SIMDFPTwoScalar< 1, 1, 0b11101, "frsqrte">;
|
|
defm NEG : SIMDTwoScalarD< 1, 0b01011, "neg",
|
|
UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
|
|
defm SCVTF : SIMDFPTwoScalarCVT< 0, 0, 0b11101, "scvtf", AArch64sitof>;
|
|
defm SQABS : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
|
|
defm SQNEG : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
|
|
defm SQXTN : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>;
|
|
defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>;
|
|
defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd",
|
|
int_aarch64_neon_suqadd>;
|
|
defm UCVTF : SIMDFPTwoScalarCVT< 1, 0, 0b11101, "ucvtf", AArch64uitof>;
|
|
defm UQXTN : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>;
|
|
defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd",
|
|
int_aarch64_neon_usqadd>;
|
|
|
|
def : Pat<(AArch64neg (v1i64 V64:$Rn)), (NEGv1i64 V64:$Rn)>;
|
|
|
|
def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))),
|
|
(FCVTASv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))),
|
|
(FCVTAUv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))),
|
|
(FCVTMSv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))),
|
|
(FCVTMUv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))),
|
|
(FCVTNSv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))),
|
|
(FCVTNUv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))),
|
|
(FCVTPSv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))),
|
|
(FCVTPUv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v1i64 (int_aarch64_neon_fcvtzs (v1f64 FPR64:$Rn))),
|
|
(FCVTZSv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v1i64 (int_aarch64_neon_fcvtzu (v1f64 FPR64:$Rn))),
|
|
(FCVTZUv1i64 FPR64:$Rn)>;
|
|
|
|
def : Pat<(f16 (int_aarch64_neon_frecpe (f16 FPR16:$Rn))),
|
|
(FRECPEv1f16 FPR16:$Rn)>;
|
|
def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))),
|
|
(FRECPEv1i32 FPR32:$Rn)>;
|
|
def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))),
|
|
(FRECPEv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))),
|
|
(FRECPEv1i64 FPR64:$Rn)>;
|
|
|
|
def : Pat<(f32 (AArch64frecpe (f32 FPR32:$Rn))),
|
|
(FRECPEv1i32 FPR32:$Rn)>;
|
|
def : Pat<(v2f32 (AArch64frecpe (v2f32 V64:$Rn))),
|
|
(FRECPEv2f32 V64:$Rn)>;
|
|
def : Pat<(v4f32 (AArch64frecpe (v4f32 FPR128:$Rn))),
|
|
(FRECPEv4f32 FPR128:$Rn)>;
|
|
def : Pat<(f64 (AArch64frecpe (f64 FPR64:$Rn))),
|
|
(FRECPEv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v1f64 (AArch64frecpe (v1f64 FPR64:$Rn))),
|
|
(FRECPEv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))),
|
|
(FRECPEv2f64 FPR128:$Rn)>;
|
|
|
|
def : Pat<(f32 (AArch64frecps (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
|
|
(FRECPS32 FPR32:$Rn, FPR32:$Rm)>;
|
|
def : Pat<(v2f32 (AArch64frecps (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
|
|
(FRECPSv2f32 V64:$Rn, V64:$Rm)>;
|
|
def : Pat<(v4f32 (AArch64frecps (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
|
|
(FRECPSv4f32 FPR128:$Rn, FPR128:$Rm)>;
|
|
def : Pat<(f64 (AArch64frecps (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
|
|
(FRECPS64 FPR64:$Rn, FPR64:$Rm)>;
|
|
def : Pat<(v2f64 (AArch64frecps (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
|
|
(FRECPSv2f64 FPR128:$Rn, FPR128:$Rm)>;
|
|
|
|
def : Pat<(f16 (int_aarch64_neon_frecpx (f16 FPR16:$Rn))),
|
|
(FRECPXv1f16 FPR16:$Rn)>;
|
|
def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))),
|
|
(FRECPXv1i32 FPR32:$Rn)>;
|
|
def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))),
|
|
(FRECPXv1i64 FPR64:$Rn)>;
|
|
|
|
def : Pat<(f16 (int_aarch64_neon_frsqrte (f16 FPR16:$Rn))),
|
|
(FRSQRTEv1f16 FPR16:$Rn)>;
|
|
def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))),
|
|
(FRSQRTEv1i32 FPR32:$Rn)>;
|
|
def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))),
|
|
(FRSQRTEv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))),
|
|
(FRSQRTEv1i64 FPR64:$Rn)>;
|
|
|
|
def : Pat<(f32 (AArch64frsqrte (f32 FPR32:$Rn))),
|
|
(FRSQRTEv1i32 FPR32:$Rn)>;
|
|
def : Pat<(v2f32 (AArch64frsqrte (v2f32 V64:$Rn))),
|
|
(FRSQRTEv2f32 V64:$Rn)>;
|
|
def : Pat<(v4f32 (AArch64frsqrte (v4f32 FPR128:$Rn))),
|
|
(FRSQRTEv4f32 FPR128:$Rn)>;
|
|
def : Pat<(f64 (AArch64frsqrte (f64 FPR64:$Rn))),
|
|
(FRSQRTEv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v1f64 (AArch64frsqrte (v1f64 FPR64:$Rn))),
|
|
(FRSQRTEv1i64 FPR64:$Rn)>;
|
|
def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))),
|
|
(FRSQRTEv2f64 FPR128:$Rn)>;
|
|
|
|
def : Pat<(f32 (AArch64frsqrts (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
|
|
(FRSQRTS32 FPR32:$Rn, FPR32:$Rm)>;
|
|
def : Pat<(v2f32 (AArch64frsqrts (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
|
|
(FRSQRTSv2f32 V64:$Rn, V64:$Rm)>;
|
|
def : Pat<(v4f32 (AArch64frsqrts (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
|
|
(FRSQRTSv4f32 FPR128:$Rn, FPR128:$Rm)>;
|
|
def : Pat<(f64 (AArch64frsqrts (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
|
|
(FRSQRTS64 FPR64:$Rn, FPR64:$Rm)>;
|
|
def : Pat<(v2f64 (AArch64frsqrts (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
|
|
(FRSQRTSv2f64 FPR128:$Rn, FPR128:$Rm)>;
|
|
|
|
// If an integer is about to be converted to a floating point value,
|
|
// just load it on the floating point unit.
|
|
// Here are the patterns for 8 and 16-bits to float.
|
|
// 8-bits -> float.
|
|
multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy,
|
|
SDPatternOperator loadop, Instruction UCVTF,
|
|
ROAddrMode ro, Instruction LDRW, Instruction LDRX,
|
|
SubRegIndex sub> {
|
|
def : Pat<(DstTy (uint_to_fp (SrcTy
|
|
(loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm,
|
|
ro.Wext:$extend))))),
|
|
(UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
|
|
(LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
|
|
sub))>;
|
|
|
|
def : Pat<(DstTy (uint_to_fp (SrcTy
|
|
(loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm,
|
|
ro.Wext:$extend))))),
|
|
(UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
|
|
(LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
|
|
sub))>;
|
|
}
|
|
|
|
defm : UIntToFPROLoadPat<f32, i32, zextloadi8,
|
|
UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>;
|
|
def : Pat <(f32 (uint_to_fp (i32
|
|
(zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
|
|
(UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
|
|
(LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
|
|
def : Pat <(f32 (uint_to_fp (i32
|
|
(zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
|
|
(UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
|
|
(LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
|
|
// 16-bits -> float.
|
|
defm : UIntToFPROLoadPat<f32, i32, zextloadi16,
|
|
UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>;
|
|
def : Pat <(f32 (uint_to_fp (i32
|
|
(zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
|
|
(UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
|
|
(LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
|
|
def : Pat <(f32 (uint_to_fp (i32
|
|
(zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
|
|
(UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
|
|
(LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
|
|
// 32-bits are handled in target specific dag combine:
|
|
// performIntToFpCombine.
|
|
// 64-bits integer to 32-bits floating point, not possible with
|
|
// UCVTF on floating point registers (both source and destination
|
|
// must have the same size).
|
|
|
|
// Here are the patterns for 8, 16, 32, and 64-bits to double.
|
|
// 8-bits -> double.
|
|
defm : UIntToFPROLoadPat<f64, i32, zextloadi8,
|
|
UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>;
|
|
def : Pat <(f64 (uint_to_fp (i32
|
|
(zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
|
|
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
|
|
(LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
|
|
def : Pat <(f64 (uint_to_fp (i32
|
|
(zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
|
|
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
|
|
(LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
|
|
// 16-bits -> double.
|
|
defm : UIntToFPROLoadPat<f64, i32, zextloadi16,
|
|
UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>;
|
|
def : Pat <(f64 (uint_to_fp (i32
|
|
(zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
|
|
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
|
|
(LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
|
|
def : Pat <(f64 (uint_to_fp (i32
|
|
(zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
|
|
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
|
|
(LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
|
|
// 32-bits -> double.
|
|
defm : UIntToFPROLoadPat<f64, i32, load,
|
|
UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>;
|
|
def : Pat <(f64 (uint_to_fp (i32
|
|
(load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
|
|
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
|
|
(LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>;
|
|
def : Pat <(f64 (uint_to_fp (i32
|
|
(load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))),
|
|
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
|
|
(LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>;
|
|
// 64-bits -> double are handled in target specific dag combine:
|
|
// performIntToFpCombine.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Advanced SIMD three different-sized vector instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
defm ADDHN : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>;
|
|
defm SUBHN : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>;
|
|
defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>;
|
|
defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>;
|
|
defm PMULL : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_aarch64_neon_pmull>;
|
|
defm SABAL : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal",
|
|
AArch64sabd>;
|
|
defm SABDL : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl",
|
|
AArch64sabd>;
|
|
defm SADDL : SIMDLongThreeVectorBHS< 0, 0b0000, "saddl",
|
|
BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>;
|
|
defm SADDW : SIMDWideThreeVectorBHS< 0, 0b0001, "saddw",
|
|
BinOpFrag<(add node:$LHS, (sext node:$RHS))>>;
|
|
defm SMLAL : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal",
|
|
TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
|
|
defm SMLSL : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl",
|
|
TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
|
|
defm SMULL : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_aarch64_neon_smull>;
|
|
defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal",
|
|
int_aarch64_neon_sqadd>;
|
|
defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl",
|
|
int_aarch64_neon_sqsub>;
|
|
defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull",
|
|
int_aarch64_neon_sqdmull>;
|
|
defm SSUBL : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl",
|
|
BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>;
|
|
defm SSUBW : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw",
|
|
BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>;
|
|
defm UABAL : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal",
|
|
AArch64uabd>;
|
|
defm UADDL : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl",
|
|
BinOpFrag<(add (zanyext node:$LHS), (zanyext node:$RHS))>>;
|
|
defm UADDW : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw",
|
|
BinOpFrag<(add node:$LHS, (zanyext node:$RHS))>>;
|
|
defm UMLAL : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal",
|
|
TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
|
|
defm UMLSL : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl",
|
|
TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
|
|
defm UMULL : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_aarch64_neon_umull>;
|
|
defm USUBL : SIMDLongThreeVectorBHS<1, 0b0010, "usubl",
|
|
BinOpFrag<(sub (zanyext node:$LHS), (zanyext node:$RHS))>>;
|
|
defm USUBW : SIMDWideThreeVectorBHS< 1, 0b0011, "usubw",
|
|
BinOpFrag<(sub node:$LHS, (zanyext node:$RHS))>>;
|
|
|
|
// Additional patterns for [SU]ML[AS]L
|
|
multiclass Neon_mul_acc_widen_patterns<SDPatternOperator opnode, SDPatternOperator vecopnode,
|
|
Instruction INST8B, Instruction INST4H, Instruction INST2S> {
|
|
def : Pat<(v4i16 (opnode
|
|
V64:$Ra,
|
|
(v4i16 (extract_subvector
|
|
(vecopnode (v8i8 V64:$Rn),(v8i8 V64:$Rm)),
|
|
(i64 0))))),
|
|
(EXTRACT_SUBREG (v8i16 (INST8B
|
|
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), V64:$Ra, dsub),
|
|
V64:$Rn, V64:$Rm)), dsub)>;
|
|
def : Pat<(v2i32 (opnode
|
|
V64:$Ra,
|
|
(v2i32 (extract_subvector
|
|
(vecopnode (v4i16 V64:$Rn),(v4i16 V64:$Rm)),
|
|
(i64 0))))),
|
|
(EXTRACT_SUBREG (v4i32 (INST4H
|
|
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), V64:$Ra, dsub),
|
|
V64:$Rn, V64:$Rm)), dsub)>;
|
|
def : Pat<(v1i64 (opnode
|
|
V64:$Ra,
|
|
(v1i64 (extract_subvector
|
|
(vecopnode (v2i32 V64:$Rn),(v2i32 V64:$Rm)),
|
|
(i64 0))))),
|
|
(EXTRACT_SUBREG (v2i64 (INST2S
|
|
(INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), V64:$Ra, dsub),
|
|
V64:$Rn, V64:$Rm)), dsub)>;
|
|
}
|
|
|
|
defm : Neon_mul_acc_widen_patterns<add, int_aarch64_neon_umull,
|
|
UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>;
|
|
defm : Neon_mul_acc_widen_patterns<add, int_aarch64_neon_smull,
|
|
SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>;
|
|
defm : Neon_mul_acc_widen_patterns<sub, int_aarch64_neon_umull,
|
|
UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>;
|
|
defm : Neon_mul_acc_widen_patterns<sub, int_aarch64_neon_smull,
|
|
SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>;
|
|
|
|
// Additional patterns for SMULL and UMULL
|
|
multiclass Neon_mul_widen_patterns<SDPatternOperator opnode,
|
|
Instruction INST8B, Instruction INST4H, Instruction INST2S> {
|
|
def : Pat<(v8i16 (opnode (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
|
|
(INST8B V64:$Rn, V64:$Rm)>;
|
|
def : Pat<(v4i32 (opnode (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
|
|
(INST4H V64:$Rn, V64:$Rm)>;
|
|
def : Pat<(v2i64 (opnode (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
|
|
(INST2S V64:$Rn, V64:$Rm)>;
|
|
}
|
|
|
|
defm : Neon_mul_widen_patterns<AArch64smull, SMULLv8i8_v8i16,
|
|
SMULLv4i16_v4i32, SMULLv2i32_v2i64>;
|
|
defm : Neon_mul_widen_patterns<AArch64umull, UMULLv8i8_v8i16,
|
|
UMULLv4i16_v4i32, UMULLv2i32_v2i64>;
|
|
|
|
// Patterns for smull2/umull2.
|
|
multiclass Neon_mul_high_patterns<SDPatternOperator opnode,
|
|
Instruction INST8B, Instruction INST4H, Instruction INST2S> {
|
|
def : Pat<(v8i16 (opnode (extract_high_v16i8 V128:$Rn),
|
|
(extract_high_v16i8 V128:$Rm))),
|
|
(INST8B V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(v4i32 (opnode (extract_high_v8i16 V128:$Rn),
|
|
(extract_high_v8i16 V128:$Rm))),
|
|
(INST4H V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(v2i64 (opnode (extract_high_v4i32 V128:$Rn),
|
|
(extract_high_v4i32 V128:$Rm))),
|
|
(INST2S V128:$Rn, V128:$Rm)>;
|
|
}
|
|
|
|
defm : Neon_mul_high_patterns<AArch64smull, SMULLv16i8_v8i16,
|
|
SMULLv8i16_v4i32, SMULLv4i32_v2i64>;
|
|
defm : Neon_mul_high_patterns<AArch64umull, UMULLv16i8_v8i16,
|
|
UMULLv8i16_v4i32, UMULLv4i32_v2i64>;
|
|
|
|
// Additional patterns for SMLAL/SMLSL and UMLAL/UMLSL
|
|
multiclass Neon_mulacc_widen_patterns<SDPatternOperator opnode,
|
|
Instruction INST8B, Instruction INST4H, Instruction INST2S> {
|
|
def : Pat<(v8i16 (opnode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
|
|
(INST8B V128:$Rd, V64:$Rn, V64:$Rm)>;
|
|
def : Pat<(v4i32 (opnode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
|
|
(INST4H V128:$Rd, V64:$Rn, V64:$Rm)>;
|
|
def : Pat<(v2i64 (opnode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
|
|
(INST2S V128:$Rd, V64:$Rn, V64:$Rm)>;
|
|
}
|
|
|
|
defm : Neon_mulacc_widen_patterns<
|
|
TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
|
|
SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>;
|
|
defm : Neon_mulacc_widen_patterns<
|
|
TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
|
|
UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>;
|
|
defm : Neon_mulacc_widen_patterns<
|
|
TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
|
|
SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>;
|
|
defm : Neon_mulacc_widen_patterns<
|
|
TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
|
|
UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>;
|
|
|
|
// Patterns for 64-bit pmull
|
|
def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm),
|
|
(PMULLv1i64 V64:$Rn, V64:$Rm)>;
|
|
def : Pat<(int_aarch64_neon_pmull64 (extractelt (v2i64 V128:$Rn), (i64 1)),
|
|
(extractelt (v2i64 V128:$Rm), (i64 1))),
|
|
(PMULLv2i64 V128:$Rn, V128:$Rm)>;
|
|
|
|
// CodeGen patterns for addhn and subhn instructions, which can actually be
|
|
// written in LLVM IR without too much difficulty.
|
|
|
|
// ADDHN
|
|
def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))),
|
|
(ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
|
|
(i32 16))))),
|
|
(ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
|
|
(i32 32))))),
|
|
(ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(concat_vectors (v8i8 V64:$Rd),
|
|
(trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm),
|
|
(i32 8))))),
|
|
(ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
|
|
V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(concat_vectors (v4i16 V64:$Rd),
|
|
(trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
|
|
(i32 16))))),
|
|
(ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
|
|
V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(concat_vectors (v2i32 V64:$Rd),
|
|
(trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
|
|
(i32 32))))),
|
|
(ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
|
|
V128:$Rn, V128:$Rm)>;
|
|
|
|
// SUBHN
|
|
def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))),
|
|
(SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
|
|
(i32 16))))),
|
|
(SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
|
|
(i32 32))))),
|
|
(SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(concat_vectors (v8i8 V64:$Rd),
|
|
(trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
|
|
(i32 8))))),
|
|
(SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
|
|
V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(concat_vectors (v4i16 V64:$Rd),
|
|
(trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
|
|
(i32 16))))),
|
|
(SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
|
|
V128:$Rn, V128:$Rm)>;
|
|
def : Pat<(concat_vectors (v2i32 V64:$Rd),
|
|
(trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
|
|
(i32 32))))),
|
|
(SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
|
|
V128:$Rn, V128:$Rm)>;
|
|
|
|
//----------------------------------------------------------------------------
|
|
// AdvSIMD bitwise extract from vector instruction.
|
|
//----------------------------------------------------------------------------
|
|
|
|
defm EXT : SIMDBitwiseExtract<"ext">;
|
|
|
|
def AdjustExtImm : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(8 + N->getZExtValue(), SDLoc(N), MVT::i32);
|
|
}]>;
|
|
multiclass ExtPat<ValueType VT64, ValueType VT128, int N> {
|
|
def : Pat<(VT64 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
|
|
(EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
|
|
def : Pat<(VT128 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
|
|
(EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
|
|
// We use EXT to handle extract_subvector to copy the upper 64-bits of a
|
|
// 128-bit vector.
|
|
def : Pat<(VT64 (extract_subvector V128:$Rn, (i64 N))),
|
|
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
|
|
// A 64-bit EXT of two halves of the same 128-bit register can be done as a
|
|
// single 128-bit EXT.
|
|
def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 0)),
|
|
(extract_subvector V128:$Rn, (i64 N)),
|
|
(i32 imm:$imm))),
|
|
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, imm:$imm), dsub)>;
|
|
// A 64-bit EXT of the high half of a 128-bit register can be done using a
|
|
// 128-bit EXT of the whole register with an adjustment to the immediate. The
|
|
// top half of the other operand will be unset, but that doesn't matter as it
|
|
// will not be used.
|
|
def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 N)),
|
|
V64:$Rm,
|
|
(i32 imm:$imm))),
|
|
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn,
|
|
(SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
|
|
(AdjustExtImm imm:$imm)), dsub)>;
|
|
}
|
|
|
|
defm : ExtPat<v8i8, v16i8, 8>;
|
|
defm : ExtPat<v4i16, v8i16, 4>;
|
|
defm : ExtPat<v4f16, v8f16, 4>;
|
|
defm : ExtPat<v4bf16, v8bf16, 4>;
|
|
defm : ExtPat<v2i32, v4i32, 2>;
|
|
defm : ExtPat<v2f32, v4f32, 2>;
|
|
defm : ExtPat<v1i64, v2i64, 1>;
|
|
defm : ExtPat<v1f64, v2f64, 1>;
|
|
|
|
//----------------------------------------------------------------------------
|
|
// AdvSIMD zip vector
|
|
//----------------------------------------------------------------------------
|
|
|
|
defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>;
|
|
defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>;
|
|
defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>;
|
|
defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>;
|
|
defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>;
|
|
defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>;
|
|
|
|
//----------------------------------------------------------------------------
|
|
// AdvSIMD TBL/TBX instructions
|
|
//----------------------------------------------------------------------------
|
|
|
|
defm TBL : SIMDTableLookup< 0, "tbl">;
|
|
defm TBX : SIMDTableLookupTied<1, "tbx">;
|
|
|
|
def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
|
|
(TBLv8i8One VecListOne128:$Rn, V64:$Ri)>;
|
|
def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
|
|
(TBLv16i8One V128:$Ri, V128:$Rn)>;
|
|
|
|
def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd),
|
|
(v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
|
|
(TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>;
|
|
def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd),
|
|
(v16i8 V128:$Ri), (v16i8 V128:$Rn))),
|
|
(TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>;
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// AdvSIMD scalar CPY instruction
|
|
//----------------------------------------------------------------------------
|
|
|
|
defm CPY : SIMDScalarCPY<"cpy">;
|
|
|
|
//----------------------------------------------------------------------------
|
|
// AdvSIMD scalar pairwise instructions
|
|
//----------------------------------------------------------------------------
|
|
|
|
defm ADDP : SIMDPairwiseScalarD<0, 0b11011, "addp">;
|
|
defm FADDP : SIMDFPPairwiseScalar<0, 0b01101, "faddp">;
|
|
defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">;
|
|
defm FMAXP : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">;
|
|
defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">;
|
|
defm FMINP : SIMDFPPairwiseScalar<1, 0b01111, "fminp">;
|
|
|
|
let Predicates = [HasFullFP16] in {
|
|
def : Pat<(f16 (vecreduce_fadd (v8f16 V128:$Rn))),
|
|
(FADDPv2i16p
|
|
(EXTRACT_SUBREG
|
|
(FADDPv8f16 (FADDPv8f16 V128:$Rn, (v8f16 (IMPLICIT_DEF))), (v8f16 (IMPLICIT_DEF))),
|
|
dsub))>;
|
|
def : Pat<(f16 (vecreduce_fadd (v4f16 V64:$Rn))),
|
|
(FADDPv2i16p (FADDPv4f16 V64:$Rn, (v4f16 (IMPLICIT_DEF))))>;
|
|
}
|
|
def : Pat<(f32 (vecreduce_fadd (v4f32 V128:$Rn))),
|
|
(FADDPv2i32p
|
|
(EXTRACT_SUBREG
|
|
(FADDPv4f32 V128:$Rn, (v4f32 (IMPLICIT_DEF))),
|
|
dsub))>;
|
|
def : Pat<(f32 (vecreduce_fadd (v2f32 V64:$Rn))),
|
|
(FADDPv2i32p V64:$Rn)>;
|
|
def : Pat<(f64 (vecreduce_fadd (v2f64 V128:$Rn))),
|
|
(FADDPv2i64p V128:$Rn)>;
|
|
|
|
def : Pat<(v2i64 (AArch64saddv V128:$Rn)),
|
|
(INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
|
|
def : Pat<(v2i64 (AArch64uaddv V128:$Rn)),
|
|
(INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
|
|
def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))),
|
|
(FADDPv2i32p V64:$Rn)>;
|
|
def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))),
|
|
(FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>;
|
|
def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))),
|
|
(FADDPv2i64p V128:$Rn)>;
|
|
def : Pat<(f32 (int_aarch64_neon_fmaxnmv (v2f32 V64:$Rn))),
|
|
(FMAXNMPv2i32p V64:$Rn)>;
|
|
def : Pat<(f64 (int_aarch64_neon_fmaxnmv (v2f64 V128:$Rn))),
|
|
(FMAXNMPv2i64p V128:$Rn)>;
|
|
def : Pat<(f32 (int_aarch64_neon_fmaxv (v2f32 V64:$Rn))),
|
|
(FMAXPv2i32p V64:$Rn)>;
|
|
def : Pat<(f64 (int_aarch64_neon_fmaxv (v2f64 V128:$Rn))),
|
|
(FMAXPv2i64p V128:$Rn)>;
|
|
def : Pat<(f32 (int_aarch64_neon_fminnmv (v2f32 V64:$Rn))),
|
|
(FMINNMPv2i32p V64:$Rn)>;
|
|
def : Pat<(f64 (int_aarch64_neon_fminnmv (v2f64 V128:$Rn))),
|
|
(FMINNMPv2i64p V128:$Rn)>;
|
|
def : Pat<(f32 (int_aarch64_neon_fminv (v2f32 V64:$Rn))),
|
|
(FMINPv2i32p V64:$Rn)>;
|
|
def : Pat<(f64 (int_aarch64_neon_fminv (v2f64 V128:$Rn))),
|
|
(FMINPv2i64p V128:$Rn)>;
|
|
|
|
//----------------------------------------------------------------------------
|
|
// AdvSIMD INS/DUP instructions
|
|
//----------------------------------------------------------------------------
|
|
|
|
def DUPv8i8gpr : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>;
|
|
def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>;
|
|
def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>;
|
|
def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>;
|
|
def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>;
|
|
def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>;
|
|
def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>;
|
|
|
|
def DUPv2i64lane : SIMDDup64FromElement;
|
|
def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>;
|
|
def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>;
|
|
def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>;
|
|
def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>;
|
|
def DUPv8i8lane : SIMDDup8FromElement <0, ".8b", v8i8, V64>;
|
|
def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>;
|
|
|
|
// DUP from a 64-bit register to a 64-bit register is just a copy
|
|
def : Pat<(v1i64 (AArch64dup (i64 GPR64:$Rn))),
|
|
(COPY_TO_REGCLASS GPR64:$Rn, FPR64)>;
|
|
def : Pat<(v1f64 (AArch64dup (f64 FPR64:$Rn))),
|
|
(COPY_TO_REGCLASS FPR64:$Rn, FPR64)>;
|
|
|
|
def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))),
|
|
(v2f32 (DUPv2i32lane
|
|
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
|
|
(i64 0)))>;
|
|
def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))),
|
|
(v4f32 (DUPv4i32lane
|
|
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
|
|
(i64 0)))>;
|
|
def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))),
|
|
(v2f64 (DUPv2i64lane
|
|
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub),
|
|
(i64 0)))>;
|
|
def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))),
|
|
(v4f16 (DUPv4i16lane
|
|
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
|
|
(i64 0)))>;
|
|
def : Pat<(v4bf16 (AArch64dup (bf16 FPR16:$Rn))),
|
|
(v4bf16 (DUPv4i16lane
|
|
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
|
|
(i64 0)))>;
|
|
def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))),
|
|
(v8f16 (DUPv8i16lane
|
|
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
|
|
(i64 0)))>;
|
|
def : Pat<(v8bf16 (AArch64dup (bf16 FPR16:$Rn))),
|
|
(v8bf16 (DUPv8i16lane
|
|
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
|
|
(i64 0)))>;
|
|
|
|
def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
|
|
(DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
|
|
def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
|
|
(DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;
|
|
|
|
def : Pat<(v4bf16 (AArch64duplane16 (v8bf16 V128:$Rn), VectorIndexH:$imm)),
|
|
(DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
|
|
def : Pat<(v8bf16 (AArch64duplane16 (v8bf16 V128:$Rn), VectorIndexH:$imm)),
|
|
(DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;
|
|
|
|
def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
|
|
(DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>;
|
|
def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
|
|
(DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>;
|
|
def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)),
|
|
(DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>;
|
|
|
|
// If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane
|
|
// instruction even if the types don't match: we just have to remap the lane
|
|
// carefully. N.b. this trick only applies to truncations.
|
|
def VecIndex_x2 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64);
|
|
}]>;
|
|
def VecIndex_x4 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64);
|
|
}]>;
|
|
def VecIndex_x8 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64);
|
|
}]>;
|
|
|
|
multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT,
|
|
ValueType Src128VT, ValueType ScalVT,
|
|
Instruction DUP, SDNodeXForm IdxXFORM> {
|
|
def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn),
|
|
imm:$idx)))),
|
|
(DUP V128:$Rn, (IdxXFORM imm:$idx))>;
|
|
|
|
def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn),
|
|
imm:$idx)))),
|
|
(DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
|
|
}
|
|
|
|
defm : DUPWithTruncPats<v8i8, v4i16, v8i16, i32, DUPv8i8lane, VecIndex_x2>;
|
|
defm : DUPWithTruncPats<v8i8, v2i32, v4i32, i32, DUPv8i8lane, VecIndex_x4>;
|
|
defm : DUPWithTruncPats<v4i16, v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>;
|
|
|
|
defm : DUPWithTruncPats<v16i8, v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>;
|
|
defm : DUPWithTruncPats<v16i8, v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>;
|
|
defm : DUPWithTruncPats<v8i16, v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>;
|
|
|
|
multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP,
|
|
SDNodeXForm IdxXFORM> {
|
|
def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn),
|
|
imm:$idx))))),
|
|
(DUP V128:$Rn, (IdxXFORM imm:$idx))>;
|
|
|
|
def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn),
|
|
imm:$idx))))),
|
|
(DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
|
|
}
|
|
|
|
defm : DUPWithTrunci64Pats<v8i8, DUPv8i8lane, VecIndex_x8>;
|
|
defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane, VecIndex_x4>;
|
|
defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane, VecIndex_x2>;
|
|
|
|
defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>;
|
|
defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>;
|
|
defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>;
|
|
|
|
// SMOV and UMOV definitions, with some extra patterns for convenience
|
|
defm SMOV : SMov;
|
|
defm UMOV : UMov;
|
|
|
|
def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
|
|
(i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
|
|
def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
|
|
(i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
|
|
def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
|
|
(i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
|
|
def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
|
|
(i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
|
|
def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
|
|
(i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
|
|
def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))),
|
|
(i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>;
|
|
|
|
def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn),
|
|
VectorIndexB:$idx)))), i8),
|
|
(i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
|
|
def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn),
|
|
VectorIndexH:$idx)))), i16),
|
|
(i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
|
|
|
|
// Extracting i8 or i16 elements will have the zero-extend transformed to
|
|
// an 'and' mask by type legalization since neither i8 nor i16 are legal types
|
|
// for AArch64. Match these patterns here since UMOV already zeroes out the high
|
|
// bits of the destination register.
|
|
def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx),
|
|
(i32 0xff)),
|
|
(i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>;
|
|
def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),
|
|
(i32 0xffff)),
|
|
(i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>;
|
|
|
|
defm INS : SIMDIns;
|
|
|
|
def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)),
|
|
(SUBREG_TO_REG (i32 0),
|
|
(f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
|
|
def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)),
|
|
(SUBREG_TO_REG (i32 0),
|
|
(f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
|
|
|
|
def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)),
|
|
(SUBREG_TO_REG (i32 0),
|
|
(f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
|
|
def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)),
|
|
(SUBREG_TO_REG (i32 0),
|
|
(f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
|
|
|
|
def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
|
|
(INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
|
|
def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
|
|
(INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
|
|
|
|
def : Pat<(v4bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
|
|
(INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
|
|
def : Pat<(v8bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
|
|
(INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
|
|
|
|
def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))),
|
|
(v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
|
|
(i32 FPR32:$Rn), ssub))>;
|
|
def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))),
|
|
(v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
|
|
(i32 FPR32:$Rn), ssub))>;
|
|
|
|
def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))),
|
|
(v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
|
|
(i64 FPR64:$Rn), dsub))>;
|
|
|
|
def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
|
|
(INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
|
|
def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
|
|
(INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
|
|
|
|
def : Pat<(v4bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
|
|
(INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
|
|
def : Pat<(v8bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
|
|
(INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
|
|
|
|
def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))),
|
|
(INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
|
|
def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))),
|
|
(INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
|
|
|
|
def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))),
|
|
(INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>;
|
|
|
|
def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn),
|
|
(f16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
|
|
(EXTRACT_SUBREG
|
|
(INSvi16lane
|
|
(v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
|
|
VectorIndexS:$imm,
|
|
(v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
|
|
(i64 0)),
|
|
dsub)>;
|
|
|
|
def : Pat<(vector_insert (v8f16 v8f16:$Rn), (f16 fpimm0),
|
|
(i64 VectorIndexH:$imm)),
|
|
(INSvi16gpr V128:$Rn, VectorIndexH:$imm, WZR)>;
|
|
def : Pat<(vector_insert v4f32:$Rn, (f32 fpimm0),
|
|
(i64 VectorIndexS:$imm)),
|
|
(INSvi32gpr V128:$Rn, VectorIndexS:$imm, WZR)>;
|
|
def : Pat<(vector_insert v2f64:$Rn, (f64 fpimm0),
|
|
(i64 VectorIndexD:$imm)),
|
|
(INSvi64gpr V128:$Rn, VectorIndexS:$imm, XZR)>;
|
|
|
|
def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn),
|
|
(f16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
|
|
(INSvi16lane
|
|
V128:$Rn, VectorIndexH:$imm,
|
|
(v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
|
|
(i64 0))>;
|
|
|
|
def : Pat<(v4bf16 (vector_insert (v4bf16 V64:$Rn),
|
|
(bf16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
|
|
(EXTRACT_SUBREG
|
|
(INSvi16lane
|
|
(v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
|
|
VectorIndexS:$imm,
|
|
(v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
|
|
(i64 0)),
|
|
dsub)>;
|
|
|
|
def : Pat<(v8bf16 (vector_insert (v8bf16 V128:$Rn),
|
|
(bf16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
|
|
(INSvi16lane
|
|
V128:$Rn, VectorIndexH:$imm,
|
|
(v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
|
|
(i64 0))>;
|
|
|
|
def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn),
|
|
(f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
|
|
(EXTRACT_SUBREG
|
|
(INSvi32lane
|
|
(v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)),
|
|
VectorIndexS:$imm,
|
|
(v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
|
|
(i64 0)),
|
|
dsub)>;
|
|
def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn),
|
|
(f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
|
|
(INSvi32lane
|
|
V128:$Rn, VectorIndexS:$imm,
|
|
(v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
|
|
(i64 0))>;
|
|
def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn),
|
|
(f64 FPR64:$Rm), (i64 VectorIndexD:$imm))),
|
|
(INSvi64lane
|
|
V128:$Rn, VectorIndexD:$imm,
|
|
(v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)),
|
|
(i64 0))>;
|
|
|
|
// Copy an element at a constant index in one vector into a constant indexed
|
|
// element of another.
|
|
// FIXME refactor to a shared class/dev parameterized on vector type, vector
|
|
// index type and INS extension
|
|
def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane
|
|
(v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs),
|
|
VectorIndexB:$idx2)),
|
|
(v16i8 (INSvi8lane
|
|
V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2)
|
|
)>;
|
|
def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane
|
|
(v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs),
|
|
VectorIndexH:$idx2)),
|
|
(v8i16 (INSvi16lane
|
|
V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2)
|
|
)>;
|
|
def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane
|
|
(v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs),
|
|
VectorIndexS:$idx2)),
|
|
(v4i32 (INSvi32lane
|
|
V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2)
|
|
)>;
|
|
def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane
|
|
(v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs),
|
|
VectorIndexD:$idx2)),
|
|
(v2i64 (INSvi64lane
|
|
V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2)
|
|
)>;
|
|
|
|
multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64,
|
|
ValueType VTScal, Instruction INS> {
|
|
def : Pat<(VT128 (vector_insert V128:$src,
|
|
(VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
|
|
imm:$Immd)),
|
|
(INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>;
|
|
|
|
def : Pat<(VT128 (vector_insert V128:$src,
|
|
(VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
|
|
imm:$Immd)),
|
|
(INS V128:$src, imm:$Immd,
|
|
(SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>;
|
|
|
|
def : Pat<(VT64 (vector_insert V64:$src,
|
|
(VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
|
|
imm:$Immd)),
|
|
(EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub),
|
|
imm:$Immd, V128:$Rn, imm:$Immn),
|
|
dsub)>;
|
|
|
|
def : Pat<(VT64 (vector_insert V64:$src,
|
|
(VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
|
|
imm:$Immd)),
|
|
(EXTRACT_SUBREG
|
|
(INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd,
|
|
(SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn),
|
|
dsub)>;
|
|
}
|
|
|
|
defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>;
|
|
defm : Neon_INS_elt_pattern<v8bf16, v4bf16, bf16, INSvi16lane>;
|
|
defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>;
|
|
defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>;
|
|
|
|
|
|
// Floating point vector extractions are codegen'd as either a sequence of
|
|
// subregister extractions, or a MOV (aka CPY here, alias for DUP) if
|
|
// the lane number is anything other than zero.
|
|
def : Pat<(vector_extract (v2f64 V128:$Rn), 0),
|
|
(f64 (EXTRACT_SUBREG V128:$Rn, dsub))>;
|
|
def : Pat<(vector_extract (v4f32 V128:$Rn), 0),
|
|
(f32 (EXTRACT_SUBREG V128:$Rn, ssub))>;
|
|
def : Pat<(vector_extract (v8f16 V128:$Rn), 0),
|
|
(f16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
|
|
def : Pat<(vector_extract (v8bf16 V128:$Rn), 0),
|
|
(bf16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
|
|
|
|
|
|
def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx),
|
|
(f64 (CPYi64 V128:$Rn, VectorIndexD:$idx))>;
|
|
def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx),
|
|
(f32 (CPYi32 V128:$Rn, VectorIndexS:$idx))>;
|
|
def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx),
|
|
(f16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;
|
|
def : Pat<(vector_extract (v8bf16 V128:$Rn), VectorIndexH:$idx),
|
|
(bf16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;
|
|
|
|
// All concat_vectors operations are canonicalised to act on i64 vectors for
|
|
// AArch64. In the general case we need an instruction, which had just as well be
|
|
// INS.
|
|
class ConcatPat<ValueType DstTy, ValueType SrcTy>
|
|
: Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)),
|
|
(INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1,
|
|
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>;
|
|
|
|
def : ConcatPat<v2i64, v1i64>;
|
|
def : ConcatPat<v2f64, v1f64>;
|
|
def : ConcatPat<v4i32, v2i32>;
|
|
def : ConcatPat<v4f32, v2f32>;
|
|
def : ConcatPat<v8i16, v4i16>;
|
|
def : ConcatPat<v8f16, v4f16>;
|
|
def : ConcatPat<v8bf16, v4bf16>;
|
|
def : ConcatPat<v16i8, v8i8>;
|
|
|
|
// If the high lanes are undef, though, we can just ignore them:
|
|
class ConcatUndefPat<ValueType DstTy, ValueType SrcTy>
|
|
: Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)),
|
|
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>;
|
|
|
|
def : ConcatUndefPat<v2i64, v1i64>;
|
|
def : ConcatUndefPat<v2f64, v1f64>;
|
|
def : ConcatUndefPat<v4i32, v2i32>;
|
|
def : ConcatUndefPat<v4f32, v2f32>;
|
|
def : ConcatUndefPat<v8i16, v4i16>;
|
|
def : ConcatUndefPat<v16i8, v8i8>;
|
|
|
|
//----------------------------------------------------------------------------
|
|
// AdvSIMD across lanes instructions
|
|
//----------------------------------------------------------------------------
|
|
|
|
defm ADDV : SIMDAcrossLanesBHS<0, 0b11011, "addv">;
|
|
defm SMAXV : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">;
|
|
defm SMINV : SIMDAcrossLanesBHS<0, 0b11010, "sminv">;
|
|
defm UMAXV : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">;
|
|
defm UMINV : SIMDAcrossLanesBHS<1, 0b11010, "uminv">;
|
|
defm SADDLV : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">;
|
|
defm UADDLV : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">;
|
|
defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", int_aarch64_neon_fmaxnmv>;
|
|
defm FMAXV : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", int_aarch64_neon_fmaxv>;
|
|
defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", int_aarch64_neon_fminnmv>;
|
|
defm FMINV : SIMDFPAcrossLanes<0b01111, 1, "fminv", int_aarch64_neon_fminv>;
|
|
|
|
// Patterns for across-vector intrinsics, that have a node equivalent, that
|
|
// returns a vector (with only the low lane defined) instead of a scalar.
|
|
// In effect, opNode is the same as (scalar_to_vector (IntNode)).
|
|
multiclass SIMDAcrossLanesIntrinsic<string baseOpc,
|
|
SDPatternOperator opNode> {
|
|
// If a lane instruction caught the vector_extract around opNode, we can
|
|
// directly match the latter to the instruction.
|
|
def : Pat<(v8i8 (opNode V64:$Rn)),
|
|
(INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>;
|
|
def : Pat<(v16i8 (opNode V128:$Rn)),
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>;
|
|
def : Pat<(v4i16 (opNode V64:$Rn)),
|
|
(INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>;
|
|
def : Pat<(v8i16 (opNode V128:$Rn)),
|
|
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>;
|
|
def : Pat<(v4i32 (opNode V128:$Rn)),
|
|
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>;
|
|
|
|
|
|
// If none did, fallback to the explicit patterns, consuming the vector_extract.
|
|
def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)),
|
|
(i32 0)), (i64 0))),
|
|
(EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn),
|
|
bsub), ssub)>;
|
|
def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))),
|
|
(EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn),
|
|
bsub), ssub)>;
|
|
def : Pat<(i32 (vector_extract (insert_subvector undef,
|
|
(v4i16 (opNode V64:$Rn)), (i32 0)), (i64 0))),
|
|
(EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn),
|
|
hsub), ssub)>;
|
|
def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))),
|
|
(EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn),
|
|
hsub), ssub)>;
|
|
def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))),
|
|
(EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn),
|
|
ssub), ssub)>;
|
|
|
|
}
|
|
|
|
multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc,
|
|
SDPatternOperator opNode>
|
|
: SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
|
|
// If there is a sign extension after this intrinsic, consume it as smov already
|
|
// performed it
|
|
def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
|
|
(opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), i8)),
|
|
(i32 (SMOVvi8to32
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
|
|
(i64 0)))>;
|
|
def : Pat<(i32 (sext_inreg (i32 (vector_extract
|
|
(opNode (v16i8 V128:$Rn)), (i64 0))), i8)),
|
|
(i32 (SMOVvi8to32
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
|
|
(i64 0)))>;
|
|
def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
|
|
(opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), i16)),
|
|
(i32 (SMOVvi16to32
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
|
|
(i64 0)))>;
|
|
def : Pat<(i32 (sext_inreg (i32 (vector_extract
|
|
(opNode (v8i16 V128:$Rn)), (i64 0))), i16)),
|
|
(i32 (SMOVvi16to32
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
|
|
(i64 0)))>;
|
|
}
|
|
|
|
multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc,
|
|
SDPatternOperator opNode>
|
|
: SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
|
|
// If there is a masking operation keeping only what has been actually
|
|
// generated, consume it.
|
|
def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
|
|
(opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), maski8_or_more)),
|
|
(i32 (EXTRACT_SUBREG
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
|
|
ssub))>;
|
|
def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))),
|
|
maski8_or_more)),
|
|
(i32 (EXTRACT_SUBREG
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
|
|
ssub))>;
|
|
def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
|
|
(opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), maski16_or_more)),
|
|
(i32 (EXTRACT_SUBREG
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
|
|
ssub))>;
|
|
def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))),
|
|
maski16_or_more)),
|
|
(i32 (EXTRACT_SUBREG
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
|
|
ssub))>;
|
|
}
|
|
|
|
defm : SIMDAcrossLanesSignedIntrinsic<"ADDV", AArch64saddv>;
|
|
// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
|
|
def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))),
|
|
(ADDPv2i32 V64:$Rn, V64:$Rn)>;
|
|
|
|
defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>;
|
|
// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
|
|
def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))),
|
|
(ADDPv2i32 V64:$Rn, V64:$Rn)>;
|
|
|
|
defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>;
|
|
def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))),
|
|
(SMAXPv2i32 V64:$Rn, V64:$Rn)>;
|
|
|
|
defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>;
|
|
def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))),
|
|
(SMINPv2i32 V64:$Rn, V64:$Rn)>;
|
|
|
|
defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>;
|
|
def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))),
|
|
(UMAXPv2i32 V64:$Rn, V64:$Rn)>;
|
|
|
|
defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>;
|
|
def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))),
|
|
(UMINPv2i32 V64:$Rn, V64:$Rn)>;
|
|
|
|
multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> {
|
|
def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
|
|
(i32 (SMOVvi16to32
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
|
|
(i64 0)))>;
|
|
def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
|
|
(i32 (SMOVvi16to32
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
|
|
(i64 0)))>;
|
|
|
|
def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
|
|
(i32 (EXTRACT_SUBREG
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
|
|
ssub))>;
|
|
def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
|
|
(i32 (EXTRACT_SUBREG
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
|
|
ssub))>;
|
|
|
|
def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
|
|
(i64 (EXTRACT_SUBREG
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
|
|
dsub))>;
|
|
}
|
|
|
|
multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc,
|
|
Intrinsic intOp> {
|
|
def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
|
|
(i32 (EXTRACT_SUBREG
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
|
|
ssub))>;
|
|
def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
|
|
(i32 (EXTRACT_SUBREG
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
|
|
ssub))>;
|
|
|
|
def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
|
|
(i32 (EXTRACT_SUBREG
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
|
|
ssub))>;
|
|
def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
|
|
(i32 (EXTRACT_SUBREG
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
|
|
ssub))>;
|
|
|
|
def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
|
|
(i64 (EXTRACT_SUBREG
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
|
|
dsub))>;
|
|
}
|
|
|
|
defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>;
|
|
defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>;
|
|
|
|
// The vaddlv_s32 intrinsic gets mapped to SADDLP.
|
|
def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))),
|
|
(i64 (EXTRACT_SUBREG
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(SADDLPv2i32_v1i64 V64:$Rn), dsub),
|
|
dsub))>;
|
|
// The vaddlv_u32 intrinsic gets mapped to UADDLP.
|
|
def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))),
|
|
(i64 (EXTRACT_SUBREG
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
|
|
(UADDLPv2i32_v1i64 V64:$Rn), dsub),
|
|
dsub))>;
|
|
|
|
//------------------------------------------------------------------------------
|
|
// AdvSIMD modified immediate instructions
|
|
//------------------------------------------------------------------------------
|
|
|
|
// AdvSIMD BIC
|
|
defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>;
|
|
// AdvSIMD ORR
|
|
defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>;
|
|
|
|
def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0)>;
|
|
def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
|
|
def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0)>;
|
|
def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
|
|
|
|
def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0)>;
|
|
def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
|
|
def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0)>;
|
|
def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
|
|
|
|
def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0)>;
|
|
def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
|
|
def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0)>;
|
|
def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
|
|
|
|
def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0)>;
|
|
def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
|
|
def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0)>;
|
|
def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
|
|
|
|
// AdvSIMD FMOV
|
|
def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8,
|
|
"fmov", ".2d",
|
|
[(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
|
|
def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64, fpimm8,
|
|
"fmov", ".2s",
|
|
[(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
|
|
def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8,
|
|
"fmov", ".4s",
|
|
[(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
|
|
let Predicates = [HasNEON, HasFullFP16] in {
|
|
def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64, fpimm8,
|
|
"fmov", ".4h",
|
|
[(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
|
|
def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8,
|
|
"fmov", ".8h",
|
|
[(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
|
|
} // Predicates = [HasNEON, HasFullFP16]
|
|
|
|
// AdvSIMD MOVI
|
|
|
|
// EDIT byte mask: scalar
|
|
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
|
|
def MOVID : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi",
|
|
[(set FPR64:$Rd, simdimmtype10:$imm8)]>;
|
|
// The movi_edit node has the immediate value already encoded, so we use
|
|
// a plain imm0_255 here.
|
|
def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)),
|
|
(MOVID imm0_255:$shift)>;
|
|
|
|
// EDIT byte mask: 2d
|
|
|
|
// The movi_edit node has the immediate value already encoded, so we use
|
|
// a plain imm0_255 in the pattern
|
|
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
|
|
def MOVIv2d_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128,
|
|
simdimmtype10,
|
|
"movi", ".2d",
|
|
[(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>;
|
|
|
|
def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>;
|
|
def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>;
|
|
def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>;
|
|
def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>;
|
|
|
|
def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>;
|
|
def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>;
|
|
def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>;
|
|
def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>;
|
|
|
|
// Set 64-bit vectors to all 0/1 by extracting from a 128-bit register as the
|
|
// extract is free and this gives better MachineCSE results.
|
|
def : Pat<(v1i64 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
|
|
def : Pat<(v2i32 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
|
|
def : Pat<(v4i16 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
|
|
def : Pat<(v8i8 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
|
|
|
|
def : Pat<(v1i64 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
|
|
def : Pat<(v2i32 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
|
|
def : Pat<(v4i16 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
|
|
def : Pat<(v8i8 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
|
|
|
|
// EDIT per word & halfword: 2s, 4h, 4s, & 8h
|
|
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
|
|
defm MOVI : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">;
|
|
|
|
def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
|
|
def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
|
|
def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
|
|
def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
|
|
|
|
def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
|
|
def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
|
|
def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
|
|
def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
|
|
|
|
def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
|
|
(MOVIv2i32 imm0_255:$imm8, imm:$shift)>;
|
|
def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
|
|
(MOVIv4i32 imm0_255:$imm8, imm:$shift)>;
|
|
def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
|
|
(MOVIv4i16 imm0_255:$imm8, imm:$shift)>;
|
|
def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
|
|
(MOVIv8i16 imm0_255:$imm8, imm:$shift)>;
|
|
|
|
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
|
|
// EDIT per word: 2s & 4s with MSL shifter
|
|
def MOVIv2s_msl : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s",
|
|
[(set (v2i32 V64:$Rd),
|
|
(AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
|
|
def MOVIv4s_msl : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s",
|
|
[(set (v4i32 V128:$Rd),
|
|
(AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
|
|
|
|
// Per byte: 8b & 16b
|
|
def MOVIv8b_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64, imm0_255,
|
|
"movi", ".8b",
|
|
[(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>;
|
|
|
|
def MOVIv16b_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255,
|
|
"movi", ".16b",
|
|
[(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>;
|
|
}
|
|
|
|
// AdvSIMD MVNI
|
|
|
|
// EDIT per word & halfword: 2s, 4h, 4s, & 8h
|
|
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
|
|
defm MVNI : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">;
|
|
|
|
def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
|
|
def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
|
|
def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
|
|
def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
|
|
|
|
def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
|
|
def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
|
|
def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
|
|
def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
|
|
|
|
def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
|
|
(MVNIv2i32 imm0_255:$imm8, imm:$shift)>;
|
|
def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
|
|
(MVNIv4i32 imm0_255:$imm8, imm:$shift)>;
|
|
def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
|
|
(MVNIv4i16 imm0_255:$imm8, imm:$shift)>;
|
|
def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
|
|
(MVNIv8i16 imm0_255:$imm8, imm:$shift)>;
|
|
|
|
// EDIT per word: 2s & 4s with MSL shifter
|
|
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
|
|
def MVNIv2s_msl : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s",
|
|
[(set (v2i32 V64:$Rd),
|
|
(AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
|
|
def MVNIv4s_msl : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s",
|
|
[(set (v4i32 V128:$Rd),
|
|
(AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// AdvSIMD indexed element
|
|
//----------------------------------------------------------------------------
|
|
|
|
let hasSideEffects = 0 in {
|
|
defm FMLA : SIMDFPIndexedTied<0, 0b0001, "fmla">;
|
|
defm FMLS : SIMDFPIndexedTied<0, 0b0101, "fmls">;
|
|
}
|
|
|
|
// NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the
|
|
// instruction expects the addend first, while the intrinsic expects it last.
|
|
|
|
// On the other hand, there are quite a few valid combinatorial options due to
|
|
// the commutativity of multiplication and the fact that (-x) * y = x * (-y).
|
|
defm : SIMDFPIndexedTiedPatterns<"FMLA",
|
|
TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>;
|
|
defm : SIMDFPIndexedTiedPatterns<"FMLA",
|
|
TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>;
|
|
|
|
defm : SIMDFPIndexedTiedPatterns<"FMLS",
|
|
TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
|
|
defm : SIMDFPIndexedTiedPatterns<"FMLS",
|
|
TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >;
|
|
defm : SIMDFPIndexedTiedPatterns<"FMLS",
|
|
TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >;
|
|
defm : SIMDFPIndexedTiedPatterns<"FMLS",
|
|
TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >;
|
|
|
|
multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> {
|
|
// 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit
|
|
// and DUP scalar.
|
|
def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
|
|
(AArch64duplane32 (v4f32 (fneg V128:$Rm)),
|
|
VectorIndexS:$idx))),
|
|
(FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
|
|
def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
|
|
(v2f32 (AArch64duplane32
|
|
(v4f32 (insert_subvector undef,
|
|
(v2f32 (fneg V64:$Rm)),
|
|
(i32 0))),
|
|
VectorIndexS:$idx)))),
|
|
(FMLSv2i32_indexed V64:$Rd, V64:$Rn,
|
|
(SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
|
|
VectorIndexS:$idx)>;
|
|
def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
|
|
(AArch64dup (f32 (fneg FPR32Op:$Rm))))),
|
|
(FMLSv2i32_indexed V64:$Rd, V64:$Rn,
|
|
(SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
|
|
|
|
// 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit
|
|
// and DUP scalar.
|
|
def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
|
|
(AArch64duplane32 (v4f32 (fneg V128:$Rm)),
|
|
VectorIndexS:$idx))),
|
|
(FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm,
|
|
VectorIndexS:$idx)>;
|
|
def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
|
|
(v4f32 (AArch64duplane32
|
|
(v4f32 (insert_subvector undef,
|
|
(v2f32 (fneg V64:$Rm)),
|
|
(i32 0))),
|
|
VectorIndexS:$idx)))),
|
|
(FMLSv4i32_indexed V128:$Rd, V128:$Rn,
|
|
(SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
|
|
VectorIndexS:$idx)>;
|
|
def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
|
|
(AArch64dup (f32 (fneg FPR32Op:$Rm))))),
|
|
(FMLSv4i32_indexed V128:$Rd, V128:$Rn,
|
|
(SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
|
|
|
|
// 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar
|
|
// (DUPLANE from 64-bit would be trivial).
|
|
def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
|
|
(AArch64duplane64 (v2f64 (fneg V128:$Rm)),
|
|
VectorIndexD:$idx))),
|
|
(FMLSv2i64_indexed
|
|
V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
|
|
def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
|
|
(AArch64dup (f64 (fneg FPR64Op:$Rm))))),
|
|
(FMLSv2i64_indexed V128:$Rd, V128:$Rn,
|
|
(SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;
|
|
|
|
// 2 variants for 32-bit scalar version: extract from .2s or from .4s
|
|
def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
|
|
(vector_extract (v4f32 (fneg V128:$Rm)),
|
|
VectorIndexS:$idx))),
|
|
(FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
|
|
V128:$Rm, VectorIndexS:$idx)>;
|
|
def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
|
|
(vector_extract (v4f32 (insert_subvector undef,
|
|
(v2f32 (fneg V64:$Rm)),
|
|
(i32 0))),
|
|
VectorIndexS:$idx))),
|
|
(FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
|
|
(SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>;
|
|
|
|
// 1 variant for 64-bit scalar version: extract from .1d or from .2d
|
|
def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
|
|
(vector_extract (v2f64 (fneg V128:$Rm)),
|
|
VectorIndexS:$idx))),
|
|
(FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn,
|
|
V128:$Rm, VectorIndexS:$idx)>;
|
|
}
|
|
|
|
defm : FMLSIndexedAfterNegPatterns<
|
|
TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
|
|
defm : FMLSIndexedAfterNegPatterns<
|
|
TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >;
|
|
|
|
defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>;
|
|
defm FMUL : SIMDFPIndexed<0, 0b1001, "fmul", fmul>;
|
|
|
|
def : Pat<(v2f32 (fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
|
|
(FMULv2i32_indexed V64:$Rn,
|
|
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
|
|
(i64 0))>;
|
|
def : Pat<(v4f32 (fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
|
|
(FMULv4i32_indexed V128:$Rn,
|
|
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
|
|
(i64 0))>;
|
|
def : Pat<(v2f64 (fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))),
|
|
(FMULv2i64_indexed V128:$Rn,
|
|
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub),
|
|
(i64 0))>;
|
|
|
|
defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>;
|
|
defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
|
|
|
|
defm SQDMULH : SIMDIndexedHSPatterns<int_aarch64_neon_sqdmulh_lane,
|
|
int_aarch64_neon_sqdmulh_laneq>;
|
|
defm SQRDMULH : SIMDIndexedHSPatterns<int_aarch64_neon_sqrdmulh_lane,
|
|
int_aarch64_neon_sqrdmulh_laneq>;
|
|
|
|
// Generated by MachineCombine
|
|
defm MLA : SIMDVectorIndexedHSTied<1, 0b0000, "mla", null_frag>;
|
|
defm MLS : SIMDVectorIndexedHSTied<1, 0b0100, "mls", null_frag>;
|
|
|
|
defm MUL : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>;
|
|
defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal",
|
|
TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
|
|
defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl",
|
|
TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
|
|
defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull",
|
|
int_aarch64_neon_smull>;
|
|
defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal",
|
|
int_aarch64_neon_sqadd>;
|
|
defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl",
|
|
int_aarch64_neon_sqsub>;
|
|
defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah",
|
|
int_aarch64_neon_sqadd>;
|
|
defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh",
|
|
int_aarch64_neon_sqsub>;
|
|
defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>;
|
|
defm UMLAL : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal",
|
|
TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
|
|
defm UMLSL : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl",
|
|
TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
|
|
defm UMULL : SIMDVectorIndexedLongSD<1, 0b1010, "umull",
|
|
int_aarch64_neon_umull>;
|
|
|
|
// A scalar sqdmull with the second operand being a vector lane can be
|
|
// handled directly with the indexed instruction encoding.
|
|
def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
|
|
(vector_extract (v4i32 V128:$Vm),
|
|
VectorIndexS:$idx)),
|
|
(SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>;
|
|
|
|
//----------------------------------------------------------------------------
|
|
// AdvSIMD scalar shift instructions
|
|
//----------------------------------------------------------------------------
|
|
defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">;
|
|
defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">;
|
|
defm SCVTF : SIMDFPScalarRShift<0, 0b11100, "scvtf">;
|
|
defm UCVTF : SIMDFPScalarRShift<1, 0b11100, "ucvtf">;
|
|
// Codegen patterns for the above. We don't put these directly on the
|
|
// instructions because TableGen's type inference can't handle the truth.
|
|
// Having the same base pattern for fp <--> int totally freaks it out.
|
|
def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm),
|
|
(FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>;
|
|
def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm),
|
|
(FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>;
|
|
def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)),
|
|
(FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
|
|
def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)),
|
|
(FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
|
|
def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn),
|
|
vecshiftR64:$imm)),
|
|
(FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
|
|
def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn),
|
|
vecshiftR64:$imm)),
|
|
(FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
|
|
def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm),
|
|
(UCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
|
|
def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
|
|
(UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
|
|
def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn),
|
|
vecshiftR64:$imm)),
|
|
(SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
|
|
def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
|
|
(SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
|
|
def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn),
|
|
vecshiftR64:$imm)),
|
|
(UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
|
|
def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm),
|
|
(SCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
|
|
|
|
// Patterns for FP16 Instrinsics - requires reg copy to/from as i16s not supported.
|
|
|
|
def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 (sext_inreg FPR32:$Rn, i16)), vecshiftR16:$imm)),
|
|
(SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
|
|
def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 FPR32:$Rn), vecshiftR16:$imm)),
|
|
(SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
|
|
def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR16:$imm)),
|
|
(SCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>;
|
|
def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp
|
|
(and FPR32:$Rn, (i32 65535)),
|
|
vecshiftR16:$imm)),
|
|
(UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
|
|
def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR16:$imm)),
|
|
(UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
|
|
def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR16:$imm)),
|
|
(UCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>;
|
|
def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR32:$imm)),
|
|
(i32 (INSERT_SUBREG
|
|
(i32 (IMPLICIT_DEF)),
|
|
(FCVTZSh FPR16:$Rn, vecshiftR32:$imm),
|
|
hsub))>;
|
|
def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR64:$imm)),
|
|
(i64 (INSERT_SUBREG
|
|
(i64 (IMPLICIT_DEF)),
|
|
(FCVTZSh FPR16:$Rn, vecshiftR64:$imm),
|
|
hsub))>;
|
|
def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR32:$imm)),
|
|
(i32 (INSERT_SUBREG
|
|
(i32 (IMPLICIT_DEF)),
|
|
(FCVTZUh FPR16:$Rn, vecshiftR32:$imm),
|
|
hsub))>;
|
|
def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR64:$imm)),
|
|
(i64 (INSERT_SUBREG
|
|
(i64 (IMPLICIT_DEF)),
|
|
(FCVTZUh FPR16:$Rn, vecshiftR64:$imm),
|
|
hsub))>;
|
|
def : Pat<(i32 (int_aarch64_neon_facge (f16 FPR16:$Rn), (f16 FPR16:$Rm))),
|
|
(i32 (INSERT_SUBREG
|
|
(i32 (IMPLICIT_DEF)),
|
|
(FACGE16 FPR16:$Rn, FPR16:$Rm),
|
|
hsub))>;
|
|
def : Pat<(i32 (int_aarch64_neon_facgt (f16 FPR16:$Rn), (f16 FPR16:$Rm))),
|
|
(i32 (INSERT_SUBREG
|
|
(i32 (IMPLICIT_DEF)),
|
|
(FACGT16 FPR16:$Rn, FPR16:$Rm),
|
|
hsub))>;
|
|
|
|
defm SHL : SIMDScalarLShiftD< 0, 0b01010, "shl", AArch64vshl>;
|
|
defm SLI : SIMDScalarLShiftDTied<1, 0b01010, "sli">;
|
|
defm SQRSHRN : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn",
|
|
int_aarch64_neon_sqrshrn>;
|
|
defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun",
|
|
int_aarch64_neon_sqrshrun>;
|
|
defm SQSHLU : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
|
|
defm SQSHL : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
|
|
defm SQSHRN : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn",
|
|
int_aarch64_neon_sqshrn>;
|
|
defm SQSHRUN : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun",
|
|
int_aarch64_neon_sqshrun>;
|
|
defm SRI : SIMDScalarRShiftDTied< 1, 0b01000, "sri">;
|
|
defm SRSHR : SIMDScalarRShiftD< 0, 0b00100, "srshr", AArch64srshri>;
|
|
defm SRSRA : SIMDScalarRShiftDTied< 0, 0b00110, "srsra",
|
|
TriOpFrag<(add node:$LHS,
|
|
(AArch64srshri node:$MHS, node:$RHS))>>;
|
|
defm SSHR : SIMDScalarRShiftD< 0, 0b00000, "sshr", AArch64vashr>;
|
|
defm SSRA : SIMDScalarRShiftDTied< 0, 0b00010, "ssra",
|
|
TriOpFrag<(add node:$LHS,
|
|
(AArch64vashr node:$MHS, node:$RHS))>>;
|
|
defm UQRSHRN : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn",
|
|
int_aarch64_neon_uqrshrn>;
|
|
defm UQSHL : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
|
|
defm UQSHRN : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn",
|
|
int_aarch64_neon_uqshrn>;
|
|
defm URSHR : SIMDScalarRShiftD< 1, 0b00100, "urshr", AArch64urshri>;
|
|
defm URSRA : SIMDScalarRShiftDTied< 1, 0b00110, "ursra",
|
|
TriOpFrag<(add node:$LHS,
|
|
(AArch64urshri node:$MHS, node:$RHS))>>;
|
|
defm USHR : SIMDScalarRShiftD< 1, 0b00000, "ushr", AArch64vlshr>;
|
|
defm USRA : SIMDScalarRShiftDTied< 1, 0b00010, "usra",
|
|
TriOpFrag<(add node:$LHS,
|
|
(AArch64vlshr node:$MHS, node:$RHS))>>;
|
|
|
|
//----------------------------------------------------------------------------
|
|
// AdvSIMD vector shift instructions
|
|
//----------------------------------------------------------------------------
|
|
defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>;
|
|
defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>;
|
|
defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf",
|
|
int_aarch64_neon_vcvtfxs2fp>;
|
|
defm RSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn",
|
|
int_aarch64_neon_rshrn>;
|
|
defm SHL : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>;
|
|
defm SHRN : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn",
|
|
BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>;
|
|
defm SLI : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", AArch64vsli>;
|
|
def : Pat<(v1i64 (AArch64vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
|
|
(i32 vecshiftL64:$imm))),
|
|
(SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>;
|
|
defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn",
|
|
int_aarch64_neon_sqrshrn>;
|
|
defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun",
|
|
int_aarch64_neon_sqrshrun>;
|
|
defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
|
|
defm SQSHL : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
|
|
defm SQSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn",
|
|
int_aarch64_neon_sqshrn>;
|
|
defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun",
|
|
int_aarch64_neon_sqshrun>;
|
|
defm SRI : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", AArch64vsri>;
|
|
def : Pat<(v1i64 (AArch64vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
|
|
(i32 vecshiftR64:$imm))),
|
|
(SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>;
|
|
defm SRSHR : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>;
|
|
defm SRSRA : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra",
|
|
TriOpFrag<(add node:$LHS,
|
|
(AArch64srshri node:$MHS, node:$RHS))> >;
|
|
defm SSHLL : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll",
|
|
BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>;
|
|
|
|
defm SSHR : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>;
|
|
defm SSRA : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra",
|
|
TriOpFrag<(add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>;
|
|
defm UCVTF : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf",
|
|
int_aarch64_neon_vcvtfxu2fp>;
|
|
defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn",
|
|
int_aarch64_neon_uqrshrn>;
|
|
defm UQSHL : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
|
|
defm UQSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn",
|
|
int_aarch64_neon_uqshrn>;
|
|
defm URSHR : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>;
|
|
defm URSRA : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra",
|
|
TriOpFrag<(add node:$LHS,
|
|
(AArch64urshri node:$MHS, node:$RHS))> >;
|
|
defm USHLL : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll",
|
|
BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>;
|
|
defm USHR : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>;
|
|
defm USRA : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra",
|
|
TriOpFrag<(add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >;
|
|
|
|
// SHRN patterns for when a logical right shift was used instead of arithmetic
|
|
// (the immediate guarantees no sign bits actually end up in the result so it
|
|
// doesn't matter).
|
|
def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))),
|
|
(SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>;
|
|
def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))),
|
|
(SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>;
|
|
def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))),
|
|
(SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>;
|
|
|
|
def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd),
|
|
(trunc (AArch64vlshr (v8i16 V128:$Rn),
|
|
vecshiftR16Narrow:$imm)))),
|
|
(SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
|
|
V128:$Rn, vecshiftR16Narrow:$imm)>;
|
|
def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd),
|
|
(trunc (AArch64vlshr (v4i32 V128:$Rn),
|
|
vecshiftR32Narrow:$imm)))),
|
|
(SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
|
|
V128:$Rn, vecshiftR32Narrow:$imm)>;
|
|
def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd),
|
|
(trunc (AArch64vlshr (v2i64 V128:$Rn),
|
|
vecshiftR64Narrow:$imm)))),
|
|
(SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
|
|
V128:$Rn, vecshiftR32Narrow:$imm)>;
|
|
|
|
// Vector sign and zero extensions are implemented with SSHLL and USSHLL.
|
|
// Anyexts are implemented as zexts.
|
|
def : Pat<(v8i16 (sext (v8i8 V64:$Rn))), (SSHLLv8i8_shift V64:$Rn, (i32 0))>;
|
|
def : Pat<(v8i16 (zext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>;
|
|
def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>;
|
|
def : Pat<(v4i32 (sext (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>;
|
|
def : Pat<(v4i32 (zext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
|
|
def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
|
|
def : Pat<(v2i64 (sext (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>;
|
|
def : Pat<(v2i64 (zext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
|
|
def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
|
|
// Also match an extend from the upper half of a 128 bit source register.
|
|
def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
|
|
(USHLLv16i8_shift V128:$Rn, (i32 0))>;
|
|
def : Pat<(v8i16 (zext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
|
|
(USHLLv16i8_shift V128:$Rn, (i32 0))>;
|
|
def : Pat<(v8i16 (sext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
|
|
(SSHLLv16i8_shift V128:$Rn, (i32 0))>;
|
|
def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
|
|
(USHLLv8i16_shift V128:$Rn, (i32 0))>;
|
|
def : Pat<(v4i32 (zext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
|
|
(USHLLv8i16_shift V128:$Rn, (i32 0))>;
|
|
def : Pat<(v4i32 (sext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
|
|
(SSHLLv8i16_shift V128:$Rn, (i32 0))>;
|
|
def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
|
|
(USHLLv4i32_shift V128:$Rn, (i32 0))>;
|
|
def : Pat<(v2i64 (zext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
|
|
(USHLLv4i32_shift V128:$Rn, (i32 0))>;
|
|
def : Pat<(v2i64 (sext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
|
|
(SSHLLv4i32_shift V128:$Rn, (i32 0))>;
|
|
|
|
// Vector shift sxtl aliases
|
|
def : InstAlias<"sxtl.8h $dst, $src1",
|
|
(SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
|
|
def : InstAlias<"sxtl $dst.8h, $src1.8b",
|
|
(SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
|
|
def : InstAlias<"sxtl.4s $dst, $src1",
|
|
(SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
|
|
def : InstAlias<"sxtl $dst.4s, $src1.4h",
|
|
(SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
|
|
def : InstAlias<"sxtl.2d $dst, $src1",
|
|
(SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
|
|
def : InstAlias<"sxtl $dst.2d, $src1.2s",
|
|
(SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
|
|
|
|
// Vector shift sxtl2 aliases
|
|
def : InstAlias<"sxtl2.8h $dst, $src1",
|
|
(SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
|
|
def : InstAlias<"sxtl2 $dst.8h, $src1.16b",
|
|
(SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
|
|
def : InstAlias<"sxtl2.4s $dst, $src1",
|
|
(SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
|
|
def : InstAlias<"sxtl2 $dst.4s, $src1.8h",
|
|
(SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
|
|
def : InstAlias<"sxtl2.2d $dst, $src1",
|
|
(SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
|
|
def : InstAlias<"sxtl2 $dst.2d, $src1.4s",
|
|
(SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
|
|
|
|
// Vector shift uxtl aliases
|
|
def : InstAlias<"uxtl.8h $dst, $src1",
|
|
(USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
|
|
def : InstAlias<"uxtl $dst.8h, $src1.8b",
|
|
(USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
|
|
def : InstAlias<"uxtl.4s $dst, $src1",
|
|
(USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
|
|
def : InstAlias<"uxtl $dst.4s, $src1.4h",
|
|
(USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
|
|
def : InstAlias<"uxtl.2d $dst, $src1",
|
|
(USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
|
|
def : InstAlias<"uxtl $dst.2d, $src1.2s",
|
|
(USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
|
|
|
|
// Vector shift uxtl2 aliases
|
|
def : InstAlias<"uxtl2.8h $dst, $src1",
|
|
(USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
|
|
def : InstAlias<"uxtl2 $dst.8h, $src1.16b",
|
|
(USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
|
|
def : InstAlias<"uxtl2.4s $dst, $src1",
|
|
(USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
|
|
def : InstAlias<"uxtl2 $dst.4s, $src1.8h",
|
|
(USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
|
|
def : InstAlias<"uxtl2.2d $dst, $src1",
|
|
(USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
|
|
def : InstAlias<"uxtl2 $dst.2d, $src1.4s",
|
|
(USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
|
|
|
|
// If an integer is about to be converted to a floating point value,
|
|
// just load it on the floating point unit.
|
|
// These patterns are more complex because floating point loads do not
|
|
// support sign extension.
|
|
// The sign extension has to be explicitly added and is only supported for
|
|
// one step: byte-to-half, half-to-word, word-to-doubleword.
|
|
// SCVTF GPR -> FPR is 9 cycles.
|
|
// SCVTF FPR -> FPR is 4 cyclces.
|
|
// (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles.
|
|
// Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR
|
|
// and still being faster.
|
|
// However, this is not good for code size.
|
|
// 8-bits -> float. 2 sizes step-up.
|
|
class SExtLoadi8CVTf32Pat<dag addrmode, dag INST>
|
|
: Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))),
|
|
(SCVTFv1i32 (f32 (EXTRACT_SUBREG
|
|
(SSHLLv4i16_shift
|
|
(f64
|
|
(EXTRACT_SUBREG
|
|
(SSHLLv8i8_shift
|
|
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
|
|
INST,
|
|
bsub),
|
|
0),
|
|
dsub)),
|
|
0),
|
|
ssub)))>,
|
|
Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
|
|
|
|
def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext),
|
|
(LDRBroW GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>;
|
|
def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext),
|
|
(LDRBroX GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>;
|
|
def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset),
|
|
(LDRBui GPR64sp:$Rn, uimm12s1:$offset)>;
|
|
def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset),
|
|
(LDURBi GPR64sp:$Rn, simm9:$offset)>;
|
|
|
|
// 16-bits -> float. 1 size step-up.
|
|
class SExtLoadi16CVTf32Pat<dag addrmode, dag INST>
|
|
: Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))),
|
|
(SCVTFv1i32 (f32 (EXTRACT_SUBREG
|
|
(SSHLLv4i16_shift
|
|
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
|
|
INST,
|
|
hsub),
|
|
0),
|
|
ssub)))>, Requires<[NotForCodeSize]>;
|
|
|
|
def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
|
|
(LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
|
|
def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
|
|
(LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
|
|
def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
|
|
(LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
|
|
def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
|
|
(LDURHi GPR64sp:$Rn, simm9:$offset)>;
|
|
|
|
// 32-bits to 32-bits are handled in target specific dag combine:
|
|
// performIntToFpCombine.
|
|
// 64-bits integer to 32-bits floating point, not possible with
|
|
// SCVTF on floating point registers (both source and destination
|
|
// must have the same size).
|
|
|
|
// Here are the patterns for 8, 16, 32, and 64-bits to double.
|
|
// 8-bits -> double. 3 size step-up: give up.
|
|
// 16-bits -> double. 2 size step.
|
|
class SExtLoadi16CVTf64Pat<dag addrmode, dag INST>
|
|
: Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))),
|
|
(SCVTFv1i64 (f64 (EXTRACT_SUBREG
|
|
(SSHLLv2i32_shift
|
|
(f64
|
|
(EXTRACT_SUBREG
|
|
(SSHLLv4i16_shift
|
|
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
|
|
INST,
|
|
hsub),
|
|
0),
|
|
dsub)),
|
|
0),
|
|
dsub)))>,
|
|
Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
|
|
|
|
def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
|
|
(LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
|
|
def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
|
|
(LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
|
|
def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
|
|
(LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
|
|
def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
|
|
(LDURHi GPR64sp:$Rn, simm9:$offset)>;
|
|
// 32-bits -> double. 1 size step-up.
|
|
class SExtLoadi32CVTf64Pat<dag addrmode, dag INST>
|
|
: Pat <(f64 (sint_to_fp (i32 (load addrmode)))),
|
|
(SCVTFv1i64 (f64 (EXTRACT_SUBREG
|
|
(SSHLLv2i32_shift
|
|
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
|
|
INST,
|
|
ssub),
|
|
0),
|
|
dsub)))>, Requires<[NotForCodeSize]>;
|
|
|
|
def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext),
|
|
(LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>;
|
|
def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext),
|
|
(LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>;
|
|
def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset),
|
|
(LDRSui GPR64sp:$Rn, uimm12s4:$offset)>;
|
|
def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset),
|
|
(LDURSi GPR64sp:$Rn, simm9:$offset)>;
|
|
|
|
// 64-bits -> double are handled in target specific dag combine:
|
|
// performIntToFpCombine.
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// AdvSIMD Load-Store Structure
|
|
//----------------------------------------------------------------------------
|
|
defm LD1 : SIMDLd1Multiple<"ld1">;
|
|
defm LD2 : SIMDLd2Multiple<"ld2">;
|
|
defm LD3 : SIMDLd3Multiple<"ld3">;
|
|
defm LD4 : SIMDLd4Multiple<"ld4">;
|
|
|
|
defm ST1 : SIMDSt1Multiple<"st1">;
|
|
defm ST2 : SIMDSt2Multiple<"st2">;
|
|
defm ST3 : SIMDSt3Multiple<"st3">;
|
|
defm ST4 : SIMDSt4Multiple<"st4">;
|
|
|
|
class Ld1Pat<ValueType ty, Instruction INST>
|
|
: Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>;
|
|
|
|
def : Ld1Pat<v16i8, LD1Onev16b>;
|
|
def : Ld1Pat<v8i16, LD1Onev8h>;
|
|
def : Ld1Pat<v4i32, LD1Onev4s>;
|
|
def : Ld1Pat<v2i64, LD1Onev2d>;
|
|
def : Ld1Pat<v8i8, LD1Onev8b>;
|
|
def : Ld1Pat<v4i16, LD1Onev4h>;
|
|
def : Ld1Pat<v2i32, LD1Onev2s>;
|
|
def : Ld1Pat<v1i64, LD1Onev1d>;
|
|
|
|
class St1Pat<ValueType ty, Instruction INST>
|
|
: Pat<(store ty:$Vt, GPR64sp:$Rn),
|
|
(INST ty:$Vt, GPR64sp:$Rn)>;
|
|
|
|
def : St1Pat<v16i8, ST1Onev16b>;
|
|
def : St1Pat<v8i16, ST1Onev8h>;
|
|
def : St1Pat<v4i32, ST1Onev4s>;
|
|
def : St1Pat<v2i64, ST1Onev2d>;
|
|
def : St1Pat<v8i8, ST1Onev8b>;
|
|
def : St1Pat<v4i16, ST1Onev4h>;
|
|
def : St1Pat<v2i32, ST1Onev2s>;
|
|
def : St1Pat<v1i64, ST1Onev1d>;
|
|
|
|
//---
|
|
// Single-element
|
|
//---
|
|
|
|
defm LD1R : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>;
|
|
defm LD2R : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>;
|
|
defm LD3R : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>;
|
|
defm LD4R : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>;
|
|
let mayLoad = 1, hasSideEffects = 0 in {
|
|
defm LD1 : SIMDLdSingleBTied<0, 0b000, "ld1", VecListOneb, GPR64pi1>;
|
|
defm LD1 : SIMDLdSingleHTied<0, 0b010, 0, "ld1", VecListOneh, GPR64pi2>;
|
|
defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes, GPR64pi4>;
|
|
defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned, GPR64pi8>;
|
|
defm LD2 : SIMDLdSingleBTied<1, 0b000, "ld2", VecListTwob, GPR64pi2>;
|
|
defm LD2 : SIMDLdSingleHTied<1, 0b010, 0, "ld2", VecListTwoh, GPR64pi4>;
|
|
defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos, GPR64pi8>;
|
|
defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod, GPR64pi16>;
|
|
defm LD3 : SIMDLdSingleBTied<0, 0b001, "ld3", VecListThreeb, GPR64pi3>;
|
|
defm LD3 : SIMDLdSingleHTied<0, 0b011, 0, "ld3", VecListThreeh, GPR64pi6>;
|
|
defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>;
|
|
defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>;
|
|
defm LD4 : SIMDLdSingleBTied<1, 0b001, "ld4", VecListFourb, GPR64pi4>;
|
|
defm LD4 : SIMDLdSingleHTied<1, 0b011, 0, "ld4", VecListFourh, GPR64pi8>;
|
|
defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours, GPR64pi16>;
|
|
defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd, GPR64pi32>;
|
|
}
|
|
|
|
def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
|
|
(LD1Rv8b GPR64sp:$Rn)>;
|
|
def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
|
|
(LD1Rv16b GPR64sp:$Rn)>;
|
|
def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
|
|
(LD1Rv4h GPR64sp:$Rn)>;
|
|
def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
|
|
(LD1Rv8h GPR64sp:$Rn)>;
|
|
def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
|
|
(LD1Rv2s GPR64sp:$Rn)>;
|
|
def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
|
|
(LD1Rv4s GPR64sp:$Rn)>;
|
|
def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
|
|
(LD1Rv2d GPR64sp:$Rn)>;
|
|
def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
|
|
(LD1Rv1d GPR64sp:$Rn)>;
|
|
// Grab the floating point version too
|
|
def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
|
|
(LD1Rv2s GPR64sp:$Rn)>;
|
|
def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
|
|
(LD1Rv4s GPR64sp:$Rn)>;
|
|
def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
|
|
(LD1Rv2d GPR64sp:$Rn)>;
|
|
def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
|
|
(LD1Rv1d GPR64sp:$Rn)>;
|
|
def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
|
|
(LD1Rv4h GPR64sp:$Rn)>;
|
|
def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
|
|
(LD1Rv8h GPR64sp:$Rn)>;
|
|
def : Pat<(v4bf16 (AArch64dup (bf16 (load GPR64sp:$Rn)))),
|
|
(LD1Rv4h GPR64sp:$Rn)>;
|
|
def : Pat<(v8bf16 (AArch64dup (bf16 (load GPR64sp:$Rn)))),
|
|
(LD1Rv8h GPR64sp:$Rn)>;
|
|
|
|
class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex,
|
|
ValueType VTy, ValueType STy, Instruction LD1>
|
|
: Pat<(vector_insert (VTy VecListOne128:$Rd),
|
|
(STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
|
|
(LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>;
|
|
|
|
def : Ld1Lane128Pat<extloadi8, VectorIndexB, v16i8, i32, LD1i8>;
|
|
def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>;
|
|
def : Ld1Lane128Pat<load, VectorIndexS, v4i32, i32, LD1i32>;
|
|
def : Ld1Lane128Pat<load, VectorIndexS, v4f32, f32, LD1i32>;
|
|
def : Ld1Lane128Pat<load, VectorIndexD, v2i64, i64, LD1i64>;
|
|
def : Ld1Lane128Pat<load, VectorIndexD, v2f64, f64, LD1i64>;
|
|
def : Ld1Lane128Pat<load, VectorIndexH, v8f16, f16, LD1i16>;
|
|
def : Ld1Lane128Pat<load, VectorIndexH, v8bf16, bf16, LD1i16>;
|
|
|
|
class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex,
|
|
ValueType VTy, ValueType STy, Instruction LD1>
|
|
: Pat<(vector_insert (VTy VecListOne64:$Rd),
|
|
(STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
|
|
(EXTRACT_SUBREG
|
|
(LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub),
|
|
VecIndex:$idx, GPR64sp:$Rn),
|
|
dsub)>;
|
|
|
|
def : Ld1Lane64Pat<extloadi8, VectorIndexB, v8i8, i32, LD1i8>;
|
|
def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>;
|
|
def : Ld1Lane64Pat<load, VectorIndexS, v2i32, i32, LD1i32>;
|
|
def : Ld1Lane64Pat<load, VectorIndexS, v2f32, f32, LD1i32>;
|
|
def : Ld1Lane64Pat<load, VectorIndexH, v4f16, f16, LD1i16>;
|
|
def : Ld1Lane64Pat<load, VectorIndexH, v4bf16, bf16, LD1i16>;
|
|
|
|
|
|
defm LD1 : SIMDLdSt1SingleAliases<"ld1">;
|
|
defm LD2 : SIMDLdSt2SingleAliases<"ld2">;
|
|
defm LD3 : SIMDLdSt3SingleAliases<"ld3">;
|
|
defm LD4 : SIMDLdSt4SingleAliases<"ld4">;
|
|
|
|
// Stores
|
|
defm ST1 : SIMDStSingleB<0, 0b000, "st1", VecListOneb, GPR64pi1>;
|
|
defm ST1 : SIMDStSingleH<0, 0b010, 0, "st1", VecListOneh, GPR64pi2>;
|
|
defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>;
|
|
defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>;
|
|
|
|
let AddedComplexity = 19 in
|
|
class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex,
|
|
ValueType VTy, ValueType STy, Instruction ST1>
|
|
: Pat<(scalar_store
|
|
(STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
|
|
GPR64sp:$Rn),
|
|
(ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>;
|
|
|
|
def : St1Lane128Pat<truncstorei8, VectorIndexB, v16i8, i32, ST1i8>;
|
|
def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>;
|
|
def : St1Lane128Pat<store, VectorIndexS, v4i32, i32, ST1i32>;
|
|
def : St1Lane128Pat<store, VectorIndexS, v4f32, f32, ST1i32>;
|
|
def : St1Lane128Pat<store, VectorIndexD, v2i64, i64, ST1i64>;
|
|
def : St1Lane128Pat<store, VectorIndexD, v2f64, f64, ST1i64>;
|
|
def : St1Lane128Pat<store, VectorIndexH, v8f16, f16, ST1i16>;
|
|
def : St1Lane128Pat<store, VectorIndexH, v8bf16, bf16, ST1i16>;
|
|
|
|
let AddedComplexity = 19 in
|
|
class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex,
|
|
ValueType VTy, ValueType STy, Instruction ST1>
|
|
: Pat<(scalar_store
|
|
(STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
|
|
GPR64sp:$Rn),
|
|
(ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
|
|
VecIndex:$idx, GPR64sp:$Rn)>;
|
|
|
|
def : St1Lane64Pat<truncstorei8, VectorIndexB, v8i8, i32, ST1i8>;
|
|
def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>;
|
|
def : St1Lane64Pat<store, VectorIndexS, v2i32, i32, ST1i32>;
|
|
def : St1Lane64Pat<store, VectorIndexS, v2f32, f32, ST1i32>;
|
|
def : St1Lane64Pat<store, VectorIndexH, v4f16, f16, ST1i16>;
|
|
def : St1Lane64Pat<store, VectorIndexH, v4bf16, bf16, ST1i16>;
|
|
|
|
multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex,
|
|
ValueType VTy, ValueType STy, Instruction ST1,
|
|
int offset> {
|
|
def : Pat<(scalar_store
|
|
(STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
|
|
GPR64sp:$Rn, offset),
|
|
(ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
|
|
VecIndex:$idx, GPR64sp:$Rn, XZR)>;
|
|
|
|
def : Pat<(scalar_store
|
|
(STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
|
|
GPR64sp:$Rn, GPR64:$Rm),
|
|
(ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
|
|
VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
|
|
}
|
|
|
|
defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>;
|
|
defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST,
|
|
2>;
|
|
defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>;
|
|
defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>;
|
|
defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>;
|
|
defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>;
|
|
defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>;
|
|
defm : St1LanePost64Pat<post_store, VectorIndexH, v4bf16, bf16, ST1i16_POST, 2>;
|
|
|
|
multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex,
|
|
ValueType VTy, ValueType STy, Instruction ST1,
|
|
int offset> {
|
|
def : Pat<(scalar_store
|
|
(STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
|
|
GPR64sp:$Rn, offset),
|
|
(ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>;
|
|
|
|
def : Pat<(scalar_store
|
|
(STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
|
|
GPR64sp:$Rn, GPR64:$Rm),
|
|
(ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
|
|
}
|
|
|
|
defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST,
|
|
1>;
|
|
defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST,
|
|
2>;
|
|
defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>;
|
|
defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>;
|
|
defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>;
|
|
defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>;
|
|
defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>;
|
|
defm : St1LanePost128Pat<post_store, VectorIndexH, v8bf16, bf16, ST1i16_POST, 2>;
|
|
|
|
let mayStore = 1, hasSideEffects = 0 in {
|
|
defm ST2 : SIMDStSingleB<1, 0b000, "st2", VecListTwob, GPR64pi2>;
|
|
defm ST2 : SIMDStSingleH<1, 0b010, 0, "st2", VecListTwoh, GPR64pi4>;
|
|
defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos, GPR64pi8>;
|
|
defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod, GPR64pi16>;
|
|
defm ST3 : SIMDStSingleB<0, 0b001, "st3", VecListThreeb, GPR64pi3>;
|
|
defm ST3 : SIMDStSingleH<0, 0b011, 0, "st3", VecListThreeh, GPR64pi6>;
|
|
defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>;
|
|
defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>;
|
|
defm ST4 : SIMDStSingleB<1, 0b001, "st4", VecListFourb, GPR64pi4>;
|
|
defm ST4 : SIMDStSingleH<1, 0b011, 0, "st4", VecListFourh, GPR64pi8>;
|
|
defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours, GPR64pi16>;
|
|
defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd, GPR64pi32>;
|
|
}
|
|
|
|
defm ST1 : SIMDLdSt1SingleAliases<"st1">;
|
|
defm ST2 : SIMDLdSt2SingleAliases<"st2">;
|
|
defm ST3 : SIMDLdSt3SingleAliases<"st3">;
|
|
defm ST4 : SIMDLdSt4SingleAliases<"st4">;
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Crypto extensions
|
|
//----------------------------------------------------------------------------
|
|
|
|
let Predicates = [HasAES] in {
|
|
def AESErr : AESTiedInst<0b0100, "aese", int_aarch64_crypto_aese>;
|
|
def AESDrr : AESTiedInst<0b0101, "aesd", int_aarch64_crypto_aesd>;
|
|
def AESMCrr : AESInst< 0b0110, "aesmc", int_aarch64_crypto_aesmc>;
|
|
def AESIMCrr : AESInst< 0b0111, "aesimc", int_aarch64_crypto_aesimc>;
|
|
}
|
|
|
|
// Pseudo instructions for AESMCrr/AESIMCrr with a register constraint required
|
|
// for AES fusion on some CPUs.
|
|
let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
|
|
def AESMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
|
|
Sched<[WriteV]>;
|
|
def AESIMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
|
|
Sched<[WriteV]>;
|
|
}
|
|
|
|
// Only use constrained versions of AES(I)MC instructions if they are paired with
|
|
// AESE/AESD.
|
|
def : Pat<(v16i8 (int_aarch64_crypto_aesmc
|
|
(v16i8 (int_aarch64_crypto_aese (v16i8 V128:$src1),
|
|
(v16i8 V128:$src2))))),
|
|
(v16i8 (AESMCrrTied (v16i8 (AESErr (v16i8 V128:$src1),
|
|
(v16i8 V128:$src2)))))>,
|
|
Requires<[HasFuseAES]>;
|
|
|
|
def : Pat<(v16i8 (int_aarch64_crypto_aesimc
|
|
(v16i8 (int_aarch64_crypto_aesd (v16i8 V128:$src1),
|
|
(v16i8 V128:$src2))))),
|
|
(v16i8 (AESIMCrrTied (v16i8 (AESDrr (v16i8 V128:$src1),
|
|
(v16i8 V128:$src2)))))>,
|
|
Requires<[HasFuseAES]>;
|
|
|
|
let Predicates = [HasSHA2] in {
|
|
def SHA1Crrr : SHATiedInstQSV<0b000, "sha1c", int_aarch64_crypto_sha1c>;
|
|
def SHA1Prrr : SHATiedInstQSV<0b001, "sha1p", int_aarch64_crypto_sha1p>;
|
|
def SHA1Mrrr : SHATiedInstQSV<0b010, "sha1m", int_aarch64_crypto_sha1m>;
|
|
def SHA1SU0rrr : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>;
|
|
def SHA256Hrrr : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>;
|
|
def SHA256H2rrr : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>;
|
|
def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>;
|
|
|
|
def SHA1Hrr : SHAInstSS< 0b0000, "sha1h", int_aarch64_crypto_sha1h>;
|
|
def SHA1SU1rr : SHATiedInstVV<0b0001, "sha1su1", int_aarch64_crypto_sha1su1>;
|
|
def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Compiler-pseudos
|
|
//----------------------------------------------------------------------------
|
|
// FIXME: Like for X86, these should go in their own separate .td file.
|
|
|
|
def def32 : PatLeaf<(i32 GPR32:$src), [{
|
|
return isDef32(*N);
|
|
}]>;
|
|
|
|
// In the case of a 32-bit def that is known to implicitly zero-extend,
|
|
// we can use a SUBREG_TO_REG.
|
|
def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>;
|
|
|
|
// For an anyext, we don't care what the high bits are, so we can perform an
|
|
// INSERT_SUBREF into an IMPLICIT_DEF.
|
|
def : Pat<(i64 (anyext GPR32:$src)),
|
|
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
|
|
|
|
// When we need to explicitly zero-extend, we use a 32-bit MOV instruction and
|
|
// then assert the extension has happened.
|
|
def : Pat<(i64 (zext GPR32:$src)),
|
|
(SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>;
|
|
|
|
// To sign extend, we use a signed bitfield move instruction (SBFM) on the
|
|
// containing super-reg.
|
|
def : Pat<(i64 (sext GPR32:$src)),
|
|
(SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
|
|
def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>;
|
|
def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>;
|
|
def : Pat<(i64 (sext_inreg GPR64:$src, i8)), (SBFMXri GPR64:$src, 0, 7)>;
|
|
def : Pat<(i64 (sext_inreg GPR64:$src, i1)), (SBFMXri GPR64:$src, 0, 0)>;
|
|
def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>;
|
|
def : Pat<(i32 (sext_inreg GPR32:$src, i8)), (SBFMWri GPR32:$src, 0, 7)>;
|
|
def : Pat<(i32 (sext_inreg GPR32:$src, i1)), (SBFMWri GPR32:$src, 0, 0)>;
|
|
|
|
def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)),
|
|
(SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
|
|
(i64 (i32shift_sext_i8 imm0_31:$imm)))>;
|
|
def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)),
|
|
(SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
|
|
(i64 (i64shift_sext_i8 imm0_63:$imm)))>;
|
|
|
|
def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)),
|
|
(SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
|
|
(i64 (i32shift_sext_i16 imm0_31:$imm)))>;
|
|
def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)),
|
|
(SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
|
|
(i64 (i64shift_sext_i16 imm0_63:$imm)))>;
|
|
|
|
def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)),
|
|
(SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
|
|
(i64 (i64shift_a imm0_63:$imm)),
|
|
(i64 (i64shift_sext_i32 imm0_63:$imm)))>;
|
|
|
|
// sra patterns have an AddedComplexity of 10, so make sure we have a higher
|
|
// AddedComplexity for the following patterns since we want to match sext + sra
|
|
// patterns before we attempt to match a single sra node.
|
|
let AddedComplexity = 20 in {
|
|
// We support all sext + sra combinations which preserve at least one bit of the
|
|
// original value which is to be sign extended. E.g. we support shifts up to
|
|
// bitwidth-1 bits.
|
|
def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)),
|
|
(SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>;
|
|
def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)),
|
|
(SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>;
|
|
|
|
def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)),
|
|
(SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>;
|
|
def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)),
|
|
(SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>;
|
|
|
|
def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)),
|
|
(SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
|
|
(i64 imm0_31:$imm), 31)>;
|
|
} // AddedComplexity = 20
|
|
|
|
// To truncate, we can simply extract from a subregister.
|
|
def : Pat<(i32 (trunc GPR64sp:$src)),
|
|
(i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>;
|
|
|
|
// __builtin_trap() uses the BRK instruction on AArch64.
|
|
def : Pat<(trap), (BRK 1)>;
|
|
def : Pat<(debugtrap), (BRK 0xF000)>;
|
|
|
|
def ubsan_trap_xform : SDNodeXForm<timm, [{
|
|
return CurDAG->getTargetConstant(N->getZExtValue() | ('U' << 8), SDLoc(N), MVT::i32);
|
|
}]>;
|
|
|
|
def ubsan_trap_imm : TImmLeaf<i32, [{
|
|
return isUInt<8>(Imm);
|
|
}], ubsan_trap_xform>;
|
|
|
|
def : Pat<(ubsantrap ubsan_trap_imm:$kind), (BRK ubsan_trap_imm:$kind)>;
|
|
|
|
// Multiply high patterns which multiply the lower subvector using smull/umull
|
|
// and the upper subvector with smull2/umull2. Then shuffle the high the high
|
|
// part of both results together.
|
|
def : Pat<(v16i8 (mulhs V128:$Rn, V128:$Rm)),
|
|
(UZP2v16i8
|
|
(SMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub),
|
|
(EXTRACT_SUBREG V128:$Rm, dsub)),
|
|
(SMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>;
|
|
def : Pat<(v8i16 (mulhs V128:$Rn, V128:$Rm)),
|
|
(UZP2v8i16
|
|
(SMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub),
|
|
(EXTRACT_SUBREG V128:$Rm, dsub)),
|
|
(SMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>;
|
|
def : Pat<(v4i32 (mulhs V128:$Rn, V128:$Rm)),
|
|
(UZP2v4i32
|
|
(SMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub),
|
|
(EXTRACT_SUBREG V128:$Rm, dsub)),
|
|
(SMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>;
|
|
|
|
def : Pat<(v16i8 (mulhu V128:$Rn, V128:$Rm)),
|
|
(UZP2v16i8
|
|
(UMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub),
|
|
(EXTRACT_SUBREG V128:$Rm, dsub)),
|
|
(UMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>;
|
|
def : Pat<(v8i16 (mulhu V128:$Rn, V128:$Rm)),
|
|
(UZP2v8i16
|
|
(UMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub),
|
|
(EXTRACT_SUBREG V128:$Rm, dsub)),
|
|
(UMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>;
|
|
def : Pat<(v4i32 (mulhu V128:$Rn, V128:$Rm)),
|
|
(UZP2v4i32
|
|
(UMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub),
|
|
(EXTRACT_SUBREG V128:$Rm, dsub)),
|
|
(UMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>;
|
|
|
|
// Conversions within AdvSIMD types in the same register size are free.
|
|
// But because we need a consistent lane ordering, in big endian many
|
|
// conversions require one or more REV instructions.
|
|
//
|
|
// Consider a simple memory load followed by a bitconvert then a store.
|
|
// v0 = load v2i32
|
|
// v1 = BITCAST v2i32 v0 to v4i16
|
|
// store v4i16 v2
|
|
//
|
|
// In big endian mode every memory access has an implicit byte swap. LDR and
|
|
// STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that
|
|
// is, they treat the vector as a sequence of elements to be byte-swapped.
|
|
// The two pairs of instructions are fundamentally incompatible. We've decided
|
|
// to use LD1/ST1 only to simplify compiler implementation.
|
|
//
|
|
// LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes
|
|
// the original code sequence:
|
|
// v0 = load v2i32
|
|
// v1 = REV v2i32 (implicit)
|
|
// v2 = BITCAST v2i32 v1 to v4i16
|
|
// v3 = REV v4i16 v2 (implicit)
|
|
// store v4i16 v3
|
|
//
|
|
// But this is now broken - the value stored is different to the value loaded
|
|
// due to lane reordering. To fix this, on every BITCAST we must perform two
|
|
// other REVs:
|
|
// v0 = load v2i32
|
|
// v1 = REV v2i32 (implicit)
|
|
// v2 = REV v2i32
|
|
// v3 = BITCAST v2i32 v2 to v4i16
|
|
// v4 = REV v4i16
|
|
// v5 = REV v4i16 v4 (implicit)
|
|
// store v4i16 v5
|
|
//
|
|
// This means an extra two instructions, but actually in most cases the two REV
|
|
// instructions can be combined into one. For example:
|
|
// (REV64_2s (REV64_4h X)) === (REV32_4h X)
|
|
//
|
|
// There is also no 128-bit REV instruction. This must be synthesized with an
|
|
// EXT instruction.
|
|
//
|
|
// Most bitconverts require some sort of conversion. The only exceptions are:
|
|
// a) Identity conversions - vNfX <-> vNiX
|
|
// b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
|
|
//
|
|
|
|
// Natural vector casts (64 bit)
|
|
def : Pat<(v8i8 (AArch64NvCast (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
|
|
def : Pat<(v4i16 (AArch64NvCast (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
|
|
def : Pat<(v4f16 (AArch64NvCast (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
|
|
def : Pat<(v4bf16 (AArch64NvCast (v2i32 FPR64:$src))), (v4bf16 FPR64:$src)>;
|
|
def : Pat<(v2i32 (AArch64NvCast (v2i32 FPR64:$src))), (v2i32 FPR64:$src)>;
|
|
def : Pat<(v2f32 (AArch64NvCast (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
|
|
def : Pat<(v1i64 (AArch64NvCast (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
|
|
|
|
def : Pat<(v8i8 (AArch64NvCast (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
|
|
def : Pat<(v4i16 (AArch64NvCast (v4i16 FPR64:$src))), (v4i16 FPR64:$src)>;
|
|
def : Pat<(v4f16 (AArch64NvCast (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
|
|
def : Pat<(v4bf16 (AArch64NvCast (v4i16 FPR64:$src))), (v4bf16 FPR64:$src)>;
|
|
def : Pat<(v2i32 (AArch64NvCast (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
|
|
def : Pat<(v1i64 (AArch64NvCast (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
|
|
|
|
def : Pat<(v8i8 (AArch64NvCast (v8i8 FPR64:$src))), (v8i8 FPR64:$src)>;
|
|
def : Pat<(v4i16 (AArch64NvCast (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
|
|
def : Pat<(v4f16 (AArch64NvCast (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
|
|
def : Pat<(v4bf16 (AArch64NvCast (v8i8 FPR64:$src))), (v4bf16 FPR64:$src)>;
|
|
def : Pat<(v2i32 (AArch64NvCast (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
|
|
def : Pat<(v2f32 (AArch64NvCast (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
|
|
def : Pat<(v1i64 (AArch64NvCast (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
|
|
|
|
def : Pat<(v8i8 (AArch64NvCast (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
|
|
def : Pat<(v4i16 (AArch64NvCast (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
|
|
def : Pat<(v4f16 (AArch64NvCast (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
|
|
def : Pat<(v4bf16 (AArch64NvCast (f64 FPR64:$src))), (v4bf16 FPR64:$src)>;
|
|
def : Pat<(v2i32 (AArch64NvCast (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
|
|
def : Pat<(v2f32 (AArch64NvCast (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
|
|
def : Pat<(v1i64 (AArch64NvCast (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
|
|
def : Pat<(v1f64 (AArch64NvCast (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
|
|
|
|
def : Pat<(v8i8 (AArch64NvCast (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
|
|
def : Pat<(v4i16 (AArch64NvCast (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
|
|
def : Pat<(v2i32 (AArch64NvCast (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
|
|
def : Pat<(v2f32 (AArch64NvCast (v2f32 FPR64:$src))), (v2f32 FPR64:$src)>;
|
|
def : Pat<(v1i64 (AArch64NvCast (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
|
|
def : Pat<(v1f64 (AArch64NvCast (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
|
|
|
|
// Natural vector casts (128 bit)
|
|
def : Pat<(v16i8 (AArch64NvCast (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
|
|
def : Pat<(v8i16 (AArch64NvCast (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
|
|
def : Pat<(v8f16 (AArch64NvCast (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
|
|
def : Pat<(v8bf16 (AArch64NvCast (v4i32 FPR128:$src))), (v8bf16 FPR128:$src)>;
|
|
def : Pat<(v4i32 (AArch64NvCast (v4i32 FPR128:$src))), (v4i32 FPR128:$src)>;
|
|
def : Pat<(v4f32 (AArch64NvCast (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
|
|
def : Pat<(v2i64 (AArch64NvCast (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
|
|
def : Pat<(v2f64 (AArch64NvCast (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
|
|
|
|
def : Pat<(v16i8 (AArch64NvCast (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
|
|
def : Pat<(v8i16 (AArch64NvCast (v8i16 FPR128:$src))), (v8i16 FPR128:$src)>;
|
|
def : Pat<(v8f16 (AArch64NvCast (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
|
|
def : Pat<(v8bf16 (AArch64NvCast (v8i16 FPR128:$src))), (v8bf16 FPR128:$src)>;
|
|
def : Pat<(v4i32 (AArch64NvCast (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
|
|
def : Pat<(v2i64 (AArch64NvCast (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
|
|
def : Pat<(v4f32 (AArch64NvCast (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
|
|
def : Pat<(v2f64 (AArch64NvCast (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
|
|
|
|
def : Pat<(v16i8 (AArch64NvCast (v16i8 FPR128:$src))), (v16i8 FPR128:$src)>;
|
|
def : Pat<(v8i16 (AArch64NvCast (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
|
|
def : Pat<(v8f16 (AArch64NvCast (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
|
|
def : Pat<(v8bf16 (AArch64NvCast (v16i8 FPR128:$src))), (v8bf16 FPR128:$src)>;
|
|
def : Pat<(v4i32 (AArch64NvCast (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
|
|
def : Pat<(v2i64 (AArch64NvCast (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
|
|
def : Pat<(v4f32 (AArch64NvCast (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
|
|
def : Pat<(v2f64 (AArch64NvCast (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
|
|
|
|
def : Pat<(v16i8 (AArch64NvCast (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
|
|
def : Pat<(v8i16 (AArch64NvCast (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
|
|
def : Pat<(v8f16 (AArch64NvCast (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
|
|
def : Pat<(v8bf16 (AArch64NvCast (v2i64 FPR128:$src))), (v8bf16 FPR128:$src)>;
|
|
def : Pat<(v4i32 (AArch64NvCast (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
|
|
def : Pat<(v2i64 (AArch64NvCast (v2i64 FPR128:$src))), (v2i64 FPR128:$src)>;
|
|
def : Pat<(v4f32 (AArch64NvCast (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
|
|
def : Pat<(v2f64 (AArch64NvCast (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
|
|
|
|
def : Pat<(v16i8 (AArch64NvCast (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
|
|
def : Pat<(v8i16 (AArch64NvCast (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
|
|
def : Pat<(v4i32 (AArch64NvCast (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
|
|
def : Pat<(v4f32 (AArch64NvCast (v4f32 FPR128:$src))), (v4f32 FPR128:$src)>;
|
|
def : Pat<(v2i64 (AArch64NvCast (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
|
|
def : Pat<(v8f16 (AArch64NvCast (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
|
|
def : Pat<(v8bf16 (AArch64NvCast (v4f32 FPR128:$src))), (v8bf16 FPR128:$src)>;
|
|
def : Pat<(v2f64 (AArch64NvCast (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
|
|
|
|
def : Pat<(v16i8 (AArch64NvCast (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
|
|
def : Pat<(v8i16 (AArch64NvCast (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
|
|
def : Pat<(v4i32 (AArch64NvCast (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
|
|
def : Pat<(v2i64 (AArch64NvCast (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
|
|
def : Pat<(v2f64 (AArch64NvCast (v2f64 FPR128:$src))), (v2f64 FPR128:$src)>;
|
|
def : Pat<(v8f16 (AArch64NvCast (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
|
|
def : Pat<(v8bf16 (AArch64NvCast (v2f64 FPR128:$src))), (v8bf16 FPR128:$src)>;
|
|
def : Pat<(v4f32 (AArch64NvCast (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v8i8 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
|
|
def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
|
|
def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
|
|
def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
|
|
def : Pat<(v4bf16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
|
|
def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
|
|
|
|
def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))),
|
|
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
|
|
def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
|
|
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
|
|
def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
|
|
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
|
|
def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
|
|
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
|
|
def : Pat<(i64 (bitconvert (v4bf16 V64:$Vn))),
|
|
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
|
|
def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
|
|
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
|
|
def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
|
|
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v8i8 (bitconvert GPR64:$Xn)),
|
|
(REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
|
|
def : Pat<(v4i16 (bitconvert GPR64:$Xn)),
|
|
(REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
|
|
def : Pat<(v2i32 (bitconvert GPR64:$Xn)),
|
|
(REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
|
|
def : Pat<(v4f16 (bitconvert GPR64:$Xn)),
|
|
(REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
|
|
def : Pat<(v4bf16 (bitconvert GPR64:$Xn)),
|
|
(REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
|
|
def : Pat<(v2f32 (bitconvert GPR64:$Xn)),
|
|
(REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
|
|
|
|
def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))),
|
|
(REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
|
|
def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
|
|
(REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
|
|
def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
|
|
(REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
|
|
def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
|
|
(REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
|
|
def : Pat<(i64 (bitconvert (v4bf16 V64:$Vn))),
|
|
(REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
|
|
def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
|
|
(REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
|
|
}
|
|
def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
|
|
def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
|
|
def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))),
|
|
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
|
|
def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)),
|
|
(COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
|
|
def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)),
|
|
(COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
|
|
def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>;
|
|
|
|
def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))),
|
|
(COPY_TO_REGCLASS GPR32:$Xn, FPR32)>;
|
|
def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))),
|
|
(COPY_TO_REGCLASS FPR32:$Xn, GPR32)>;
|
|
def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))),
|
|
(COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
|
|
def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))),
|
|
(COPY_TO_REGCLASS FPR64:$Xn, GPR64)>;
|
|
def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
|
|
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
|
|
def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
|
|
def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
|
|
def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>;
|
|
def : Pat<(v1i64 (bitconvert (v4bf16 FPR64:$src))), (v1i64 FPR64:$src)>;
|
|
def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))),
|
|
(v1i64 (REV64v2i32 FPR64:$src))>;
|
|
def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))),
|
|
(v1i64 (REV64v4i16 FPR64:$src))>;
|
|
def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))),
|
|
(v1i64 (REV64v8i8 FPR64:$src))>;
|
|
def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))),
|
|
(v1i64 (REV64v4i16 FPR64:$src))>;
|
|
def : Pat<(v1i64 (bitconvert (v4bf16 FPR64:$src))),
|
|
(v1i64 (REV64v4i16 FPR64:$src))>;
|
|
def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))),
|
|
(v1i64 (REV64v2i32 FPR64:$src))>;
|
|
}
|
|
def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>;
|
|
def : Pat<(v1i64 (bitconvert (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>;
|
|
def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
|
|
def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
|
|
def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
|
|
def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>;
|
|
def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>;
|
|
def : Pat<(v2i32 (bitconvert (v4bf16 FPR64:$src))), (v2i32 FPR64:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))),
|
|
(v2i32 (REV64v2i32 FPR64:$src))>;
|
|
def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))),
|
|
(v2i32 (REV32v4i16 FPR64:$src))>;
|
|
def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))),
|
|
(v2i32 (REV32v8i8 FPR64:$src))>;
|
|
def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))),
|
|
(v2i32 (REV64v2i32 FPR64:$src))>;
|
|
def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))),
|
|
(v2i32 (REV64v2i32 FPR64:$src))>;
|
|
def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))),
|
|
(v2i32 (REV32v4i16 FPR64:$src))>;
|
|
def : Pat<(v2i32 (bitconvert (v4bf16 FPR64:$src))),
|
|
(v2i32 (REV32v4i16 FPR64:$src))>;
|
|
}
|
|
def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>;
|
|
def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
|
|
def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
|
|
def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
|
|
def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
|
|
def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))),
|
|
(v4i16 (REV64v4i16 FPR64:$src))>;
|
|
def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))),
|
|
(v4i16 (REV32v4i16 FPR64:$src))>;
|
|
def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))),
|
|
(v4i16 (REV16v8i8 FPR64:$src))>;
|
|
def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))),
|
|
(v4i16 (REV64v4i16 FPR64:$src))>;
|
|
def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))),
|
|
(v4i16 (REV32v4i16 FPR64:$src))>;
|
|
def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
|
|
(v4i16 (REV64v4i16 FPR64:$src))>;
|
|
}
|
|
def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>;
|
|
def : Pat<(v4i16 (bitconvert (v4bf16 FPR64:$src))), (v4i16 FPR64:$src)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>;
|
|
def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
|
|
def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
|
|
def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
|
|
def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>;
|
|
def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>;
|
|
|
|
def : Pat<(v4bf16 (bitconvert (v1i64 FPR64:$src))), (v4bf16 FPR64:$src)>;
|
|
def : Pat<(v4bf16 (bitconvert (v2i32 FPR64:$src))), (v4bf16 FPR64:$src)>;
|
|
def : Pat<(v4bf16 (bitconvert (v8i8 FPR64:$src))), (v4bf16 FPR64:$src)>;
|
|
def : Pat<(v4bf16 (bitconvert (f64 FPR64:$src))), (v4bf16 FPR64:$src)>;
|
|
def : Pat<(v4bf16 (bitconvert (v2f32 FPR64:$src))), (v4bf16 FPR64:$src)>;
|
|
def : Pat<(v4bf16 (bitconvert (v1f64 FPR64:$src))), (v4bf16 FPR64:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))),
|
|
(v4f16 (REV64v4i16 FPR64:$src))>;
|
|
def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))),
|
|
(v4f16 (REV32v4i16 FPR64:$src))>;
|
|
def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))),
|
|
(v4f16 (REV16v8i8 FPR64:$src))>;
|
|
def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))),
|
|
(v4f16 (REV64v4i16 FPR64:$src))>;
|
|
def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))),
|
|
(v4f16 (REV32v4i16 FPR64:$src))>;
|
|
def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))),
|
|
(v4f16 (REV64v4i16 FPR64:$src))>;
|
|
|
|
def : Pat<(v4bf16 (bitconvert (v1i64 FPR64:$src))),
|
|
(v4bf16 (REV64v4i16 FPR64:$src))>;
|
|
def : Pat<(v4bf16 (bitconvert (v2i32 FPR64:$src))),
|
|
(v4bf16 (REV32v4i16 FPR64:$src))>;
|
|
def : Pat<(v4bf16 (bitconvert (v8i8 FPR64:$src))),
|
|
(v4bf16 (REV16v8i8 FPR64:$src))>;
|
|
def : Pat<(v4bf16 (bitconvert (f64 FPR64:$src))),
|
|
(v4bf16 (REV64v4i16 FPR64:$src))>;
|
|
def : Pat<(v4bf16 (bitconvert (v2f32 FPR64:$src))),
|
|
(v4bf16 (REV32v4i16 FPR64:$src))>;
|
|
def : Pat<(v4bf16 (bitconvert (v1f64 FPR64:$src))),
|
|
(v4bf16 (REV64v4i16 FPR64:$src))>;
|
|
}
|
|
def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
|
|
def : Pat<(v4bf16 (bitconvert (v4i16 FPR64:$src))), (v4bf16 FPR64:$src)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))), (v8i8 FPR64:$src)>;
|
|
def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
|
|
def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
|
|
def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
|
|
def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
|
|
def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))), (v8i8 FPR64:$src)>;
|
|
def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))), (v8i8 FPR64:$src)>;
|
|
def : Pat<(v8i8 (bitconvert (v4bf16 FPR64:$src))), (v8i8 FPR64:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))),
|
|
(v8i8 (REV64v8i8 FPR64:$src))>;
|
|
def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))),
|
|
(v8i8 (REV32v8i8 FPR64:$src))>;
|
|
def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))),
|
|
(v8i8 (REV16v8i8 FPR64:$src))>;
|
|
def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))),
|
|
(v8i8 (REV64v8i8 FPR64:$src))>;
|
|
def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))),
|
|
(v8i8 (REV32v8i8 FPR64:$src))>;
|
|
def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))),
|
|
(v8i8 (REV64v8i8 FPR64:$src))>;
|
|
def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))),
|
|
(v8i8 (REV16v8i8 FPR64:$src))>;
|
|
def : Pat<(v8i8 (bitconvert (v4bf16 FPR64:$src))),
|
|
(v8i8 (REV16v8i8 FPR64:$src))>;
|
|
}
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))), (f64 FPR64:$src)>;
|
|
def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))), (f64 FPR64:$src)>;
|
|
def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))), (f64 FPR64:$src)>;
|
|
def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))), (f64 FPR64:$src)>;
|
|
def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))), (f64 FPR64:$src)>;
|
|
def : Pat<(f64 (bitconvert (v4bf16 FPR64:$src))), (f64 FPR64:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))),
|
|
(f64 (REV64v2i32 FPR64:$src))>;
|
|
def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))),
|
|
(f64 (REV64v4i16 FPR64:$src))>;
|
|
def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))),
|
|
(f64 (REV64v2i32 FPR64:$src))>;
|
|
def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))),
|
|
(f64 (REV64v8i8 FPR64:$src))>;
|
|
def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))),
|
|
(f64 (REV64v4i16 FPR64:$src))>;
|
|
def : Pat<(f64 (bitconvert (v4bf16 FPR64:$src))),
|
|
(f64 (REV64v4i16 FPR64:$src))>;
|
|
}
|
|
def : Pat<(f64 (bitconvert (v1i64 FPR64:$src))), (f64 FPR64:$src)>;
|
|
def : Pat<(f64 (bitconvert (v1f64 FPR64:$src))), (f64 FPR64:$src)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>;
|
|
def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>;
|
|
def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))), (v1f64 FPR64:$src)>;
|
|
def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
|
|
def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>;
|
|
def : Pat<(v1f64 (bitconvert (v4bf16 FPR64:$src))), (v1f64 FPR64:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))),
|
|
(v1f64 (REV64v2i32 FPR64:$src))>;
|
|
def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))),
|
|
(v1f64 (REV64v4i16 FPR64:$src))>;
|
|
def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))),
|
|
(v1f64 (REV64v8i8 FPR64:$src))>;
|
|
def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))),
|
|
(v1f64 (REV64v2i32 FPR64:$src))>;
|
|
def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))),
|
|
(v1f64 (REV64v4i16 FPR64:$src))>;
|
|
def : Pat<(v1f64 (bitconvert (v4bf16 FPR64:$src))),
|
|
(v1f64 (REV64v4i16 FPR64:$src))>;
|
|
}
|
|
def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>;
|
|
def : Pat<(v1f64 (bitconvert (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>;
|
|
def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>;
|
|
def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
|
|
def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>;
|
|
def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
|
|
def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>;
|
|
def : Pat<(v2f32 (bitconvert (v4bf16 FPR64:$src))), (v2f32 FPR64:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))),
|
|
(v2f32 (REV64v2i32 FPR64:$src))>;
|
|
def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))),
|
|
(v2f32 (REV32v4i16 FPR64:$src))>;
|
|
def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))),
|
|
(v2f32 (REV32v8i8 FPR64:$src))>;
|
|
def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))),
|
|
(v2f32 (REV64v2i32 FPR64:$src))>;
|
|
def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))),
|
|
(v2f32 (REV64v2i32 FPR64:$src))>;
|
|
def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))),
|
|
(v2f32 (REV32v4i16 FPR64:$src))>;
|
|
def : Pat<(v2f32 (bitconvert (v4bf16 FPR64:$src))),
|
|
(v2f32 (REV32v4i16 FPR64:$src))>;
|
|
}
|
|
def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>;
|
|
def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>;
|
|
def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>;
|
|
def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>;
|
|
def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>;
|
|
def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>;
|
|
def : Pat<(f128 (bitconvert (v8bf16 FPR128:$src))), (f128 FPR128:$src)>;
|
|
def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))),
|
|
(f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
|
|
def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))),
|
|
(f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
|
|
(REV64v4i32 FPR128:$src), (i32 8)))>;
|
|
def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))),
|
|
(f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
|
|
(REV64v8i16 FPR128:$src), (i32 8)))>;
|
|
def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))),
|
|
(f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
|
|
(REV64v8i16 FPR128:$src), (i32 8)))>;
|
|
def : Pat<(f128 (bitconvert (v8bf16 FPR128:$src))),
|
|
(f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
|
|
(REV64v8i16 FPR128:$src), (i32 8)))>;
|
|
def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))),
|
|
(f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
|
|
def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))),
|
|
(f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
|
|
(REV64v4i32 FPR128:$src), (i32 8)))>;
|
|
def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))),
|
|
(f128 (EXTv16i8 (REV64v16i8 FPR128:$src),
|
|
(REV64v16i8 FPR128:$src), (i32 8)))>;
|
|
}
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), (v2f64 FPR128:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v8bf16 FPR128:$src))), (v2f64 FPR128:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))),
|
|
(v2f64 (EXTv16i8 FPR128:$src,
|
|
FPR128:$src, (i32 8)))>;
|
|
def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))),
|
|
(v2f64 (REV64v4i32 FPR128:$src))>;
|
|
def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))),
|
|
(v2f64 (REV64v8i16 FPR128:$src))>;
|
|
def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))),
|
|
(v2f64 (REV64v8i16 FPR128:$src))>;
|
|
def : Pat<(v2f64 (bitconvert (v8bf16 FPR128:$src))),
|
|
(v2f64 (REV64v8i16 FPR128:$src))>;
|
|
def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))),
|
|
(v2f64 (REV64v16i8 FPR128:$src))>;
|
|
def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))),
|
|
(v2f64 (REV64v4i32 FPR128:$src))>;
|
|
}
|
|
def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), (v4f32 FPR128:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v8bf16 FPR128:$src))), (v4f32 FPR128:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))),
|
|
(v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src),
|
|
(REV64v4i32 FPR128:$src), (i32 8)))>;
|
|
def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))),
|
|
(v4f32 (REV32v8i16 FPR128:$src))>;
|
|
def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))),
|
|
(v4f32 (REV32v8i16 FPR128:$src))>;
|
|
def : Pat<(v4f32 (bitconvert (v8bf16 FPR128:$src))),
|
|
(v4f32 (REV32v8i16 FPR128:$src))>;
|
|
def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))),
|
|
(v4f32 (REV32v16i8 FPR128:$src))>;
|
|
def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))),
|
|
(v4f32 (REV64v4i32 FPR128:$src))>;
|
|
def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))),
|
|
(v4f32 (REV64v4i32 FPR128:$src))>;
|
|
}
|
|
def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), (v2i64 FPR128:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v8bf16 FPR128:$src))), (v2i64 FPR128:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))),
|
|
(v2i64 (EXTv16i8 FPR128:$src,
|
|
FPR128:$src, (i32 8)))>;
|
|
def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))),
|
|
(v2i64 (REV64v4i32 FPR128:$src))>;
|
|
def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))),
|
|
(v2i64 (REV64v8i16 FPR128:$src))>;
|
|
def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))),
|
|
(v2i64 (REV64v16i8 FPR128:$src))>;
|
|
def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))),
|
|
(v2i64 (REV64v4i32 FPR128:$src))>;
|
|
def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))),
|
|
(v2i64 (REV64v8i16 FPR128:$src))>;
|
|
def : Pat<(v2i64 (bitconvert (v8bf16 FPR128:$src))),
|
|
(v2i64 (REV64v8i16 FPR128:$src))>;
|
|
}
|
|
def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), (v4i32 FPR128:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v8bf16 FPR128:$src))), (v4i32 FPR128:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))),
|
|
(v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src),
|
|
(REV64v4i32 FPR128:$src),
|
|
(i32 8)))>;
|
|
def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))),
|
|
(v4i32 (REV64v4i32 FPR128:$src))>;
|
|
def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))),
|
|
(v4i32 (REV32v8i16 FPR128:$src))>;
|
|
def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))),
|
|
(v4i32 (REV32v16i8 FPR128:$src))>;
|
|
def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))),
|
|
(v4i32 (REV64v4i32 FPR128:$src))>;
|
|
def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))),
|
|
(v4i32 (REV32v8i16 FPR128:$src))>;
|
|
def : Pat<(v4i32 (bitconvert (v8bf16 FPR128:$src))),
|
|
(v4i32 (REV32v8i16 FPR128:$src))>;
|
|
}
|
|
def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), (v8i16 FPR128:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))),
|
|
(v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src),
|
|
(REV64v8i16 FPR128:$src),
|
|
(i32 8)))>;
|
|
def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))),
|
|
(v8i16 (REV64v8i16 FPR128:$src))>;
|
|
def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))),
|
|
(v8i16 (REV32v8i16 FPR128:$src))>;
|
|
def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))),
|
|
(v8i16 (REV16v16i8 FPR128:$src))>;
|
|
def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))),
|
|
(v8i16 (REV64v8i16 FPR128:$src))>;
|
|
def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))),
|
|
(v8i16 (REV32v8i16 FPR128:$src))>;
|
|
}
|
|
def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v8bf16 FPR128:$src))), (v8i16 FPR128:$src)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))), (v8f16 FPR128:$src)>;
|
|
def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
|
|
def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
|
|
def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
|
|
def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
|
|
def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
|
|
|
|
def : Pat<(v8bf16 (bitconvert (f128 FPR128:$src))), (v8bf16 FPR128:$src)>;
|
|
def : Pat<(v8bf16 (bitconvert (v2i64 FPR128:$src))), (v8bf16 FPR128:$src)>;
|
|
def : Pat<(v8bf16 (bitconvert (v4i32 FPR128:$src))), (v8bf16 FPR128:$src)>;
|
|
def : Pat<(v8bf16 (bitconvert (v16i8 FPR128:$src))), (v8bf16 FPR128:$src)>;
|
|
def : Pat<(v8bf16 (bitconvert (v2f64 FPR128:$src))), (v8bf16 FPR128:$src)>;
|
|
def : Pat<(v8bf16 (bitconvert (v4f32 FPR128:$src))), (v8bf16 FPR128:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))),
|
|
(v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src),
|
|
(REV64v8i16 FPR128:$src),
|
|
(i32 8)))>;
|
|
def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))),
|
|
(v8f16 (REV64v8i16 FPR128:$src))>;
|
|
def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))),
|
|
(v8f16 (REV32v8i16 FPR128:$src))>;
|
|
def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))),
|
|
(v8f16 (REV16v16i8 FPR128:$src))>;
|
|
def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))),
|
|
(v8f16 (REV64v8i16 FPR128:$src))>;
|
|
def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))),
|
|
(v8f16 (REV32v8i16 FPR128:$src))>;
|
|
|
|
def : Pat<(v8bf16 (bitconvert (f128 FPR128:$src))),
|
|
(v8bf16 (EXTv16i8 (REV64v8i16 FPR128:$src),
|
|
(REV64v8i16 FPR128:$src),
|
|
(i32 8)))>;
|
|
def : Pat<(v8bf16 (bitconvert (v2i64 FPR128:$src))),
|
|
(v8bf16 (REV64v8i16 FPR128:$src))>;
|
|
def : Pat<(v8bf16 (bitconvert (v4i32 FPR128:$src))),
|
|
(v8bf16 (REV32v8i16 FPR128:$src))>;
|
|
def : Pat<(v8bf16 (bitconvert (v16i8 FPR128:$src))),
|
|
(v8bf16 (REV16v16i8 FPR128:$src))>;
|
|
def : Pat<(v8bf16 (bitconvert (v2f64 FPR128:$src))),
|
|
(v8bf16 (REV64v8i16 FPR128:$src))>;
|
|
def : Pat<(v8bf16 (bitconvert (v4f32 FPR128:$src))),
|
|
(v8bf16 (REV32v8i16 FPR128:$src))>;
|
|
}
|
|
def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
|
|
def : Pat<(v8bf16 (bitconvert (v8i16 FPR128:$src))), (v8bf16 FPR128:$src)>;
|
|
|
|
let Predicates = [IsLE] in {
|
|
def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), (v16i8 FPR128:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v8bf16 FPR128:$src))), (v16i8 FPR128:$src)>;
|
|
}
|
|
let Predicates = [IsBE] in {
|
|
def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))),
|
|
(v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src),
|
|
(REV64v16i8 FPR128:$src),
|
|
(i32 8)))>;
|
|
def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))),
|
|
(v16i8 (REV64v16i8 FPR128:$src))>;
|
|
def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))),
|
|
(v16i8 (REV32v16i8 FPR128:$src))>;
|
|
def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))),
|
|
(v16i8 (REV16v16i8 FPR128:$src))>;
|
|
def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))),
|
|
(v16i8 (REV64v16i8 FPR128:$src))>;
|
|
def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))),
|
|
(v16i8 (REV32v16i8 FPR128:$src))>;
|
|
def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))),
|
|
(v16i8 (REV16v16i8 FPR128:$src))>;
|
|
def : Pat<(v16i8 (bitconvert (v8bf16 FPR128:$src))),
|
|
(v16i8 (REV16v16i8 FPR128:$src))>;
|
|
}
|
|
|
|
def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))),
|
|
(EXTRACT_SUBREG V128:$Rn, dsub)>;
|
|
def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))),
|
|
(EXTRACT_SUBREG V128:$Rn, dsub)>;
|
|
def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))),
|
|
(EXTRACT_SUBREG V128:$Rn, dsub)>;
|
|
def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))),
|
|
(EXTRACT_SUBREG V128:$Rn, dsub)>;
|
|
def : Pat<(v4bf16 (extract_subvector V128:$Rn, (i64 0))),
|
|
(EXTRACT_SUBREG V128:$Rn, dsub)>;
|
|
def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))),
|
|
(EXTRACT_SUBREG V128:$Rn, dsub)>;
|
|
def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))),
|
|
(EXTRACT_SUBREG V128:$Rn, dsub)>;
|
|
def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))),
|
|
(EXTRACT_SUBREG V128:$Rn, dsub)>;
|
|
|
|
def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))),
|
|
(EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
|
|
def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))),
|
|
(EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
|
|
def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))),
|
|
(EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
|
|
def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))),
|
|
(EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
|
|
|
|
// A 64-bit subvector insert to the first 128-bit vector position
|
|
// is a subregister copy that needs no instruction.
|
|
multiclass InsertSubvectorUndef<ValueType Ty> {
|
|
def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (Ty 0)),
|
|
(INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
|
|
def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (Ty 0)),
|
|
(INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
|
|
def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (Ty 0)),
|
|
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
|
|
def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (Ty 0)),
|
|
(INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
|
|
def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (Ty 0)),
|
|
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
|
|
def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (Ty 0)),
|
|
(INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
|
|
def : Pat<(insert_subvector undef, (v4bf16 FPR64:$src), (Ty 0)),
|
|
(INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
|
|
def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (Ty 0)),
|
|
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
|
|
}
|
|
|
|
defm : InsertSubvectorUndef<i32>;
|
|
defm : InsertSubvectorUndef<i64>;
|
|
|
|
// Use pair-wise add instructions when summing up the lanes for v2f64, v2i64
|
|
// or v2f32.
|
|
def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)),
|
|
(vector_extract (v2i64 FPR128:$Rn), (i64 1)))),
|
|
(i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>;
|
|
def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)),
|
|
(vector_extract (v2f64 FPR128:$Rn), (i64 1)))),
|
|
(f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>;
|
|
// vector_extract on 64-bit vectors gets promoted to a 128 bit vector,
|
|
// so we match on v4f32 here, not v2f32. This will also catch adding
|
|
// the low two lanes of a true v4f32 vector.
|
|
def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)),
|
|
(vector_extract (v4f32 FPR128:$Rn), (i64 1))),
|
|
(f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;
|
|
def : Pat<(fadd (vector_extract (v8f16 FPR128:$Rn), (i64 0)),
|
|
(vector_extract (v8f16 FPR128:$Rn), (i64 1))),
|
|
(f16 (FADDPv2i16p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;
|
|
|
|
// Scalar 64-bit shifts in FPR64 registers.
|
|
def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
|
|
(SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
|
|
def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
|
|
(USHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
|
|
def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
|
|
(SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
|
|
def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
|
|
(URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
|
|
|
|
// Patterns for nontemporal/no-allocate stores.
|
|
// We have to resort to tricks to turn a single-input store into a store pair,
|
|
// because there is no single-input nontemporal store, only STNP.
|
|
let Predicates = [IsLE] in {
|
|
let AddedComplexity = 15 in {
|
|
class NTStore128Pat<ValueType VT> :
|
|
Pat<(nontemporalstore (VT FPR128:$Rt),
|
|
(am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
|
|
(STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub),
|
|
(CPYi64 FPR128:$Rt, (i64 1)),
|
|
GPR64sp:$Rn, simm7s8:$offset)>;
|
|
|
|
def : NTStore128Pat<v2i64>;
|
|
def : NTStore128Pat<v4i32>;
|
|
def : NTStore128Pat<v8i16>;
|
|
def : NTStore128Pat<v16i8>;
|
|
|
|
class NTStore64Pat<ValueType VT> :
|
|
Pat<(nontemporalstore (VT FPR64:$Rt),
|
|
(am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
|
|
(STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub),
|
|
(CPYi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)),
|
|
GPR64sp:$Rn, simm7s4:$offset)>;
|
|
|
|
// FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64?
|
|
def : NTStore64Pat<v1f64>;
|
|
def : NTStore64Pat<v1i64>;
|
|
def : NTStore64Pat<v2i32>;
|
|
def : NTStore64Pat<v4i16>;
|
|
def : NTStore64Pat<v8i8>;
|
|
|
|
def : Pat<(nontemporalstore GPR64:$Rt,
|
|
(am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
|
|
(STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32),
|
|
(EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 32, 63), sub_32),
|
|
GPR64sp:$Rn, simm7s4:$offset)>;
|
|
} // AddedComplexity=10
|
|
} // Predicates = [IsLE]
|
|
|
|
// Tail call return handling. These are all compiler pseudo-instructions,
|
|
// so no encoding information or anything like that.
|
|
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
|
|
def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff), []>,
|
|
Sched<[WriteBrReg]>;
|
|
def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>,
|
|
Sched<[WriteBrReg]>;
|
|
// Indirect tail-call with any register allowed, used by MachineOutliner when
|
|
// this is proven safe.
|
|
// FIXME: If we have to add any more hacks like this, we should instead relax
|
|
// some verifier checks for outlined functions.
|
|
def TCRETURNriALL : Pseudo<(outs), (ins GPR64:$dst, i32imm:$FPDiff), []>,
|
|
Sched<[WriteBrReg]>;
|
|
// Indirect tail-call limited to only use registers (x16 and x17) which are
|
|
// allowed to tail-call a "BTI c" instruction.
|
|
def TCRETURNriBTI : Pseudo<(outs), (ins rtcGPR64:$dst, i32imm:$FPDiff), []>,
|
|
Sched<[WriteBrReg]>;
|
|
}
|
|
|
|
def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)),
|
|
(TCRETURNri tcGPR64:$dst, imm:$FPDiff)>,
|
|
Requires<[NotUseBTI]>;
|
|
def : Pat<(AArch64tcret rtcGPR64:$dst, (i32 timm:$FPDiff)),
|
|
(TCRETURNriBTI rtcGPR64:$dst, imm:$FPDiff)>,
|
|
Requires<[UseBTI]>;
|
|
def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)),
|
|
(TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
|
|
def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
|
|
(TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
|
|
|
|
def MOVMCSym : Pseudo<(outs GPR64:$dst), (ins i64imm:$sym), []>, Sched<[]>;
|
|
def : Pat<(i64 (AArch64LocalRecover mcsym:$sym)), (MOVMCSym mcsym:$sym)>;
|
|
|
|
// Extracting lane zero is a special case where we can just use a plain
|
|
// EXTRACT_SUBREG instruction, which will become FMOV. This is easier for the
|
|
// rest of the compiler, especially the register allocator and copy propagation,
|
|
// to reason about, so is preferred when it's possible to use it.
|
|
let AddedComplexity = 10 in {
|
|
def : Pat<(i64 (extractelt (v2i64 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, dsub)>;
|
|
def : Pat<(i32 (extractelt (v4i32 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, ssub)>;
|
|
def : Pat<(i32 (extractelt (v2i32 V64:$V), (i64 0))), (EXTRACT_SUBREG V64:$V, ssub)>;
|
|
}
|
|
|
|
// dot_v4i8
|
|
class mul_v4i8<SDPatternOperator ldop> :
|
|
PatFrag<(ops node:$Rn, node:$Rm, node:$offset),
|
|
(mul (ldop (add node:$Rn, node:$offset)),
|
|
(ldop (add node:$Rm, node:$offset)))>;
|
|
class mulz_v4i8<SDPatternOperator ldop> :
|
|
PatFrag<(ops node:$Rn, node:$Rm),
|
|
(mul (ldop node:$Rn), (ldop node:$Rm))>;
|
|
|
|
def load_v4i8 :
|
|
OutPatFrag<(ops node:$R),
|
|
(INSERT_SUBREG
|
|
(v2i32 (IMPLICIT_DEF)),
|
|
(i32 (COPY_TO_REGCLASS (LDRWui node:$R, (i64 0)), FPR32)),
|
|
ssub)>;
|
|
|
|
class dot_v4i8<Instruction DOT, SDPatternOperator ldop> :
|
|
Pat<(i32 (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 3)),
|
|
(add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 2)),
|
|
(add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 1)),
|
|
(mulz_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm))))),
|
|
(EXTRACT_SUBREG (i64 (DOT (DUPv2i32gpr WZR),
|
|
(load_v4i8 GPR64sp:$Rn),
|
|
(load_v4i8 GPR64sp:$Rm))),
|
|
sub_32)>, Requires<[HasDotProd]>;
|
|
|
|
// dot_v8i8
|
|
class ee_v8i8<SDPatternOperator extend> :
|
|
PatFrag<(ops node:$V, node:$K),
|
|
(v4i16 (extract_subvector (v8i16 (extend node:$V)), node:$K))>;
|
|
|
|
class mul_v8i8<SDPatternOperator mulop, SDPatternOperator extend> :
|
|
PatFrag<(ops node:$M, node:$N, node:$K),
|
|
(mulop (v4i16 (ee_v8i8<extend> node:$M, node:$K)),
|
|
(v4i16 (ee_v8i8<extend> node:$N, node:$K)))>;
|
|
|
|
class idot_v8i8<SDPatternOperator mulop, SDPatternOperator extend> :
|
|
PatFrag<(ops node:$M, node:$N),
|
|
(i32 (extractelt
|
|
(v4i32 (AArch64uaddv
|
|
(add (mul_v8i8<mulop, extend> node:$M, node:$N, (i64 0)),
|
|
(mul_v8i8<mulop, extend> node:$M, node:$N, (i64 4))))),
|
|
(i64 0)))>;
|
|
|
|
// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
|
|
def VADDV_32 : OutPatFrag<(ops node:$R), (ADDPv2i32 node:$R, node:$R)>;
|
|
|
|
class odot_v8i8<Instruction DOT> :
|
|
OutPatFrag<(ops node:$Vm, node:$Vn),
|
|
(EXTRACT_SUBREG
|
|
(VADDV_32
|
|
(i64 (DOT (DUPv2i32gpr WZR),
|
|
(v8i8 node:$Vm),
|
|
(v8i8 node:$Vn)))),
|
|
sub_32)>;
|
|
|
|
class dot_v8i8<Instruction DOT, SDPatternOperator mulop,
|
|
SDPatternOperator extend> :
|
|
Pat<(idot_v8i8<mulop, extend> V64:$Vm, V64:$Vn),
|
|
(odot_v8i8<DOT> V64:$Vm, V64:$Vn)>,
|
|
Requires<[HasDotProd]>;
|
|
|
|
// dot_v16i8
|
|
class ee_v16i8<SDPatternOperator extend> :
|
|
PatFrag<(ops node:$V, node:$K1, node:$K2),
|
|
(v4i16 (extract_subvector
|
|
(v8i16 (extend
|
|
(v8i8 (extract_subvector node:$V, node:$K1)))), node:$K2))>;
|
|
|
|
class mul_v16i8<SDPatternOperator mulop, SDPatternOperator extend> :
|
|
PatFrag<(ops node:$M, node:$N, node:$K1, node:$K2),
|
|
(v4i32
|
|
(mulop (v4i16 (ee_v16i8<extend> node:$M, node:$K1, node:$K2)),
|
|
(v4i16 (ee_v16i8<extend> node:$N, node:$K1, node:$K2))))>;
|
|
|
|
class idot_v16i8<SDPatternOperator m, SDPatternOperator x> :
|
|
PatFrag<(ops node:$M, node:$N),
|
|
(i32 (extractelt
|
|
(v4i32 (AArch64uaddv
|
|
(add
|
|
(add (mul_v16i8<m, x> node:$M, node:$N, (i64 0), (i64 0)),
|
|
(mul_v16i8<m, x> node:$M, node:$N, (i64 8), (i64 0))),
|
|
(add (mul_v16i8<m, x> node:$M, node:$N, (i64 0), (i64 4)),
|
|
(mul_v16i8<m, x> node:$M, node:$N, (i64 8), (i64 4)))))),
|
|
(i64 0)))>;
|
|
|
|
class odot_v16i8<Instruction DOT> :
|
|
OutPatFrag<(ops node:$Vm, node:$Vn),
|
|
(i32 (ADDVv4i32v
|
|
(DOT (DUPv4i32gpr WZR), node:$Vm, node:$Vn)))>;
|
|
|
|
class dot_v16i8<Instruction DOT, SDPatternOperator mulop,
|
|
SDPatternOperator extend> :
|
|
Pat<(idot_v16i8<mulop, extend> V128:$Vm, V128:$Vn),
|
|
(odot_v16i8<DOT> V128:$Vm, V128:$Vn)>,
|
|
Requires<[HasDotProd]>;
|
|
|
|
let AddedComplexity = 10 in {
|
|
def : dot_v4i8<SDOTv8i8, sextloadi8>;
|
|
def : dot_v4i8<UDOTv8i8, zextloadi8>;
|
|
def : dot_v8i8<SDOTv8i8, AArch64smull, sext>;
|
|
def : dot_v8i8<UDOTv8i8, AArch64umull, zext>;
|
|
def : dot_v16i8<SDOTv16i8, AArch64smull, sext>;
|
|
def : dot_v16i8<UDOTv16i8, AArch64umull, zext>;
|
|
|
|
// FIXME: add patterns to generate vector by element dot product.
|
|
// FIXME: add SVE dot-product patterns.
|
|
}
|
|
|
|
let Predicates = [HasLS64] in {
|
|
def LD64B: LoadStore64B<0b101, "ld64b", (ins GPR64sp:$Rn),
|
|
(outs GPR64x8:$Rt)>;
|
|
def ST64B: LoadStore64B<0b001, "st64b", (ins GPR64x8:$Rt, GPR64sp:$Rn),
|
|
(outs)>;
|
|
def ST64BV: Store64BV<0b011, "st64bv">;
|
|
def ST64BV0: Store64BV<0b010, "st64bv0">;
|
|
|
|
class ST64BPattern<Intrinsic intrinsic, Instruction instruction>
|
|
: Pat<(intrinsic GPR64sp:$addr, GPR64:$x0, GPR64:$x1, GPR64:$x2, GPR64:$x3, GPR64:$x4, GPR64:$x5, GPR64:$x6, GPR64:$x7),
|
|
(instruction (REG_SEQUENCE GPR64x8Class, $x0, x8sub_0, $x1, x8sub_1, $x2, x8sub_2, $x3, x8sub_3, $x4, x8sub_4, $x5, x8sub_5, $x6, x8sub_6, $x7, x8sub_7), $addr)>;
|
|
|
|
def : ST64BPattern<int_aarch64_st64b, ST64B>;
|
|
def : ST64BPattern<int_aarch64_st64bv, ST64BV>;
|
|
def : ST64BPattern<int_aarch64_st64bv0, ST64BV0>;
|
|
}
|
|
|
|
include "AArch64InstrAtomics.td"
|
|
include "AArch64SVEInstrInfo.td"
|
|
|
|
include "AArch64InstrGISel.td"
|