3468 lines
133 KiB
C++
3468 lines
133 KiB
C++
//===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the AArch64 implementation of TargetFrameLowering class.
|
|
//
|
|
// On AArch64, stack frames are structured as follows:
|
|
//
|
|
// The stack grows downward.
|
|
//
|
|
// All of the individual frame areas on the frame below are optional, i.e. it's
|
|
// possible to create a function so that the particular area isn't present
|
|
// in the frame.
|
|
//
|
|
// At function entry, the "frame" looks as follows:
|
|
//
|
|
// | | Higher address
|
|
// |-----------------------------------|
|
|
// | |
|
|
// | arguments passed on the stack |
|
|
// | |
|
|
// |-----------------------------------| <- sp
|
|
// | | Lower address
|
|
//
|
|
//
|
|
// After the prologue has run, the frame has the following general structure.
|
|
// Note that this doesn't depict the case where a red-zone is used. Also,
|
|
// technically the last frame area (VLAs) doesn't get created until in the
|
|
// main function body, after the prologue is run. However, it's depicted here
|
|
// for completeness.
|
|
//
|
|
// | | Higher address
|
|
// |-----------------------------------|
|
|
// | |
|
|
// | arguments passed on the stack |
|
|
// | |
|
|
// |-----------------------------------|
|
|
// | |
|
|
// | (Win64 only) varargs from reg |
|
|
// | |
|
|
// |-----------------------------------|
|
|
// | |
|
|
// | callee-saved gpr registers | <--.
|
|
// | | | On Darwin platforms these
|
|
// |- - - - - - - - - - - - - - - - - -| | callee saves are swapped,
|
|
// | | | (frame record first)
|
|
// | prev_fp, prev_lr | <--'
|
|
// | (a.k.a. "frame record") |
|
|
// |-----------------------------------| <- fp(=x29)
|
|
// | |
|
|
// | callee-saved fp/simd/SVE regs |
|
|
// | |
|
|
// |-----------------------------------|
|
|
// | |
|
|
// | SVE stack objects |
|
|
// | |
|
|
// |-----------------------------------|
|
|
// |.empty.space.to.make.part.below....|
|
|
// |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
|
|
// |.the.standard.16-byte.alignment....| compile time; if present)
|
|
// |-----------------------------------|
|
|
// | |
|
|
// | local variables of fixed size |
|
|
// | including spill slots |
|
|
// |-----------------------------------| <- bp(not defined by ABI,
|
|
// |.variable-sized.local.variables....| LLVM chooses X19)
|
|
// |.(VLAs)............................| (size of this area is unknown at
|
|
// |...................................| compile time)
|
|
// |-----------------------------------| <- sp
|
|
// | | Lower address
|
|
//
|
|
//
|
|
// To access the data in a frame, at-compile time, a constant offset must be
|
|
// computable from one of the pointers (fp, bp, sp) to access it. The size
|
|
// of the areas with a dotted background cannot be computed at compile-time
|
|
// if they are present, making it required to have all three of fp, bp and
|
|
// sp to be set up to be able to access all contents in the frame areas,
|
|
// assuming all of the frame areas are non-empty.
|
|
//
|
|
// For most functions, some of the frame areas are empty. For those functions,
|
|
// it may not be necessary to set up fp or bp:
|
|
// * A base pointer is definitely needed when there are both VLAs and local
|
|
// variables with more-than-default alignment requirements.
|
|
// * A frame pointer is definitely needed when there are local variables with
|
|
// more-than-default alignment requirements.
|
|
//
|
|
// For Darwin platforms the frame-record (fp, lr) is stored at the top of the
|
|
// callee-saved area, since the unwind encoding does not allow for encoding
|
|
// this dynamically and existing tools depend on this layout. For other
|
|
// platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
|
|
// area to allow SVE stack objects (allocated directly below the callee-saves,
|
|
// if available) to be accessed directly from the framepointer.
|
|
// The SVE spill/fill instructions have VL-scaled addressing modes such
|
|
// as:
|
|
// ldr z8, [fp, #-7 mul vl]
|
|
// For SVE the size of the vector length (VL) is not known at compile-time, so
|
|
// '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
|
|
// layout, we don't need to add an unscaled offset to the framepointer before
|
|
// accessing the SVE object in the frame.
|
|
//
|
|
// In some cases when a base pointer is not strictly needed, it is generated
|
|
// anyway when offsets from the frame pointer to access local variables become
|
|
// so large that the offset can't be encoded in the immediate fields of loads
|
|
// or stores.
|
|
//
|
|
// FIXME: also explain the redzone concept.
|
|
// FIXME: also explain the concept of reserved call frames.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64FrameLowering.h"
|
|
#include "AArch64InstrInfo.h"
|
|
#include "AArch64MachineFunctionInfo.h"
|
|
#include "AArch64RegisterInfo.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "AArch64TargetMachine.h"
|
|
#include "MCTargetDesc/AArch64AddressingModes.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/LivePhysRegs.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/CodeGen/WinEHFuncInfo.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCDwarf.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "frame-info"
|
|
|
|
static cl::opt<bool> EnableRedZone("aarch64-redzone",
|
|
cl::desc("enable use of redzone on AArch64"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool>
|
|
ReverseCSRRestoreSeq("reverse-csr-restore-seq",
|
|
cl::desc("reverse the CSR restore sequence"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool> StackTaggingMergeSetTag(
|
|
"stack-tagging-merge-settag",
|
|
cl::desc("merge settag instruction in function epilog"), cl::init(true),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects",
|
|
cl::desc("sort stack allocations"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
|
|
|
|
/// Returns the argument pop size.
|
|
static uint64_t getArgumentPopSize(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) {
|
|
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
|
|
bool IsTailCallReturn = false;
|
|
if (MBB.end() != MBBI) {
|
|
unsigned RetOpcode = MBBI->getOpcode();
|
|
IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
|
|
RetOpcode == AArch64::TCRETURNri ||
|
|
RetOpcode == AArch64::TCRETURNriBTI;
|
|
}
|
|
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
|
|
uint64_t ArgumentPopSize = 0;
|
|
if (IsTailCallReturn) {
|
|
MachineOperand &StackAdjust = MBBI->getOperand(1);
|
|
|
|
// For a tail-call in a callee-pops-arguments environment, some or all of
|
|
// the stack may actually be in use for the call's arguments, this is
|
|
// calculated during LowerCall and consumed here...
|
|
ArgumentPopSize = StackAdjust.getImm();
|
|
} else {
|
|
// ... otherwise the amount to pop is *all* of the argument space,
|
|
// conveniently stored in the MachineFunctionInfo by
|
|
// LowerFormalArguments. This will, of course, be zero for the C calling
|
|
// convention.
|
|
ArgumentPopSize = AFI->getArgumentStackToRestore();
|
|
}
|
|
|
|
return ArgumentPopSize;
|
|
}
|
|
|
|
/// This is the biggest offset to the stack pointer we can encode in aarch64
|
|
/// instructions (without using a separate calculation and a temp register).
|
|
/// Note that the exception here are vector stores/loads which cannot encode any
|
|
/// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
|
|
static const unsigned DefaultSafeSPDisplacement = 255;
|
|
|
|
/// Look at each instruction that references stack frames and return the stack
|
|
/// size limit beyond which some of these instructions will require a scratch
|
|
/// register during their expansion later.
|
|
static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
|
|
// FIXME: For now, just conservatively guestimate based on unscaled indexing
|
|
// range. We'll end up allocating an unnecessary spill slot a lot, but
|
|
// realistically that's not a big deal at this stage of the game.
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (MI.isDebugInstr() || MI.isPseudo() ||
|
|
MI.getOpcode() == AArch64::ADDXri ||
|
|
MI.getOpcode() == AArch64::ADDSXri)
|
|
continue;
|
|
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (!MO.isFI())
|
|
continue;
|
|
|
|
StackOffset Offset;
|
|
if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
|
|
AArch64FrameOffsetCannotUpdate)
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return DefaultSafeSPDisplacement;
|
|
}
|
|
|
|
TargetStackID::Value
|
|
AArch64FrameLowering::getStackIDForScalableVectors() const {
|
|
return TargetStackID::ScalableVector;
|
|
}
|
|
|
|
/// Returns the size of the fixed object area (allocated next to sp on entry)
|
|
/// On Win64 this may include a var args area and an UnwindHelp object for EH.
|
|
static unsigned getFixedObjectSize(const MachineFunction &MF,
|
|
const AArch64FunctionInfo *AFI, bool IsWin64,
|
|
bool IsFunclet) {
|
|
if (!IsWin64 || IsFunclet) {
|
|
// Only Win64 uses fixed objects, and then only for the function (not
|
|
// funclets)
|
|
return 0;
|
|
} else {
|
|
// Var args are stored here in the primary function.
|
|
const unsigned VarArgsArea = AFI->getVarArgsGPRSize();
|
|
// To support EH funclets we allocate an UnwindHelp object
|
|
const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0);
|
|
return alignTo(VarArgsArea + UnwindHelpObject, 16);
|
|
}
|
|
}
|
|
|
|
/// Returns the size of the entire SVE stackframe (calleesaves + spills).
|
|
static StackOffset getSVEStackSize(const MachineFunction &MF) {
|
|
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE());
|
|
}
|
|
|
|
bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
|
|
if (!EnableRedZone)
|
|
return false;
|
|
// Don't use the red zone if the function explicitly asks us not to.
|
|
// This is typically used for kernel code.
|
|
if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone))
|
|
return false;
|
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
uint64_t NumBytes = AFI->getLocalStackSize();
|
|
|
|
return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128 ||
|
|
getSVEStackSize(MF));
|
|
}
|
|
|
|
/// hasFP - Return true if the specified function should have a dedicated frame
|
|
/// pointer register.
|
|
bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
|
|
// Win64 EH requires a frame pointer if funclets are present, as the locals
|
|
// are accessed off the frame pointer in both the parent function and the
|
|
// funclets.
|
|
if (MF.hasEHFunclets())
|
|
return true;
|
|
// Retain behavior of always omitting the FP for leaf functions when possible.
|
|
if (MF.getTarget().Options.DisableFramePointerElim(MF))
|
|
return true;
|
|
if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
|
|
MFI.hasStackMap() || MFI.hasPatchPoint() ||
|
|
RegInfo->needsStackRealignment(MF))
|
|
return true;
|
|
// With large callframes around we may need to use FP to access the scavenging
|
|
// emergency spillslot.
|
|
//
|
|
// Unfortunately some calls to hasFP() like machine verifier ->
|
|
// getReservedReg() -> hasFP in the middle of global isel are too early
|
|
// to know the max call frame size. Hopefully conservatively returning "true"
|
|
// in those cases is fine.
|
|
// DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
|
|
if (!MFI.isMaxCallFrameSizeComputed() ||
|
|
MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
|
|
/// not required, we reserve argument space for call sites in the function
|
|
/// immediately on entry to the current function. This eliminates the need for
|
|
/// add/sub sp brackets around call sites. Returns true if the call frame is
|
|
/// included as part of the stack frame.
|
|
bool
|
|
AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
|
|
return !MF.getFrameInfo().hasVarSizedObjects();
|
|
}
|
|
|
|
MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
|
|
MachineFunction &MF, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) const {
|
|
const AArch64InstrInfo *TII =
|
|
static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
|
|
DebugLoc DL = I->getDebugLoc();
|
|
unsigned Opc = I->getOpcode();
|
|
bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
|
|
uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
|
|
|
|
if (!hasReservedCallFrame(MF)) {
|
|
int64_t Amount = I->getOperand(0).getImm();
|
|
Amount = alignTo(Amount, getStackAlign());
|
|
if (!IsDestroy)
|
|
Amount = -Amount;
|
|
|
|
// N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
|
|
// doesn't have to pop anything), then the first operand will be zero too so
|
|
// this adjustment is a no-op.
|
|
if (CalleePopAmount == 0) {
|
|
// FIXME: in-function stack adjustment for calls is limited to 24-bits
|
|
// because there's no guaranteed temporary register available.
|
|
//
|
|
// ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
|
|
// 1) For offset <= 12-bit, we use LSL #0
|
|
// 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
|
|
// LSL #0, and the other uses LSL #12.
|
|
//
|
|
// Most call frames will be allocated at the start of a function so
|
|
// this is OK, but it is a limitation that needs dealing with.
|
|
assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
|
|
emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
|
|
StackOffset::getFixed(Amount), TII);
|
|
}
|
|
} else if (CalleePopAmount != 0) {
|
|
// If the calling convention demands that the callee pops arguments from the
|
|
// stack, we want to add it back if we have a reserved call frame.
|
|
assert(CalleePopAmount < 0xffffff && "call frame too large");
|
|
emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
|
|
StackOffset::getFixed(-(int64_t)CalleePopAmount), TII);
|
|
}
|
|
return MBB.erase(I);
|
|
}
|
|
|
|
// Convenience function to create a DWARF expression for
|
|
// Expr + NumBytes + NumVGScaledBytes * AArch64::VG
|
|
static void appendVGScaledOffsetExpr(SmallVectorImpl<char> &Expr,
|
|
int NumBytes, int NumVGScaledBytes, unsigned VG,
|
|
llvm::raw_string_ostream &Comment) {
|
|
uint8_t buffer[16];
|
|
|
|
if (NumBytes) {
|
|
Expr.push_back(dwarf::DW_OP_consts);
|
|
Expr.append(buffer, buffer + encodeSLEB128(NumBytes, buffer));
|
|
Expr.push_back((uint8_t)dwarf::DW_OP_plus);
|
|
Comment << (NumBytes < 0 ? " - " : " + ") << std::abs(NumBytes);
|
|
}
|
|
|
|
if (NumVGScaledBytes) {
|
|
Expr.push_back((uint8_t)dwarf::DW_OP_consts);
|
|
Expr.append(buffer, buffer + encodeSLEB128(NumVGScaledBytes, buffer));
|
|
|
|
Expr.push_back((uint8_t)dwarf::DW_OP_bregx);
|
|
Expr.append(buffer, buffer + encodeULEB128(VG, buffer));
|
|
Expr.push_back(0);
|
|
|
|
Expr.push_back((uint8_t)dwarf::DW_OP_mul);
|
|
Expr.push_back((uint8_t)dwarf::DW_OP_plus);
|
|
|
|
Comment << (NumVGScaledBytes < 0 ? " - " : " + ")
|
|
<< std::abs(NumVGScaledBytes) << " * VG";
|
|
}
|
|
}
|
|
|
|
// Creates an MCCFIInstruction:
|
|
// { DW_CFA_def_cfa_expression, ULEB128 (sizeof expr), expr }
|
|
MCCFIInstruction AArch64FrameLowering::createDefCFAExpressionFromSP(
|
|
const TargetRegisterInfo &TRI, const StackOffset &OffsetFromSP) const {
|
|
int64_t NumBytes, NumVGScaledBytes;
|
|
AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(OffsetFromSP, NumBytes,
|
|
NumVGScaledBytes);
|
|
|
|
std::string CommentBuffer = "sp";
|
|
llvm::raw_string_ostream Comment(CommentBuffer);
|
|
|
|
// Build up the expression (SP + NumBytes + NumVGScaledBytes * AArch64::VG)
|
|
SmallString<64> Expr;
|
|
Expr.push_back((uint8_t)(dwarf::DW_OP_breg0 + /*SP*/ 31));
|
|
Expr.push_back(0);
|
|
appendVGScaledOffsetExpr(Expr, NumBytes, NumVGScaledBytes,
|
|
TRI.getDwarfRegNum(AArch64::VG, true), Comment);
|
|
|
|
// Wrap this into DW_CFA_def_cfa.
|
|
SmallString<64> DefCfaExpr;
|
|
DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression);
|
|
uint8_t buffer[16];
|
|
DefCfaExpr.append(buffer,
|
|
buffer + encodeULEB128(Expr.size(), buffer));
|
|
DefCfaExpr.append(Expr.str());
|
|
return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(),
|
|
Comment.str());
|
|
}
|
|
|
|
MCCFIInstruction AArch64FrameLowering::createCfaOffset(
|
|
const TargetRegisterInfo &TRI, unsigned Reg,
|
|
const StackOffset &OffsetFromDefCFA) const {
|
|
int64_t NumBytes, NumVGScaledBytes;
|
|
AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(
|
|
OffsetFromDefCFA, NumBytes, NumVGScaledBytes);
|
|
|
|
unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
|
|
|
|
// Non-scalable offsets can use DW_CFA_offset directly.
|
|
if (!NumVGScaledBytes)
|
|
return MCCFIInstruction::createOffset(nullptr, DwarfReg, NumBytes);
|
|
|
|
std::string CommentBuffer;
|
|
llvm::raw_string_ostream Comment(CommentBuffer);
|
|
Comment << printReg(Reg, &TRI) << " @ cfa";
|
|
|
|
// Build up expression (NumBytes + NumVGScaledBytes * AArch64::VG)
|
|
SmallString<64> OffsetExpr;
|
|
appendVGScaledOffsetExpr(OffsetExpr, NumBytes, NumVGScaledBytes,
|
|
TRI.getDwarfRegNum(AArch64::VG, true), Comment);
|
|
|
|
// Wrap this into DW_CFA_expression
|
|
SmallString<64> CfaExpr;
|
|
CfaExpr.push_back(dwarf::DW_CFA_expression);
|
|
uint8_t buffer[16];
|
|
CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer));
|
|
CfaExpr.append(buffer, buffer + encodeULEB128(OffsetExpr.size(), buffer));
|
|
CfaExpr.append(OffsetExpr.str());
|
|
|
|
return MCCFIInstruction::createEscape(nullptr, CfaExpr.str(), Comment.str());
|
|
}
|
|
|
|
void AArch64FrameLowering::emitCalleeSavedFrameMoves(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const TargetSubtargetInfo &STI = MF.getSubtarget();
|
|
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
|
|
const TargetInstrInfo *TII = STI.getInstrInfo();
|
|
DebugLoc DL = MBB.findDebugLoc(MBBI);
|
|
|
|
// Add callee saved registers to move list.
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
|
|
if (CSI.empty())
|
|
return;
|
|
|
|
for (const auto &Info : CSI) {
|
|
unsigned Reg = Info.getReg();
|
|
|
|
// Not all unwinders may know about SVE registers, so assume the lowest
|
|
// common demoninator.
|
|
unsigned NewReg;
|
|
if (static_cast<const AArch64RegisterInfo *>(TRI)->regNeedsCFI(Reg, NewReg))
|
|
Reg = NewReg;
|
|
else
|
|
continue;
|
|
|
|
StackOffset Offset;
|
|
if (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector) {
|
|
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
Offset =
|
|
StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) -
|
|
StackOffset::getFixed(AFI->getCalleeSavedStackSize(MFI));
|
|
} else {
|
|
Offset = StackOffset::getFixed(MFI.getObjectOffset(Info.getFrameIdx()) -
|
|
getOffsetOfLocalArea());
|
|
}
|
|
unsigned CFIIndex = MF.addFrameInst(createCfaOffset(*TRI, Reg, Offset));
|
|
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
}
|
|
}
|
|
|
|
// Find a scratch register that we can use at the start of the prologue to
|
|
// re-align the stack pointer. We avoid using callee-save registers since they
|
|
// may appear to be free when this is called from canUseAsPrologue (during
|
|
// shrink wrapping), but then no longer be free when this is called from
|
|
// emitPrologue.
|
|
//
|
|
// FIXME: This is a bit conservative, since in the above case we could use one
|
|
// of the callee-save registers as a scratch temp to re-align the stack pointer,
|
|
// but we would then have to make sure that we were in fact saving at least one
|
|
// callee-save register in the prologue, which is additional complexity that
|
|
// doesn't seem worth the benefit.
|
|
static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
|
|
MachineFunction *MF = MBB->getParent();
|
|
|
|
// If MBB is an entry block, use X9 as the scratch register
|
|
if (&MF->front() == MBB)
|
|
return AArch64::X9;
|
|
|
|
const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
|
|
const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
|
|
LivePhysRegs LiveRegs(TRI);
|
|
LiveRegs.addLiveIns(*MBB);
|
|
|
|
// Mark callee saved registers as used so we will not choose them.
|
|
const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
|
|
for (unsigned i = 0; CSRegs[i]; ++i)
|
|
LiveRegs.addReg(CSRegs[i]);
|
|
|
|
// Prefer X9 since it was historically used for the prologue scratch reg.
|
|
const MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
if (LiveRegs.available(MRI, AArch64::X9))
|
|
return AArch64::X9;
|
|
|
|
for (unsigned Reg : AArch64::GPR64RegClass) {
|
|
if (LiveRegs.available(MRI, Reg))
|
|
return Reg;
|
|
}
|
|
return AArch64::NoRegister;
|
|
}
|
|
|
|
bool AArch64FrameLowering::canUseAsPrologue(
|
|
const MachineBasicBlock &MBB) const {
|
|
const MachineFunction *MF = MBB.getParent();
|
|
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
|
|
const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
|
|
const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
|
|
// Don't need a scratch register if we're not going to re-align the stack.
|
|
if (!RegInfo->needsStackRealignment(*MF))
|
|
return true;
|
|
// Otherwise, we can use any block as long as it has a scratch register
|
|
// available.
|
|
return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
|
|
}
|
|
|
|
static bool windowsRequiresStackProbe(MachineFunction &MF,
|
|
uint64_t StackSizeInBytes) {
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
if (!Subtarget.isTargetWindows())
|
|
return false;
|
|
const Function &F = MF.getFunction();
|
|
// TODO: When implementing stack protectors, take that into account
|
|
// for the probe threshold.
|
|
unsigned StackProbeSize = 4096;
|
|
if (F.hasFnAttribute("stack-probe-size"))
|
|
F.getFnAttribute("stack-probe-size")
|
|
.getValueAsString()
|
|
.getAsInteger(0, StackProbeSize);
|
|
return (StackSizeInBytes >= StackProbeSize) &&
|
|
!F.hasFnAttribute("no-stack-arg-probe");
|
|
}
|
|
|
|
static bool needsWinCFI(const MachineFunction &MF) {
|
|
const Function &F = MF.getFunction();
|
|
return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
|
|
F.needsUnwindTableEntry();
|
|
}
|
|
|
|
bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
|
|
MachineFunction &MF, uint64_t StackBumpBytes) const {
|
|
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
|
|
if (AFI->getLocalStackSize() == 0)
|
|
return false;
|
|
|
|
// For WinCFI, if optimizing for size, prefer to not combine the stack bump
|
|
// (to force a stp with predecrement) to match the packed unwind format,
|
|
// provided that there actually are any callee saved registers to merge the
|
|
// decrement with.
|
|
// This is potentially marginally slower, but allows using the packed
|
|
// unwind format for functions that both have a local area and callee saved
|
|
// registers. Using the packed unwind format notably reduces the size of
|
|
// the unwind info.
|
|
if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 &&
|
|
MF.getFunction().hasOptSize())
|
|
return false;
|
|
|
|
// 512 is the maximum immediate for stp/ldp that will be used for
|
|
// callee-save save/restores
|
|
if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
|
|
return false;
|
|
|
|
if (MFI.hasVarSizedObjects())
|
|
return false;
|
|
|
|
if (RegInfo->needsStackRealignment(MF))
|
|
return false;
|
|
|
|
// This isn't strictly necessary, but it simplifies things a bit since the
|
|
// current RedZone handling code assumes the SP is adjusted by the
|
|
// callee-save save/restore code.
|
|
if (canUseRedZone(MF))
|
|
return false;
|
|
|
|
// When there is an SVE area on the stack, always allocate the
|
|
// callee-saves and spills/locals separately.
|
|
if (getSVEStackSize(MF))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
|
|
MachineBasicBlock &MBB, unsigned StackBumpBytes) const {
|
|
if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes))
|
|
return false;
|
|
|
|
if (MBB.empty())
|
|
return true;
|
|
|
|
// Disable combined SP bump if the last instruction is an MTE tag store. It
|
|
// is almost always better to merge SP adjustment into those instructions.
|
|
MachineBasicBlock::iterator LastI = MBB.getFirstTerminator();
|
|
MachineBasicBlock::iterator Begin = MBB.begin();
|
|
while (LastI != Begin) {
|
|
--LastI;
|
|
if (LastI->isTransient())
|
|
continue;
|
|
if (!LastI->getFlag(MachineInstr::FrameDestroy))
|
|
break;
|
|
}
|
|
switch (LastI->getOpcode()) {
|
|
case AArch64::STGloop:
|
|
case AArch64::STZGloop:
|
|
case AArch64::STGOffset:
|
|
case AArch64::STZGOffset:
|
|
case AArch64::ST2GOffset:
|
|
case AArch64::STZ2GOffset:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
llvm_unreachable("unreachable");
|
|
}
|
|
|
|
// Given a load or a store instruction, generate an appropriate unwinding SEH
|
|
// code on Windows.
|
|
static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
|
|
const TargetInstrInfo &TII,
|
|
MachineInstr::MIFlag Flag) {
|
|
unsigned Opc = MBBI->getOpcode();
|
|
MachineBasicBlock *MBB = MBBI->getParent();
|
|
MachineFunction &MF = *MBB->getParent();
|
|
DebugLoc DL = MBBI->getDebugLoc();
|
|
unsigned ImmIdx = MBBI->getNumOperands() - 1;
|
|
int Imm = MBBI->getOperand(ImmIdx).getImm();
|
|
MachineInstrBuilder MIB;
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("No SEH Opcode for this instruction");
|
|
case AArch64::LDPDpost:
|
|
Imm = -Imm;
|
|
LLVM_FALLTHROUGH;
|
|
case AArch64::STPDpre: {
|
|
unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
|
|
unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
|
|
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
|
|
.addImm(Reg0)
|
|
.addImm(Reg1)
|
|
.addImm(Imm * 8)
|
|
.setMIFlag(Flag);
|
|
break;
|
|
}
|
|
case AArch64::LDPXpost:
|
|
Imm = -Imm;
|
|
LLVM_FALLTHROUGH;
|
|
case AArch64::STPXpre: {
|
|
Register Reg0 = MBBI->getOperand(1).getReg();
|
|
Register Reg1 = MBBI->getOperand(2).getReg();
|
|
if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
|
|
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
|
|
.addImm(Imm * 8)
|
|
.setMIFlag(Flag);
|
|
else
|
|
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
|
|
.addImm(RegInfo->getSEHRegNum(Reg0))
|
|
.addImm(RegInfo->getSEHRegNum(Reg1))
|
|
.addImm(Imm * 8)
|
|
.setMIFlag(Flag);
|
|
break;
|
|
}
|
|
case AArch64::LDRDpost:
|
|
Imm = -Imm;
|
|
LLVM_FALLTHROUGH;
|
|
case AArch64::STRDpre: {
|
|
unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
|
|
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
|
|
.addImm(Reg)
|
|
.addImm(Imm)
|
|
.setMIFlag(Flag);
|
|
break;
|
|
}
|
|
case AArch64::LDRXpost:
|
|
Imm = -Imm;
|
|
LLVM_FALLTHROUGH;
|
|
case AArch64::STRXpre: {
|
|
unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
|
|
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
|
|
.addImm(Reg)
|
|
.addImm(Imm)
|
|
.setMIFlag(Flag);
|
|
break;
|
|
}
|
|
case AArch64::STPDi:
|
|
case AArch64::LDPDi: {
|
|
unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
|
|
unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
|
|
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
|
|
.addImm(Reg0)
|
|
.addImm(Reg1)
|
|
.addImm(Imm * 8)
|
|
.setMIFlag(Flag);
|
|
break;
|
|
}
|
|
case AArch64::STPXi:
|
|
case AArch64::LDPXi: {
|
|
Register Reg0 = MBBI->getOperand(0).getReg();
|
|
Register Reg1 = MBBI->getOperand(1).getReg();
|
|
if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
|
|
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
|
|
.addImm(Imm * 8)
|
|
.setMIFlag(Flag);
|
|
else
|
|
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
|
|
.addImm(RegInfo->getSEHRegNum(Reg0))
|
|
.addImm(RegInfo->getSEHRegNum(Reg1))
|
|
.addImm(Imm * 8)
|
|
.setMIFlag(Flag);
|
|
break;
|
|
}
|
|
case AArch64::STRXui:
|
|
case AArch64::LDRXui: {
|
|
int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
|
|
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
|
|
.addImm(Reg)
|
|
.addImm(Imm * 8)
|
|
.setMIFlag(Flag);
|
|
break;
|
|
}
|
|
case AArch64::STRDui:
|
|
case AArch64::LDRDui: {
|
|
unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
|
|
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
|
|
.addImm(Reg)
|
|
.addImm(Imm * 8)
|
|
.setMIFlag(Flag);
|
|
break;
|
|
}
|
|
}
|
|
auto I = MBB->insertAfter(MBBI, MIB);
|
|
return I;
|
|
}
|
|
|
|
// Fix up the SEH opcode associated with the save/restore instruction.
|
|
static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
|
|
unsigned LocalStackSize) {
|
|
MachineOperand *ImmOpnd = nullptr;
|
|
unsigned ImmIdx = MBBI->getNumOperands() - 1;
|
|
switch (MBBI->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Fix the offset in the SEH instruction");
|
|
case AArch64::SEH_SaveFPLR:
|
|
case AArch64::SEH_SaveRegP:
|
|
case AArch64::SEH_SaveReg:
|
|
case AArch64::SEH_SaveFRegP:
|
|
case AArch64::SEH_SaveFReg:
|
|
ImmOpnd = &MBBI->getOperand(ImmIdx);
|
|
break;
|
|
}
|
|
if (ImmOpnd)
|
|
ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
|
|
}
|
|
|
|
// Convert callee-save register save/restore instruction to do stack pointer
|
|
// decrement/increment to allocate/deallocate the callee-save stack area by
|
|
// converting store/load to use pre/post increment version.
|
|
static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
|
|
const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
|
|
bool NeedsWinCFI, bool *HasWinCFI, bool InProlog = true) {
|
|
// Ignore instructions that do not operate on SP, i.e. shadow call stack
|
|
// instructions and associated CFI instruction.
|
|
while (MBBI->getOpcode() == AArch64::STRXpost ||
|
|
MBBI->getOpcode() == AArch64::LDRXpre ||
|
|
MBBI->getOpcode() == AArch64::CFI_INSTRUCTION) {
|
|
if (MBBI->getOpcode() != AArch64::CFI_INSTRUCTION)
|
|
assert(MBBI->getOperand(0).getReg() != AArch64::SP);
|
|
++MBBI;
|
|
}
|
|
unsigned NewOpc;
|
|
int Scale = 1;
|
|
switch (MBBI->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected callee-save save/restore opcode!");
|
|
case AArch64::STPXi:
|
|
NewOpc = AArch64::STPXpre;
|
|
Scale = 8;
|
|
break;
|
|
case AArch64::STPDi:
|
|
NewOpc = AArch64::STPDpre;
|
|
Scale = 8;
|
|
break;
|
|
case AArch64::STPQi:
|
|
NewOpc = AArch64::STPQpre;
|
|
Scale = 16;
|
|
break;
|
|
case AArch64::STRXui:
|
|
NewOpc = AArch64::STRXpre;
|
|
break;
|
|
case AArch64::STRDui:
|
|
NewOpc = AArch64::STRDpre;
|
|
break;
|
|
case AArch64::STRQui:
|
|
NewOpc = AArch64::STRQpre;
|
|
break;
|
|
case AArch64::LDPXi:
|
|
NewOpc = AArch64::LDPXpost;
|
|
Scale = 8;
|
|
break;
|
|
case AArch64::LDPDi:
|
|
NewOpc = AArch64::LDPDpost;
|
|
Scale = 8;
|
|
break;
|
|
case AArch64::LDPQi:
|
|
NewOpc = AArch64::LDPQpost;
|
|
Scale = 16;
|
|
break;
|
|
case AArch64::LDRXui:
|
|
NewOpc = AArch64::LDRXpost;
|
|
break;
|
|
case AArch64::LDRDui:
|
|
NewOpc = AArch64::LDRDpost;
|
|
break;
|
|
case AArch64::LDRQui:
|
|
NewOpc = AArch64::LDRQpost;
|
|
break;
|
|
}
|
|
// Get rid of the SEH code associated with the old instruction.
|
|
if (NeedsWinCFI) {
|
|
auto SEH = std::next(MBBI);
|
|
if (AArch64InstrInfo::isSEHInstruction(*SEH))
|
|
SEH->eraseFromParent();
|
|
}
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
|
|
MIB.addReg(AArch64::SP, RegState::Define);
|
|
|
|
// Copy all operands other than the immediate offset.
|
|
unsigned OpndIdx = 0;
|
|
for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
|
|
++OpndIdx)
|
|
MIB.add(MBBI->getOperand(OpndIdx));
|
|
|
|
assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
|
|
"Unexpected immediate offset in first/last callee-save save/restore "
|
|
"instruction!");
|
|
assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
|
|
"Unexpected base register in callee-save save/restore instruction!");
|
|
assert(CSStackSizeInc % Scale == 0);
|
|
MIB.addImm(CSStackSizeInc / Scale);
|
|
|
|
MIB.setMIFlags(MBBI->getFlags());
|
|
MIB.setMemRefs(MBBI->memoperands());
|
|
|
|
// Generate a new SEH code that corresponds to the new instruction.
|
|
if (NeedsWinCFI) {
|
|
*HasWinCFI = true;
|
|
InsertSEH(*MIB, *TII,
|
|
InProlog ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy);
|
|
}
|
|
|
|
return std::prev(MBB.erase(MBBI));
|
|
}
|
|
|
|
// Fixup callee-save register save/restore instructions to take into account
|
|
// combined SP bump by adding the local stack size to the stack offsets.
|
|
static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
|
|
uint64_t LocalStackSize,
|
|
bool NeedsWinCFI,
|
|
bool *HasWinCFI) {
|
|
if (AArch64InstrInfo::isSEHInstruction(MI))
|
|
return;
|
|
|
|
unsigned Opc = MI.getOpcode();
|
|
|
|
// Ignore instructions that do not operate on SP, i.e. shadow call stack
|
|
// instructions and associated CFI instruction.
|
|
if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre ||
|
|
Opc == AArch64::CFI_INSTRUCTION) {
|
|
if (Opc != AArch64::CFI_INSTRUCTION)
|
|
assert(MI.getOperand(0).getReg() != AArch64::SP);
|
|
return;
|
|
}
|
|
|
|
unsigned Scale;
|
|
switch (Opc) {
|
|
case AArch64::STPXi:
|
|
case AArch64::STRXui:
|
|
case AArch64::STPDi:
|
|
case AArch64::STRDui:
|
|
case AArch64::LDPXi:
|
|
case AArch64::LDRXui:
|
|
case AArch64::LDPDi:
|
|
case AArch64::LDRDui:
|
|
Scale = 8;
|
|
break;
|
|
case AArch64::STPQi:
|
|
case AArch64::STRQui:
|
|
case AArch64::LDPQi:
|
|
case AArch64::LDRQui:
|
|
Scale = 16;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected callee-save save/restore opcode!");
|
|
}
|
|
|
|
unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
|
|
assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
|
|
"Unexpected base register in callee-save save/restore instruction!");
|
|
// Last operand is immediate offset that needs fixing.
|
|
MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
|
|
// All generated opcodes have scaled offsets.
|
|
assert(LocalStackSize % Scale == 0);
|
|
OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
|
|
|
|
if (NeedsWinCFI) {
|
|
*HasWinCFI = true;
|
|
auto MBBI = std::next(MachineBasicBlock::iterator(MI));
|
|
assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
|
|
assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
|
|
"Expecting a SEH instruction");
|
|
fixupSEHOpcode(MBBI, LocalStackSize);
|
|
}
|
|
}
|
|
|
|
static void adaptForLdStOpt(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator FirstSPPopI,
|
|
MachineBasicBlock::iterator LastPopI) {
|
|
// Sometimes (when we restore in the same order as we save), we can end up
|
|
// with code like this:
|
|
//
|
|
// ldp x26, x25, [sp]
|
|
// ldp x24, x23, [sp, #16]
|
|
// ldp x22, x21, [sp, #32]
|
|
// ldp x20, x19, [sp, #48]
|
|
// add sp, sp, #64
|
|
//
|
|
// In this case, it is always better to put the first ldp at the end, so
|
|
// that the load-store optimizer can run and merge the ldp and the add into
|
|
// a post-index ldp.
|
|
// If we managed to grab the first pop instruction, move it to the end.
|
|
if (ReverseCSRRestoreSeq)
|
|
MBB.splice(FirstSPPopI, &MBB, LastPopI);
|
|
// We should end up with something like this now:
|
|
//
|
|
// ldp x24, x23, [sp, #16]
|
|
// ldp x22, x21, [sp, #32]
|
|
// ldp x20, x19, [sp, #48]
|
|
// ldp x26, x25, [sp]
|
|
// add sp, sp, #64
|
|
//
|
|
// and the load-store optimizer can merge the last two instructions into:
|
|
//
|
|
// ldp x26, x25, [sp], #64
|
|
//
|
|
}
|
|
|
|
static bool isTargetWindows(const MachineFunction &MF) {
|
|
return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
|
|
}
|
|
|
|
// Convenience function to determine whether I is an SVE callee save.
|
|
static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
|
|
switch (I->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case AArch64::STR_ZXI:
|
|
case AArch64::STR_PXI:
|
|
case AArch64::LDR_ZXI:
|
|
case AArch64::LDR_PXI:
|
|
return I->getFlag(MachineInstr::FrameSetup) ||
|
|
I->getFlag(MachineInstr::FrameDestroy);
|
|
}
|
|
}
|
|
|
|
void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator MBBI = MBB.begin();
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const Function &F = MF.getFunction();
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
bool needsFrameMoves =
|
|
MF.needsFrameMoves() && !MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
|
|
bool HasFP = hasFP(MF);
|
|
bool NeedsWinCFI = needsWinCFI(MF);
|
|
bool HasWinCFI = false;
|
|
auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
|
|
|
|
bool IsFunclet = MBB.isEHFuncletEntry();
|
|
|
|
// At this point, we're going to decide whether or not the function uses a
|
|
// redzone. In most cases, the function doesn't have a redzone so let's
|
|
// assume that's false and set it to true in the case that there's a redzone.
|
|
AFI->setHasRedZone(false);
|
|
|
|
// Debug location must be unknown since the first debug location is used
|
|
// to determine the end of the prologue.
|
|
DebugLoc DL;
|
|
|
|
const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>();
|
|
if (MFnI.shouldSignReturnAddress()) {
|
|
if (MFnI.shouldSignWithBKey()) {
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIBSP))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
} else {
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIASP))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
unsigned CFIIndex =
|
|
MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
|
|
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
// All calls are tail calls in GHC calling conv, and functions have no
|
|
// prologue/epilogue.
|
|
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
|
|
return;
|
|
|
|
// Set tagged base pointer to the requested stack slot.
|
|
// Ideally it should match SP value after prologue.
|
|
Optional<int> TBPI = AFI->getTaggedBasePointerIndex();
|
|
if (TBPI)
|
|
AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI));
|
|
else
|
|
AFI->setTaggedBasePointerOffset(MFI.getStackSize());
|
|
|
|
const StackOffset &SVEStackSize = getSVEStackSize(MF);
|
|
|
|
// getStackSize() includes all the locals in its size calculation. We don't
|
|
// include these locals when computing the stack size of a funclet, as they
|
|
// are allocated in the parent's stack frame and accessed via the frame
|
|
// pointer from the funclet. We only save the callee saved registers in the
|
|
// funclet, which are really the callee saved registers of the parent
|
|
// function, including the funclet.
|
|
int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
|
|
: MFI.getStackSize();
|
|
if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
|
|
assert(!HasFP && "unexpected function without stack frame but with FP");
|
|
assert(!SVEStackSize &&
|
|
"unexpected function without stack frame but with SVE objects");
|
|
// All of the stack allocation is for locals.
|
|
AFI->setLocalStackSize(NumBytes);
|
|
if (!NumBytes)
|
|
return;
|
|
// REDZONE: If the stack size is less than 128 bytes, we don't need
|
|
// to actually allocate.
|
|
if (canUseRedZone(MF)) {
|
|
AFI->setHasRedZone(true);
|
|
++NumRedZoneFunctions;
|
|
} else {
|
|
emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
|
|
StackOffset::getFixed(-NumBytes), TII,
|
|
MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
|
|
if (!NeedsWinCFI && needsFrameMoves) {
|
|
// Label used to tie together the PROLOG_LABEL and the MachineMoves.
|
|
MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
|
|
// Encode the stack size of the leaf function.
|
|
unsigned CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes));
|
|
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
}
|
|
}
|
|
|
|
if (NeedsWinCFI) {
|
|
HasWinCFI = true;
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
bool IsWin64 =
|
|
Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
|
|
unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
|
|
|
|
auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
|
|
// All of the remaining stack allocations are for locals.
|
|
AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
|
|
bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
|
|
if (CombineSPBump) {
|
|
assert(!SVEStackSize && "Cannot combine SP bump with SVE");
|
|
emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
|
|
StackOffset::getFixed(-NumBytes), TII,
|
|
MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
|
|
NumBytes = 0;
|
|
} else if (PrologueSaveSize != 0) {
|
|
MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
|
|
MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI);
|
|
NumBytes -= PrologueSaveSize;
|
|
}
|
|
assert(NumBytes >= 0 && "Negative stack allocation size!?");
|
|
|
|
// Move past the saves of the callee-saved registers, fixing up the offsets
|
|
// and pre-inc if we decided to combine the callee-save and local stack
|
|
// pointer bump above.
|
|
MachineBasicBlock::iterator End = MBB.end();
|
|
while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
|
|
!IsSVECalleeSave(MBBI)) {
|
|
if (CombineSPBump)
|
|
fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
|
|
NeedsWinCFI, &HasWinCFI);
|
|
++MBBI;
|
|
}
|
|
|
|
// For funclets the FP belongs to the containing function.
|
|
if (!IsFunclet && HasFP) {
|
|
// Only set up FP if we actually need to.
|
|
int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset();
|
|
|
|
if (CombineSPBump)
|
|
FPOffset += AFI->getLocalStackSize();
|
|
|
|
// Issue sub fp, sp, FPOffset or
|
|
// mov fp,sp when FPOffset is zero.
|
|
// Note: All stores of callee-saved registers are marked as "FrameSetup".
|
|
// This code marks the instruction(s) that set the FP also.
|
|
emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
|
|
StackOffset::getFixed(FPOffset), TII,
|
|
MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
|
|
}
|
|
|
|
if (windowsRequiresStackProbe(MF, NumBytes)) {
|
|
uint64_t NumWords = NumBytes >> 4;
|
|
if (NeedsWinCFI) {
|
|
HasWinCFI = true;
|
|
// alloc_l can hold at most 256MB, so assume that NumBytes doesn't
|
|
// exceed this amount. We need to move at most 2^24 - 1 into x15.
|
|
// This is at most two instructions, MOVZ follwed by MOVK.
|
|
// TODO: Fix to use multiple stack alloc unwind codes for stacks
|
|
// exceeding 256MB in size.
|
|
if (NumBytes >= (1 << 28))
|
|
report_fatal_error("Stack size cannot exceed 256MB for stack "
|
|
"unwinding purposes");
|
|
|
|
uint32_t LowNumWords = NumWords & 0xFFFF;
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
|
|
.addImm(LowNumWords)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
if ((NumWords & 0xFFFF0000) != 0) {
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
|
|
.addReg(AArch64::X15)
|
|
.addImm((NumWords & 0xFFFF0000) >> 16) // High half
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
} else {
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
|
|
.addImm(NumWords)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
switch (MF.getTarget().getCodeModel()) {
|
|
case CodeModel::Tiny:
|
|
case CodeModel::Small:
|
|
case CodeModel::Medium:
|
|
case CodeModel::Kernel:
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
|
|
.addExternalSymbol("__chkstk")
|
|
.addReg(AArch64::X15, RegState::Implicit)
|
|
.addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
|
|
.addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
|
|
.addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
if (NeedsWinCFI) {
|
|
HasWinCFI = true;
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
break;
|
|
case CodeModel::Large:
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
|
|
.addReg(AArch64::X16, RegState::Define)
|
|
.addExternalSymbol("__chkstk")
|
|
.addExternalSymbol("__chkstk")
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
if (NeedsWinCFI) {
|
|
HasWinCFI = true;
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF)))
|
|
.addReg(AArch64::X16, RegState::Kill)
|
|
.addReg(AArch64::X15, RegState::Implicit | RegState::Define)
|
|
.addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
|
|
.addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
|
|
.addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
if (NeedsWinCFI) {
|
|
HasWinCFI = true;
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
break;
|
|
}
|
|
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
|
|
.addReg(AArch64::SP, RegState::Kill)
|
|
.addReg(AArch64::X15, RegState::Kill)
|
|
.addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
if (NeedsWinCFI) {
|
|
HasWinCFI = true;
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
|
|
.addImm(NumBytes)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
NumBytes = 0;
|
|
}
|
|
|
|
StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {};
|
|
MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
|
|
|
|
// Process the SVE callee-saves to determine what space needs to be
|
|
// allocated.
|
|
if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
|
|
// Find callee save instructions in frame.
|
|
CalleeSavesBegin = MBBI;
|
|
assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
|
|
while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
|
|
++MBBI;
|
|
CalleeSavesEnd = MBBI;
|
|
|
|
AllocateBefore = StackOffset::getScalable(CalleeSavedSize);
|
|
AllocateAfter = SVEStackSize - AllocateBefore;
|
|
}
|
|
|
|
// Allocate space for the callee saves (if any).
|
|
emitFrameOffset(MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP,
|
|
-AllocateBefore, TII,
|
|
MachineInstr::FrameSetup);
|
|
|
|
// Finally allocate remaining SVE stack space.
|
|
emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP,
|
|
-AllocateAfter, TII,
|
|
MachineInstr::FrameSetup);
|
|
|
|
// Allocate space for the rest of the frame.
|
|
if (NumBytes) {
|
|
// Alignment is required for the parent frame, not the funclet
|
|
const bool NeedsRealignment =
|
|
!IsFunclet && RegInfo->needsStackRealignment(MF);
|
|
unsigned scratchSPReg = AArch64::SP;
|
|
|
|
if (NeedsRealignment) {
|
|
scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
|
|
assert(scratchSPReg != AArch64::NoRegister);
|
|
}
|
|
|
|
// If we're a leaf function, try using the red zone.
|
|
if (!canUseRedZone(MF))
|
|
// FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
|
|
// the correct value here, as NumBytes also includes padding bytes,
|
|
// which shouldn't be counted here.
|
|
emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP,
|
|
StackOffset::getFixed(-NumBytes), TII,
|
|
MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
|
|
|
|
if (NeedsRealignment) {
|
|
const unsigned NrBitsToZero = Log2(MFI.getMaxAlign());
|
|
assert(NrBitsToZero > 1);
|
|
assert(scratchSPReg != AArch64::SP);
|
|
|
|
// SUB X9, SP, NumBytes
|
|
// -- X9 is temporary register, so shouldn't contain any live data here,
|
|
// -- free to use. This is already produced by emitFrameOffset above.
|
|
// AND SP, X9, 0b11111...0000
|
|
// The logical immediates have a non-trivial encoding. The following
|
|
// formula computes the encoded immediate with all ones but
|
|
// NrBitsToZero zero bits as least significant bits.
|
|
uint32_t andMaskEncoded = (1 << 12) // = N
|
|
| ((64 - NrBitsToZero) << 6) // immr
|
|
| ((64 - NrBitsToZero - 1) << 0); // imms
|
|
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
|
|
.addReg(scratchSPReg, RegState::Kill)
|
|
.addImm(andMaskEncoded);
|
|
AFI->setStackRealigned(true);
|
|
if (NeedsWinCFI) {
|
|
HasWinCFI = true;
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
|
|
.addImm(NumBytes & andMaskEncoded)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we need a base pointer, set it up here. It's whatever the value of the
|
|
// stack pointer is at this point. Any variable size objects will be allocated
|
|
// after this, so we can still use the base pointer to reference locals.
|
|
//
|
|
// FIXME: Clarify FrameSetup flags here.
|
|
// Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
|
|
// needed.
|
|
// For funclets the BP belongs to the containing function.
|
|
if (!IsFunclet && RegInfo->hasBasePointer(MF)) {
|
|
TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
|
|
false);
|
|
if (NeedsWinCFI) {
|
|
HasWinCFI = true;
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
}
|
|
|
|
// The very last FrameSetup instruction indicates the end of prologue. Emit a
|
|
// SEH opcode indicating the prologue end.
|
|
if (NeedsWinCFI && HasWinCFI) {
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
// SEH funclets are passed the frame pointer in X1. If the parent
|
|
// function uses the base register, then the base register is used
|
|
// directly, and is not retrieved from X1.
|
|
if (IsFunclet && F.hasPersonalityFn()) {
|
|
EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
|
|
if (isAsynchronousEHPersonality(Per)) {
|
|
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
|
|
.addReg(AArch64::X1)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
MBB.addLiveIn(AArch64::X1);
|
|
}
|
|
}
|
|
|
|
if (needsFrameMoves) {
|
|
// An example of the prologue:
|
|
//
|
|
// .globl __foo
|
|
// .align 2
|
|
// __foo:
|
|
// Ltmp0:
|
|
// .cfi_startproc
|
|
// .cfi_personality 155, ___gxx_personality_v0
|
|
// Leh_func_begin:
|
|
// .cfi_lsda 16, Lexception33
|
|
//
|
|
// stp xa,bx, [sp, -#offset]!
|
|
// ...
|
|
// stp x28, x27, [sp, #offset-32]
|
|
// stp fp, lr, [sp, #offset-16]
|
|
// add fp, sp, #offset - 16
|
|
// sub sp, sp, #1360
|
|
//
|
|
// The Stack:
|
|
// +-------------------------------------------+
|
|
// 10000 | ........ | ........ | ........ | ........ |
|
|
// 10004 | ........ | ........ | ........ | ........ |
|
|
// +-------------------------------------------+
|
|
// 10008 | ........ | ........ | ........ | ........ |
|
|
// 1000c | ........ | ........ | ........ | ........ |
|
|
// +===========================================+
|
|
// 10010 | X28 Register |
|
|
// 10014 | X28 Register |
|
|
// +-------------------------------------------+
|
|
// 10018 | X27 Register |
|
|
// 1001c | X27 Register |
|
|
// +===========================================+
|
|
// 10020 | Frame Pointer |
|
|
// 10024 | Frame Pointer |
|
|
// +-------------------------------------------+
|
|
// 10028 | Link Register |
|
|
// 1002c | Link Register |
|
|
// +===========================================+
|
|
// 10030 | ........ | ........ | ........ | ........ |
|
|
// 10034 | ........ | ........ | ........ | ........ |
|
|
// +-------------------------------------------+
|
|
// 10038 | ........ | ........ | ........ | ........ |
|
|
// 1003c | ........ | ........ | ........ | ........ |
|
|
// +-------------------------------------------+
|
|
//
|
|
// [sp] = 10030 :: >>initial value<<
|
|
// sp = 10020 :: stp fp, lr, [sp, #-16]!
|
|
// fp = sp == 10020 :: mov fp, sp
|
|
// [sp] == 10020 :: stp x28, x27, [sp, #-16]!
|
|
// sp == 10010 :: >>final value<<
|
|
//
|
|
// The frame pointer (w29) points to address 10020. If we use an offset of
|
|
// '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
|
|
// for w27, and -32 for w28:
|
|
//
|
|
// Ltmp1:
|
|
// .cfi_def_cfa w29, 16
|
|
// Ltmp2:
|
|
// .cfi_offset w30, -8
|
|
// Ltmp3:
|
|
// .cfi_offset w29, -16
|
|
// Ltmp4:
|
|
// .cfi_offset w27, -24
|
|
// Ltmp5:
|
|
// .cfi_offset w28, -32
|
|
|
|
if (HasFP) {
|
|
const int OffsetToFirstCalleeSaveFromFP =
|
|
AFI->getCalleeSaveBaseToFrameRecordOffset() -
|
|
AFI->getCalleeSavedStackSize();
|
|
Register FramePtr = RegInfo->getFrameRegister(MF);
|
|
|
|
// Define the current CFA rule to use the provided FP.
|
|
unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
|
|
unsigned CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::cfiDefCfa(nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP));
|
|
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
} else {
|
|
unsigned CFIIndex;
|
|
if (SVEStackSize) {
|
|
const TargetSubtargetInfo &STI = MF.getSubtarget();
|
|
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
|
|
StackOffset TotalSize =
|
|
SVEStackSize + StackOffset::getFixed((int64_t)MFI.getStackSize());
|
|
CFIIndex = MF.addFrameInst(createDefCFAExpressionFromSP(TRI, TotalSize));
|
|
} else {
|
|
// Encode the stack size of the leaf function.
|
|
CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::cfiDefCfaOffset(nullptr, MFI.getStackSize()));
|
|
}
|
|
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
// Now emit the moves for whatever callee saved regs we have (including FP,
|
|
// LR if those are saved).
|
|
emitCalleeSavedFrameMoves(MBB, MBBI);
|
|
}
|
|
}
|
|
|
|
static void InsertReturnAddressAuth(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) {
|
|
const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
|
|
if (!MFI.shouldSignReturnAddress())
|
|
return;
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
|
|
MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
|
|
DebugLoc DL;
|
|
if (MBBI != MBB.end())
|
|
DL = MBBI->getDebugLoc();
|
|
|
|
// The AUTIASP instruction assembles to a hint instruction before v8.3a so
|
|
// this instruction can safely used for any v8a architecture.
|
|
// From v8.3a onwards there are optimised authenticate LR and return
|
|
// instructions, namely RETA{A,B}, that can be used instead.
|
|
if (Subtarget.hasPAuth() && MBBI != MBB.end() &&
|
|
MBBI->getOpcode() == AArch64::RET_ReallyLR) {
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII->get(MFI.shouldSignWithBKey() ? AArch64::RETAB : AArch64::RETAA))
|
|
.copyImplicitOps(*MBBI);
|
|
MBB.erase(MBBI);
|
|
} else {
|
|
BuildMI(
|
|
MBB, MBBI, DL,
|
|
TII->get(MFI.shouldSignWithBKey() ? AArch64::AUTIBSP : AArch64::AUTIASP))
|
|
.setMIFlag(MachineInstr::FrameDestroy);
|
|
}
|
|
}
|
|
|
|
static bool isFuncletReturnInstr(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
case AArch64::CATCHRET:
|
|
case AArch64::CLEANUPRET:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
DebugLoc DL;
|
|
bool NeedsWinCFI = needsWinCFI(MF);
|
|
bool HasWinCFI = false;
|
|
bool IsFunclet = false;
|
|
auto WinCFI = make_scope_exit([&]() { assert(HasWinCFI == MF.hasWinCFI()); });
|
|
|
|
if (MBB.end() != MBBI) {
|
|
DL = MBBI->getDebugLoc();
|
|
IsFunclet = isFuncletReturnInstr(*MBBI);
|
|
}
|
|
|
|
int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
|
|
: MFI.getStackSize();
|
|
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
|
|
// All calls are tail calls in GHC calling conv, and functions have no
|
|
// prologue/epilogue.
|
|
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
|
|
return;
|
|
|
|
// Initial and residual are named for consistency with the prologue. Note that
|
|
// in the epilogue, the residual adjustment is executed first.
|
|
uint64_t ArgumentPopSize = getArgumentPopSize(MF, MBB);
|
|
|
|
// The stack frame should be like below,
|
|
//
|
|
// ---------------------- ---
|
|
// | | |
|
|
// | BytesInStackArgArea| CalleeArgStackSize
|
|
// | (NumReusableBytes) | (of tail call)
|
|
// | | ---
|
|
// | | |
|
|
// ---------------------| --- |
|
|
// | | | |
|
|
// | CalleeSavedReg | | |
|
|
// | (CalleeSavedStackSize)| | |
|
|
// | | | |
|
|
// ---------------------| | NumBytes
|
|
// | | StackSize (StackAdjustUp)
|
|
// | LocalStackSize | | |
|
|
// | (covering callee | | |
|
|
// | args) | | |
|
|
// | | | |
|
|
// ---------------------- --- ---
|
|
//
|
|
// So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
|
|
// = StackSize + ArgumentPopSize
|
|
//
|
|
// AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
|
|
// it as the 2nd argument of AArch64ISD::TC_RETURN.
|
|
|
|
auto Cleanup = make_scope_exit([&] { InsertReturnAddressAuth(MF, MBB); });
|
|
|
|
bool IsWin64 =
|
|
Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
|
|
unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
|
|
|
|
uint64_t AfterCSRPopSize = ArgumentPopSize;
|
|
auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
|
|
// We cannot rely on the local stack size set in emitPrologue if the function
|
|
// has funclets, as funclets have different local stack size requirements, and
|
|
// the current value set in emitPrologue may be that of the containing
|
|
// function.
|
|
if (MF.hasEHFunclets())
|
|
AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
|
|
bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes);
|
|
// Assume we can't combine the last pop with the sp restore.
|
|
|
|
if (!CombineSPBump && PrologueSaveSize != 0) {
|
|
MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
|
|
while (AArch64InstrInfo::isSEHInstruction(*Pop))
|
|
Pop = std::prev(Pop);
|
|
// Converting the last ldp to a post-index ldp is valid only if the last
|
|
// ldp's offset is 0.
|
|
const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
|
|
// If the offset is 0, convert it to a post-index ldp.
|
|
if (OffsetOp.getImm() == 0)
|
|
convertCalleeSaveRestoreToSPPrePostIncDec(
|
|
MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, false);
|
|
else {
|
|
// If not, make sure to emit an add after the last ldp.
|
|
// We're doing this by transfering the size to be restored from the
|
|
// adjustment *before* the CSR pops to the adjustment *after* the CSR
|
|
// pops.
|
|
AfterCSRPopSize += PrologueSaveSize;
|
|
}
|
|
}
|
|
|
|
// Move past the restores of the callee-saved registers.
|
|
// If we plan on combining the sp bump of the local stack size and the callee
|
|
// save stack size, we might need to adjust the CSR save and restore offsets.
|
|
MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
|
|
MachineBasicBlock::iterator Begin = MBB.begin();
|
|
while (LastPopI != Begin) {
|
|
--LastPopI;
|
|
if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
|
|
IsSVECalleeSave(LastPopI)) {
|
|
++LastPopI;
|
|
break;
|
|
} else if (CombineSPBump)
|
|
fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
|
|
NeedsWinCFI, &HasWinCFI);
|
|
}
|
|
|
|
if (MF.hasWinCFI()) {
|
|
// If the prologue didn't contain any SEH opcodes and didn't set the
|
|
// MF.hasWinCFI() flag, assume the epilogue won't either, and skip the
|
|
// EpilogStart - to avoid generating CFI for functions that don't need it.
|
|
// (And as we didn't generate any prologue at all, it would be asymmetrical
|
|
// to the epilogue.) By the end of the function, we assert that
|
|
// HasWinCFI is equal to MF.hasWinCFI(), to verify this assumption.
|
|
HasWinCFI = true;
|
|
BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
|
|
.setMIFlag(MachineInstr::FrameDestroy);
|
|
}
|
|
|
|
const StackOffset &SVEStackSize = getSVEStackSize(MF);
|
|
|
|
// If there is a single SP update, insert it before the ret and we're done.
|
|
if (CombineSPBump) {
|
|
assert(!SVEStackSize && "Cannot combine SP bump with SVE");
|
|
emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
|
|
StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize),
|
|
TII, MachineInstr::FrameDestroy, false, NeedsWinCFI,
|
|
&HasWinCFI);
|
|
if (HasWinCFI)
|
|
BuildMI(MBB, MBB.getFirstTerminator(), DL,
|
|
TII->get(AArch64::SEH_EpilogEnd))
|
|
.setMIFlag(MachineInstr::FrameDestroy);
|
|
return;
|
|
}
|
|
|
|
NumBytes -= PrologueSaveSize;
|
|
assert(NumBytes >= 0 && "Negative stack allocation size!?");
|
|
|
|
// Process the SVE callee-saves to determine what space needs to be
|
|
// deallocated.
|
|
StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
|
|
MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
|
|
if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
|
|
RestoreBegin = std::prev(RestoreEnd);
|
|
while (RestoreBegin != MBB.begin() &&
|
|
IsSVECalleeSave(std::prev(RestoreBegin)))
|
|
--RestoreBegin;
|
|
|
|
assert(IsSVECalleeSave(RestoreBegin) &&
|
|
IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
|
|
|
|
StackOffset CalleeSavedSizeAsOffset =
|
|
StackOffset::getScalable(CalleeSavedSize);
|
|
DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset;
|
|
DeallocateAfter = CalleeSavedSizeAsOffset;
|
|
}
|
|
|
|
// Deallocate the SVE area.
|
|
if (SVEStackSize) {
|
|
if (AFI->isStackRealigned()) {
|
|
if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize())
|
|
// Set SP to start of SVE callee-save area from which they can
|
|
// be reloaded. The code below will deallocate the stack space
|
|
// space by moving FP -> SP.
|
|
emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
|
|
StackOffset::getScalable(-CalleeSavedSize), TII,
|
|
MachineInstr::FrameDestroy);
|
|
} else {
|
|
if (AFI->getSVECalleeSavedStackSize()) {
|
|
// Deallocate the non-SVE locals first before we can deallocate (and
|
|
// restore callee saves) from the SVE area.
|
|
emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
|
|
StackOffset::getFixed(NumBytes), TII,
|
|
MachineInstr::FrameDestroy);
|
|
NumBytes = 0;
|
|
}
|
|
|
|
emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
|
|
DeallocateBefore, TII, MachineInstr::FrameDestroy);
|
|
|
|
emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
|
|
DeallocateAfter, TII, MachineInstr::FrameDestroy);
|
|
}
|
|
}
|
|
|
|
if (!hasFP(MF)) {
|
|
bool RedZone = canUseRedZone(MF);
|
|
// If this was a redzone leaf function, we don't need to restore the
|
|
// stack pointer (but we may need to pop stack args for fastcc).
|
|
if (RedZone && AfterCSRPopSize == 0)
|
|
return;
|
|
|
|
bool NoCalleeSaveRestore = PrologueSaveSize == 0;
|
|
int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
|
|
if (NoCalleeSaveRestore)
|
|
StackRestoreBytes += AfterCSRPopSize;
|
|
|
|
// If we were able to combine the local stack pop with the argument pop,
|
|
// then we're done.
|
|
bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0;
|
|
|
|
// If we're done after this, make sure to help the load store optimizer.
|
|
if (Done)
|
|
adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI);
|
|
|
|
emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
|
|
StackOffset::getFixed(StackRestoreBytes), TII,
|
|
MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
|
|
if (Done) {
|
|
if (HasWinCFI) {
|
|
BuildMI(MBB, MBB.getFirstTerminator(), DL,
|
|
TII->get(AArch64::SEH_EpilogEnd))
|
|
.setMIFlag(MachineInstr::FrameDestroy);
|
|
}
|
|
return;
|
|
}
|
|
|
|
NumBytes = 0;
|
|
}
|
|
|
|
// Restore the original stack pointer.
|
|
// FIXME: Rather than doing the math here, we should instead just use
|
|
// non-post-indexed loads for the restores if we aren't actually going to
|
|
// be able to save any instructions.
|
|
if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
|
|
emitFrameOffset(
|
|
MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
|
|
StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()),
|
|
TII, MachineInstr::FrameDestroy, false, NeedsWinCFI);
|
|
} else if (NumBytes)
|
|
emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
|
|
StackOffset::getFixed(NumBytes), TII,
|
|
MachineInstr::FrameDestroy, false, NeedsWinCFI);
|
|
|
|
// This must be placed after the callee-save restore code because that code
|
|
// assumes the SP is at the same location as it was after the callee-save save
|
|
// code in the prologue.
|
|
if (AfterCSRPopSize) {
|
|
// Find an insertion point for the first ldp so that it goes before the
|
|
// shadow call stack epilog instruction. This ensures that the restore of
|
|
// lr from x18 is placed after the restore from sp.
|
|
auto FirstSPPopI = MBB.getFirstTerminator();
|
|
while (FirstSPPopI != Begin) {
|
|
auto Prev = std::prev(FirstSPPopI);
|
|
if (Prev->getOpcode() != AArch64::LDRXpre ||
|
|
Prev->getOperand(0).getReg() == AArch64::SP)
|
|
break;
|
|
FirstSPPopI = Prev;
|
|
}
|
|
|
|
adaptForLdStOpt(MBB, FirstSPPopI, LastPopI);
|
|
|
|
emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP,
|
|
StackOffset::getFixed((int64_t)AfterCSRPopSize), TII,
|
|
MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
|
|
}
|
|
if (HasWinCFI)
|
|
BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd))
|
|
.setMIFlag(MachineInstr::FrameDestroy);
|
|
}
|
|
|
|
/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
|
|
/// debug info. It's the same as what we use for resolving the code-gen
|
|
/// references for now. FIXME: This can go wrong when references are
|
|
/// SP-relative and simple call frames aren't used.
|
|
StackOffset
|
|
AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
|
|
Register &FrameReg) const {
|
|
return resolveFrameIndexReference(
|
|
MF, FI, FrameReg,
|
|
/*PreferFP=*/
|
|
MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress),
|
|
/*ForSimm=*/false);
|
|
}
|
|
|
|
StackOffset
|
|
AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF,
|
|
int FI) const {
|
|
return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI));
|
|
}
|
|
|
|
static StackOffset getFPOffset(const MachineFunction &MF,
|
|
int64_t ObjectOffset) {
|
|
const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
bool IsWin64 =
|
|
Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
|
|
unsigned FixedObject =
|
|
getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
|
|
int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo());
|
|
int64_t FPAdjust =
|
|
CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset();
|
|
return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust);
|
|
}
|
|
|
|
static StackOffset getStackOffset(const MachineFunction &MF,
|
|
int64_t ObjectOffset) {
|
|
const auto &MFI = MF.getFrameInfo();
|
|
return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize());
|
|
}
|
|
|
|
// TODO: This function currently does not work for scalable vectors.
|
|
int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
|
|
int FI) const {
|
|
const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
|
|
MF.getSubtarget().getRegisterInfo());
|
|
int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
|
|
return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
|
|
? getFPOffset(MF, ObjectOffset).getFixed()
|
|
: getStackOffset(MF, ObjectOffset).getFixed();
|
|
}
|
|
|
|
StackOffset AArch64FrameLowering::resolveFrameIndexReference(
|
|
const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP,
|
|
bool ForSimm) const {
|
|
const auto &MFI = MF.getFrameInfo();
|
|
int64_t ObjectOffset = MFI.getObjectOffset(FI);
|
|
bool isFixed = MFI.isFixedObjectIndex(FI);
|
|
bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector;
|
|
return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
|
|
PreferFP, ForSimm);
|
|
}
|
|
|
|
StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
|
|
const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
|
|
Register &FrameReg, bool PreferFP, bool ForSimm) const {
|
|
const auto &MFI = MF.getFrameInfo();
|
|
const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
|
|
MF.getSubtarget().getRegisterInfo());
|
|
const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
|
|
int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed();
|
|
int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed();
|
|
bool isCSR =
|
|
!isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
|
|
|
|
const StackOffset &SVEStackSize = getSVEStackSize(MF);
|
|
|
|
// Use frame pointer to reference fixed objects. Use it for locals if
|
|
// there are VLAs or a dynamically realigned SP (and thus the SP isn't
|
|
// reliable as a base). Make sure useFPForScavengingIndex() does the
|
|
// right thing for the emergency spill slot.
|
|
bool UseFP = false;
|
|
if (AFI->hasStackFrame() && !isSVE) {
|
|
// We shouldn't prefer using the FP when there is an SVE area
|
|
// in between the FP and the non-SVE locals/spills.
|
|
PreferFP &= !SVEStackSize;
|
|
|
|
// Note: Keeping the following as multiple 'if' statements rather than
|
|
// merging to a single expression for readability.
|
|
//
|
|
// Argument access should always use the FP.
|
|
if (isFixed) {
|
|
UseFP = hasFP(MF);
|
|
} else if (isCSR && RegInfo->needsStackRealignment(MF)) {
|
|
// References to the CSR area must use FP if we're re-aligning the stack
|
|
// since the dynamically-sized alignment padding is between the SP/BP and
|
|
// the CSR area.
|
|
assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
|
|
UseFP = true;
|
|
} else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) {
|
|
// If the FPOffset is negative and we're producing a signed immediate, we
|
|
// have to keep in mind that the available offset range for negative
|
|
// offsets is smaller than for positive ones. If an offset is available
|
|
// via the FP and the SP, use whichever is closest.
|
|
bool FPOffsetFits = !ForSimm || FPOffset >= -256;
|
|
PreferFP |= Offset > -FPOffset;
|
|
|
|
if (MFI.hasVarSizedObjects()) {
|
|
// If we have variable sized objects, we can use either FP or BP, as the
|
|
// SP offset is unknown. We can use the base pointer if we have one and
|
|
// FP is not preferred. If not, we're stuck with using FP.
|
|
bool CanUseBP = RegInfo->hasBasePointer(MF);
|
|
if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
|
|
UseFP = PreferFP;
|
|
else if (!CanUseBP) // Can't use BP. Forced to use FP.
|
|
UseFP = true;
|
|
// else we can use BP and FP, but the offset from FP won't fit.
|
|
// That will make us scavenge registers which we can probably avoid by
|
|
// using BP. If it won't fit for BP either, we'll scavenge anyway.
|
|
} else if (FPOffset >= 0) {
|
|
// Use SP or FP, whichever gives us the best chance of the offset
|
|
// being in range for direct access. If the FPOffset is positive,
|
|
// that'll always be best, as the SP will be even further away.
|
|
UseFP = true;
|
|
} else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
|
|
// Funclets access the locals contained in the parent's stack frame
|
|
// via the frame pointer, so we have to use the FP in the parent
|
|
// function.
|
|
(void) Subtarget;
|
|
assert(
|
|
Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) &&
|
|
"Funclets should only be present on Win64");
|
|
UseFP = true;
|
|
} else {
|
|
// We have the choice between FP and (SP or BP).
|
|
if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
|
|
UseFP = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) &&
|
|
"In the presence of dynamic stack pointer realignment, "
|
|
"non-argument/CSR objects cannot be accessed through the frame pointer");
|
|
|
|
if (isSVE) {
|
|
StackOffset FPOffset =
|
|
StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset);
|
|
StackOffset SPOffset =
|
|
SVEStackSize +
|
|
StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(),
|
|
ObjectOffset);
|
|
// Always use the FP for SVE spills if available and beneficial.
|
|
if (hasFP(MF) &&
|
|
(SPOffset.getFixed() ||
|
|
FPOffset.getScalable() < SPOffset.getScalable() ||
|
|
RegInfo->needsStackRealignment(MF))) {
|
|
FrameReg = RegInfo->getFrameRegister(MF);
|
|
return FPOffset;
|
|
}
|
|
|
|
FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
|
|
: (unsigned)AArch64::SP;
|
|
return SPOffset;
|
|
}
|
|
|
|
StackOffset ScalableOffset = {};
|
|
if (UseFP && !(isFixed || isCSR))
|
|
ScalableOffset = -SVEStackSize;
|
|
if (!UseFP && (isFixed || isCSR))
|
|
ScalableOffset = SVEStackSize;
|
|
|
|
if (UseFP) {
|
|
FrameReg = RegInfo->getFrameRegister(MF);
|
|
return StackOffset::getFixed(FPOffset) + ScalableOffset;
|
|
}
|
|
|
|
// Use the base pointer if we have one.
|
|
if (RegInfo->hasBasePointer(MF))
|
|
FrameReg = RegInfo->getBaseRegister();
|
|
else {
|
|
assert(!MFI.hasVarSizedObjects() &&
|
|
"Can't use SP when we have var sized objects.");
|
|
FrameReg = AArch64::SP;
|
|
// If we're using the red zone for this function, the SP won't actually
|
|
// be adjusted, so the offsets will be negative. They're also all
|
|
// within range of the signed 9-bit immediate instructions.
|
|
if (canUseRedZone(MF))
|
|
Offset -= AFI->getLocalStackSize();
|
|
}
|
|
|
|
return StackOffset::getFixed(Offset) + ScalableOffset;
|
|
}
|
|
|
|
static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
|
|
// Do not set a kill flag on values that are also marked as live-in. This
|
|
// happens with the @llvm-returnaddress intrinsic and with arguments passed in
|
|
// callee saved registers.
|
|
// Omitting the kill flags is conservatively correct even if the live-in
|
|
// is not used after all.
|
|
bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
|
|
return getKillRegState(!IsLiveIn);
|
|
}
|
|
|
|
static bool produceCompactUnwindFrame(MachineFunction &MF) {
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
AttributeList Attrs = MF.getFunction().getAttributes();
|
|
return Subtarget.isTargetMachO() &&
|
|
!(Subtarget.getTargetLowering()->supportSwiftError() &&
|
|
Attrs.hasAttrSomewhere(Attribute::SwiftError));
|
|
}
|
|
|
|
static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
|
|
bool NeedsWinCFI, bool IsFirst) {
|
|
// If we are generating register pairs for a Windows function that requires
|
|
// EH support, then pair consecutive registers only. There are no unwind
|
|
// opcodes for saves/restores of non-consectuve register pairs.
|
|
// The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
|
|
// save_lrpair.
|
|
// https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
|
|
|
|
if (Reg2 == AArch64::FP)
|
|
return true;
|
|
if (!NeedsWinCFI)
|
|
return false;
|
|
if (Reg2 == Reg1 + 1)
|
|
return false;
|
|
// If pairing a GPR with LR, the pair can be described by the save_lrpair
|
|
// opcode. If this is the first register pair, it would end up with a
|
|
// predecrement, but there's no save_lrpair_x opcode, so we can only do this
|
|
// if LR is paired with something else than the first register.
|
|
// The save_lrpair opcode requires the first register to be an odd one.
|
|
if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 &&
|
|
(Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
|
|
/// WindowsCFI requires that only consecutive registers can be paired.
|
|
/// LR and FP need to be allocated together when the frame needs to save
|
|
/// the frame-record. This means any other register pairing with LR is invalid.
|
|
static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
|
|
bool UsesWinAAPCS, bool NeedsWinCFI,
|
|
bool NeedsFrameRecord, bool IsFirst) {
|
|
if (UsesWinAAPCS)
|
|
return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst);
|
|
|
|
// If we need to store the frame record, don't pair any register
|
|
// with LR other than FP.
|
|
if (NeedsFrameRecord)
|
|
return Reg2 == AArch64::LR;
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct RegPairInfo {
|
|
unsigned Reg1 = AArch64::NoRegister;
|
|
unsigned Reg2 = AArch64::NoRegister;
|
|
int FrameIdx;
|
|
int Offset;
|
|
enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type;
|
|
|
|
RegPairInfo() = default;
|
|
|
|
bool isPaired() const { return Reg2 != AArch64::NoRegister; }
|
|
|
|
unsigned getScale() const {
|
|
switch (Type) {
|
|
case PPR:
|
|
return 2;
|
|
case GPR:
|
|
case FPR64:
|
|
return 8;
|
|
case ZPR:
|
|
case FPR128:
|
|
return 16;
|
|
}
|
|
llvm_unreachable("Unsupported type");
|
|
}
|
|
|
|
bool isScalable() const { return Type == PPR || Type == ZPR; }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static void computeCalleeSaveRegisterPairs(
|
|
MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI,
|
|
const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
|
|
bool &NeedShadowCallStackProlog, bool NeedsFrameRecord) {
|
|
|
|
if (CSI.empty())
|
|
return;
|
|
|
|
bool IsWindows = isTargetWindows(MF);
|
|
bool NeedsWinCFI = needsWinCFI(MF);
|
|
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
CallingConv::ID CC = MF.getFunction().getCallingConv();
|
|
unsigned Count = CSI.size();
|
|
(void)CC;
|
|
// MachO's compact unwind format relies on all registers being stored in
|
|
// pairs.
|
|
assert((!produceCompactUnwindFrame(MF) ||
|
|
CC == CallingConv::PreserveMost ||
|
|
(Count & 1) == 0) &&
|
|
"Odd number of callee-saved regs to spill!");
|
|
int ByteOffset = AFI->getCalleeSavedStackSize();
|
|
int StackFillDir = -1;
|
|
int RegInc = 1;
|
|
unsigned FirstReg = 0;
|
|
if (NeedsWinCFI) {
|
|
// For WinCFI, fill the stack from the bottom up.
|
|
ByteOffset = 0;
|
|
StackFillDir = 1;
|
|
// As the CSI array is reversed to match PrologEpilogInserter, iterate
|
|
// backwards, to pair up registers starting from lower numbered registers.
|
|
RegInc = -1;
|
|
FirstReg = Count - 1;
|
|
}
|
|
int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
|
|
|
|
// When iterating backwards, the loop condition relies on unsigned wraparound.
|
|
for (unsigned i = FirstReg; i < Count; i += RegInc) {
|
|
RegPairInfo RPI;
|
|
RPI.Reg1 = CSI[i].getReg();
|
|
|
|
if (AArch64::GPR64RegClass.contains(RPI.Reg1))
|
|
RPI.Type = RegPairInfo::GPR;
|
|
else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
|
|
RPI.Type = RegPairInfo::FPR64;
|
|
else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
|
|
RPI.Type = RegPairInfo::FPR128;
|
|
else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
|
|
RPI.Type = RegPairInfo::ZPR;
|
|
else if (AArch64::PPRRegClass.contains(RPI.Reg1))
|
|
RPI.Type = RegPairInfo::PPR;
|
|
else
|
|
llvm_unreachable("Unsupported register class.");
|
|
|
|
// Add the next reg to the pair if it is in the same register class.
|
|
if (unsigned(i + RegInc) < Count) {
|
|
unsigned NextReg = CSI[i + RegInc].getReg();
|
|
bool IsFirst = i == FirstReg;
|
|
switch (RPI.Type) {
|
|
case RegPairInfo::GPR:
|
|
if (AArch64::GPR64RegClass.contains(NextReg) &&
|
|
!invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows,
|
|
NeedsWinCFI, NeedsFrameRecord, IsFirst))
|
|
RPI.Reg2 = NextReg;
|
|
break;
|
|
case RegPairInfo::FPR64:
|
|
if (AArch64::FPR64RegClass.contains(NextReg) &&
|
|
!invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI,
|
|
IsFirst))
|
|
RPI.Reg2 = NextReg;
|
|
break;
|
|
case RegPairInfo::FPR128:
|
|
if (AArch64::FPR128RegClass.contains(NextReg))
|
|
RPI.Reg2 = NextReg;
|
|
break;
|
|
case RegPairInfo::PPR:
|
|
case RegPairInfo::ZPR:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If either of the registers to be saved is the lr register, it means that
|
|
// we also need to save lr in the shadow call stack.
|
|
if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) &&
|
|
MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) {
|
|
if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18))
|
|
report_fatal_error("Must reserve x18 to use shadow call stack");
|
|
NeedShadowCallStackProlog = true;
|
|
}
|
|
|
|
// GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
|
|
// list to come in sorted by frame index so that we can issue the store
|
|
// pair instructions directly. Assert if we see anything otherwise.
|
|
//
|
|
// The order of the registers in the list is controlled by
|
|
// getCalleeSavedRegs(), so they will always be in-order, as well.
|
|
assert((!RPI.isPaired() ||
|
|
(CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) &&
|
|
"Out of order callee saved regs!");
|
|
|
|
assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
|
|
RPI.Reg1 == AArch64::LR) &&
|
|
"FrameRecord must be allocated together with LR");
|
|
|
|
// Windows AAPCS has FP and LR reversed.
|
|
assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
|
|
RPI.Reg2 == AArch64::LR) &&
|
|
"FrameRecord must be allocated together with LR");
|
|
|
|
// MachO's compact unwind format relies on all registers being stored in
|
|
// adjacent register pairs.
|
|
assert((!produceCompactUnwindFrame(MF) ||
|
|
CC == CallingConv::PreserveMost ||
|
|
(RPI.isPaired() &&
|
|
((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
|
|
RPI.Reg1 + 1 == RPI.Reg2))) &&
|
|
"Callee-save registers not saved as adjacent register pair!");
|
|
|
|
RPI.FrameIdx = CSI[i].getFrameIdx();
|
|
if (NeedsWinCFI &&
|
|
RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair
|
|
RPI.FrameIdx = CSI[i + RegInc].getFrameIdx();
|
|
|
|
int Scale = RPI.getScale();
|
|
|
|
int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
|
|
assert(OffsetPre % Scale == 0);
|
|
|
|
if (RPI.isScalable())
|
|
ScalableByteOffset += StackFillDir * Scale;
|
|
else
|
|
ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
|
|
|
|
assert(!(RPI.isScalable() && RPI.isPaired()) &&
|
|
"Paired spill/fill instructions don't exist for SVE vectors");
|
|
|
|
// Round up size of non-pair to pair size if we need to pad the
|
|
// callee-save area to ensure 16-byte alignment.
|
|
if (AFI->hasCalleeSaveStackFreeSpace() && !NeedsWinCFI &&
|
|
!RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 &&
|
|
!RPI.isPaired()) {
|
|
ByteOffset += 8 * StackFillDir;
|
|
assert(ByteOffset % 16 == 0);
|
|
assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16));
|
|
// A stack frame with a gap looks like this, bottom up:
|
|
// d9, d8. x21, gap, x20, x19.
|
|
// Set extra alignment on the x21 object (the only unpaired register)
|
|
// to create the gap above it.
|
|
MFI.setObjectAlignment(RPI.FrameIdx, Align(16));
|
|
}
|
|
|
|
int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
|
|
assert(OffsetPost % Scale == 0);
|
|
// If filling top down (default), we want the offset after incrementing it.
|
|
// If fillibg bootom up (WinCFI) we need the original offset.
|
|
int Offset = NeedsWinCFI ? OffsetPre : OffsetPost;
|
|
RPI.Offset = Offset / Scale;
|
|
|
|
assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
|
|
(RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
|
|
"Offset out of bounds for LDP/STP immediate");
|
|
|
|
// Save the offset to frame record so that the FP register can point to the
|
|
// innermost frame record (spilled FP and LR registers).
|
|
if (NeedsFrameRecord && ((!IsWindows && RPI.Reg1 == AArch64::LR &&
|
|
RPI.Reg2 == AArch64::FP) ||
|
|
(IsWindows && RPI.Reg1 == AArch64::FP &&
|
|
RPI.Reg2 == AArch64::LR)))
|
|
AFI->setCalleeSaveBaseToFrameRecordOffset(Offset);
|
|
|
|
RegPairs.push_back(RPI);
|
|
if (RPI.isPaired())
|
|
i += RegInc;
|
|
}
|
|
if (NeedsWinCFI) {
|
|
// If we need an alignment gap in the stack, align the topmost stack
|
|
// object. A stack frame with a gap looks like this, bottom up:
|
|
// x19, d8. d9, gap.
|
|
// Set extra alignment on the topmost stack object (the first element in
|
|
// CSI, which goes top down), to create the gap above it.
|
|
if (AFI->hasCalleeSaveStackFreeSpace())
|
|
MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16));
|
|
// We iterated bottom up over the registers; flip RegPairs back to top
|
|
// down order.
|
|
std::reverse(RegPairs.begin(), RegPairs.end());
|
|
}
|
|
}
|
|
|
|
bool AArch64FrameLowering::spillCalleeSavedRegisters(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
bool NeedsWinCFI = needsWinCFI(MF);
|
|
DebugLoc DL;
|
|
SmallVector<RegPairInfo, 8> RegPairs;
|
|
|
|
bool NeedShadowCallStackProlog = false;
|
|
computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
|
|
NeedShadowCallStackProlog, hasFP(MF));
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
if (NeedShadowCallStackProlog) {
|
|
// Shadow call stack prolog: str x30, [x18], #8
|
|
BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost))
|
|
.addReg(AArch64::X18, RegState::Define)
|
|
.addReg(AArch64::LR)
|
|
.addReg(AArch64::X18)
|
|
.addImm(8)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
if (NeedsWinCFI)
|
|
BuildMI(MBB, MI, DL, TII.get(AArch64::SEH_Nop))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
if (!MF.getFunction().hasFnAttribute(Attribute::NoUnwind)) {
|
|
// Emit a CFI instruction that causes 8 to be subtracted from the value of
|
|
// x18 when unwinding past this frame.
|
|
static const char CFIInst[] = {
|
|
dwarf::DW_CFA_val_expression,
|
|
18, // register
|
|
2, // length
|
|
static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
|
|
static_cast<char>(-8) & 0x7f, // addend (sleb128)
|
|
};
|
|
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
|
|
nullptr, StringRef(CFIInst, sizeof(CFIInst))));
|
|
BuildMI(MBB, MI, DL, TII.get(AArch64::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
// This instruction also makes x18 live-in to the entry block.
|
|
MBB.addLiveIn(AArch64::X18);
|
|
}
|
|
|
|
for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE;
|
|
++RPII) {
|
|
RegPairInfo RPI = *RPII;
|
|
unsigned Reg1 = RPI.Reg1;
|
|
unsigned Reg2 = RPI.Reg2;
|
|
unsigned StrOpc;
|
|
|
|
// Issue sequence of spills for cs regs. The first spill may be converted
|
|
// to a pre-decrement store later by emitPrologue if the callee-save stack
|
|
// area allocation can't be combined with the local stack area allocation.
|
|
// For example:
|
|
// stp x22, x21, [sp, #0] // addImm(+0)
|
|
// stp x20, x19, [sp, #16] // addImm(+2)
|
|
// stp fp, lr, [sp, #32] // addImm(+4)
|
|
// Rationale: This sequence saves uop updates compared to a sequence of
|
|
// pre-increment spills like stp xi,xj,[sp,#-16]!
|
|
// Note: Similar rationale and sequence for restores in epilog.
|
|
unsigned Size;
|
|
Align Alignment;
|
|
switch (RPI.Type) {
|
|
case RegPairInfo::GPR:
|
|
StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
|
|
Size = 8;
|
|
Alignment = Align(8);
|
|
break;
|
|
case RegPairInfo::FPR64:
|
|
StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
|
|
Size = 8;
|
|
Alignment = Align(8);
|
|
break;
|
|
case RegPairInfo::FPR128:
|
|
StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
|
|
Size = 16;
|
|
Alignment = Align(16);
|
|
break;
|
|
case RegPairInfo::ZPR:
|
|
StrOpc = AArch64::STR_ZXI;
|
|
Size = 16;
|
|
Alignment = Align(16);
|
|
break;
|
|
case RegPairInfo::PPR:
|
|
StrOpc = AArch64::STR_PXI;
|
|
Size = 2;
|
|
Alignment = Align(2);
|
|
break;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
|
|
if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
|
|
dbgs() << ") -> fi#(" << RPI.FrameIdx;
|
|
if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
|
|
dbgs() << ")\n");
|
|
|
|
assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
|
|
"Windows unwdinding requires a consecutive (FP,LR) pair");
|
|
// Windows unwind codes require consecutive registers if registers are
|
|
// paired. Make the switch here, so that the code below will save (x,x+1)
|
|
// and not (x+1,x).
|
|
unsigned FrameIdxReg1 = RPI.FrameIdx;
|
|
unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
|
|
if (NeedsWinCFI && RPI.isPaired()) {
|
|
std::swap(Reg1, Reg2);
|
|
std::swap(FrameIdxReg1, FrameIdxReg2);
|
|
}
|
|
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
|
|
if (!MRI.isReserved(Reg1))
|
|
MBB.addLiveIn(Reg1);
|
|
if (RPI.isPaired()) {
|
|
if (!MRI.isReserved(Reg2))
|
|
MBB.addLiveIn(Reg2);
|
|
MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
|
|
MIB.addMemOperand(MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
|
|
MachineMemOperand::MOStore, Size, Alignment));
|
|
}
|
|
MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
|
|
.addReg(AArch64::SP)
|
|
.addImm(RPI.Offset) // [sp, #offset*scale],
|
|
// where factor*scale is implicit
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
MIB.addMemOperand(MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
|
|
MachineMemOperand::MOStore, Size, Alignment));
|
|
if (NeedsWinCFI)
|
|
InsertSEH(MIB, TII, MachineInstr::FrameSetup);
|
|
|
|
// Update the StackIDs of the SVE stack slots.
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR)
|
|
MFI.setStackID(RPI.FrameIdx, TargetStackID::ScalableVector);
|
|
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool AArch64FrameLowering::restoreCalleeSavedRegisters(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
DebugLoc DL;
|
|
SmallVector<RegPairInfo, 8> RegPairs;
|
|
bool NeedsWinCFI = needsWinCFI(MF);
|
|
|
|
if (MI != MBB.end())
|
|
DL = MI->getDebugLoc();
|
|
|
|
bool NeedShadowCallStackProlog = false;
|
|
computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
|
|
NeedShadowCallStackProlog, hasFP(MF));
|
|
|
|
auto EmitMI = [&](const RegPairInfo &RPI) {
|
|
unsigned Reg1 = RPI.Reg1;
|
|
unsigned Reg2 = RPI.Reg2;
|
|
|
|
// Issue sequence of restores for cs regs. The last restore may be converted
|
|
// to a post-increment load later by emitEpilogue if the callee-save stack
|
|
// area allocation can't be combined with the local stack area allocation.
|
|
// For example:
|
|
// ldp fp, lr, [sp, #32] // addImm(+4)
|
|
// ldp x20, x19, [sp, #16] // addImm(+2)
|
|
// ldp x22, x21, [sp, #0] // addImm(+0)
|
|
// Note: see comment in spillCalleeSavedRegisters()
|
|
unsigned LdrOpc;
|
|
unsigned Size;
|
|
Align Alignment;
|
|
switch (RPI.Type) {
|
|
case RegPairInfo::GPR:
|
|
LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
|
|
Size = 8;
|
|
Alignment = Align(8);
|
|
break;
|
|
case RegPairInfo::FPR64:
|
|
LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
|
|
Size = 8;
|
|
Alignment = Align(8);
|
|
break;
|
|
case RegPairInfo::FPR128:
|
|
LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
|
|
Size = 16;
|
|
Alignment = Align(16);
|
|
break;
|
|
case RegPairInfo::ZPR:
|
|
LdrOpc = AArch64::LDR_ZXI;
|
|
Size = 16;
|
|
Alignment = Align(16);
|
|
break;
|
|
case RegPairInfo::PPR:
|
|
LdrOpc = AArch64::LDR_PXI;
|
|
Size = 2;
|
|
Alignment = Align(2);
|
|
break;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
|
|
if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
|
|
dbgs() << ") -> fi#(" << RPI.FrameIdx;
|
|
if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
|
|
dbgs() << ")\n");
|
|
|
|
// Windows unwind codes require consecutive registers if registers are
|
|
// paired. Make the switch here, so that the code below will save (x,x+1)
|
|
// and not (x+1,x).
|
|
unsigned FrameIdxReg1 = RPI.FrameIdx;
|
|
unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
|
|
if (NeedsWinCFI && RPI.isPaired()) {
|
|
std::swap(Reg1, Reg2);
|
|
std::swap(FrameIdxReg1, FrameIdxReg2);
|
|
}
|
|
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc));
|
|
if (RPI.isPaired()) {
|
|
MIB.addReg(Reg2, getDefRegState(true));
|
|
MIB.addMemOperand(MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
|
|
MachineMemOperand::MOLoad, Size, Alignment));
|
|
}
|
|
MIB.addReg(Reg1, getDefRegState(true))
|
|
.addReg(AArch64::SP)
|
|
.addImm(RPI.Offset) // [sp, #offset*scale]
|
|
// where factor*scale is implicit
|
|
.setMIFlag(MachineInstr::FrameDestroy);
|
|
MIB.addMemOperand(MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
|
|
MachineMemOperand::MOLoad, Size, Alignment));
|
|
if (NeedsWinCFI)
|
|
InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
|
|
};
|
|
|
|
// SVE objects are always restored in reverse order.
|
|
for (const RegPairInfo &RPI : reverse(RegPairs))
|
|
if (RPI.isScalable())
|
|
EmitMI(RPI);
|
|
|
|
if (ReverseCSRRestoreSeq) {
|
|
for (const RegPairInfo &RPI : reverse(RegPairs))
|
|
if (!RPI.isScalable())
|
|
EmitMI(RPI);
|
|
} else
|
|
for (const RegPairInfo &RPI : RegPairs)
|
|
if (!RPI.isScalable())
|
|
EmitMI(RPI);
|
|
|
|
if (NeedShadowCallStackProlog) {
|
|
// Shadow call stack epilog: ldr x30, [x18, #-8]!
|
|
BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre))
|
|
.addReg(AArch64::X18, RegState::Define)
|
|
.addReg(AArch64::LR, RegState::Define)
|
|
.addReg(AArch64::X18)
|
|
.addImm(-8)
|
|
.setMIFlag(MachineInstr::FrameDestroy);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
|
|
BitVector &SavedRegs,
|
|
RegScavenger *RS) const {
|
|
// All calls are tail calls in GHC calling conv, and functions have no
|
|
// prologue/epilogue.
|
|
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
|
|
return;
|
|
|
|
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
|
|
const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
|
|
MF.getSubtarget().getRegisterInfo());
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
unsigned UnspilledCSGPR = AArch64::NoRegister;
|
|
unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
|
|
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
|
|
|
|
unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
|
|
? RegInfo->getBaseRegister()
|
|
: (unsigned)AArch64::NoRegister;
|
|
|
|
unsigned ExtraCSSpill = 0;
|
|
// Figure out which callee-saved registers to save/restore.
|
|
for (unsigned i = 0; CSRegs[i]; ++i) {
|
|
const unsigned Reg = CSRegs[i];
|
|
|
|
// Add the base pointer register to SavedRegs if it is callee-save.
|
|
if (Reg == BasePointerReg)
|
|
SavedRegs.set(Reg);
|
|
|
|
bool RegUsed = SavedRegs.test(Reg);
|
|
unsigned PairedReg = AArch64::NoRegister;
|
|
if (AArch64::GPR64RegClass.contains(Reg) ||
|
|
AArch64::FPR64RegClass.contains(Reg) ||
|
|
AArch64::FPR128RegClass.contains(Reg))
|
|
PairedReg = CSRegs[i ^ 1];
|
|
|
|
if (!RegUsed) {
|
|
if (AArch64::GPR64RegClass.contains(Reg) &&
|
|
!RegInfo->isReservedReg(MF, Reg)) {
|
|
UnspilledCSGPR = Reg;
|
|
UnspilledCSGPRPaired = PairedReg;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// MachO's compact unwind format relies on all registers being stored in
|
|
// pairs.
|
|
// FIXME: the usual format is actually better if unwinding isn't needed.
|
|
if (produceCompactUnwindFrame(MF) && PairedReg != AArch64::NoRegister &&
|
|
!SavedRegs.test(PairedReg)) {
|
|
SavedRegs.set(PairedReg);
|
|
if (AArch64::GPR64RegClass.contains(PairedReg) &&
|
|
!RegInfo->isReservedReg(MF, PairedReg))
|
|
ExtraCSSpill = PairedReg;
|
|
}
|
|
}
|
|
|
|
if (MF.getFunction().getCallingConv() == CallingConv::Win64 &&
|
|
!Subtarget.isTargetWindows()) {
|
|
// For Windows calling convention on a non-windows OS, where X18 is treated
|
|
// as reserved, back up X18 when entering non-windows code (marked with the
|
|
// Windows calling convention) and restore when returning regardless of
|
|
// whether the individual function uses it - it might call other functions
|
|
// that clobber it.
|
|
SavedRegs.set(AArch64::X18);
|
|
}
|
|
|
|
// Calculates the callee saved stack size.
|
|
unsigned CSStackSize = 0;
|
|
unsigned SVECSStackSize = 0;
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (unsigned Reg : SavedRegs.set_bits()) {
|
|
auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
|
|
if (AArch64::PPRRegClass.contains(Reg) ||
|
|
AArch64::ZPRRegClass.contains(Reg))
|
|
SVECSStackSize += RegSize;
|
|
else
|
|
CSStackSize += RegSize;
|
|
}
|
|
|
|
// Save number of saved regs, so we can easily update CSStackSize later.
|
|
unsigned NumSavedRegs = SavedRegs.count();
|
|
|
|
// The frame record needs to be created by saving the appropriate registers
|
|
uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
|
|
if (hasFP(MF) ||
|
|
windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
|
|
SavedRegs.set(AArch64::FP);
|
|
SavedRegs.set(AArch64::LR);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
|
|
for (unsigned Reg
|
|
: SavedRegs.set_bits()) dbgs()
|
|
<< ' ' << printReg(Reg, RegInfo);
|
|
dbgs() << "\n";);
|
|
|
|
// If any callee-saved registers are used, the frame cannot be eliminated.
|
|
int64_t SVEStackSize =
|
|
alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
|
|
bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
|
|
|
|
// The CSR spill slots have not been allocated yet, so estimateStackSize
|
|
// won't include them.
|
|
unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
|
|
|
|
// Conservatively always assume BigStack when there are SVE spills.
|
|
bool BigStack = SVEStackSize ||
|
|
(EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit;
|
|
if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
|
|
AFI->setHasStackFrame(true);
|
|
|
|
// Estimate if we might need to scavenge a register at some point in order
|
|
// to materialize a stack offset. If so, either spill one additional
|
|
// callee-saved register or reserve a special spill slot to facilitate
|
|
// register scavenging. If we already spilled an extra callee-saved register
|
|
// above to keep the number of spills even, we don't need to do anything else
|
|
// here.
|
|
if (BigStack) {
|
|
if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
|
|
LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
|
|
<< " to get a scratch register.\n");
|
|
SavedRegs.set(UnspilledCSGPR);
|
|
// MachO's compact unwind format relies on all registers being stored in
|
|
// pairs, so if we need to spill one extra for BigStack, then we need to
|
|
// store the pair.
|
|
if (produceCompactUnwindFrame(MF))
|
|
SavedRegs.set(UnspilledCSGPRPaired);
|
|
ExtraCSSpill = UnspilledCSGPR;
|
|
}
|
|
|
|
// If we didn't find an extra callee-saved register to spill, create
|
|
// an emergency spill slot.
|
|
if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
const TargetRegisterClass &RC = AArch64::GPR64RegClass;
|
|
unsigned Size = TRI->getSpillSize(RC);
|
|
Align Alignment = TRI->getSpillAlign(RC);
|
|
int FI = MFI.CreateStackObject(Size, Alignment, false);
|
|
RS->addScavengingFrameIndex(FI);
|
|
LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
|
|
<< " as the emergency spill slot.\n");
|
|
}
|
|
}
|
|
|
|
// Adding the size of additional 64bit GPR saves.
|
|
CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
|
|
uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
|
|
LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
|
|
<< EstimatedStackSize + AlignedCSStackSize
|
|
<< " bytes.\n");
|
|
|
|
assert((!MFI.isCalleeSavedInfoValid() ||
|
|
AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
|
|
"Should not invalidate callee saved info");
|
|
|
|
// Round up to register pair alignment to avoid additional SP adjustment
|
|
// instructions.
|
|
AFI->setCalleeSavedStackSize(AlignedCSStackSize);
|
|
AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
|
|
AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
|
|
}
|
|
|
|
bool AArch64FrameLowering::assignCalleeSavedSpillSlots(
|
|
MachineFunction &MF, const TargetRegisterInfo *TRI,
|
|
std::vector<CalleeSavedInfo> &CSI) const {
|
|
bool NeedsWinCFI = needsWinCFI(MF);
|
|
// To match the canonical windows frame layout, reverse the list of
|
|
// callee saved registers to get them laid out by PrologEpilogInserter
|
|
// in the right order. (PrologEpilogInserter allocates stack objects top
|
|
// down. Windows canonical prologs store higher numbered registers at
|
|
// the top, thus have the CSI array start from the highest registers.)
|
|
if (NeedsWinCFI)
|
|
std::reverse(CSI.begin(), CSI.end());
|
|
// Let the generic code do the rest of the setup.
|
|
return false;
|
|
}
|
|
|
|
bool AArch64FrameLowering::enableStackSlotScavenging(
|
|
const MachineFunction &MF) const {
|
|
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
return AFI->hasCalleeSaveStackFreeSpace();
|
|
}
|
|
|
|
/// returns true if there are any SVE callee saves.
|
|
static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
|
|
int &Min, int &Max) {
|
|
Min = std::numeric_limits<int>::max();
|
|
Max = std::numeric_limits<int>::min();
|
|
|
|
if (!MFI.isCalleeSavedInfoValid())
|
|
return false;
|
|
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
|
|
for (auto &CS : CSI) {
|
|
if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
|
|
AArch64::PPRRegClass.contains(CS.getReg())) {
|
|
assert((Max == std::numeric_limits<int>::min() ||
|
|
Max + 1 == CS.getFrameIdx()) &&
|
|
"SVE CalleeSaves are not consecutive");
|
|
|
|
Min = std::min(Min, CS.getFrameIdx());
|
|
Max = std::max(Max, CS.getFrameIdx());
|
|
}
|
|
}
|
|
return Min != std::numeric_limits<int>::max();
|
|
}
|
|
|
|
// Process all the SVE stack objects and determine offsets for each
|
|
// object. If AssignOffsets is true, the offsets get assigned.
|
|
// Fills in the first and last callee-saved frame indices into
|
|
// Min/MaxCSFrameIndex, respectively.
|
|
// Returns the size of the stack.
|
|
static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
|
|
int &MinCSFrameIndex,
|
|
int &MaxCSFrameIndex,
|
|
bool AssignOffsets) {
|
|
#ifndef NDEBUG
|
|
// First process all fixed stack objects.
|
|
for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
|
|
assert(MFI.getStackID(I) != TargetStackID::ScalableVector &&
|
|
"SVE vectors should never be passed on the stack by value, only by "
|
|
"reference.");
|
|
#endif
|
|
|
|
auto Assign = [&MFI](int FI, int64_t Offset) {
|
|
LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
|
|
MFI.setObjectOffset(FI, Offset);
|
|
};
|
|
|
|
int64_t Offset = 0;
|
|
|
|
// Then process all callee saved slots.
|
|
if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
|
|
// Assign offsets to the callee save slots.
|
|
for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
|
|
Offset += MFI.getObjectSize(I);
|
|
Offset = alignTo(Offset, MFI.getObjectAlign(I));
|
|
if (AssignOffsets)
|
|
Assign(I, -Offset);
|
|
}
|
|
}
|
|
|
|
// Ensure that the Callee-save area is aligned to 16bytes.
|
|
Offset = alignTo(Offset, Align(16U));
|
|
|
|
// Create a buffer of SVE objects to allocate and sort it.
|
|
SmallVector<int, 8> ObjectsToAllocate;
|
|
for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
|
|
unsigned StackID = MFI.getStackID(I);
|
|
if (StackID != TargetStackID::ScalableVector)
|
|
continue;
|
|
if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
|
|
continue;
|
|
if (MFI.isDeadObjectIndex(I))
|
|
continue;
|
|
|
|
ObjectsToAllocate.push_back(I);
|
|
}
|
|
|
|
// Allocate all SVE locals and spills
|
|
for (unsigned FI : ObjectsToAllocate) {
|
|
Align Alignment = MFI.getObjectAlign(FI);
|
|
// FIXME: Given that the length of SVE vectors is not necessarily a power of
|
|
// two, we'd need to align every object dynamically at runtime if the
|
|
// alignment is larger than 16. This is not yet supported.
|
|
if (Alignment > Align(16))
|
|
report_fatal_error(
|
|
"Alignment of scalable vectors > 16 bytes is not yet supported");
|
|
|
|
Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment);
|
|
if (AssignOffsets)
|
|
Assign(FI, -Offset);
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
|
|
MachineFrameInfo &MFI) const {
|
|
int MinCSFrameIndex, MaxCSFrameIndex;
|
|
return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
|
|
}
|
|
|
|
int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
|
|
MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
|
|
return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
|
|
true);
|
|
}
|
|
|
|
void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
|
|
MachineFunction &MF, RegScavenger *RS) const {
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
|
|
"Upwards growing stack unsupported");
|
|
|
|
int MinCSFrameIndex, MaxCSFrameIndex;
|
|
int64_t SVEStackSize =
|
|
assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
|
|
|
|
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
|
|
AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
|
|
|
|
// If this function isn't doing Win64-style C++ EH, we don't need to do
|
|
// anything.
|
|
if (!MF.hasEHFunclets())
|
|
return;
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
|
|
|
|
MachineBasicBlock &MBB = MF.front();
|
|
auto MBBI = MBB.begin();
|
|
while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
|
|
++MBBI;
|
|
|
|
// Create an UnwindHelp object.
|
|
// The UnwindHelp object is allocated at the start of the fixed object area
|
|
int64_t FixedObject =
|
|
getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false);
|
|
int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8,
|
|
/*SPOffset*/ -FixedObject,
|
|
/*IsImmutable=*/false);
|
|
EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
|
|
|
|
// We need to store -2 into the UnwindHelp object at the start of the
|
|
// function.
|
|
DebugLoc DL;
|
|
RS->enterBasicBlockEnd(MBB);
|
|
RS->backward(std::prev(MBBI));
|
|
unsigned DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
|
|
assert(DstReg && "There must be a free register after frame setup");
|
|
BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
|
|
BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
|
|
.addReg(DstReg, getKillRegState(true))
|
|
.addFrameIndex(UnwindHelpFI)
|
|
.addImm(0);
|
|
}
|
|
|
|
namespace {
|
|
struct TagStoreInstr {
|
|
MachineInstr *MI;
|
|
int64_t Offset, Size;
|
|
explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
|
|
: MI(MI), Offset(Offset), Size(Size) {}
|
|
};
|
|
|
|
class TagStoreEdit {
|
|
MachineFunction *MF;
|
|
MachineBasicBlock *MBB;
|
|
MachineRegisterInfo *MRI;
|
|
// Tag store instructions that are being replaced.
|
|
SmallVector<TagStoreInstr, 8> TagStores;
|
|
// Combined memref arguments of the above instructions.
|
|
SmallVector<MachineMemOperand *, 8> CombinedMemRefs;
|
|
|
|
// Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
|
|
// FrameRegOffset + Size) with the address tag of SP.
|
|
Register FrameReg;
|
|
StackOffset FrameRegOffset;
|
|
int64_t Size;
|
|
// If not None, move FrameReg to (FrameReg + FrameRegUpdate) at the end.
|
|
Optional<int64_t> FrameRegUpdate;
|
|
// MIFlags for any FrameReg updating instructions.
|
|
unsigned FrameRegUpdateFlags;
|
|
|
|
// Use zeroing instruction variants.
|
|
bool ZeroData;
|
|
DebugLoc DL;
|
|
|
|
void emitUnrolled(MachineBasicBlock::iterator InsertI);
|
|
void emitLoop(MachineBasicBlock::iterator InsertI);
|
|
|
|
public:
|
|
TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
|
|
: MBB(MBB), ZeroData(ZeroData) {
|
|
MF = MBB->getParent();
|
|
MRI = &MF->getRegInfo();
|
|
}
|
|
// Add an instruction to be replaced. Instructions must be added in the
|
|
// ascending order of Offset, and have to be adjacent.
|
|
void addInstruction(TagStoreInstr I) {
|
|
assert((TagStores.empty() ||
|
|
TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
|
|
"Non-adjacent tag store instructions.");
|
|
TagStores.push_back(I);
|
|
}
|
|
void clear() { TagStores.clear(); }
|
|
// Emit equivalent code at the given location, and erase the current set of
|
|
// instructions. May skip if the replacement is not profitable. May invalidate
|
|
// the input iterator and replace it with a valid one.
|
|
void emitCode(MachineBasicBlock::iterator &InsertI,
|
|
const AArch64FrameLowering *TFI, bool IsLast);
|
|
};
|
|
|
|
void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
|
|
const AArch64InstrInfo *TII =
|
|
MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
|
|
|
|
const int64_t kMinOffset = -256 * 16;
|
|
const int64_t kMaxOffset = 255 * 16;
|
|
|
|
Register BaseReg = FrameReg;
|
|
int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed();
|
|
if (BaseRegOffsetBytes < kMinOffset ||
|
|
BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset) {
|
|
Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
|
|
emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
|
|
StackOffset::getFixed(BaseRegOffsetBytes), TII);
|
|
BaseReg = ScratchReg;
|
|
BaseRegOffsetBytes = 0;
|
|
}
|
|
|
|
MachineInstr *LastI = nullptr;
|
|
while (Size) {
|
|
int64_t InstrSize = (Size > 16) ? 32 : 16;
|
|
unsigned Opcode =
|
|
InstrSize == 16
|
|
? (ZeroData ? AArch64::STZGOffset : AArch64::STGOffset)
|
|
: (ZeroData ? AArch64::STZ2GOffset : AArch64::ST2GOffset);
|
|
MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
|
|
.addReg(AArch64::SP)
|
|
.addReg(BaseReg)
|
|
.addImm(BaseRegOffsetBytes / 16)
|
|
.setMemRefs(CombinedMemRefs);
|
|
// A store to [BaseReg, #0] should go last for an opportunity to fold the
|
|
// final SP adjustment in the epilogue.
|
|
if (BaseRegOffsetBytes == 0)
|
|
LastI = I;
|
|
BaseRegOffsetBytes += InstrSize;
|
|
Size -= InstrSize;
|
|
}
|
|
|
|
if (LastI)
|
|
MBB->splice(InsertI, MBB, LastI);
|
|
}
|
|
|
|
void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
|
|
const AArch64InstrInfo *TII =
|
|
MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
|
|
|
|
Register BaseReg = FrameRegUpdate
|
|
? FrameReg
|
|
: MRI->createVirtualRegister(&AArch64::GPR64RegClass);
|
|
Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
|
|
|
|
emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
|
|
|
|
int64_t LoopSize = Size;
|
|
// If the loop size is not a multiple of 32, split off one 16-byte store at
|
|
// the end to fold BaseReg update into.
|
|
if (FrameRegUpdate && *FrameRegUpdate)
|
|
LoopSize -= LoopSize % 32;
|
|
MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
|
|
TII->get(ZeroData ? AArch64::STZGloop_wback
|
|
: AArch64::STGloop_wback))
|
|
.addDef(SizeReg)
|
|
.addDef(BaseReg)
|
|
.addImm(LoopSize)
|
|
.addReg(BaseReg)
|
|
.setMemRefs(CombinedMemRefs);
|
|
if (FrameRegUpdate)
|
|
LoopI->setFlags(FrameRegUpdateFlags);
|
|
|
|
int64_t ExtraBaseRegUpdate =
|
|
FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0;
|
|
if (LoopSize < Size) {
|
|
assert(FrameRegUpdate);
|
|
assert(Size - LoopSize == 16);
|
|
// Tag 16 more bytes at BaseReg and update BaseReg.
|
|
BuildMI(*MBB, InsertI, DL,
|
|
TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
|
|
.addDef(BaseReg)
|
|
.addReg(BaseReg)
|
|
.addReg(BaseReg)
|
|
.addImm(1 + ExtraBaseRegUpdate / 16)
|
|
.setMemRefs(CombinedMemRefs)
|
|
.setMIFlags(FrameRegUpdateFlags);
|
|
} else if (ExtraBaseRegUpdate) {
|
|
// Update BaseReg.
|
|
BuildMI(
|
|
*MBB, InsertI, DL,
|
|
TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
|
|
.addDef(BaseReg)
|
|
.addReg(BaseReg)
|
|
.addImm(std::abs(ExtraBaseRegUpdate))
|
|
.addImm(0)
|
|
.setMIFlags(FrameRegUpdateFlags);
|
|
}
|
|
}
|
|
|
|
// Check if *II is a register update that can be merged into STGloop that ends
|
|
// at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
|
|
// end of the loop.
|
|
bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
|
|
int64_t Size, int64_t *TotalOffset) {
|
|
MachineInstr &MI = *II;
|
|
if ((MI.getOpcode() == AArch64::ADDXri ||
|
|
MI.getOpcode() == AArch64::SUBXri) &&
|
|
MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
|
|
unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
|
|
int64_t Offset = MI.getOperand(2).getImm() << Shift;
|
|
if (MI.getOpcode() == AArch64::SUBXri)
|
|
Offset = -Offset;
|
|
int64_t AbsPostOffset = std::abs(Offset - Size);
|
|
const int64_t kMaxOffset =
|
|
0xFFF; // Max encoding for unshifted ADDXri / SUBXri
|
|
if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) {
|
|
*TotalOffset = Offset;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
|
|
SmallVectorImpl<MachineMemOperand *> &MemRefs) {
|
|
MemRefs.clear();
|
|
for (auto &TS : TSE) {
|
|
MachineInstr *MI = TS.MI;
|
|
// An instruction without memory operands may access anything. Be
|
|
// conservative and return an empty list.
|
|
if (MI->memoperands_empty()) {
|
|
MemRefs.clear();
|
|
return;
|
|
}
|
|
MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
|
|
}
|
|
}
|
|
|
|
void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
|
|
const AArch64FrameLowering *TFI, bool IsLast) {
|
|
if (TagStores.empty())
|
|
return;
|
|
TagStoreInstr &FirstTagStore = TagStores[0];
|
|
TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
|
|
Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
|
|
DL = TagStores[0].MI->getDebugLoc();
|
|
|
|
Register Reg;
|
|
FrameRegOffset = TFI->resolveFrameOffsetReference(
|
|
*MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg,
|
|
/*PreferFP=*/false, /*ForSimm=*/true);
|
|
FrameReg = Reg;
|
|
FrameRegUpdate = None;
|
|
|
|
mergeMemRefs(TagStores, CombinedMemRefs);
|
|
|
|
LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n";
|
|
for (const auto &Instr
|
|
: TagStores) { dbgs() << " " << *Instr.MI; });
|
|
|
|
// Size threshold where a loop becomes shorter than a linear sequence of
|
|
// tagging instructions.
|
|
const int kSetTagLoopThreshold = 176;
|
|
if (Size < kSetTagLoopThreshold) {
|
|
if (TagStores.size() < 2)
|
|
return;
|
|
emitUnrolled(InsertI);
|
|
} else {
|
|
MachineInstr *UpdateInstr = nullptr;
|
|
int64_t TotalOffset;
|
|
if (IsLast) {
|
|
// See if we can merge base register update into the STGloop.
|
|
// This is done in AArch64LoadStoreOptimizer for "normal" stores,
|
|
// but STGloop is way too unusual for that, and also it only
|
|
// realistically happens in function epilogue. Also, STGloop is expanded
|
|
// before that pass.
|
|
if (InsertI != MBB->end() &&
|
|
canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size,
|
|
&TotalOffset)) {
|
|
UpdateInstr = &*InsertI++;
|
|
LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n "
|
|
<< *UpdateInstr);
|
|
}
|
|
}
|
|
|
|
if (!UpdateInstr && TagStores.size() < 2)
|
|
return;
|
|
|
|
if (UpdateInstr) {
|
|
FrameRegUpdate = TotalOffset;
|
|
FrameRegUpdateFlags = UpdateInstr->getFlags();
|
|
}
|
|
emitLoop(InsertI);
|
|
if (UpdateInstr)
|
|
UpdateInstr->eraseFromParent();
|
|
}
|
|
|
|
for (auto &TS : TagStores)
|
|
TS.MI->eraseFromParent();
|
|
}
|
|
|
|
bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
|
|
int64_t &Size, bool &ZeroData) {
|
|
MachineFunction &MF = *MI.getParent()->getParent();
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
unsigned Opcode = MI.getOpcode();
|
|
ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGOffset ||
|
|
Opcode == AArch64::STZ2GOffset);
|
|
|
|
if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
|
|
if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
|
|
return false;
|
|
if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
|
|
return false;
|
|
Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
|
|
Size = MI.getOperand(2).getImm();
|
|
return true;
|
|
}
|
|
|
|
if (Opcode == AArch64::STGOffset || Opcode == AArch64::STZGOffset)
|
|
Size = 16;
|
|
else if (Opcode == AArch64::ST2GOffset || Opcode == AArch64::STZ2GOffset)
|
|
Size = 32;
|
|
else
|
|
return false;
|
|
|
|
if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
|
|
return false;
|
|
|
|
Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
|
|
16 * MI.getOperand(2).getImm();
|
|
return true;
|
|
}
|
|
|
|
// Detect a run of memory tagging instructions for adjacent stack frame slots,
|
|
// and replace them with a shorter instruction sequence:
|
|
// * replace STG + STG with ST2G
|
|
// * replace STGloop + STGloop with STGloop
|
|
// This code needs to run when stack slot offsets are already known, but before
|
|
// FrameIndex operands in STG instructions are eliminated.
|
|
MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II,
|
|
const AArch64FrameLowering *TFI,
|
|
RegScavenger *RS) {
|
|
bool FirstZeroData;
|
|
int64_t Size, Offset;
|
|
MachineInstr &MI = *II;
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
MachineBasicBlock::iterator NextI = ++II;
|
|
if (&MI == &MBB->instr_back())
|
|
return II;
|
|
if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
|
|
return II;
|
|
|
|
SmallVector<TagStoreInstr, 4> Instrs;
|
|
Instrs.emplace_back(&MI, Offset, Size);
|
|
|
|
constexpr int kScanLimit = 10;
|
|
int Count = 0;
|
|
for (MachineBasicBlock::iterator E = MBB->end();
|
|
NextI != E && Count < kScanLimit; ++NextI) {
|
|
MachineInstr &MI = *NextI;
|
|
bool ZeroData;
|
|
int64_t Size, Offset;
|
|
// Collect instructions that update memory tags with a FrameIndex operand
|
|
// and (when applicable) constant size, and whose output registers are dead
|
|
// (the latter is almost always the case in practice). Since these
|
|
// instructions effectively have no inputs or outputs, we are free to skip
|
|
// any non-aliasing instructions in between without tracking used registers.
|
|
if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
|
|
if (ZeroData != FirstZeroData)
|
|
break;
|
|
Instrs.emplace_back(&MI, Offset, Size);
|
|
continue;
|
|
}
|
|
|
|
// Only count non-transient, non-tagging instructions toward the scan
|
|
// limit.
|
|
if (!MI.isTransient())
|
|
++Count;
|
|
|
|
// Just in case, stop before the epilogue code starts.
|
|
if (MI.getFlag(MachineInstr::FrameSetup) ||
|
|
MI.getFlag(MachineInstr::FrameDestroy))
|
|
break;
|
|
|
|
// Reject anything that may alias the collected instructions.
|
|
if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects())
|
|
break;
|
|
}
|
|
|
|
// New code will be inserted after the last tagging instruction we've found.
|
|
MachineBasicBlock::iterator InsertI = Instrs.back().MI;
|
|
InsertI++;
|
|
|
|
llvm::stable_sort(Instrs,
|
|
[](const TagStoreInstr &Left, const TagStoreInstr &Right) {
|
|
return Left.Offset < Right.Offset;
|
|
});
|
|
|
|
// Make sure that we don't have any overlapping stores.
|
|
int64_t CurOffset = Instrs[0].Offset;
|
|
for (auto &Instr : Instrs) {
|
|
if (CurOffset > Instr.Offset)
|
|
return NextI;
|
|
CurOffset = Instr.Offset + Instr.Size;
|
|
}
|
|
|
|
// Find contiguous runs of tagged memory and emit shorter instruction
|
|
// sequencies for them when possible.
|
|
TagStoreEdit TSE(MBB, FirstZeroData);
|
|
Optional<int64_t> EndOffset;
|
|
for (auto &Instr : Instrs) {
|
|
if (EndOffset && *EndOffset != Instr.Offset) {
|
|
// Found a gap.
|
|
TSE.emitCode(InsertI, TFI, /*IsLast = */ false);
|
|
TSE.clear();
|
|
}
|
|
|
|
TSE.addInstruction(Instr);
|
|
EndOffset = Instr.Offset + Instr.Size;
|
|
}
|
|
|
|
TSE.emitCode(InsertI, TFI, /*IsLast = */ true);
|
|
|
|
return InsertI;
|
|
}
|
|
} // namespace
|
|
|
|
void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
|
|
MachineFunction &MF, RegScavenger *RS = nullptr) const {
|
|
if (StackTaggingMergeSetTag)
|
|
for (auto &BB : MF)
|
|
for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();)
|
|
II = tryMergeAdjacentSTG(II, this, RS);
|
|
}
|
|
|
|
/// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
|
|
/// before the update. This is easily retrieved as it is exactly the offset
|
|
/// that is set in processFunctionBeforeFrameFinalized.
|
|
StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP(
|
|
const MachineFunction &MF, int FI, Register &FrameReg,
|
|
bool IgnoreSPUpdates) const {
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
if (IgnoreSPUpdates) {
|
|
LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
|
|
<< MFI.getObjectOffset(FI) << "\n");
|
|
FrameReg = AArch64::SP;
|
|
return StackOffset::getFixed(MFI.getObjectOffset(FI));
|
|
}
|
|
|
|
return getFrameIndexReference(MF, FI, FrameReg);
|
|
}
|
|
|
|
/// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
|
|
/// the parent's frame pointer
|
|
unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
|
|
const MachineFunction &MF) const {
|
|
return 0;
|
|
}
|
|
|
|
/// Funclets only need to account for space for the callee saved registers,
|
|
/// as the locals are accounted for in the parent's stack frame.
|
|
unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
|
|
const MachineFunction &MF) const {
|
|
// This is the size of the pushed CSRs.
|
|
unsigned CSSize =
|
|
MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
|
|
// This is the amount of stack a funclet needs to allocate.
|
|
return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
|
|
getStackAlign());
|
|
}
|
|
|
|
namespace {
|
|
struct FrameObject {
|
|
bool IsValid = false;
|
|
// Index of the object in MFI.
|
|
int ObjectIndex = 0;
|
|
// Group ID this object belongs to.
|
|
int GroupIndex = -1;
|
|
// This object should be placed first (closest to SP).
|
|
bool ObjectFirst = false;
|
|
// This object's group (which always contains the object with
|
|
// ObjectFirst==true) should be placed first.
|
|
bool GroupFirst = false;
|
|
};
|
|
|
|
class GroupBuilder {
|
|
SmallVector<int, 8> CurrentMembers;
|
|
int NextGroupIndex = 0;
|
|
std::vector<FrameObject> &Objects;
|
|
|
|
public:
|
|
GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {}
|
|
void AddMember(int Index) { CurrentMembers.push_back(Index); }
|
|
void EndCurrentGroup() {
|
|
if (CurrentMembers.size() > 1) {
|
|
// Create a new group with the current member list. This might remove them
|
|
// from their pre-existing groups. That's OK, dealing with overlapping
|
|
// groups is too hard and unlikely to make a difference.
|
|
LLVM_DEBUG(dbgs() << "group:");
|
|
for (int Index : CurrentMembers) {
|
|
Objects[Index].GroupIndex = NextGroupIndex;
|
|
LLVM_DEBUG(dbgs() << " " << Index);
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
NextGroupIndex++;
|
|
}
|
|
CurrentMembers.clear();
|
|
}
|
|
};
|
|
|
|
bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) {
|
|
// Objects at a lower index are closer to FP; objects at a higher index are
|
|
// closer to SP.
|
|
//
|
|
// For consistency in our comparison, all invalid objects are placed
|
|
// at the end. This also allows us to stop walking when we hit the
|
|
// first invalid item after it's all sorted.
|
|
//
|
|
// The "first" object goes first (closest to SP), followed by the members of
|
|
// the "first" group.
|
|
//
|
|
// The rest are sorted by the group index to keep the groups together.
|
|
// Higher numbered groups are more likely to be around longer (i.e. untagged
|
|
// in the function epilogue and not at some earlier point). Place them closer
|
|
// to SP.
|
|
//
|
|
// If all else equal, sort by the object index to keep the objects in the
|
|
// original order.
|
|
return std::make_tuple(!A.IsValid, A.ObjectFirst, A.GroupFirst, A.GroupIndex,
|
|
A.ObjectIndex) <
|
|
std::make_tuple(!B.IsValid, B.ObjectFirst, B.GroupFirst, B.GroupIndex,
|
|
B.ObjectIndex);
|
|
}
|
|
} // namespace
|
|
|
|
void AArch64FrameLowering::orderFrameObjects(
|
|
const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
|
|
if (!OrderFrameObjects || ObjectsToAllocate.empty())
|
|
return;
|
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd());
|
|
for (auto &Obj : ObjectsToAllocate) {
|
|
FrameObjects[Obj].IsValid = true;
|
|
FrameObjects[Obj].ObjectIndex = Obj;
|
|
}
|
|
|
|
// Identify stack slots that are tagged at the same time.
|
|
GroupBuilder GB(FrameObjects);
|
|
for (auto &MBB : MF) {
|
|
for (auto &MI : MBB) {
|
|
if (MI.isDebugInstr())
|
|
continue;
|
|
int OpIndex;
|
|
switch (MI.getOpcode()) {
|
|
case AArch64::STGloop:
|
|
case AArch64::STZGloop:
|
|
OpIndex = 3;
|
|
break;
|
|
case AArch64::STGOffset:
|
|
case AArch64::STZGOffset:
|
|
case AArch64::ST2GOffset:
|
|
case AArch64::STZ2GOffset:
|
|
OpIndex = 1;
|
|
break;
|
|
default:
|
|
OpIndex = -1;
|
|
}
|
|
|
|
int TaggedFI = -1;
|
|
if (OpIndex >= 0) {
|
|
const MachineOperand &MO = MI.getOperand(OpIndex);
|
|
if (MO.isFI()) {
|
|
int FI = MO.getIndex();
|
|
if (FI >= 0 && FI < MFI.getObjectIndexEnd() &&
|
|
FrameObjects[FI].IsValid)
|
|
TaggedFI = FI;
|
|
}
|
|
}
|
|
|
|
// If this is a stack tagging instruction for a slot that is not part of a
|
|
// group yet, either start a new group or add it to the current one.
|
|
if (TaggedFI >= 0)
|
|
GB.AddMember(TaggedFI);
|
|
else
|
|
GB.EndCurrentGroup();
|
|
}
|
|
// Groups should never span multiple basic blocks.
|
|
GB.EndCurrentGroup();
|
|
}
|
|
|
|
// If the function's tagged base pointer is pinned to a stack slot, we want to
|
|
// put that slot first when possible. This will likely place it at SP + 0,
|
|
// and save one instruction when generating the base pointer because IRG does
|
|
// not allow an immediate offset.
|
|
const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
|
|
Optional<int> TBPI = AFI.getTaggedBasePointerIndex();
|
|
if (TBPI) {
|
|
FrameObjects[*TBPI].ObjectFirst = true;
|
|
FrameObjects[*TBPI].GroupFirst = true;
|
|
int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex;
|
|
if (FirstGroupIndex >= 0)
|
|
for (FrameObject &Object : FrameObjects)
|
|
if (Object.GroupIndex == FirstGroupIndex)
|
|
Object.GroupFirst = true;
|
|
}
|
|
|
|
llvm::stable_sort(FrameObjects, FrameObjectCompare);
|
|
|
|
int i = 0;
|
|
for (auto &Obj : FrameObjects) {
|
|
// All invalid items are sorted at the end, so it's safe to stop.
|
|
if (!Obj.IsValid)
|
|
break;
|
|
ObjectsToAllocate[i++] = Obj.ObjectIndex;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Final frame order:\n"; for (auto &Obj
|
|
: FrameObjects) {
|
|
if (!Obj.IsValid)
|
|
break;
|
|
dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex;
|
|
if (Obj.ObjectFirst)
|
|
dbgs() << ", first";
|
|
if (Obj.GroupFirst)
|
|
dbgs() << ", group-first";
|
|
dbgs() << "\n";
|
|
});
|
|
}
|