llvm-for-llvmta/lib/MC/MCInstPrinter.cpp

233 lines
7.9 KiB
C++

//===- MCInstPrinter.cpp - Convert an MCInst to target assembly syntax ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <cinttypes>
#include <cstdint>
using namespace llvm;
void llvm::dumpBytes(ArrayRef<uint8_t> bytes, raw_ostream &OS) {
static const char hex_rep[] = "0123456789abcdef";
bool First = true;
for (char i: bytes) {
if (First)
First = false;
else
OS << ' ';
OS << hex_rep[(i & 0xF0) >> 4];
OS << hex_rep[i & 0xF];
}
}
MCInstPrinter::~MCInstPrinter() = default;
/// getOpcodeName - Return the name of the specified opcode enum (e.g.
/// "MOV32ri") or empty if we can't resolve it.
StringRef MCInstPrinter::getOpcodeName(unsigned Opcode) const {
return MII.getName(Opcode);
}
void MCInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
llvm_unreachable("Target should implement this");
}
void MCInstPrinter::printAnnotation(raw_ostream &OS, StringRef Annot) {
if (!Annot.empty()) {
if (CommentStream) {
(*CommentStream) << Annot;
// By definition (see MCInstPrinter.h), CommentStream must end with
// a newline after each comment.
if (Annot.back() != '\n')
(*CommentStream) << '\n';
} else
OS << " " << MAI.getCommentString() << " " << Annot;
}
}
static bool matchAliasCondition(const MCInst &MI, const MCSubtargetInfo *STI,
const MCRegisterInfo &MRI, unsigned &OpIdx,
const AliasMatchingData &M,
const AliasPatternCond &C,
bool &OrPredicateResult) {
// Feature tests are special, they don't consume operands.
if (C.Kind == AliasPatternCond::K_Feature)
return STI->getFeatureBits().test(C.Value);
if (C.Kind == AliasPatternCond::K_NegFeature)
return !STI->getFeatureBits().test(C.Value);
// For feature tests where just one feature is required in a list, set the
// predicate result bit to whether the expression will return true, and only
// return the real result at the end of list marker.
if (C.Kind == AliasPatternCond::K_OrFeature) {
OrPredicateResult |= STI->getFeatureBits().test(C.Value);
return true;
}
if (C.Kind == AliasPatternCond::K_OrNegFeature) {
OrPredicateResult |= !(STI->getFeatureBits().test(C.Value));
return true;
}
if (C.Kind == AliasPatternCond::K_EndOrFeatures) {
bool Res = OrPredicateResult;
OrPredicateResult = false;
return Res;
}
// Get and consume an operand.
const MCOperand &Opnd = MI.getOperand(OpIdx);
++OpIdx;
// Check the specific condition for the operand.
switch (C.Kind) {
case AliasPatternCond::K_Imm:
// Operand must be a specific immediate.
return Opnd.isImm() && Opnd.getImm() == int32_t(C.Value);
case AliasPatternCond::K_Reg:
// Operand must be a specific register.
return Opnd.isReg() && Opnd.getReg() == C.Value;
case AliasPatternCond::K_TiedReg:
// Operand must match the register of another operand.
return Opnd.isReg() && Opnd.getReg() == MI.getOperand(C.Value).getReg();
case AliasPatternCond::K_RegClass:
// Operand must be a register in this class. Value is a register class id.
return Opnd.isReg() && MRI.getRegClass(C.Value).contains(Opnd.getReg());
case AliasPatternCond::K_Custom:
// Operand must match some custom criteria.
return M.ValidateMCOperand(Opnd, *STI, C.Value);
case AliasPatternCond::K_Ignore:
// Operand can be anything.
return true;
case AliasPatternCond::K_Feature:
case AliasPatternCond::K_NegFeature:
case AliasPatternCond::K_OrFeature:
case AliasPatternCond::K_OrNegFeature:
case AliasPatternCond::K_EndOrFeatures:
llvm_unreachable("handled earlier");
}
llvm_unreachable("invalid kind");
}
const char *MCInstPrinter::matchAliasPatterns(const MCInst *MI,
const MCSubtargetInfo *STI,
const AliasMatchingData &M) {
// Binary search by opcode. Return false if there are no aliases for this
// opcode.
auto It = lower_bound(M.OpToPatterns, MI->getOpcode(),
[](const PatternsForOpcode &L, unsigned Opcode) {
return L.Opcode < Opcode;
});
if (It == M.OpToPatterns.end() || It->Opcode != MI->getOpcode())
return nullptr;
// Try all patterns for this opcode.
uint32_t AsmStrOffset = ~0U;
ArrayRef<AliasPattern> Patterns =
M.Patterns.slice(It->PatternStart, It->NumPatterns);
for (const AliasPattern &P : Patterns) {
// Check operand count first.
if (MI->getNumOperands() != P.NumOperands)
return nullptr;
// Test all conditions for this pattern.
ArrayRef<AliasPatternCond> Conds =
M.PatternConds.slice(P.AliasCondStart, P.NumConds);
unsigned OpIdx = 0;
bool OrPredicateResult = false;
if (llvm::all_of(Conds, [&](const AliasPatternCond &C) {
return matchAliasCondition(*MI, STI, MRI, OpIdx, M, C,
OrPredicateResult);
})) {
// If all conditions matched, use this asm string.
AsmStrOffset = P.AsmStrOffset;
break;
}
}
// If no alias matched, don't print an alias.
if (AsmStrOffset == ~0U)
return nullptr;
// Go to offset AsmStrOffset and use the null terminated string there. The
// offset should point to the beginning of an alias string, so it should
// either be zero or be preceded by a null byte.
assert(AsmStrOffset < M.AsmStrings.size() &&
(AsmStrOffset == 0 || M.AsmStrings[AsmStrOffset - 1] == '\0') &&
"bad asm string offset");
return M.AsmStrings.data() + AsmStrOffset;
}
/// Utility functions to make adding mark ups simpler.
StringRef MCInstPrinter::markup(StringRef s) const {
if (getUseMarkup())
return s;
else
return "";
}
// For asm-style hex (e.g. 0ffh) the first digit always has to be a number.
static bool needsLeadingZero(uint64_t Value)
{
while (Value)
{
uint64_t digit = (Value >> 60) & 0xf;
if (digit != 0)
return (digit >= 0xa);
Value <<= 4;
}
return false;
}
format_object<int64_t> MCInstPrinter::formatDec(int64_t Value) const {
return format("%" PRId64, Value);
}
format_object<int64_t> MCInstPrinter::formatHex(int64_t Value) const {
switch (PrintHexStyle) {
case HexStyle::C:
if (Value < 0) {
if (Value == std::numeric_limits<int64_t>::min())
return format<int64_t>("-0x8000000000000000", Value);
return format("-0x%" PRIx64, -Value);
}
return format("0x%" PRIx64, Value);
case HexStyle::Asm:
if (Value < 0) {
if (Value == std::numeric_limits<int64_t>::min())
return format<int64_t>("-8000000000000000h", Value);
if (needsLeadingZero(-(uint64_t)(Value)))
return format("-0%" PRIx64 "h", -Value);
return format("-%" PRIx64 "h", -Value);
}
if (needsLeadingZero((uint64_t)(Value)))
return format("0%" PRIx64 "h", Value);
return format("%" PRIx64 "h", Value);
}
llvm_unreachable("unsupported print style");
}
format_object<uint64_t> MCInstPrinter::formatHex(uint64_t Value) const {
switch(PrintHexStyle) {
case HexStyle::C:
return format("0x%" PRIx64, Value);
case HexStyle::Asm:
if (needsLeadingZero(Value))
return format("0%" PRIx64 "h", Value);
else
return format("%" PRIx64 "h", Value);
}
llvm_unreachable("unsupported print style");
}