848 lines
34 KiB
C++
848 lines
34 KiB
C++
//===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains support for writing exception info into assembly files.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "EHStreamer.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/BinaryFormat/Dwarf.h"
|
|
#include "llvm/CodeGen/AsmPrinter.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/MCTargetOptions.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
|
|
|
|
EHStreamer::~EHStreamer() = default;
|
|
|
|
/// How many leading type ids two landing pads have in common.
|
|
unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
|
|
const LandingPadInfo *R) {
|
|
const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
|
|
return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end())
|
|
.first -
|
|
LIds.begin();
|
|
}
|
|
|
|
/// Compute the actions table and gather the first action index for each landing
|
|
/// pad site.
|
|
void EHStreamer::computeActionsTable(
|
|
const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
|
|
SmallVectorImpl<ActionEntry> &Actions,
|
|
SmallVectorImpl<unsigned> &FirstActions) {
|
|
// The action table follows the call-site table in the LSDA. The individual
|
|
// records are of two types:
|
|
//
|
|
// * Catch clause
|
|
// * Exception specification
|
|
//
|
|
// The two record kinds have the same format, with only small differences.
|
|
// They are distinguished by the "switch value" field: Catch clauses
|
|
// (TypeInfos) have strictly positive switch values, and exception
|
|
// specifications (FilterIds) have strictly negative switch values. Value 0
|
|
// indicates a catch-all clause.
|
|
//
|
|
// Negative type IDs index into FilterIds. Positive type IDs index into
|
|
// TypeInfos. The value written for a positive type ID is just the type ID
|
|
// itself. For a negative type ID, however, the value written is the
|
|
// (negative) byte offset of the corresponding FilterIds entry. The byte
|
|
// offset is usually equal to the type ID (because the FilterIds entries are
|
|
// written using a variable width encoding, which outputs one byte per entry
|
|
// as long as the value written is not too large) but can differ. This kind
|
|
// of complication does not occur for positive type IDs because type infos are
|
|
// output using a fixed width encoding. FilterOffsets[i] holds the byte
|
|
// offset corresponding to FilterIds[i].
|
|
|
|
const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
|
|
SmallVector<int, 16> FilterOffsets;
|
|
FilterOffsets.reserve(FilterIds.size());
|
|
int Offset = -1;
|
|
|
|
for (std::vector<unsigned>::const_iterator
|
|
I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
|
|
FilterOffsets.push_back(Offset);
|
|
Offset -= getULEB128Size(*I);
|
|
}
|
|
|
|
FirstActions.reserve(LandingPads.size());
|
|
|
|
int FirstAction = 0;
|
|
unsigned SizeActions = 0; // Total size of all action entries for a function
|
|
const LandingPadInfo *PrevLPI = nullptr;
|
|
|
|
for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
|
|
I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
|
|
const LandingPadInfo *LPI = *I;
|
|
const std::vector<int> &TypeIds = LPI->TypeIds;
|
|
unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
|
|
unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
|
|
|
|
if (NumShared < TypeIds.size()) {
|
|
// Size of one action entry (typeid + next action)
|
|
unsigned SizeActionEntry = 0;
|
|
unsigned PrevAction = (unsigned)-1;
|
|
|
|
if (NumShared) {
|
|
unsigned SizePrevIds = PrevLPI->TypeIds.size();
|
|
assert(Actions.size());
|
|
PrevAction = Actions.size() - 1;
|
|
SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
|
|
getSLEB128Size(Actions[PrevAction].ValueForTypeID);
|
|
|
|
for (unsigned j = NumShared; j != SizePrevIds; ++j) {
|
|
assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
|
|
SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
|
|
SizeActionEntry += -Actions[PrevAction].NextAction;
|
|
PrevAction = Actions[PrevAction].Previous;
|
|
}
|
|
}
|
|
|
|
// Compute the actions.
|
|
for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
|
|
int TypeID = TypeIds[J];
|
|
assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
|
|
int ValueForTypeID =
|
|
isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
|
|
unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
|
|
|
|
int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
|
|
SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
|
|
SizeSiteActions += SizeActionEntry;
|
|
|
|
ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
|
|
Actions.push_back(Action);
|
|
PrevAction = Actions.size() - 1;
|
|
}
|
|
|
|
// Record the first action of the landing pad site.
|
|
FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
|
|
} // else identical - re-use previous FirstAction
|
|
|
|
// Information used when creating the call-site table. The action record
|
|
// field of the call site record is the offset of the first associated
|
|
// action record, relative to the start of the actions table. This value is
|
|
// biased by 1 (1 indicating the start of the actions table), and 0
|
|
// indicates that there are no actions.
|
|
FirstActions.push_back(FirstAction);
|
|
|
|
// Compute this sites contribution to size.
|
|
SizeActions += SizeSiteActions;
|
|
|
|
PrevLPI = LPI;
|
|
}
|
|
}
|
|
|
|
/// Return `true' if this is a call to a function marked `nounwind'. Return
|
|
/// `false' otherwise.
|
|
bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
|
|
assert(MI->isCall() && "This should be a call instruction!");
|
|
|
|
bool MarkedNoUnwind = false;
|
|
bool SawFunc = false;
|
|
|
|
for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
|
|
const MachineOperand &MO = MI->getOperand(I);
|
|
|
|
if (!MO.isGlobal()) continue;
|
|
|
|
const Function *F = dyn_cast<Function>(MO.getGlobal());
|
|
if (!F) continue;
|
|
|
|
if (SawFunc) {
|
|
// Be conservative. If we have more than one function operand for this
|
|
// call, then we can't make the assumption that it's the callee and
|
|
// not a parameter to the call.
|
|
//
|
|
// FIXME: Determine if there's a way to say that `F' is the callee or
|
|
// parameter.
|
|
MarkedNoUnwind = false;
|
|
break;
|
|
}
|
|
|
|
MarkedNoUnwind = F->doesNotThrow();
|
|
SawFunc = true;
|
|
}
|
|
|
|
return MarkedNoUnwind;
|
|
}
|
|
|
|
void EHStreamer::computePadMap(
|
|
const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
|
|
RangeMapType &PadMap) {
|
|
// Invokes and nounwind calls have entries in PadMap (due to being bracketed
|
|
// by try-range labels when lowered). Ordinary calls do not, so appropriate
|
|
// try-ranges for them need be deduced so we can put them in the LSDA.
|
|
for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
|
|
const LandingPadInfo *LandingPad = LandingPads[i];
|
|
for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
|
|
MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
|
|
assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
|
|
PadRange P = { i, j };
|
|
PadMap[BeginLabel] = P;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Compute the call-site table. The entry for an invoke has a try-range
|
|
/// containing the call, a non-zero landing pad, and an appropriate action. The
|
|
/// entry for an ordinary call has a try-range containing the call and zero for
|
|
/// the landing pad and the action. Calls marked 'nounwind' have no entry and
|
|
/// must not be contained in the try-range of any entry - they form gaps in the
|
|
/// table. Entries must be ordered by try-range address.
|
|
///
|
|
/// Call-sites are split into one or more call-site ranges associated with
|
|
/// different sections of the function.
|
|
///
|
|
/// - Without -basic-block-sections, all call-sites are grouped into one
|
|
/// call-site-range corresponding to the function section.
|
|
///
|
|
/// - With -basic-block-sections, one call-site range is created for each
|
|
/// section, with its FragmentBeginLabel and FragmentEndLabel respectively
|
|
// set to the beginning and ending of the corresponding section and its
|
|
// ExceptionLabel set to the exception symbol dedicated for this section.
|
|
// Later, one LSDA header will be emitted for each call-site range with its
|
|
// call-sites following. The action table and type info table will be
|
|
// shared across all ranges.
|
|
void EHStreamer::computeCallSiteTable(
|
|
SmallVectorImpl<CallSiteEntry> &CallSites,
|
|
SmallVectorImpl<CallSiteRange> &CallSiteRanges,
|
|
const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
|
|
const SmallVectorImpl<unsigned> &FirstActions) {
|
|
RangeMapType PadMap;
|
|
computePadMap(LandingPads, PadMap);
|
|
|
|
// The end label of the previous invoke or nounwind try-range.
|
|
MCSymbol *LastLabel = Asm->getFunctionBegin();
|
|
|
|
// Whether there is a potentially throwing instruction (currently this means
|
|
// an ordinary call) between the end of the previous try-range and now.
|
|
bool SawPotentiallyThrowing = false;
|
|
|
|
// Whether the last CallSite entry was for an invoke.
|
|
bool PreviousIsInvoke = false;
|
|
|
|
bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
|
|
|
|
// Visit all instructions in order of address.
|
|
for (const auto &MBB : *Asm->MF) {
|
|
if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) {
|
|
// We start a call-site range upon function entry and at the beginning of
|
|
// every basic block section.
|
|
CallSiteRanges.push_back(
|
|
{Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel,
|
|
Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel,
|
|
Asm->getMBBExceptionSym(MBB), CallSites.size()});
|
|
PreviousIsInvoke = false;
|
|
SawPotentiallyThrowing = false;
|
|
LastLabel = nullptr;
|
|
}
|
|
|
|
if (MBB.isEHPad())
|
|
CallSiteRanges.back().IsLPRange = true;
|
|
|
|
for (const auto &MI : MBB) {
|
|
if (!MI.isEHLabel()) {
|
|
if (MI.isCall())
|
|
SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
|
|
continue;
|
|
}
|
|
|
|
// End of the previous try-range?
|
|
MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
|
|
if (BeginLabel == LastLabel)
|
|
SawPotentiallyThrowing = false;
|
|
|
|
// Beginning of a new try-range?
|
|
RangeMapType::const_iterator L = PadMap.find(BeginLabel);
|
|
if (L == PadMap.end())
|
|
// Nope, it was just some random label.
|
|
continue;
|
|
|
|
const PadRange &P = L->second;
|
|
const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
|
|
assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
|
|
"Inconsistent landing pad map!");
|
|
|
|
// For Dwarf and AIX exception handling (SjLj handling doesn't use this).
|
|
// If some instruction between the previous try-range and this one may
|
|
// throw, create a call-site entry with no landing pad for the region
|
|
// between the try-ranges.
|
|
if (SawPotentiallyThrowing &&
|
|
(Asm->MAI->usesCFIForEH() ||
|
|
Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) {
|
|
CallSites.push_back({LastLabel, BeginLabel, nullptr, 0});
|
|
PreviousIsInvoke = false;
|
|
}
|
|
|
|
LastLabel = LandingPad->EndLabels[P.RangeIndex];
|
|
assert(BeginLabel && LastLabel && "Invalid landing pad!");
|
|
|
|
if (!LandingPad->LandingPadLabel) {
|
|
// Create a gap.
|
|
PreviousIsInvoke = false;
|
|
} else {
|
|
// This try-range is for an invoke.
|
|
CallSiteEntry Site = {
|
|
BeginLabel,
|
|
LastLabel,
|
|
LandingPad,
|
|
FirstActions[P.PadIndex]
|
|
};
|
|
|
|
// Try to merge with the previous call-site. SJLJ doesn't do this
|
|
if (PreviousIsInvoke && !IsSJLJ) {
|
|
CallSiteEntry &Prev = CallSites.back();
|
|
if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
|
|
// Extend the range of the previous entry.
|
|
Prev.EndLabel = Site.EndLabel;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, create a new call-site.
|
|
if (!IsSJLJ)
|
|
CallSites.push_back(Site);
|
|
else {
|
|
// SjLj EH must maintain the call sites in the order assigned
|
|
// to them by the SjLjPrepare pass.
|
|
unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
|
|
if (CallSites.size() < SiteNo)
|
|
CallSites.resize(SiteNo);
|
|
CallSites[SiteNo - 1] = Site;
|
|
}
|
|
PreviousIsInvoke = true;
|
|
}
|
|
}
|
|
|
|
// We end the call-site range upon function exit and at the end of every
|
|
// basic block section.
|
|
if (&MBB == &Asm->MF->back() || MBB.isEndSection()) {
|
|
// If some instruction between the previous try-range and the end of the
|
|
// function may throw, create a call-site entry with no landing pad for
|
|
// the region following the try-range.
|
|
if (SawPotentiallyThrowing && !IsSJLJ) {
|
|
CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel,
|
|
nullptr, 0};
|
|
CallSites.push_back(Site);
|
|
SawPotentiallyThrowing = false;
|
|
}
|
|
CallSiteRanges.back().CallSiteEndIdx = CallSites.size();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Emit landing pads and actions.
|
|
///
|
|
/// The general organization of the table is complex, but the basic concepts are
|
|
/// easy. First there is a header which describes the location and organization
|
|
/// of the three components that follow.
|
|
///
|
|
/// 1. The landing pad site information describes the range of code covered by
|
|
/// the try. In our case it's an accumulation of the ranges covered by the
|
|
/// invokes in the try. There is also a reference to the landing pad that
|
|
/// handles the exception once processed. Finally an index into the actions
|
|
/// table.
|
|
/// 2. The action table, in our case, is composed of pairs of type IDs and next
|
|
/// action offset. Starting with the action index from the landing pad
|
|
/// site, each type ID is checked for a match to the current exception. If
|
|
/// it matches then the exception and type id are passed on to the landing
|
|
/// pad. Otherwise the next action is looked up. This chain is terminated
|
|
/// with a next action of zero. If no type id is found then the frame is
|
|
/// unwound and handling continues.
|
|
/// 3. Type ID table contains references to all the C++ typeinfo for all
|
|
/// catches in the function. This tables is reverse indexed base 1.
|
|
///
|
|
/// Returns the starting symbol of an exception table.
|
|
MCSymbol *EHStreamer::emitExceptionTable() {
|
|
const MachineFunction *MF = Asm->MF;
|
|
const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
|
|
const std::vector<unsigned> &FilterIds = MF->getFilterIds();
|
|
const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
|
|
|
|
// Sort the landing pads in order of their type ids. This is used to fold
|
|
// duplicate actions.
|
|
SmallVector<const LandingPadInfo *, 64> LandingPads;
|
|
LandingPads.reserve(PadInfos.size());
|
|
|
|
for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
|
|
LandingPads.push_back(&PadInfos[i]);
|
|
|
|
// Order landing pads lexicographically by type id.
|
|
llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
|
|
return L->TypeIds < R->TypeIds;
|
|
});
|
|
|
|
// Compute the actions table and gather the first action index for each
|
|
// landing pad site.
|
|
SmallVector<ActionEntry, 32> Actions;
|
|
SmallVector<unsigned, 64> FirstActions;
|
|
computeActionsTable(LandingPads, Actions, FirstActions);
|
|
|
|
// Compute the call-site table and call-site ranges. Normally, there is only
|
|
// one call-site-range which covers the whole funciton. With
|
|
// -basic-block-sections, there is one call-site-range per basic block
|
|
// section.
|
|
SmallVector<CallSiteEntry, 64> CallSites;
|
|
SmallVector<CallSiteRange, 4> CallSiteRanges;
|
|
computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions);
|
|
|
|
bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
|
|
bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
|
|
bool HasLEB128Directives = Asm->MAI->hasLEB128Directives();
|
|
unsigned CallSiteEncoding =
|
|
IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
|
|
Asm->getObjFileLowering().getCallSiteEncoding();
|
|
bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
|
|
|
|
// Type infos.
|
|
MCSection *LSDASection =
|
|
Asm->getObjFileLowering().getSectionForLSDA(MF->getFunction(), Asm->TM);
|
|
unsigned TTypeEncoding;
|
|
|
|
if (!HaveTTData) {
|
|
// If there is no TypeInfo, then we just explicitly say that we're omitting
|
|
// that bit.
|
|
TTypeEncoding = dwarf::DW_EH_PE_omit;
|
|
} else {
|
|
// Okay, we have actual filters or typeinfos to emit. As such, we need to
|
|
// pick a type encoding for them. We're about to emit a list of pointers to
|
|
// typeinfo objects at the end of the LSDA. However, unless we're in static
|
|
// mode, this reference will require a relocation by the dynamic linker.
|
|
//
|
|
// Because of this, we have a couple of options:
|
|
//
|
|
// 1) If we are in -static mode, we can always use an absolute reference
|
|
// from the LSDA, because the static linker will resolve it.
|
|
//
|
|
// 2) Otherwise, if the LSDA section is writable, we can output the direct
|
|
// reference to the typeinfo and allow the dynamic linker to relocate
|
|
// it. Since it is in a writable section, the dynamic linker won't
|
|
// have a problem.
|
|
//
|
|
// 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
|
|
// we need to use some form of indirection. For example, on Darwin,
|
|
// we can output a statically-relocatable reference to a dyld stub. The
|
|
// offset to the stub is constant, but the contents are in a section
|
|
// that is updated by the dynamic linker. This is easy enough, but we
|
|
// need to tell the personality function of the unwinder to indirect
|
|
// through the dyld stub.
|
|
//
|
|
// FIXME: When (3) is actually implemented, we'll have to emit the stubs
|
|
// somewhere. This predicate should be moved to a shared location that is
|
|
// in target-independent code.
|
|
//
|
|
TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
|
|
}
|
|
|
|
// Begin the exception table.
|
|
// Sometimes we want not to emit the data into separate section (e.g. ARM
|
|
// EHABI). In this case LSDASection will be NULL.
|
|
if (LSDASection)
|
|
Asm->OutStreamer->SwitchSection(LSDASection);
|
|
Asm->emitAlignment(Align(4));
|
|
|
|
// Emit the LSDA.
|
|
MCSymbol *GCCETSym =
|
|
Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
|
|
Twine(Asm->getFunctionNumber()));
|
|
Asm->OutStreamer->emitLabel(GCCETSym);
|
|
MCSymbol *CstEndLabel = Asm->createTempSymbol(
|
|
CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end");
|
|
|
|
MCSymbol *TTBaseLabel = nullptr;
|
|
if (HaveTTData)
|
|
TTBaseLabel = Asm->createTempSymbol("ttbase");
|
|
|
|
const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
|
|
|
|
// Helper for emitting references (offsets) for type table and the end of the
|
|
// call-site table (which marks the beginning of the action table).
|
|
// * For Itanium, these references will be emitted for every callsite range.
|
|
// * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
|
|
auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() {
|
|
Asm->emitEncodingByte(TTypeEncoding, "@TType");
|
|
if (HaveTTData) {
|
|
// N.B.: There is a dependency loop between the size of the TTBase uleb128
|
|
// here and the amount of padding before the aligned type table. The
|
|
// assembler must sometimes pad this uleb128 or insert extra padding
|
|
// before the type table. See PR35809 or GNU as bug 4029.
|
|
MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
|
|
Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
|
|
Asm->OutStreamer->emitLabel(TTBaseRefLabel);
|
|
}
|
|
|
|
// The Action table follows the call-site table. So we emit the
|
|
// label difference from here (start of the call-site table for SJLJ and
|
|
// Wasm, and start of a call-site range for Itanium) to the end of the
|
|
// whole call-site table (end of the last call-site range for Itanium).
|
|
MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
|
|
Asm->emitEncodingByte(CallSiteEncoding, "Call site");
|
|
Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
|
|
Asm->OutStreamer->emitLabel(CstBeginLabel);
|
|
};
|
|
|
|
// An alternative path to EmitTypeTableRefAndCallSiteTableEndRef.
|
|
// For some platforms, the system assembler does not accept the form of
|
|
// `.uleb128 label2 - label1`. In those situations, we would need to calculate
|
|
// the size between label1 and label2 manually.
|
|
// In this case, we would need to calculate the LSDA size and the call
|
|
// site table size.
|
|
auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() {
|
|
assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives &&
|
|
"Targets supporting .uleb128 do not need to take this path.");
|
|
if (CallSiteRanges.size() > 1)
|
|
report_fatal_error(
|
|
"-fbasic-block-sections is not yet supported on "
|
|
"platforms that do not have general LEB128 directive support.");
|
|
|
|
uint64_t CallSiteTableSize = 0;
|
|
const CallSiteRange &CSRange = CallSiteRanges.back();
|
|
for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
|
|
CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) {
|
|
const CallSiteEntry &S = CallSites[CallSiteIdx];
|
|
// Each call site entry consists of 3 udata4 fields (12 bytes) and
|
|
// 1 ULEB128 field.
|
|
CallSiteTableSize += 12 + getULEB128Size(S.Action);
|
|
assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows.");
|
|
}
|
|
|
|
Asm->emitEncodingByte(TTypeEncoding, "@TType");
|
|
if (HaveTTData) {
|
|
const unsigned ByteSizeOfCallSiteOffset =
|
|
getULEB128Size(CallSiteTableSize);
|
|
uint64_t ActionTableSize = 0;
|
|
for (const ActionEntry &Action : Actions) {
|
|
// Each action entry consists of two SLEB128 fields.
|
|
ActionTableSize += getSLEB128Size(Action.ValueForTypeID) +
|
|
getSLEB128Size(Action.NextAction);
|
|
assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows.");
|
|
}
|
|
|
|
const unsigned TypeInfoSize =
|
|
Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size();
|
|
|
|
const uint64_t LSDASizeBeforeAlign =
|
|
1 // Call site encoding byte.
|
|
+ ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize.
|
|
+ CallSiteTableSize // Call site table content.
|
|
+ ActionTableSize; // Action table content.
|
|
|
|
const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize;
|
|
const unsigned ByteSizeOfLSDAWithoutAlign =
|
|
getULEB128Size(LSDASizeWithoutAlign);
|
|
const uint64_t DisplacementBeforeAlign =
|
|
2 // LPStartEncoding and TypeTableEncoding.
|
|
+ ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign;
|
|
|
|
// The type info area starts with 4 byte alignment.
|
|
const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4;
|
|
uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal;
|
|
const unsigned ByteSizeOfLSDAWithAlign =
|
|
getULEB128Size(LSDASizeWithAlign);
|
|
|
|
// The LSDASizeWithAlign could use 1 byte less padding for alignment
|
|
// when the data we use to represent the LSDA Size "needs" to be 1 byte
|
|
// larger than the one previously calculated without alignment.
|
|
if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign)
|
|
LSDASizeWithAlign -= 1;
|
|
|
|
Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign,
|
|
ByteSizeOfLSDAWithAlign);
|
|
}
|
|
|
|
Asm->emitEncodingByte(CallSiteEncoding, "Call site");
|
|
Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize);
|
|
};
|
|
|
|
// SjLj / Wasm Exception handling
|
|
if (IsSJLJ || IsWasm) {
|
|
Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front()));
|
|
|
|
// emit the LSDA header.
|
|
Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
|
|
EmitTypeTableRefAndCallSiteTableEndRef();
|
|
|
|
unsigned idx = 0;
|
|
for (SmallVectorImpl<CallSiteEntry>::const_iterator
|
|
I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
|
|
const CallSiteEntry &S = *I;
|
|
|
|
// Index of the call site entry.
|
|
if (VerboseAsm) {
|
|
Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
|
|
Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx));
|
|
}
|
|
Asm->emitULEB128(idx);
|
|
|
|
// Offset of the first associated action record, relative to the start of
|
|
// the action table. This value is biased by 1 (1 indicates the start of
|
|
// the action table), and 0 indicates that there are no actions.
|
|
if (VerboseAsm) {
|
|
if (S.Action == 0)
|
|
Asm->OutStreamer->AddComment(" Action: cleanup");
|
|
else
|
|
Asm->OutStreamer->AddComment(" Action: " +
|
|
Twine((S.Action - 1) / 2 + 1));
|
|
}
|
|
Asm->emitULEB128(S.Action);
|
|
}
|
|
Asm->OutStreamer->emitLabel(CstEndLabel);
|
|
} else {
|
|
// Itanium LSDA exception handling
|
|
|
|
// The call-site table is a list of all call sites that may throw an
|
|
// exception (including C++ 'throw' statements) in the procedure
|
|
// fragment. It immediately follows the LSDA header. Each entry indicates,
|
|
// for a given call, the first corresponding action record and corresponding
|
|
// landing pad.
|
|
//
|
|
// The table begins with the number of bytes, stored as an LEB128
|
|
// compressed, unsigned integer. The records immediately follow the record
|
|
// count. They are sorted in increasing call-site address. Each record
|
|
// indicates:
|
|
//
|
|
// * The position of the call-site.
|
|
// * The position of the landing pad.
|
|
// * The first action record for that call site.
|
|
//
|
|
// A missing entry in the call-site table indicates that a call is not
|
|
// supposed to throw.
|
|
|
|
assert(CallSiteRanges.size() != 0 && "No call-site ranges!");
|
|
|
|
// There should be only one call-site range which includes all the landing
|
|
// pads. Find that call-site range here.
|
|
const CallSiteRange *LandingPadRange = nullptr;
|
|
for (const CallSiteRange &CSRange : CallSiteRanges) {
|
|
if (CSRange.IsLPRange) {
|
|
assert(LandingPadRange == nullptr &&
|
|
"All landing pads must be in a single callsite range.");
|
|
LandingPadRange = &CSRange;
|
|
}
|
|
}
|
|
|
|
// The call-site table is split into its call-site ranges, each being
|
|
// emitted as:
|
|
// [ LPStartEncoding | LPStart ]
|
|
// [ TypeTableEncoding | TypeTableOffset ]
|
|
// [ CallSiteEncoding | CallSiteTableEndOffset ]
|
|
// cst_begin -> { call-site entries contained in this range }
|
|
//
|
|
// and is followed by the next call-site range.
|
|
//
|
|
// For each call-site range, CallSiteTableEndOffset is computed as the
|
|
// difference between cst_begin of that range and the last call-site-table's
|
|
// end label. This offset is used to find the action table.
|
|
|
|
unsigned Entry = 0;
|
|
for (const CallSiteRange &CSRange : CallSiteRanges) {
|
|
if (CSRange.CallSiteBeginIdx != 0) {
|
|
// Align the call-site range for all ranges except the first. The
|
|
// first range is already aligned due to the exception table alignment.
|
|
Asm->emitAlignment(Align(4));
|
|
}
|
|
Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel);
|
|
|
|
// Emit the LSDA header.
|
|
// If only one call-site range exists, LPStart is omitted as it is the
|
|
// same as the function entry.
|
|
if (CallSiteRanges.size() == 1) {
|
|
Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
|
|
} else if (!Asm->isPositionIndependent()) {
|
|
// For more than one call-site ranges, LPStart must be explicitly
|
|
// specified.
|
|
// For non-PIC we can simply use the absolute value.
|
|
Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart");
|
|
Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel,
|
|
Asm->MAI->getCodePointerSize());
|
|
} else {
|
|
// For PIC mode, we Emit a PC-relative address for LPStart.
|
|
Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart");
|
|
MCContext &Context = Asm->OutStreamer->getContext();
|
|
MCSymbol *Dot = Context.createTempSymbol();
|
|
Asm->OutStreamer->emitLabel(Dot);
|
|
Asm->OutStreamer->emitValue(
|
|
MCBinaryExpr::createSub(
|
|
MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel,
|
|
Context),
|
|
MCSymbolRefExpr::create(Dot, Context), Context),
|
|
Asm->MAI->getCodePointerSize());
|
|
}
|
|
|
|
if (HasLEB128Directives)
|
|
EmitTypeTableRefAndCallSiteTableEndRef();
|
|
else
|
|
EmitTypeTableOffsetAndCallSiteTableOffset();
|
|
|
|
for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
|
|
CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) {
|
|
const CallSiteEntry &S = CallSites[CallSiteIdx];
|
|
|
|
MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel;
|
|
MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel;
|
|
|
|
MCSymbol *BeginLabel = S.BeginLabel;
|
|
if (!BeginLabel)
|
|
BeginLabel = EHFuncBeginSym;
|
|
MCSymbol *EndLabel = S.EndLabel;
|
|
if (!EndLabel)
|
|
EndLabel = EHFuncEndSym;
|
|
|
|
// Offset of the call site relative to the start of the procedure.
|
|
if (VerboseAsm)
|
|
Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) +
|
|
" <<");
|
|
Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
|
|
if (VerboseAsm)
|
|
Asm->OutStreamer->AddComment(Twine(" Call between ") +
|
|
BeginLabel->getName() + " and " +
|
|
EndLabel->getName());
|
|
Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
|
|
|
|
// Offset of the landing pad relative to the start of the landing pad
|
|
// fragment.
|
|
if (!S.LPad) {
|
|
if (VerboseAsm)
|
|
Asm->OutStreamer->AddComment(" has no landing pad");
|
|
Asm->emitCallSiteValue(0, CallSiteEncoding);
|
|
} else {
|
|
if (VerboseAsm)
|
|
Asm->OutStreamer->AddComment(Twine(" jumps to ") +
|
|
S.LPad->LandingPadLabel->getName());
|
|
Asm->emitCallSiteOffset(S.LPad->LandingPadLabel,
|
|
LandingPadRange->FragmentBeginLabel,
|
|
CallSiteEncoding);
|
|
}
|
|
|
|
// Offset of the first associated action record, relative to the start
|
|
// of the action table. This value is biased by 1 (1 indicates the start
|
|
// of the action table), and 0 indicates that there are no actions.
|
|
if (VerboseAsm) {
|
|
if (S.Action == 0)
|
|
Asm->OutStreamer->AddComment(" On action: cleanup");
|
|
else
|
|
Asm->OutStreamer->AddComment(" On action: " +
|
|
Twine((S.Action - 1) / 2 + 1));
|
|
}
|
|
Asm->emitULEB128(S.Action);
|
|
}
|
|
}
|
|
Asm->OutStreamer->emitLabel(CstEndLabel);
|
|
}
|
|
|
|
// Emit the Action Table.
|
|
int Entry = 0;
|
|
for (SmallVectorImpl<ActionEntry>::const_iterator
|
|
I = Actions.begin(), E = Actions.end(); I != E; ++I) {
|
|
const ActionEntry &Action = *I;
|
|
|
|
if (VerboseAsm) {
|
|
// Emit comments that decode the action table.
|
|
Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
|
|
}
|
|
|
|
// Type Filter
|
|
//
|
|
// Used by the runtime to match the type of the thrown exception to the
|
|
// type of the catch clauses or the types in the exception specification.
|
|
if (VerboseAsm) {
|
|
if (Action.ValueForTypeID > 0)
|
|
Asm->OutStreamer->AddComment(" Catch TypeInfo " +
|
|
Twine(Action.ValueForTypeID));
|
|
else if (Action.ValueForTypeID < 0)
|
|
Asm->OutStreamer->AddComment(" Filter TypeInfo " +
|
|
Twine(Action.ValueForTypeID));
|
|
else
|
|
Asm->OutStreamer->AddComment(" Cleanup");
|
|
}
|
|
Asm->emitSLEB128(Action.ValueForTypeID);
|
|
|
|
// Action Record
|
|
if (VerboseAsm) {
|
|
if (Action.Previous == unsigned(-1)) {
|
|
Asm->OutStreamer->AddComment(" No further actions");
|
|
} else {
|
|
Asm->OutStreamer->AddComment(" Continue to action " +
|
|
Twine(Action.Previous + 1));
|
|
}
|
|
}
|
|
Asm->emitSLEB128(Action.NextAction);
|
|
}
|
|
|
|
if (HaveTTData) {
|
|
Asm->emitAlignment(Align(4));
|
|
emitTypeInfos(TTypeEncoding, TTBaseLabel);
|
|
}
|
|
|
|
Asm->emitAlignment(Align(4));
|
|
return GCCETSym;
|
|
}
|
|
|
|
void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
|
|
const MachineFunction *MF = Asm->MF;
|
|
const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
|
|
const std::vector<unsigned> &FilterIds = MF->getFilterIds();
|
|
|
|
const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
|
|
|
|
int Entry = 0;
|
|
// Emit the Catch TypeInfos.
|
|
if (VerboseAsm && !TypeInfos.empty()) {
|
|
Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
|
|
Asm->OutStreamer->AddBlankLine();
|
|
Entry = TypeInfos.size();
|
|
}
|
|
|
|
for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
|
|
TypeInfos.rend())) {
|
|
if (VerboseAsm)
|
|
Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
|
|
Asm->emitTTypeReference(GV, TTypeEncoding);
|
|
}
|
|
|
|
Asm->OutStreamer->emitLabel(TTBaseLabel);
|
|
|
|
// Emit the Exception Specifications.
|
|
if (VerboseAsm && !FilterIds.empty()) {
|
|
Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
|
|
Asm->OutStreamer->AddBlankLine();
|
|
Entry = 0;
|
|
}
|
|
for (std::vector<unsigned>::const_iterator
|
|
I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
|
|
unsigned TypeID = *I;
|
|
if (VerboseAsm) {
|
|
--Entry;
|
|
if (isFilterEHSelector(TypeID))
|
|
Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
|
|
}
|
|
|
|
Asm->emitULEB128(TypeID);
|
|
}
|
|
}
|