359 lines
15 KiB
C++
359 lines
15 KiB
C++
//===- llvm/Analysis/IVDescriptors.h - IndVar Descriptors -------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file "describes" induction and recurrence variables.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_IVDESCRIPTORS_H
|
|
#define LLVM_ANALYSIS_IVDESCRIPTORS_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Support/Casting.h"
|
|
|
|
namespace llvm {
|
|
|
|
class DemandedBits;
|
|
class AssumptionCache;
|
|
class Loop;
|
|
class PredicatedScalarEvolution;
|
|
class ScalarEvolution;
|
|
class SCEV;
|
|
class DominatorTree;
|
|
|
|
/// These are the kinds of recurrences that we support.
|
|
enum class RecurKind {
|
|
None, ///< Not a recurrence.
|
|
Add, ///< Sum of integers.
|
|
Mul, ///< Product of integers.
|
|
Or, ///< Bitwise or logical OR of integers.
|
|
And, ///< Bitwise or logical AND of integers.
|
|
Xor, ///< Bitwise or logical XOR of integers.
|
|
SMin, ///< Signed integer min implemented in terms of select(cmp()).
|
|
SMax, ///< Signed integer max implemented in terms of select(cmp()).
|
|
UMin, ///< Unisgned integer min implemented in terms of select(cmp()).
|
|
UMax, ///< Unsigned integer max implemented in terms of select(cmp()).
|
|
FAdd, ///< Sum of floats.
|
|
FMul, ///< Product of floats.
|
|
FMin, ///< FP min implemented in terms of select(cmp()).
|
|
FMax ///< FP max implemented in terms of select(cmp()).
|
|
};
|
|
|
|
/// The RecurrenceDescriptor is used to identify recurrences variables in a
|
|
/// loop. Reduction is a special case of recurrence that has uses of the
|
|
/// recurrence variable outside the loop. The method isReductionPHI identifies
|
|
/// reductions that are basic recurrences.
|
|
///
|
|
/// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
|
|
/// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
|
|
/// array[i]; } is a summation of array elements. Basic recurrences are a
|
|
/// special case of chains of recurrences (CR). See ScalarEvolution for CR
|
|
/// references.
|
|
|
|
/// This struct holds information about recurrence variables.
|
|
class RecurrenceDescriptor {
|
|
public:
|
|
RecurrenceDescriptor() = default;
|
|
|
|
RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurKind K,
|
|
FastMathFlags FMF, Instruction *UAI, Type *RT,
|
|
bool Signed, SmallPtrSetImpl<Instruction *> &CI)
|
|
: StartValue(Start), LoopExitInstr(Exit), Kind(K), FMF(FMF),
|
|
UnsafeAlgebraInst(UAI), RecurrenceType(RT), IsSigned(Signed) {
|
|
CastInsts.insert(CI.begin(), CI.end());
|
|
}
|
|
|
|
/// This POD struct holds information about a potential recurrence operation.
|
|
class InstDesc {
|
|
public:
|
|
InstDesc(bool IsRecur, Instruction *I, Instruction *UAI = nullptr)
|
|
: IsRecurrence(IsRecur), PatternLastInst(I),
|
|
RecKind(RecurKind::None), UnsafeAlgebraInst(UAI) {}
|
|
|
|
InstDesc(Instruction *I, RecurKind K, Instruction *UAI = nullptr)
|
|
: IsRecurrence(true), PatternLastInst(I), RecKind(K),
|
|
UnsafeAlgebraInst(UAI) {}
|
|
|
|
bool isRecurrence() const { return IsRecurrence; }
|
|
|
|
bool hasUnsafeAlgebra() const { return UnsafeAlgebraInst != nullptr; }
|
|
|
|
Instruction *getUnsafeAlgebraInst() const { return UnsafeAlgebraInst; }
|
|
|
|
RecurKind getRecKind() const { return RecKind; }
|
|
|
|
Instruction *getPatternInst() const { return PatternLastInst; }
|
|
|
|
private:
|
|
// Is this instruction a recurrence candidate.
|
|
bool IsRecurrence;
|
|
// The last instruction in a min/max pattern (select of the select(icmp())
|
|
// pattern), or the current recurrence instruction otherwise.
|
|
Instruction *PatternLastInst;
|
|
// If this is a min/max pattern.
|
|
RecurKind RecKind;
|
|
// Recurrence has unsafe algebra.
|
|
Instruction *UnsafeAlgebraInst;
|
|
};
|
|
|
|
/// Returns a struct describing if the instruction 'I' can be a recurrence
|
|
/// variable of type 'Kind'. If the recurrence is a min/max pattern of
|
|
/// select(icmp()) this function advances the instruction pointer 'I' from the
|
|
/// compare instruction to the select instruction and stores this pointer in
|
|
/// 'PatternLastInst' member of the returned struct.
|
|
static InstDesc isRecurrenceInstr(Instruction *I, RecurKind Kind,
|
|
InstDesc &Prev, bool HasFunNoNaNAttr);
|
|
|
|
/// Returns true if instruction I has multiple uses in Insts
|
|
static bool hasMultipleUsesOf(Instruction *I,
|
|
SmallPtrSetImpl<Instruction *> &Insts,
|
|
unsigned MaxNumUses);
|
|
|
|
/// Returns true if all uses of the instruction I is within the Set.
|
|
static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
|
|
|
|
/// Returns a struct describing if the instruction is a
|
|
/// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
|
|
/// or max(X, Y). \p Prev specifies the description of an already processed
|
|
/// select instruction, so its corresponding cmp can be matched to it.
|
|
static InstDesc isMinMaxSelectCmpPattern(Instruction *I,
|
|
const InstDesc &Prev);
|
|
|
|
/// Returns a struct describing if the instruction is a
|
|
/// Select(FCmp(X, Y), (Z = X op PHINode), PHINode) instruction pattern.
|
|
static InstDesc isConditionalRdxPattern(RecurKind Kind, Instruction *I);
|
|
|
|
/// Returns identity corresponding to the RecurrenceKind.
|
|
static Constant *getRecurrenceIdentity(RecurKind K, Type *Tp);
|
|
|
|
/// Returns the opcode corresponding to the RecurrenceKind.
|
|
static unsigned getOpcode(RecurKind Kind);
|
|
|
|
/// Returns true if Phi is a reduction of type Kind and adds it to the
|
|
/// RecurrenceDescriptor. If either \p DB is non-null or \p AC and \p DT are
|
|
/// non-null, the minimal bit width needed to compute the reduction will be
|
|
/// computed.
|
|
static bool AddReductionVar(PHINode *Phi, RecurKind Kind, Loop *TheLoop,
|
|
bool HasFunNoNaNAttr,
|
|
RecurrenceDescriptor &RedDes,
|
|
DemandedBits *DB = nullptr,
|
|
AssumptionCache *AC = nullptr,
|
|
DominatorTree *DT = nullptr);
|
|
|
|
/// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor
|
|
/// is returned in RedDes. If either \p DB is non-null or \p AC and \p DT are
|
|
/// non-null, the minimal bit width needed to compute the reduction will be
|
|
/// computed.
|
|
static bool isReductionPHI(PHINode *Phi, Loop *TheLoop,
|
|
RecurrenceDescriptor &RedDes,
|
|
DemandedBits *DB = nullptr,
|
|
AssumptionCache *AC = nullptr,
|
|
DominatorTree *DT = nullptr);
|
|
|
|
/// Returns true if Phi is a first-order recurrence. A first-order recurrence
|
|
/// is a non-reduction recurrence relation in which the value of the
|
|
/// recurrence in the current loop iteration equals a value defined in the
|
|
/// previous iteration. \p SinkAfter includes pairs of instructions where the
|
|
/// first will be rescheduled to appear after the second if/when the loop is
|
|
/// vectorized. It may be augmented with additional pairs if needed in order
|
|
/// to handle Phi as a first-order recurrence.
|
|
static bool
|
|
isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
|
|
DenseMap<Instruction *, Instruction *> &SinkAfter,
|
|
DominatorTree *DT);
|
|
|
|
RecurKind getRecurrenceKind() const { return Kind; }
|
|
|
|
unsigned getOpcode() const { return getOpcode(getRecurrenceKind()); }
|
|
|
|
FastMathFlags getFastMathFlags() const { return FMF; }
|
|
|
|
TrackingVH<Value> getRecurrenceStartValue() const { return StartValue; }
|
|
|
|
Instruction *getLoopExitInstr() const { return LoopExitInstr; }
|
|
|
|
/// Returns true if the recurrence has unsafe algebra which requires a relaxed
|
|
/// floating-point model.
|
|
bool hasUnsafeAlgebra() const { return UnsafeAlgebraInst != nullptr; }
|
|
|
|
/// Returns first unsafe algebra instruction in the PHI node's use-chain.
|
|
Instruction *getUnsafeAlgebraInst() const { return UnsafeAlgebraInst; }
|
|
|
|
/// Returns true if the recurrence kind is an integer kind.
|
|
static bool isIntegerRecurrenceKind(RecurKind Kind);
|
|
|
|
/// Returns true if the recurrence kind is a floating point kind.
|
|
static bool isFloatingPointRecurrenceKind(RecurKind Kind);
|
|
|
|
/// Returns true if the recurrence kind is an arithmetic kind.
|
|
static bool isArithmeticRecurrenceKind(RecurKind Kind);
|
|
|
|
/// Returns true if the recurrence kind is an integer min/max kind.
|
|
static bool isIntMinMaxRecurrenceKind(RecurKind Kind) {
|
|
return Kind == RecurKind::UMin || Kind == RecurKind::UMax ||
|
|
Kind == RecurKind::SMin || Kind == RecurKind::SMax;
|
|
}
|
|
|
|
/// Returns true if the recurrence kind is a floating-point min/max kind.
|
|
static bool isFPMinMaxRecurrenceKind(RecurKind Kind) {
|
|
return Kind == RecurKind::FMin || Kind == RecurKind::FMax;
|
|
}
|
|
|
|
/// Returns true if the recurrence kind is any min/max kind.
|
|
static bool isMinMaxRecurrenceKind(RecurKind Kind) {
|
|
return isIntMinMaxRecurrenceKind(Kind) || isFPMinMaxRecurrenceKind(Kind);
|
|
}
|
|
|
|
/// Returns the type of the recurrence. This type can be narrower than the
|
|
/// actual type of the Phi if the recurrence has been type-promoted.
|
|
Type *getRecurrenceType() const { return RecurrenceType; }
|
|
|
|
/// Returns a reference to the instructions used for type-promoting the
|
|
/// recurrence.
|
|
const SmallPtrSet<Instruction *, 8> &getCastInsts() const { return CastInsts; }
|
|
|
|
/// Returns true if all source operands of the recurrence are SExtInsts.
|
|
bool isSigned() const { return IsSigned; }
|
|
|
|
/// Attempts to find a chain of operations from Phi to LoopExitInst that can
|
|
/// be treated as a set of reductions instructions for in-loop reductions.
|
|
SmallVector<Instruction *, 4> getReductionOpChain(PHINode *Phi,
|
|
Loop *L) const;
|
|
|
|
private:
|
|
// The starting value of the recurrence.
|
|
// It does not have to be zero!
|
|
TrackingVH<Value> StartValue;
|
|
// The instruction who's value is used outside the loop.
|
|
Instruction *LoopExitInstr = nullptr;
|
|
// The kind of the recurrence.
|
|
RecurKind Kind = RecurKind::None;
|
|
// The fast-math flags on the recurrent instructions. We propagate these
|
|
// fast-math flags into the vectorized FP instructions we generate.
|
|
FastMathFlags FMF;
|
|
// First occurrence of unasfe algebra in the PHI's use-chain.
|
|
Instruction *UnsafeAlgebraInst = nullptr;
|
|
// The type of the recurrence.
|
|
Type *RecurrenceType = nullptr;
|
|
// True if all source operands of the recurrence are SExtInsts.
|
|
bool IsSigned = false;
|
|
// Instructions used for type-promoting the recurrence.
|
|
SmallPtrSet<Instruction *, 8> CastInsts;
|
|
};
|
|
|
|
/// A struct for saving information about induction variables.
|
|
class InductionDescriptor {
|
|
public:
|
|
/// This enum represents the kinds of inductions that we support.
|
|
enum InductionKind {
|
|
IK_NoInduction, ///< Not an induction variable.
|
|
IK_IntInduction, ///< Integer induction variable. Step = C.
|
|
IK_PtrInduction, ///< Pointer induction var. Step = C / sizeof(elem).
|
|
IK_FpInduction ///< Floating point induction variable.
|
|
};
|
|
|
|
public:
|
|
/// Default constructor - creates an invalid induction.
|
|
InductionDescriptor() = default;
|
|
|
|
Value *getStartValue() const { return StartValue; }
|
|
InductionKind getKind() const { return IK; }
|
|
const SCEV *getStep() const { return Step; }
|
|
BinaryOperator *getInductionBinOp() const { return InductionBinOp; }
|
|
ConstantInt *getConstIntStepValue() const;
|
|
|
|
/// Returns true if \p Phi is an induction in the loop \p L. If \p Phi is an
|
|
/// induction, the induction descriptor \p D will contain the data describing
|
|
/// this induction. If by some other means the caller has a better SCEV
|
|
/// expression for \p Phi than the one returned by the ScalarEvolution
|
|
/// analysis, it can be passed through \p Expr. If the def-use chain
|
|
/// associated with the phi includes casts (that we know we can ignore
|
|
/// under proper runtime checks), they are passed through \p CastsToIgnore.
|
|
static bool
|
|
isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
|
|
InductionDescriptor &D, const SCEV *Expr = nullptr,
|
|
SmallVectorImpl<Instruction *> *CastsToIgnore = nullptr);
|
|
|
|
/// Returns true if \p Phi is a floating point induction in the loop \p L.
|
|
/// If \p Phi is an induction, the induction descriptor \p D will contain
|
|
/// the data describing this induction.
|
|
static bool isFPInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
|
|
InductionDescriptor &D);
|
|
|
|
/// Returns true if \p Phi is a loop \p L induction, in the context associated
|
|
/// with the run-time predicate of PSE. If \p Assume is true, this can add
|
|
/// further SCEV predicates to \p PSE in order to prove that \p Phi is an
|
|
/// induction.
|
|
/// If \p Phi is an induction, \p D will contain the data describing this
|
|
/// induction.
|
|
static bool isInductionPHI(PHINode *Phi, const Loop *L,
|
|
PredicatedScalarEvolution &PSE,
|
|
InductionDescriptor &D, bool Assume = false);
|
|
|
|
/// Returns true if the induction type is FP and the binary operator does
|
|
/// not have the "fast-math" property. Such operation requires a relaxed FP
|
|
/// mode.
|
|
bool hasUnsafeAlgebra() {
|
|
return (IK == IK_FpInduction) && InductionBinOp &&
|
|
!cast<FPMathOperator>(InductionBinOp)->isFast();
|
|
}
|
|
|
|
/// Returns induction operator that does not have "fast-math" property
|
|
/// and requires FP unsafe mode.
|
|
Instruction *getUnsafeAlgebraInst() {
|
|
if (IK != IK_FpInduction)
|
|
return nullptr;
|
|
|
|
if (!InductionBinOp || cast<FPMathOperator>(InductionBinOp)->isFast())
|
|
return nullptr;
|
|
return InductionBinOp;
|
|
}
|
|
|
|
/// Returns binary opcode of the induction operator.
|
|
Instruction::BinaryOps getInductionOpcode() const {
|
|
return InductionBinOp ? InductionBinOp->getOpcode()
|
|
: Instruction::BinaryOpsEnd;
|
|
}
|
|
|
|
/// Returns a reference to the type cast instructions in the induction
|
|
/// update chain, that are redundant when guarded with a runtime
|
|
/// SCEV overflow check.
|
|
const SmallVectorImpl<Instruction *> &getCastInsts() const {
|
|
return RedundantCasts;
|
|
}
|
|
|
|
private:
|
|
/// Private constructor - used by \c isInductionPHI.
|
|
InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step,
|
|
BinaryOperator *InductionBinOp = nullptr,
|
|
SmallVectorImpl<Instruction *> *Casts = nullptr);
|
|
|
|
/// Start value.
|
|
TrackingVH<Value> StartValue;
|
|
/// Induction kind.
|
|
InductionKind IK = IK_NoInduction;
|
|
/// Step value.
|
|
const SCEV *Step = nullptr;
|
|
// Instruction that advances induction variable.
|
|
BinaryOperator *InductionBinOp = nullptr;
|
|
// Instructions used for type-casts of the induction variable,
|
|
// that are redundant when guarded with a runtime SCEV overflow check.
|
|
SmallVector<Instruction *, 2> RedundantCasts;
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_ANALYSIS_IVDESCRIPTORS_H
|