1550 lines
44 KiB
C++
1550 lines
44 KiB
C++
#define MINIMAL_STDERR_OUTPUT
|
|
|
|
#include "llvm/Analysis/Passes.h"
|
|
#include "llvm/ExecutionEngine/ExecutionEngine.h"
|
|
#include "llvm/ExecutionEngine/MCJIT.h"
|
|
#include "llvm/ExecutionEngine/ObjectCache.h"
|
|
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/IRReader/IRReader.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include <cctype>
|
|
#include <cstdio>
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Command-line options
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
cl::opt<std::string>
|
|
InputIR("input-IR",
|
|
cl::desc("Specify the name of an IR file to load for function definitions"),
|
|
cl::value_desc("input IR file name"));
|
|
|
|
cl::opt<bool>
|
|
UseObjectCache("use-object-cache",
|
|
cl::desc("Enable use of the MCJIT object caching"),
|
|
cl::init(false));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lexer
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
|
|
// of these for known things.
|
|
enum Token {
|
|
tok_eof = -1,
|
|
|
|
// commands
|
|
tok_def = -2, tok_extern = -3,
|
|
|
|
// primary
|
|
tok_identifier = -4, tok_number = -5,
|
|
|
|
// control
|
|
tok_if = -6, tok_then = -7, tok_else = -8,
|
|
tok_for = -9, tok_in = -10,
|
|
|
|
// operators
|
|
tok_binary = -11, tok_unary = -12,
|
|
|
|
// var definition
|
|
tok_var = -13
|
|
};
|
|
|
|
static std::string IdentifierStr; // Filled in if tok_identifier
|
|
static double NumVal; // Filled in if tok_number
|
|
|
|
/// gettok - Return the next token from standard input.
|
|
static int gettok() {
|
|
static int LastChar = ' ';
|
|
|
|
// Skip any whitespace.
|
|
while (isspace(LastChar))
|
|
LastChar = getchar();
|
|
|
|
if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
|
|
IdentifierStr = LastChar;
|
|
while (isalnum((LastChar = getchar())))
|
|
IdentifierStr += LastChar;
|
|
|
|
if (IdentifierStr == "def") return tok_def;
|
|
if (IdentifierStr == "extern") return tok_extern;
|
|
if (IdentifierStr == "if") return tok_if;
|
|
if (IdentifierStr == "then") return tok_then;
|
|
if (IdentifierStr == "else") return tok_else;
|
|
if (IdentifierStr == "for") return tok_for;
|
|
if (IdentifierStr == "in") return tok_in;
|
|
if (IdentifierStr == "binary") return tok_binary;
|
|
if (IdentifierStr == "unary") return tok_unary;
|
|
if (IdentifierStr == "var") return tok_var;
|
|
return tok_identifier;
|
|
}
|
|
|
|
if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
|
|
std::string NumStr;
|
|
do {
|
|
NumStr += LastChar;
|
|
LastChar = getchar();
|
|
} while (isdigit(LastChar) || LastChar == '.');
|
|
|
|
NumVal = strtod(NumStr.c_str(), 0);
|
|
return tok_number;
|
|
}
|
|
|
|
if (LastChar == '#') {
|
|
// Comment until end of line.
|
|
do LastChar = getchar();
|
|
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
|
|
|
|
if (LastChar != EOF)
|
|
return gettok();
|
|
}
|
|
|
|
// Check for end of file. Don't eat the EOF.
|
|
if (LastChar == EOF)
|
|
return tok_eof;
|
|
|
|
// Otherwise, just return the character as its ascii value.
|
|
int ThisChar = LastChar;
|
|
LastChar = getchar();
|
|
return ThisChar;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Abstract Syntax Tree (aka Parse Tree)
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ExprAST - Base class for all expression nodes.
|
|
class ExprAST {
|
|
public:
|
|
virtual ~ExprAST() {}
|
|
virtual Value *Codegen() = 0;
|
|
};
|
|
|
|
/// NumberExprAST - Expression class for numeric literals like "1.0".
|
|
class NumberExprAST : public ExprAST {
|
|
double Val;
|
|
public:
|
|
NumberExprAST(double val) : Val(val) {}
|
|
virtual Value *Codegen();
|
|
};
|
|
|
|
/// VariableExprAST - Expression class for referencing a variable, like "a".
|
|
class VariableExprAST : public ExprAST {
|
|
std::string Name;
|
|
public:
|
|
VariableExprAST(const std::string &name) : Name(name) {}
|
|
const std::string &getName() const { return Name; }
|
|
virtual Value *Codegen();
|
|
};
|
|
|
|
/// UnaryExprAST - Expression class for a unary operator.
|
|
class UnaryExprAST : public ExprAST {
|
|
char Opcode;
|
|
ExprAST *Operand;
|
|
public:
|
|
UnaryExprAST(char opcode, ExprAST *operand)
|
|
: Opcode(opcode), Operand(operand) {}
|
|
virtual Value *Codegen();
|
|
};
|
|
|
|
/// BinaryExprAST - Expression class for a binary operator.
|
|
class BinaryExprAST : public ExprAST {
|
|
char Op;
|
|
ExprAST *LHS, *RHS;
|
|
public:
|
|
BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
|
|
: Op(op), LHS(lhs), RHS(rhs) {}
|
|
virtual Value *Codegen();
|
|
};
|
|
|
|
/// CallExprAST - Expression class for function calls.
|
|
class CallExprAST : public ExprAST {
|
|
std::string Callee;
|
|
std::vector<ExprAST*> Args;
|
|
public:
|
|
CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
|
|
: Callee(callee), Args(args) {}
|
|
virtual Value *Codegen();
|
|
};
|
|
|
|
/// IfExprAST - Expression class for if/then/else.
|
|
class IfExprAST : public ExprAST {
|
|
ExprAST *Cond, *Then, *Else;
|
|
public:
|
|
IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
|
|
: Cond(cond), Then(then), Else(_else) {}
|
|
virtual Value *Codegen();
|
|
};
|
|
|
|
/// ForExprAST - Expression class for for/in.
|
|
class ForExprAST : public ExprAST {
|
|
std::string VarName;
|
|
ExprAST *Start, *End, *Step, *Body;
|
|
public:
|
|
ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
|
|
ExprAST *step, ExprAST *body)
|
|
: VarName(varname), Start(start), End(end), Step(step), Body(body) {}
|
|
virtual Value *Codegen();
|
|
};
|
|
|
|
/// VarExprAST - Expression class for var/in
|
|
class VarExprAST : public ExprAST {
|
|
std::vector<std::pair<std::string, ExprAST*> > VarNames;
|
|
ExprAST *Body;
|
|
public:
|
|
VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
|
|
ExprAST *body)
|
|
: VarNames(varnames), Body(body) {}
|
|
|
|
virtual Value *Codegen();
|
|
};
|
|
|
|
/// PrototypeAST - This class represents the "prototype" for a function,
|
|
/// which captures its argument names as well as if it is an operator.
|
|
class PrototypeAST {
|
|
std::string Name;
|
|
std::vector<std::string> Args;
|
|
bool isOperator;
|
|
unsigned Precedence; // Precedence if a binary op.
|
|
public:
|
|
PrototypeAST(const std::string &name, const std::vector<std::string> &args,
|
|
bool isoperator = false, unsigned prec = 0)
|
|
: Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
|
|
|
|
bool isUnaryOp() const { return isOperator && Args.size() == 1; }
|
|
bool isBinaryOp() const { return isOperator && Args.size() == 2; }
|
|
|
|
char getOperatorName() const {
|
|
assert(isUnaryOp() || isBinaryOp());
|
|
return Name[Name.size()-1];
|
|
}
|
|
|
|
unsigned getBinaryPrecedence() const { return Precedence; }
|
|
|
|
Function *Codegen();
|
|
|
|
void CreateArgumentAllocas(Function *F);
|
|
};
|
|
|
|
/// FunctionAST - This class represents a function definition itself.
|
|
class FunctionAST {
|
|
PrototypeAST *Proto;
|
|
ExprAST *Body;
|
|
public:
|
|
FunctionAST(PrototypeAST *proto, ExprAST *body)
|
|
: Proto(proto), Body(body) {}
|
|
|
|
Function *Codegen();
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Parser
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
|
|
/// token the parser is looking at. getNextToken reads another token from the
|
|
/// lexer and updates CurTok with its results.
|
|
static int CurTok;
|
|
static int getNextToken() {
|
|
return CurTok = gettok();
|
|
}
|
|
|
|
/// BinopPrecedence - This holds the precedence for each binary operator that is
|
|
/// defined.
|
|
static std::map<char, int> BinopPrecedence;
|
|
|
|
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
|
|
static int GetTokPrecedence() {
|
|
if (!isascii(CurTok))
|
|
return -1;
|
|
|
|
// Make sure it's a declared binop.
|
|
int TokPrec = BinopPrecedence[CurTok];
|
|
if (TokPrec <= 0) return -1;
|
|
return TokPrec;
|
|
}
|
|
|
|
/// Error* - These are little helper functions for error handling.
|
|
ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
|
|
PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
|
|
FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
|
|
|
|
static ExprAST *ParseExpression();
|
|
|
|
/// identifierexpr
|
|
/// ::= identifier
|
|
/// ::= identifier '(' expression* ')'
|
|
static ExprAST *ParseIdentifierExpr() {
|
|
std::string IdName = IdentifierStr;
|
|
|
|
getNextToken(); // eat identifier.
|
|
|
|
if (CurTok != '(') // Simple variable ref.
|
|
return new VariableExprAST(IdName);
|
|
|
|
// Call.
|
|
getNextToken(); // eat (
|
|
std::vector<ExprAST*> Args;
|
|
if (CurTok != ')') {
|
|
while (1) {
|
|
ExprAST *Arg = ParseExpression();
|
|
if (!Arg) return 0;
|
|
Args.push_back(Arg);
|
|
|
|
if (CurTok == ')') break;
|
|
|
|
if (CurTok != ',')
|
|
return Error("Expected ')' or ',' in argument list");
|
|
getNextToken();
|
|
}
|
|
}
|
|
|
|
// Eat the ')'.
|
|
getNextToken();
|
|
|
|
return new CallExprAST(IdName, Args);
|
|
}
|
|
|
|
/// numberexpr ::= number
|
|
static ExprAST *ParseNumberExpr() {
|
|
ExprAST *Result = new NumberExprAST(NumVal);
|
|
getNextToken(); // consume the number
|
|
return Result;
|
|
}
|
|
|
|
/// parenexpr ::= '(' expression ')'
|
|
static ExprAST *ParseParenExpr() {
|
|
getNextToken(); // eat (.
|
|
ExprAST *V = ParseExpression();
|
|
if (!V) return 0;
|
|
|
|
if (CurTok != ')')
|
|
return Error("expected ')'");
|
|
getNextToken(); // eat ).
|
|
return V;
|
|
}
|
|
|
|
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
|
|
static ExprAST *ParseIfExpr() {
|
|
getNextToken(); // eat the if.
|
|
|
|
// condition.
|
|
ExprAST *Cond = ParseExpression();
|
|
if (!Cond) return 0;
|
|
|
|
if (CurTok != tok_then)
|
|
return Error("expected then");
|
|
getNextToken(); // eat the then
|
|
|
|
ExprAST *Then = ParseExpression();
|
|
if (Then == 0) return 0;
|
|
|
|
if (CurTok != tok_else)
|
|
return Error("expected else");
|
|
|
|
getNextToken();
|
|
|
|
ExprAST *Else = ParseExpression();
|
|
if (!Else) return 0;
|
|
|
|
return new IfExprAST(Cond, Then, Else);
|
|
}
|
|
|
|
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
|
|
static ExprAST *ParseForExpr() {
|
|
getNextToken(); // eat the for.
|
|
|
|
if (CurTok != tok_identifier)
|
|
return Error("expected identifier after for");
|
|
|
|
std::string IdName = IdentifierStr;
|
|
getNextToken(); // eat identifier.
|
|
|
|
if (CurTok != '=')
|
|
return Error("expected '=' after for");
|
|
getNextToken(); // eat '='.
|
|
|
|
|
|
ExprAST *Start = ParseExpression();
|
|
if (Start == 0) return 0;
|
|
if (CurTok != ',')
|
|
return Error("expected ',' after for start value");
|
|
getNextToken();
|
|
|
|
ExprAST *End = ParseExpression();
|
|
if (End == 0) return 0;
|
|
|
|
// The step value is optional.
|
|
ExprAST *Step = 0;
|
|
if (CurTok == ',') {
|
|
getNextToken();
|
|
Step = ParseExpression();
|
|
if (Step == 0) return 0;
|
|
}
|
|
|
|
if (CurTok != tok_in)
|
|
return Error("expected 'in' after for");
|
|
getNextToken(); // eat 'in'.
|
|
|
|
ExprAST *Body = ParseExpression();
|
|
if (Body == 0) return 0;
|
|
|
|
return new ForExprAST(IdName, Start, End, Step, Body);
|
|
}
|
|
|
|
/// varexpr ::= 'var' identifier ('=' expression)?
|
|
// (',' identifier ('=' expression)?)* 'in' expression
|
|
static ExprAST *ParseVarExpr() {
|
|
getNextToken(); // eat the var.
|
|
|
|
std::vector<std::pair<std::string, ExprAST*> > VarNames;
|
|
|
|
// At least one variable name is required.
|
|
if (CurTok != tok_identifier)
|
|
return Error("expected identifier after var");
|
|
|
|
while (1) {
|
|
std::string Name = IdentifierStr;
|
|
getNextToken(); // eat identifier.
|
|
|
|
// Read the optional initializer.
|
|
ExprAST *Init = 0;
|
|
if (CurTok == '=') {
|
|
getNextToken(); // eat the '='.
|
|
|
|
Init = ParseExpression();
|
|
if (Init == 0) return 0;
|
|
}
|
|
|
|
VarNames.push_back(std::make_pair(Name, Init));
|
|
|
|
// End of var list, exit loop.
|
|
if (CurTok != ',') break;
|
|
getNextToken(); // eat the ','.
|
|
|
|
if (CurTok != tok_identifier)
|
|
return Error("expected identifier list after var");
|
|
}
|
|
|
|
// At this point, we have to have 'in'.
|
|
if (CurTok != tok_in)
|
|
return Error("expected 'in' keyword after 'var'");
|
|
getNextToken(); // eat 'in'.
|
|
|
|
ExprAST *Body = ParseExpression();
|
|
if (Body == 0) return 0;
|
|
|
|
return new VarExprAST(VarNames, Body);
|
|
}
|
|
|
|
/// primary
|
|
/// ::= identifierexpr
|
|
/// ::= numberexpr
|
|
/// ::= parenexpr
|
|
/// ::= ifexpr
|
|
/// ::= forexpr
|
|
/// ::= varexpr
|
|
static ExprAST *ParsePrimary() {
|
|
switch (CurTok) {
|
|
default: return Error("unknown token when expecting an expression");
|
|
case tok_identifier: return ParseIdentifierExpr();
|
|
case tok_number: return ParseNumberExpr();
|
|
case '(': return ParseParenExpr();
|
|
case tok_if: return ParseIfExpr();
|
|
case tok_for: return ParseForExpr();
|
|
case tok_var: return ParseVarExpr();
|
|
}
|
|
}
|
|
|
|
/// unary
|
|
/// ::= primary
|
|
/// ::= '!' unary
|
|
static ExprAST *ParseUnary() {
|
|
// If the current token is not an operator, it must be a primary expr.
|
|
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
|
|
return ParsePrimary();
|
|
|
|
// If this is a unary operator, read it.
|
|
int Opc = CurTok;
|
|
getNextToken();
|
|
if (ExprAST *Operand = ParseUnary())
|
|
return new UnaryExprAST(Opc, Operand);
|
|
return 0;
|
|
}
|
|
|
|
/// binoprhs
|
|
/// ::= ('+' unary)*
|
|
static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
|
|
// If this is a binop, find its precedence.
|
|
while (1) {
|
|
int TokPrec = GetTokPrecedence();
|
|
|
|
// If this is a binop that binds at least as tightly as the current binop,
|
|
// consume it, otherwise we are done.
|
|
if (TokPrec < ExprPrec)
|
|
return LHS;
|
|
|
|
// Okay, we know this is a binop.
|
|
int BinOp = CurTok;
|
|
getNextToken(); // eat binop
|
|
|
|
// Parse the unary expression after the binary operator.
|
|
ExprAST *RHS = ParseUnary();
|
|
if (!RHS) return 0;
|
|
|
|
// If BinOp binds less tightly with RHS than the operator after RHS, let
|
|
// the pending operator take RHS as its LHS.
|
|
int NextPrec = GetTokPrecedence();
|
|
if (TokPrec < NextPrec) {
|
|
RHS = ParseBinOpRHS(TokPrec+1, RHS);
|
|
if (RHS == 0) return 0;
|
|
}
|
|
|
|
// Merge LHS/RHS.
|
|
LHS = new BinaryExprAST(BinOp, LHS, RHS);
|
|
}
|
|
}
|
|
|
|
/// expression
|
|
/// ::= unary binoprhs
|
|
///
|
|
static ExprAST *ParseExpression() {
|
|
ExprAST *LHS = ParseUnary();
|
|
if (!LHS) return 0;
|
|
|
|
return ParseBinOpRHS(0, LHS);
|
|
}
|
|
|
|
/// prototype
|
|
/// ::= id '(' id* ')'
|
|
/// ::= binary LETTER number? (id, id)
|
|
/// ::= unary LETTER (id)
|
|
static PrototypeAST *ParsePrototype() {
|
|
std::string FnName;
|
|
|
|
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
|
|
unsigned BinaryPrecedence = 30;
|
|
|
|
switch (CurTok) {
|
|
default:
|
|
return ErrorP("Expected function name in prototype");
|
|
case tok_identifier:
|
|
FnName = IdentifierStr;
|
|
Kind = 0;
|
|
getNextToken();
|
|
break;
|
|
case tok_unary:
|
|
getNextToken();
|
|
if (!isascii(CurTok))
|
|
return ErrorP("Expected unary operator");
|
|
FnName = "unary";
|
|
FnName += (char)CurTok;
|
|
Kind = 1;
|
|
getNextToken();
|
|
break;
|
|
case tok_binary:
|
|
getNextToken();
|
|
if (!isascii(CurTok))
|
|
return ErrorP("Expected binary operator");
|
|
FnName = "binary";
|
|
FnName += (char)CurTok;
|
|
Kind = 2;
|
|
getNextToken();
|
|
|
|
// Read the precedence if present.
|
|
if (CurTok == tok_number) {
|
|
if (NumVal < 1 || NumVal > 100)
|
|
return ErrorP("Invalid precedecnce: must be 1..100");
|
|
BinaryPrecedence = (unsigned)NumVal;
|
|
getNextToken();
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (CurTok != '(')
|
|
return ErrorP("Expected '(' in prototype");
|
|
|
|
std::vector<std::string> ArgNames;
|
|
while (getNextToken() == tok_identifier)
|
|
ArgNames.push_back(IdentifierStr);
|
|
if (CurTok != ')')
|
|
return ErrorP("Expected ')' in prototype");
|
|
|
|
// success.
|
|
getNextToken(); // eat ')'.
|
|
|
|
// Verify right number of names for operator.
|
|
if (Kind && ArgNames.size() != Kind)
|
|
return ErrorP("Invalid number of operands for operator");
|
|
|
|
return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
|
|
}
|
|
|
|
/// definition ::= 'def' prototype expression
|
|
static FunctionAST *ParseDefinition() {
|
|
getNextToken(); // eat def.
|
|
PrototypeAST *Proto = ParsePrototype();
|
|
if (Proto == 0) return 0;
|
|
|
|
if (ExprAST *E = ParseExpression())
|
|
return new FunctionAST(Proto, E);
|
|
return 0;
|
|
}
|
|
|
|
/// toplevelexpr ::= expression
|
|
static FunctionAST *ParseTopLevelExpr() {
|
|
if (ExprAST *E = ParseExpression()) {
|
|
// Make an anonymous proto.
|
|
PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
|
|
return new FunctionAST(Proto, E);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// external ::= 'extern' prototype
|
|
static PrototypeAST *ParseExtern() {
|
|
getNextToken(); // eat extern.
|
|
return ParsePrototype();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Quick and dirty hack
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// FIXME: Obviously we can do better than this
|
|
std::string GenerateUniqueName(const char *root)
|
|
{
|
|
static int i = 0;
|
|
char s[16];
|
|
sprintf(s, "%s%d", root, i++);
|
|
std::string S = s;
|
|
return S;
|
|
}
|
|
|
|
std::string MakeLegalFunctionName(std::string Name)
|
|
{
|
|
std::string NewName;
|
|
if (!Name.length())
|
|
return GenerateUniqueName("anon_func_");
|
|
|
|
// Start with what we have
|
|
NewName = Name;
|
|
|
|
// Look for a numberic first character
|
|
if (NewName.find_first_of("0123456789") == 0) {
|
|
NewName.insert(0, 1, 'n');
|
|
}
|
|
|
|
// Replace illegal characters with their ASCII equivalent
|
|
std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
|
|
size_t pos;
|
|
while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
|
|
char old_c = NewName.at(pos);
|
|
char new_str[16];
|
|
sprintf(new_str, "%d", (int)old_c);
|
|
NewName = NewName.replace(pos, 1, new_str);
|
|
}
|
|
|
|
return NewName;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MCJIT object cache class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class MCJITObjectCache : public ObjectCache {
|
|
public:
|
|
MCJITObjectCache() {
|
|
// Set IR cache directory
|
|
sys::fs::current_path(CacheDir);
|
|
sys::path::append(CacheDir, "toy_object_cache");
|
|
}
|
|
|
|
virtual ~MCJITObjectCache() {
|
|
}
|
|
|
|
virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) {
|
|
// Get the ModuleID
|
|
const std::string ModuleID = M->getModuleIdentifier();
|
|
|
|
// If we've flagged this as an IR file, cache it
|
|
if (0 == ModuleID.compare(0, 3, "IR:")) {
|
|
std::string IRFileName = ModuleID.substr(3);
|
|
SmallString<128>IRCacheFile = CacheDir;
|
|
sys::path::append(IRCacheFile, IRFileName);
|
|
if (!sys::fs::exists(CacheDir.str()) && sys::fs::create_directory(CacheDir.str())) {
|
|
fprintf(stderr, "Unable to create cache directory\n");
|
|
return;
|
|
}
|
|
std::string ErrStr;
|
|
raw_fd_ostream IRObjectFile(IRCacheFile.c_str(), ErrStr, raw_fd_ostream::F_Binary);
|
|
IRObjectFile << Obj->getBuffer();
|
|
}
|
|
}
|
|
|
|
// MCJIT will call this function before compiling any module
|
|
// MCJIT takes ownership of both the MemoryBuffer object and the memory
|
|
// to which it refers.
|
|
virtual MemoryBuffer* getObject(const Module* M) {
|
|
// Get the ModuleID
|
|
const std::string ModuleID = M->getModuleIdentifier();
|
|
|
|
// If we've flagged this as an IR file, cache it
|
|
if (0 == ModuleID.compare(0, 3, "IR:")) {
|
|
std::string IRFileName = ModuleID.substr(3);
|
|
SmallString<128> IRCacheFile = CacheDir;
|
|
sys::path::append(IRCacheFile, IRFileName);
|
|
if (!sys::fs::exists(IRCacheFile.str())) {
|
|
// This file isn't in our cache
|
|
return NULL;
|
|
}
|
|
std::unique_ptr<MemoryBuffer> IRObjectBuffer;
|
|
MemoryBuffer::getFile(IRCacheFile.c_str(), IRObjectBuffer, -1, false);
|
|
// MCJIT will want to write into this buffer, and we don't want that
|
|
// because the file has probably just been mmapped. Instead we make
|
|
// a copy. The filed-based buffer will be released when it goes
|
|
// out of scope.
|
|
return MemoryBuffer::getMemBufferCopy(IRObjectBuffer->getBuffer());
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
private:
|
|
SmallString<128> CacheDir;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MCJIT helper class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class MCJITHelper
|
|
{
|
|
public:
|
|
MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {}
|
|
~MCJITHelper();
|
|
|
|
Function *getFunction(const std::string FnName);
|
|
Module *getModuleForNewFunction();
|
|
void *getPointerToFunction(Function* F);
|
|
void *getPointerToNamedFunction(const std::string &Name);
|
|
ExecutionEngine *compileModule(Module *M);
|
|
void closeCurrentModule();
|
|
void addModule(Module *M);
|
|
void dump();
|
|
|
|
private:
|
|
typedef std::vector<Module*> ModuleVector;
|
|
|
|
LLVMContext &Context;
|
|
Module *OpenModule;
|
|
ModuleVector Modules;
|
|
std::map<Module *, ExecutionEngine *> EngineMap;
|
|
MCJITObjectCache OurObjectCache;
|
|
};
|
|
|
|
class HelpingMemoryManager : public SectionMemoryManager
|
|
{
|
|
HelpingMemoryManager(const HelpingMemoryManager&) = delete;
|
|
void operator=(const HelpingMemoryManager&) = delete;
|
|
|
|
public:
|
|
HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
|
|
virtual ~HelpingMemoryManager() {}
|
|
|
|
/// This method returns the address of the specified function.
|
|
/// Our implementation will attempt to find functions in other
|
|
/// modules associated with the MCJITHelper to cross link functions
|
|
/// from one generated module to another.
|
|
///
|
|
/// If \p AbortOnFailure is false and no function with the given name is
|
|
/// found, this function returns a null pointer. Otherwise, it prints a
|
|
/// message to stderr and aborts.
|
|
virtual void *getPointerToNamedFunction(const std::string &Name,
|
|
bool AbortOnFailure = true);
|
|
private:
|
|
MCJITHelper *MasterHelper;
|
|
};
|
|
|
|
void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
|
|
bool AbortOnFailure)
|
|
{
|
|
// Try the standard symbol resolution first, but ask it not to abort.
|
|
void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false);
|
|
if (pfn)
|
|
return pfn;
|
|
|
|
pfn = MasterHelper->getPointerToNamedFunction(Name);
|
|
if (!pfn && AbortOnFailure)
|
|
report_fatal_error("Program used external function '" + Name +
|
|
"' which could not be resolved!");
|
|
return pfn;
|
|
}
|
|
|
|
MCJITHelper::~MCJITHelper()
|
|
{
|
|
// Walk the vector of modules.
|
|
ModuleVector::iterator it, end;
|
|
for (it = Modules.begin(), end = Modules.end();
|
|
it != end; ++it) {
|
|
// See if we have an execution engine for this module.
|
|
std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it);
|
|
// If we have an EE, the EE owns the module so just delete the EE.
|
|
if (mapIt != EngineMap.end()) {
|
|
delete mapIt->second;
|
|
} else {
|
|
// Otherwise, we still own the module. Delete it now.
|
|
delete *it;
|
|
}
|
|
}
|
|
}
|
|
|
|
Function *MCJITHelper::getFunction(const std::string FnName) {
|
|
ModuleVector::iterator begin = Modules.begin();
|
|
ModuleVector::iterator end = Modules.end();
|
|
ModuleVector::iterator it;
|
|
for (it = begin; it != end; ++it) {
|
|
Function *F = (*it)->getFunction(FnName);
|
|
if (F) {
|
|
if (*it == OpenModule)
|
|
return F;
|
|
|
|
assert(OpenModule != NULL);
|
|
|
|
// This function is in a module that has already been JITed.
|
|
// We need to generate a new prototype for external linkage.
|
|
Function *PF = OpenModule->getFunction(FnName);
|
|
if (PF && !PF->empty()) {
|
|
ErrorF("redefinition of function across modules");
|
|
return 0;
|
|
}
|
|
|
|
// If we don't have a prototype yet, create one.
|
|
if (!PF)
|
|
PF = Function::Create(F->getFunctionType(),
|
|
Function::ExternalLinkage,
|
|
FnName,
|
|
OpenModule);
|
|
return PF;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
Module *MCJITHelper::getModuleForNewFunction() {
|
|
// If we have a Module that hasn't been JITed, use that.
|
|
if (OpenModule)
|
|
return OpenModule;
|
|
|
|
// Otherwise create a new Module.
|
|
std::string ModName = GenerateUniqueName("mcjit_module_");
|
|
Module *M = new Module(ModName, Context);
|
|
Modules.push_back(M);
|
|
OpenModule = M;
|
|
return M;
|
|
}
|
|
|
|
void *MCJITHelper::getPointerToFunction(Function* F) {
|
|
// Look for this function in an existing module
|
|
ModuleVector::iterator begin = Modules.begin();
|
|
ModuleVector::iterator end = Modules.end();
|
|
ModuleVector::iterator it;
|
|
std::string FnName = F->getName();
|
|
for (it = begin; it != end; ++it) {
|
|
Function *MF = (*it)->getFunction(FnName);
|
|
if (MF == F) {
|
|
std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
|
|
if (eeIt != EngineMap.end()) {
|
|
void *P = eeIt->second->getPointerToFunction(F);
|
|
if (P)
|
|
return P;
|
|
} else {
|
|
ExecutionEngine *EE = compileModule(*it);
|
|
void *P = EE->getPointerToFunction(F);
|
|
if (P)
|
|
return P;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void MCJITHelper::closeCurrentModule() {
|
|
OpenModule = NULL;
|
|
}
|
|
|
|
ExecutionEngine *MCJITHelper::compileModule(Module *M) {
|
|
if (M == OpenModule)
|
|
closeCurrentModule();
|
|
|
|
std::string ErrStr;
|
|
ExecutionEngine *NewEngine = EngineBuilder(M)
|
|
.setErrorStr(&ErrStr)
|
|
.setMCJITMemoryManager(new HelpingMemoryManager(this))
|
|
.create();
|
|
if (!NewEngine) {
|
|
fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
|
|
exit(1);
|
|
}
|
|
|
|
if (UseObjectCache)
|
|
NewEngine->setObjectCache(&OurObjectCache);
|
|
|
|
// Get the ModuleID so we can identify IR input files
|
|
const std::string ModuleID = M->getModuleIdentifier();
|
|
|
|
// If we've flagged this as an IR file, it doesn't need function passes run.
|
|
if (0 != ModuleID.compare(0, 3, "IR:")) {
|
|
// Create a function pass manager for this engine
|
|
FunctionPassManager *FPM = new FunctionPassManager(M);
|
|
|
|
// Set up the optimizer pipeline. Start with registering info about how the
|
|
// target lays out data structures.
|
|
FPM->add(new DataLayout(*NewEngine->getDataLayout()));
|
|
// Provide basic AliasAnalysis support for GVN.
|
|
FPM->add(createBasicAliasAnalysisPass());
|
|
// Promote allocas to registers.
|
|
FPM->add(createPromoteMemoryToRegisterPass());
|
|
// Do simple "peephole" optimizations and bit-twiddling optzns.
|
|
FPM->add(createInstructionCombiningPass());
|
|
// Reassociate expressions.
|
|
FPM->add(createReassociatePass());
|
|
// Eliminate Common SubExpressions.
|
|
FPM->add(createGVNPass());
|
|
// Simplify the control flow graph (deleting unreachable blocks, etc).
|
|
FPM->add(createCFGSimplificationPass());
|
|
FPM->doInitialization();
|
|
|
|
// For each function in the module
|
|
Module::iterator it;
|
|
Module::iterator end = M->end();
|
|
for (it = M->begin(); it != end; ++it) {
|
|
// Run the FPM on this function
|
|
FPM->run(*it);
|
|
}
|
|
|
|
// We don't need this anymore
|
|
delete FPM;
|
|
}
|
|
|
|
// Store this engine
|
|
EngineMap[M] = NewEngine;
|
|
NewEngine->finalizeObject();
|
|
|
|
return NewEngine;
|
|
}
|
|
|
|
void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
|
|
{
|
|
// Look for the functions in our modules, compiling only as necessary
|
|
ModuleVector::iterator begin = Modules.begin();
|
|
ModuleVector::iterator end = Modules.end();
|
|
ModuleVector::iterator it;
|
|
for (it = begin; it != end; ++it) {
|
|
Function *F = (*it)->getFunction(Name);
|
|
if (F && !F->empty()) {
|
|
std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
|
|
if (eeIt != EngineMap.end()) {
|
|
void *P = eeIt->second->getPointerToFunction(F);
|
|
if (P)
|
|
return P;
|
|
} else {
|
|
ExecutionEngine *EE = compileModule(*it);
|
|
void *P = EE->getPointerToFunction(F);
|
|
if (P)
|
|
return P;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void MCJITHelper::addModule(Module* M) {
|
|
Modules.push_back(M);
|
|
}
|
|
|
|
void MCJITHelper::dump()
|
|
{
|
|
ModuleVector::iterator begin = Modules.begin();
|
|
ModuleVector::iterator end = Modules.end();
|
|
ModuleVector::iterator it;
|
|
for (it = begin; it != end; ++it)
|
|
(*it)->dump();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code Generation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static MCJITHelper *TheHelper;
|
|
static LLVMContext TheContext;
|
|
static IRBuilder<> Builder(TheContext);
|
|
static std::map<std::string, AllocaInst*> NamedValues;
|
|
|
|
Value *ErrorV(const char *Str) { Error(Str); return 0; }
|
|
|
|
/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
|
|
/// the function. This is used for mutable variables etc.
|
|
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
|
|
const std::string &VarName) {
|
|
IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
|
|
TheFunction->getEntryBlock().begin());
|
|
return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), 0, VarName.c_str());
|
|
}
|
|
|
|
Value *NumberExprAST::Codegen() {
|
|
return ConstantFP::get(TheContext, APFloat(Val));
|
|
}
|
|
|
|
Value *VariableExprAST::Codegen() {
|
|
// Look this variable up in the function.
|
|
Value *V = NamedValues[Name];
|
|
char ErrStr[256];
|
|
sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
|
|
if (V == 0) return ErrorV(ErrStr);
|
|
|
|
// Load the value.
|
|
return Builder.CreateLoad(V, Name.c_str());
|
|
}
|
|
|
|
Value *UnaryExprAST::Codegen() {
|
|
Value *OperandV = Operand->Codegen();
|
|
if (OperandV == 0) return 0;
|
|
|
|
Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
|
|
if (F == 0)
|
|
return ErrorV("Unknown unary operator");
|
|
|
|
return Builder.CreateCall(F, OperandV, "unop");
|
|
}
|
|
|
|
Value *BinaryExprAST::Codegen() {
|
|
// Special case '=' because we don't want to emit the LHS as an expression.
|
|
if (Op == '=') {
|
|
// Assignment requires the LHS to be an identifier.
|
|
VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS);
|
|
if (!LHSE)
|
|
return ErrorV("destination of '=' must be a variable");
|
|
// Codegen the RHS.
|
|
Value *Val = RHS->Codegen();
|
|
if (Val == 0) return 0;
|
|
|
|
// Look up the name.
|
|
Value *Variable = NamedValues[LHSE->getName()];
|
|
if (Variable == 0) return ErrorV("Unknown variable name");
|
|
|
|
Builder.CreateStore(Val, Variable);
|
|
return Val;
|
|
}
|
|
|
|
Value *L = LHS->Codegen();
|
|
Value *R = RHS->Codegen();
|
|
if (L == 0 || R == 0) return 0;
|
|
|
|
switch (Op) {
|
|
case '+': return Builder.CreateFAdd(L, R, "addtmp");
|
|
case '-': return Builder.CreateFSub(L, R, "subtmp");
|
|
case '*': return Builder.CreateFMul(L, R, "multmp");
|
|
case '/': return Builder.CreateFDiv(L, R, "divtmp");
|
|
case '<':
|
|
L = Builder.CreateFCmpULT(L, R, "cmptmp");
|
|
// Convert bool 0/1 to double 0.0 or 1.0
|
|
return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
|
|
default: break;
|
|
}
|
|
|
|
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
|
|
// a call to it.
|
|
Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
|
|
assert(F && "binary operator not found!");
|
|
|
|
Value *Ops[] = { L, R };
|
|
return Builder.CreateCall(F, Ops, "binop");
|
|
}
|
|
|
|
Value *CallExprAST::Codegen() {
|
|
// Look up the name in the global module table.
|
|
Function *CalleeF = TheHelper->getFunction(Callee);
|
|
if (CalleeF == 0)
|
|
return ErrorV("Unknown function referenced");
|
|
|
|
// If argument mismatch error.
|
|
if (CalleeF->arg_size() != Args.size())
|
|
return ErrorV("Incorrect # arguments passed");
|
|
|
|
std::vector<Value*> ArgsV;
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
ArgsV.push_back(Args[i]->Codegen());
|
|
if (ArgsV.back() == 0) return 0;
|
|
}
|
|
|
|
return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
|
|
}
|
|
|
|
Value *IfExprAST::Codegen() {
|
|
Value *CondV = Cond->Codegen();
|
|
if (CondV == 0) return 0;
|
|
|
|
// Convert condition to a bool by comparing equal to 0.0.
|
|
CondV = Builder.CreateFCmpONE(
|
|
CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
|
|
|
|
Function *TheFunction = Builder.GetInsertBlock()->getParent();
|
|
|
|
// Create blocks for the then and else cases. Insert the 'then' block at the
|
|
// end of the function.
|
|
BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
|
|
BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
|
|
BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
|
|
|
|
Builder.CreateCondBr(CondV, ThenBB, ElseBB);
|
|
|
|
// Emit then value.
|
|
Builder.SetInsertPoint(ThenBB);
|
|
|
|
Value *ThenV = Then->Codegen();
|
|
if (ThenV == 0) return 0;
|
|
|
|
Builder.CreateBr(MergeBB);
|
|
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
|
|
ThenBB = Builder.GetInsertBlock();
|
|
|
|
// Emit else block.
|
|
TheFunction->getBasicBlockList().push_back(ElseBB);
|
|
Builder.SetInsertPoint(ElseBB);
|
|
|
|
Value *ElseV = Else->Codegen();
|
|
if (ElseV == 0) return 0;
|
|
|
|
Builder.CreateBr(MergeBB);
|
|
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
|
|
ElseBB = Builder.GetInsertBlock();
|
|
|
|
// Emit merge block.
|
|
TheFunction->getBasicBlockList().push_back(MergeBB);
|
|
Builder.SetInsertPoint(MergeBB);
|
|
PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
|
|
|
|
PN->addIncoming(ThenV, ThenBB);
|
|
PN->addIncoming(ElseV, ElseBB);
|
|
return PN;
|
|
}
|
|
|
|
Value *ForExprAST::Codegen() {
|
|
// Output this as:
|
|
// var = alloca double
|
|
// ...
|
|
// start = startexpr
|
|
// store start -> var
|
|
// goto loop
|
|
// loop:
|
|
// ...
|
|
// bodyexpr
|
|
// ...
|
|
// loopend:
|
|
// step = stepexpr
|
|
// endcond = endexpr
|
|
//
|
|
// curvar = load var
|
|
// nextvar = curvar + step
|
|
// store nextvar -> var
|
|
// br endcond, loop, endloop
|
|
// outloop:
|
|
|
|
Function *TheFunction = Builder.GetInsertBlock()->getParent();
|
|
|
|
// Create an alloca for the variable in the entry block.
|
|
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
|
|
|
|
// Emit the start code first, without 'variable' in scope.
|
|
Value *StartVal = Start->Codegen();
|
|
if (StartVal == 0) return 0;
|
|
|
|
// Store the value into the alloca.
|
|
Builder.CreateStore(StartVal, Alloca);
|
|
|
|
// Make the new basic block for the loop header, inserting after current
|
|
// block.
|
|
BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
|
|
|
|
// Insert an explicit fall through from the current block to the LoopBB.
|
|
Builder.CreateBr(LoopBB);
|
|
|
|
// Start insertion in LoopBB.
|
|
Builder.SetInsertPoint(LoopBB);
|
|
|
|
// Within the loop, the variable is defined equal to the PHI node. If it
|
|
// shadows an existing variable, we have to restore it, so save it now.
|
|
AllocaInst *OldVal = NamedValues[VarName];
|
|
NamedValues[VarName] = Alloca;
|
|
|
|
// Emit the body of the loop. This, like any other expr, can change the
|
|
// current BB. Note that we ignore the value computed by the body, but don't
|
|
// allow an error.
|
|
if (Body->Codegen() == 0)
|
|
return 0;
|
|
|
|
// Emit the step value.
|
|
Value *StepVal;
|
|
if (Step) {
|
|
StepVal = Step->Codegen();
|
|
if (StepVal == 0) return 0;
|
|
} else {
|
|
// If not specified, use 1.0.
|
|
StepVal = ConstantFP::get(TheContext, APFloat(1.0));
|
|
}
|
|
|
|
// Compute the end condition.
|
|
Value *EndCond = End->Codegen();
|
|
if (EndCond == 0) return EndCond;
|
|
|
|
// Reload, increment, and restore the alloca. This handles the case where
|
|
// the body of the loop mutates the variable.
|
|
Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
|
|
Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
|
|
Builder.CreateStore(NextVar, Alloca);
|
|
|
|
// Convert condition to a bool by comparing equal to 0.0.
|
|
EndCond = Builder.CreateFCmpONE(
|
|
EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
|
|
|
|
// Create the "after loop" block and insert it.
|
|
BasicBlock *AfterBB =
|
|
BasicBlock::Create(TheContext, "afterloop", TheFunction);
|
|
|
|
// Insert the conditional branch into the end of LoopEndBB.
|
|
Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
|
|
|
|
// Any new code will be inserted in AfterBB.
|
|
Builder.SetInsertPoint(AfterBB);
|
|
|
|
// Restore the unshadowed variable.
|
|
if (OldVal)
|
|
NamedValues[VarName] = OldVal;
|
|
else
|
|
NamedValues.erase(VarName);
|
|
|
|
|
|
// for expr always returns 0.0.
|
|
return Constant::getNullValue(Type::getDoubleTy(TheContext));
|
|
}
|
|
|
|
Value *VarExprAST::Codegen() {
|
|
std::vector<AllocaInst *> OldBindings;
|
|
|
|
Function *TheFunction = Builder.GetInsertBlock()->getParent();
|
|
|
|
// Register all variables and emit their initializer.
|
|
for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
|
|
const std::string &VarName = VarNames[i].first;
|
|
ExprAST *Init = VarNames[i].second;
|
|
|
|
// Emit the initializer before adding the variable to scope, this prevents
|
|
// the initializer from referencing the variable itself, and permits stuff
|
|
// like this:
|
|
// var a = 1 in
|
|
// var a = a in ... # refers to outer 'a'.
|
|
Value *InitVal;
|
|
if (Init) {
|
|
InitVal = Init->Codegen();
|
|
if (InitVal == 0) return 0;
|
|
} else { // If not specified, use 0.0.
|
|
InitVal = ConstantFP::get(TheContext, APFloat(0.0));
|
|
}
|
|
|
|
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
|
|
Builder.CreateStore(InitVal, Alloca);
|
|
|
|
// Remember the old variable binding so that we can restore the binding when
|
|
// we unrecurse.
|
|
OldBindings.push_back(NamedValues[VarName]);
|
|
|
|
// Remember this binding.
|
|
NamedValues[VarName] = Alloca;
|
|
}
|
|
|
|
// Codegen the body, now that all vars are in scope.
|
|
Value *BodyVal = Body->Codegen();
|
|
if (BodyVal == 0) return 0;
|
|
|
|
// Pop all our variables from scope.
|
|
for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
|
|
NamedValues[VarNames[i].first] = OldBindings[i];
|
|
|
|
// Return the body computation.
|
|
return BodyVal;
|
|
}
|
|
|
|
Function *PrototypeAST::Codegen() {
|
|
// Make the function type: double(double,double) etc.
|
|
std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
|
|
FunctionType *FT =
|
|
FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
|
|
|
|
std::string FnName = MakeLegalFunctionName(Name);
|
|
|
|
Module* M = TheHelper->getModuleForNewFunction();
|
|
|
|
Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
|
|
|
|
// If F conflicted, there was already something named 'FnName'. If it has a
|
|
// body, don't allow redefinition or reextern.
|
|
if (F->getName() != FnName) {
|
|
// Delete the one we just made and get the existing one.
|
|
F->eraseFromParent();
|
|
F = M->getFunction(Name);
|
|
|
|
// If F already has a body, reject this.
|
|
if (!F->empty()) {
|
|
ErrorF("redefinition of function");
|
|
return 0;
|
|
}
|
|
|
|
// If F took a different number of args, reject.
|
|
if (F->arg_size() != Args.size()) {
|
|
ErrorF("redefinition of function with different # args");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Set names for all arguments.
|
|
unsigned Idx = 0;
|
|
for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
|
|
++AI, ++Idx)
|
|
AI->setName(Args[Idx]);
|
|
|
|
return F;
|
|
}
|
|
|
|
/// CreateArgumentAllocas - Create an alloca for each argument and register the
|
|
/// argument in the symbol table so that references to it will succeed.
|
|
void PrototypeAST::CreateArgumentAllocas(Function *F) {
|
|
Function::arg_iterator AI = F->arg_begin();
|
|
for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
|
|
// Create an alloca for this variable.
|
|
AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
|
|
|
|
// Store the initial value into the alloca.
|
|
Builder.CreateStore(AI, Alloca);
|
|
|
|
// Add arguments to variable symbol table.
|
|
NamedValues[Args[Idx]] = Alloca;
|
|
}
|
|
}
|
|
|
|
Function *FunctionAST::Codegen() {
|
|
NamedValues.clear();
|
|
|
|
Function *TheFunction = Proto->Codegen();
|
|
if (TheFunction == 0)
|
|
return 0;
|
|
|
|
// If this is an operator, install it.
|
|
if (Proto->isBinaryOp())
|
|
BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
|
|
|
|
// Create a new basic block to start insertion into.
|
|
BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
|
|
Builder.SetInsertPoint(BB);
|
|
|
|
// Add all arguments to the symbol table and create their allocas.
|
|
Proto->CreateArgumentAllocas(TheFunction);
|
|
|
|
if (Value *RetVal = Body->Codegen()) {
|
|
// Finish off the function.
|
|
Builder.CreateRet(RetVal);
|
|
|
|
// Validate the generated code, checking for consistency.
|
|
verifyFunction(*TheFunction);
|
|
|
|
return TheFunction;
|
|
}
|
|
|
|
// Error reading body, remove function.
|
|
TheFunction->eraseFromParent();
|
|
|
|
if (Proto->isBinaryOp())
|
|
BinopPrecedence.erase(Proto->getOperatorName());
|
|
return 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-Level parsing and JIT Driver
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void HandleDefinition() {
|
|
if (FunctionAST *F = ParseDefinition()) {
|
|
TheHelper->closeCurrentModule();
|
|
if (Function *LF = F->Codegen()) {
|
|
#ifndef MINIMAL_STDERR_OUTPUT
|
|
fprintf(stderr, "Read function definition:");
|
|
LF->print(errs());
|
|
fprintf(stderr, "\n");
|
|
#endif
|
|
}
|
|
} else {
|
|
// Skip token for error recovery.
|
|
getNextToken();
|
|
}
|
|
}
|
|
|
|
static void HandleExtern() {
|
|
if (PrototypeAST *P = ParseExtern()) {
|
|
if (Function *F = P->Codegen()) {
|
|
#ifndef MINIMAL_STDERR_OUTPUT
|
|
fprintf(stderr, "Read extern: ");
|
|
F->print(errs());
|
|
fprintf(stderr, "\n");
|
|
#endif
|
|
}
|
|
} else {
|
|
// Skip token for error recovery.
|
|
getNextToken();
|
|
}
|
|
}
|
|
|
|
static void HandleTopLevelExpression() {
|
|
// Evaluate a top-level expression into an anonymous function.
|
|
if (FunctionAST *F = ParseTopLevelExpr()) {
|
|
if (Function *LF = F->Codegen()) {
|
|
// JIT the function, returning a function pointer.
|
|
void *FPtr = TheHelper->getPointerToFunction(LF);
|
|
|
|
// Cast it to the right type (takes no arguments, returns a double) so we
|
|
// can call it as a native function.
|
|
double (*FP)() = (double (*)())(intptr_t)FPtr;
|
|
#ifdef MINIMAL_STDERR_OUTPUT
|
|
FP();
|
|
#else
|
|
fprintf(stderr, "Evaluated to %f\n", FP());
|
|
#endif
|
|
}
|
|
} else {
|
|
// Skip token for error recovery.
|
|
getNextToken();
|
|
}
|
|
}
|
|
|
|
/// top ::= definition | external | expression | ';'
|
|
static void MainLoop() {
|
|
while (1) {
|
|
#ifndef MINIMAL_STDERR_OUTPUT
|
|
fprintf(stderr, "ready> ");
|
|
#endif
|
|
switch (CurTok) {
|
|
case tok_eof: return;
|
|
case ';': getNextToken(); break; // ignore top-level semicolons.
|
|
case tok_def: HandleDefinition(); break;
|
|
case tok_extern: HandleExtern(); break;
|
|
default: HandleTopLevelExpression(); break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// "Library" functions that can be "extern'd" from user code.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// putchard - putchar that takes a double and returns 0.
|
|
extern "C"
|
|
double putchard(double X) {
|
|
putchar((char)X);
|
|
return 0;
|
|
}
|
|
|
|
/// printd - printf that takes a double prints it as "%f\n", returning 0.
|
|
extern "C"
|
|
double printd(double X) {
|
|
printf("%f", X);
|
|
return 0;
|
|
}
|
|
|
|
extern "C"
|
|
double printlf() {
|
|
printf("\n");
|
|
return 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Command line input file handler
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Module* parseInputIR(std::string InputFile) {
|
|
SMDiagnostic Err;
|
|
Module *M = ParseIRFile(InputFile, Err, TheContext);
|
|
if (!M) {
|
|
Err.print("IR parsing failed: ", errs());
|
|
return NULL;
|
|
}
|
|
|
|
char ModID[256];
|
|
sprintf(ModID, "IR:%s", InputFile.c_str());
|
|
M->setModuleIdentifier(ModID);
|
|
|
|
TheHelper->addModule(M);
|
|
return M;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Main driver code.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
int main(int argc, char **argv) {
|
|
InitializeNativeTarget();
|
|
InitializeNativeTargetAsmPrinter();
|
|
InitializeNativeTargetAsmParser();
|
|
LLVMContext &Context = TheContext;
|
|
|
|
cl::ParseCommandLineOptions(argc, argv,
|
|
"Kaleidoscope example program\n");
|
|
|
|
// Install standard binary operators.
|
|
// 1 is lowest precedence.
|
|
BinopPrecedence['='] = 2;
|
|
BinopPrecedence['<'] = 10;
|
|
BinopPrecedence['+'] = 20;
|
|
BinopPrecedence['-'] = 20;
|
|
BinopPrecedence['/'] = 40;
|
|
BinopPrecedence['*'] = 40; // highest.
|
|
|
|
// Prime the first token.
|
|
#ifndef MINIMAL_STDERR_OUTPUT
|
|
fprintf(stderr, "ready> ");
|
|
#endif
|
|
getNextToken();
|
|
|
|
// Make the helper, which holds all the code.
|
|
TheHelper = new MCJITHelper(Context);
|
|
|
|
if (!InputIR.empty()) {
|
|
parseInputIR(InputIR);
|
|
}
|
|
|
|
// Run the main "interpreter loop" now.
|
|
MainLoop();
|
|
|
|
#ifndef MINIMAL_STDERR_OUTPUT
|
|
// Print out all of the generated code.
|
|
TheHelper->print(errs());
|
|
#endif
|
|
|
|
return 0;
|
|
}
|