1016 lines
33 KiB
C++
1016 lines
33 KiB
C++
//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend emits information about intrinsic functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenIntrinsics.h"
|
|
#include "CodeGenTarget.h"
|
|
#include "SequenceToOffsetTable.h"
|
|
#include "TableGenBackends.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include "llvm/TableGen/StringMatcher.h"
|
|
#include "llvm/TableGen/StringToOffsetTable.h"
|
|
#include "llvm/TableGen/TableGenBackend.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums");
|
|
cl::opt<std::string>
|
|
IntrinsicPrefix("intrinsic-prefix",
|
|
cl::desc("Generate intrinsics with this target prefix"),
|
|
cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat));
|
|
|
|
namespace {
|
|
class IntrinsicEmitter {
|
|
RecordKeeper &Records;
|
|
|
|
public:
|
|
IntrinsicEmitter(RecordKeeper &R) : Records(R) {}
|
|
|
|
void run(raw_ostream &OS, bool Enums);
|
|
|
|
void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
|
|
void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
|
|
void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
|
|
raw_ostream &OS);
|
|
void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
|
|
raw_ostream &OS);
|
|
void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
|
|
void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
|
|
void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC,
|
|
raw_ostream &OS);
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntrinsicEmitter Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
|
|
emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
|
|
|
|
CodeGenIntrinsicTable Ints(Records);
|
|
|
|
if (Enums) {
|
|
// Emit the enum information.
|
|
EmitEnumInfo(Ints, OS);
|
|
} else {
|
|
// Emit the target metadata.
|
|
EmitTargetInfo(Ints, OS);
|
|
|
|
// Emit the intrinsic ID -> name table.
|
|
EmitIntrinsicToNameTable(Ints, OS);
|
|
|
|
// Emit the intrinsic ID -> overload table.
|
|
EmitIntrinsicToOverloadTable(Ints, OS);
|
|
|
|
// Emit the intrinsic declaration generator.
|
|
EmitGenerator(Ints, OS);
|
|
|
|
// Emit the intrinsic parameter attributes.
|
|
EmitAttributes(Ints, OS);
|
|
|
|
// Emit code to translate GCC builtins into LLVM intrinsics.
|
|
EmitIntrinsicToBuiltinMap(Ints, true, OS);
|
|
|
|
// Emit code to translate MS builtins into LLVM intrinsics.
|
|
EmitIntrinsicToBuiltinMap(Ints, false, OS);
|
|
}
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
|
|
raw_ostream &OS) {
|
|
// Find the TargetSet for which to generate enums. There will be an initial
|
|
// set with an empty target prefix which will include target independent
|
|
// intrinsics like dbg.value.
|
|
const CodeGenIntrinsicTable::TargetSet *Set = nullptr;
|
|
for (const auto &Target : Ints.Targets) {
|
|
if (Target.Name == IntrinsicPrefix) {
|
|
Set = &Target;
|
|
break;
|
|
}
|
|
}
|
|
if (!Set) {
|
|
std::vector<std::string> KnownTargets;
|
|
for (const auto &Target : Ints.Targets)
|
|
if (!Target.Name.empty())
|
|
KnownTargets.push_back(Target.Name);
|
|
PrintFatalError("tried to generate intrinsics for unknown target " +
|
|
IntrinsicPrefix +
|
|
"\nKnown targets are: " + join(KnownTargets, ", ") + "\n");
|
|
}
|
|
|
|
// Generate a complete header for target specific intrinsics.
|
|
if (!IntrinsicPrefix.empty()) {
|
|
std::string UpperPrefix = StringRef(IntrinsicPrefix).upper();
|
|
OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n";
|
|
OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n";
|
|
OS << "namespace llvm {\n";
|
|
OS << "namespace Intrinsic {\n";
|
|
OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n";
|
|
}
|
|
|
|
OS << "// Enum values for intrinsics\n";
|
|
for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) {
|
|
OS << " " << Ints[i].EnumName;
|
|
|
|
// Assign a value to the first intrinsic in this target set so that all
|
|
// intrinsic ids are distinct.
|
|
if (i == Set->Offset)
|
|
OS << " = " << (Set->Offset + 1);
|
|
|
|
OS << ", ";
|
|
if (Ints[i].EnumName.size() < 40)
|
|
OS.indent(40 - Ints[i].EnumName.size());
|
|
OS << " // " << Ints[i].Name << "\n";
|
|
}
|
|
|
|
// Emit num_intrinsics into the target neutral enum.
|
|
if (IntrinsicPrefix.empty()) {
|
|
OS << " num_intrinsics = " << (Ints.size() + 1) << "\n";
|
|
} else {
|
|
OS << "}; // enum\n";
|
|
OS << "} // namespace Intrinsic\n";
|
|
OS << "} // namespace llvm\n\n";
|
|
OS << "#endif\n";
|
|
}
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
|
|
raw_ostream &OS) {
|
|
OS << "// Target mapping\n";
|
|
OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
|
|
OS << "struct IntrinsicTargetInfo {\n"
|
|
<< " llvm::StringLiteral Name;\n"
|
|
<< " size_t Offset;\n"
|
|
<< " size_t Count;\n"
|
|
<< "};\n";
|
|
OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n";
|
|
for (auto Target : Ints.Targets)
|
|
OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset
|
|
<< ", " << Target.Count << "},\n";
|
|
OS << "};\n";
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitIntrinsicToNameTable(
|
|
const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
|
|
OS << "// Intrinsic ID to name table\n";
|
|
OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
|
|
OS << " // Note that entry #0 is the invalid intrinsic!\n";
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i)
|
|
OS << " \"" << Ints[i].Name << "\",\n";
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
|
|
const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
|
|
OS << "// Intrinsic ID to overload bitset\n";
|
|
OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
|
|
OS << "static const uint8_t OTable[] = {\n";
|
|
OS << " 0";
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
// Add one to the index so we emit a null bit for the invalid #0 intrinsic.
|
|
if ((i+1)%8 == 0)
|
|
OS << ",\n 0";
|
|
if (Ints[i].isOverloaded)
|
|
OS << " | (1<<" << (i+1)%8 << ')';
|
|
}
|
|
OS << "\n};\n\n";
|
|
// OTable contains a true bit at the position if the intrinsic is overloaded.
|
|
OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
|
|
// NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp!
|
|
enum IIT_Info {
|
|
// Common values should be encoded with 0-15.
|
|
IIT_Done = 0,
|
|
IIT_I1 = 1,
|
|
IIT_I8 = 2,
|
|
IIT_I16 = 3,
|
|
IIT_I32 = 4,
|
|
IIT_I64 = 5,
|
|
IIT_F16 = 6,
|
|
IIT_F32 = 7,
|
|
IIT_F64 = 8,
|
|
IIT_V2 = 9,
|
|
IIT_V4 = 10,
|
|
IIT_V8 = 11,
|
|
IIT_V16 = 12,
|
|
IIT_V32 = 13,
|
|
IIT_PTR = 14,
|
|
IIT_ARG = 15,
|
|
|
|
// Values from 16+ are only encodable with the inefficient encoding.
|
|
IIT_V64 = 16,
|
|
IIT_MMX = 17,
|
|
IIT_TOKEN = 18,
|
|
IIT_METADATA = 19,
|
|
IIT_EMPTYSTRUCT = 20,
|
|
IIT_STRUCT2 = 21,
|
|
IIT_STRUCT3 = 22,
|
|
IIT_STRUCT4 = 23,
|
|
IIT_STRUCT5 = 24,
|
|
IIT_EXTEND_ARG = 25,
|
|
IIT_TRUNC_ARG = 26,
|
|
IIT_ANYPTR = 27,
|
|
IIT_V1 = 28,
|
|
IIT_VARARG = 29,
|
|
IIT_HALF_VEC_ARG = 30,
|
|
IIT_SAME_VEC_WIDTH_ARG = 31,
|
|
IIT_PTR_TO_ARG = 32,
|
|
IIT_PTR_TO_ELT = 33,
|
|
IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
|
|
IIT_I128 = 35,
|
|
IIT_V512 = 36,
|
|
IIT_V1024 = 37,
|
|
IIT_STRUCT6 = 38,
|
|
IIT_STRUCT7 = 39,
|
|
IIT_STRUCT8 = 40,
|
|
IIT_F128 = 41,
|
|
IIT_VEC_ELEMENT = 42,
|
|
IIT_SCALABLE_VEC = 43,
|
|
IIT_SUBDIVIDE2_ARG = 44,
|
|
IIT_SUBDIVIDE4_ARG = 45,
|
|
IIT_VEC_OF_BITCASTS_TO_INT = 46,
|
|
IIT_V128 = 47,
|
|
IIT_BF16 = 48,
|
|
IIT_STRUCT9 = 49,
|
|
IIT_V256 = 50,
|
|
IIT_AMX = 51
|
|
};
|
|
|
|
static void EncodeFixedValueType(MVT::SimpleValueType VT,
|
|
std::vector<unsigned char> &Sig) {
|
|
if (MVT(VT).isInteger()) {
|
|
unsigned BitWidth = MVT(VT).getFixedSizeInBits();
|
|
switch (BitWidth) {
|
|
default: PrintFatalError("unhandled integer type width in intrinsic!");
|
|
case 1: return Sig.push_back(IIT_I1);
|
|
case 8: return Sig.push_back(IIT_I8);
|
|
case 16: return Sig.push_back(IIT_I16);
|
|
case 32: return Sig.push_back(IIT_I32);
|
|
case 64: return Sig.push_back(IIT_I64);
|
|
case 128: return Sig.push_back(IIT_I128);
|
|
}
|
|
}
|
|
|
|
switch (VT) {
|
|
default: PrintFatalError("unhandled MVT in intrinsic!");
|
|
case MVT::f16: return Sig.push_back(IIT_F16);
|
|
case MVT::bf16: return Sig.push_back(IIT_BF16);
|
|
case MVT::f32: return Sig.push_back(IIT_F32);
|
|
case MVT::f64: return Sig.push_back(IIT_F64);
|
|
case MVT::f128: return Sig.push_back(IIT_F128);
|
|
case MVT::token: return Sig.push_back(IIT_TOKEN);
|
|
case MVT::Metadata: return Sig.push_back(IIT_METADATA);
|
|
case MVT::x86mmx: return Sig.push_back(IIT_MMX);
|
|
case MVT::x86amx: return Sig.push_back(IIT_AMX);
|
|
// MVT::OtherVT is used to mean the empty struct type here.
|
|
case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
|
|
// MVT::isVoid is used to represent varargs here.
|
|
case MVT::isVoid: return Sig.push_back(IIT_VARARG);
|
|
}
|
|
}
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function.
|
|
#endif
|
|
|
|
static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
|
|
unsigned &NextArgCode,
|
|
std::vector<unsigned char> &Sig,
|
|
ArrayRef<unsigned char> Mapping) {
|
|
|
|
if (R->isSubClassOf("LLVMMatchType")) {
|
|
unsigned Number = Mapping[R->getValueAsInt("Number")];
|
|
assert(Number < ArgCodes.size() && "Invalid matching number!");
|
|
if (R->isSubClassOf("LLVMExtendedType"))
|
|
Sig.push_back(IIT_EXTEND_ARG);
|
|
else if (R->isSubClassOf("LLVMTruncatedType"))
|
|
Sig.push_back(IIT_TRUNC_ARG);
|
|
else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
|
|
Sig.push_back(IIT_HALF_VEC_ARG);
|
|
else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) {
|
|
Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
|
|
Sig.push_back((Number << 3) | ArgCodes[Number]);
|
|
MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
|
|
EncodeFixedValueType(VT, Sig);
|
|
return;
|
|
}
|
|
else if (R->isSubClassOf("LLVMPointerTo"))
|
|
Sig.push_back(IIT_PTR_TO_ARG);
|
|
else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
|
|
Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT);
|
|
// Encode overloaded ArgNo
|
|
Sig.push_back(NextArgCode++);
|
|
// Encode LLVMMatchType<Number> ArgNo
|
|
Sig.push_back(Number);
|
|
return;
|
|
} else if (R->isSubClassOf("LLVMPointerToElt"))
|
|
Sig.push_back(IIT_PTR_TO_ELT);
|
|
else if (R->isSubClassOf("LLVMVectorElementType"))
|
|
Sig.push_back(IIT_VEC_ELEMENT);
|
|
else if (R->isSubClassOf("LLVMSubdivide2VectorType"))
|
|
Sig.push_back(IIT_SUBDIVIDE2_ARG);
|
|
else if (R->isSubClassOf("LLVMSubdivide4VectorType"))
|
|
Sig.push_back(IIT_SUBDIVIDE4_ARG);
|
|
else if (R->isSubClassOf("LLVMVectorOfBitcastsToInt"))
|
|
Sig.push_back(IIT_VEC_OF_BITCASTS_TO_INT);
|
|
else
|
|
Sig.push_back(IIT_ARG);
|
|
return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/);
|
|
}
|
|
|
|
MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
|
|
|
|
unsigned Tmp = 0;
|
|
switch (VT) {
|
|
default: break;
|
|
case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH;
|
|
case MVT::vAny: ++Tmp; LLVM_FALLTHROUGH;
|
|
case MVT::fAny: ++Tmp; LLVM_FALLTHROUGH;
|
|
case MVT::iAny: ++Tmp; LLVM_FALLTHROUGH;
|
|
case MVT::Any: {
|
|
// If this is an "any" valuetype, then the type is the type of the next
|
|
// type in the list specified to getIntrinsic().
|
|
Sig.push_back(IIT_ARG);
|
|
|
|
// Figure out what arg # this is consuming, and remember what kind it was.
|
|
assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp &&
|
|
"Invalid or no ArgCode associated with overloaded VT!");
|
|
unsigned ArgNo = NextArgCode++;
|
|
|
|
// Encode what sort of argument it must be in the low 3 bits of the ArgNo.
|
|
return Sig.push_back((ArgNo << 3) | Tmp);
|
|
}
|
|
|
|
case MVT::iPTR: {
|
|
unsigned AddrSpace = 0;
|
|
if (R->isSubClassOf("LLVMQualPointerType")) {
|
|
AddrSpace = R->getValueAsInt("AddrSpace");
|
|
assert(AddrSpace < 256 && "Address space exceeds 255");
|
|
}
|
|
if (AddrSpace) {
|
|
Sig.push_back(IIT_ANYPTR);
|
|
Sig.push_back(AddrSpace);
|
|
} else {
|
|
Sig.push_back(IIT_PTR);
|
|
}
|
|
return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig,
|
|
Mapping);
|
|
}
|
|
}
|
|
|
|
if (MVT(VT).isVector()) {
|
|
MVT VVT = VT;
|
|
if (VVT.isScalableVector())
|
|
Sig.push_back(IIT_SCALABLE_VEC);
|
|
switch (VVT.getVectorNumElements()) {
|
|
default: PrintFatalError("unhandled vector type width in intrinsic!");
|
|
case 1: Sig.push_back(IIT_V1); break;
|
|
case 2: Sig.push_back(IIT_V2); break;
|
|
case 4: Sig.push_back(IIT_V4); break;
|
|
case 8: Sig.push_back(IIT_V8); break;
|
|
case 16: Sig.push_back(IIT_V16); break;
|
|
case 32: Sig.push_back(IIT_V32); break;
|
|
case 64: Sig.push_back(IIT_V64); break;
|
|
case 128: Sig.push_back(IIT_V128); break;
|
|
case 256: Sig.push_back(IIT_V256); break;
|
|
case 512: Sig.push_back(IIT_V512); break;
|
|
case 1024: Sig.push_back(IIT_V1024); break;
|
|
}
|
|
|
|
return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
|
|
}
|
|
|
|
EncodeFixedValueType(VT, Sig);
|
|
}
|
|
|
|
static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes,
|
|
unsigned int &NumInserted,
|
|
SmallVectorImpl<unsigned char> &Mapping) {
|
|
if (R->isSubClassOf("LLVMMatchType")) {
|
|
if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
|
|
ArgCodes.push_back(3 /*vAny*/);
|
|
++NumInserted;
|
|
}
|
|
return;
|
|
}
|
|
|
|
unsigned Tmp = 0;
|
|
switch (getValueType(R->getValueAsDef("VT"))) {
|
|
default: break;
|
|
case MVT::iPTR:
|
|
UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping);
|
|
break;
|
|
case MVT::iPTRAny:
|
|
++Tmp;
|
|
LLVM_FALLTHROUGH;
|
|
case MVT::vAny:
|
|
++Tmp;
|
|
LLVM_FALLTHROUGH;
|
|
case MVT::fAny:
|
|
++Tmp;
|
|
LLVM_FALLTHROUGH;
|
|
case MVT::iAny:
|
|
++Tmp;
|
|
LLVM_FALLTHROUGH;
|
|
case MVT::Any:
|
|
unsigned OriginalIdx = ArgCodes.size() - NumInserted;
|
|
assert(OriginalIdx >= Mapping.size());
|
|
Mapping.resize(OriginalIdx+1);
|
|
Mapping[OriginalIdx] = ArgCodes.size();
|
|
ArgCodes.push_back(Tmp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#pragma optimize("",on)
|
|
#endif
|
|
|
|
/// ComputeFixedEncoding - If we can encode the type signature for this
|
|
/// intrinsic into 32 bits, return it. If not, return ~0U.
|
|
static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
|
|
std::vector<unsigned char> &TypeSig) {
|
|
std::vector<unsigned char> ArgCodes;
|
|
|
|
// Add codes for any overloaded result VTs.
|
|
unsigned int NumInserted = 0;
|
|
SmallVector<unsigned char, 8> ArgMapping;
|
|
for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
|
|
UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
|
|
|
|
// Add codes for any overloaded operand VTs.
|
|
for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
|
|
UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
|
|
|
|
unsigned NextArgCode = 0;
|
|
if (Int.IS.RetVTs.empty())
|
|
TypeSig.push_back(IIT_Done);
|
|
else if (Int.IS.RetVTs.size() == 1 &&
|
|
Int.IS.RetVTs[0] == MVT::isVoid)
|
|
TypeSig.push_back(IIT_Done);
|
|
else {
|
|
switch (Int.IS.RetVTs.size()) {
|
|
case 1: break;
|
|
case 2: TypeSig.push_back(IIT_STRUCT2); break;
|
|
case 3: TypeSig.push_back(IIT_STRUCT3); break;
|
|
case 4: TypeSig.push_back(IIT_STRUCT4); break;
|
|
case 5: TypeSig.push_back(IIT_STRUCT5); break;
|
|
case 6: TypeSig.push_back(IIT_STRUCT6); break;
|
|
case 7: TypeSig.push_back(IIT_STRUCT7); break;
|
|
case 8: TypeSig.push_back(IIT_STRUCT8); break;
|
|
case 9: TypeSig.push_back(IIT_STRUCT9); break;
|
|
default: llvm_unreachable("Unhandled case in struct");
|
|
}
|
|
|
|
for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
|
|
EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
|
|
ArgMapping);
|
|
}
|
|
|
|
for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
|
|
EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
|
|
ArgMapping);
|
|
}
|
|
|
|
static void printIITEntry(raw_ostream &OS, unsigned char X) {
|
|
OS << (unsigned)X;
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
|
|
raw_ostream &OS) {
|
|
// If we can compute a 32-bit fixed encoding for this intrinsic, do so and
|
|
// capture it in this vector, otherwise store a ~0U.
|
|
std::vector<unsigned> FixedEncodings;
|
|
|
|
SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
|
|
|
|
std::vector<unsigned char> TypeSig;
|
|
|
|
// Compute the unique argument type info.
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
// Get the signature for the intrinsic.
|
|
TypeSig.clear();
|
|
ComputeFixedEncoding(Ints[i], TypeSig);
|
|
|
|
// Check to see if we can encode it into a 32-bit word. We can only encode
|
|
// 8 nibbles into a 32-bit word.
|
|
if (TypeSig.size() <= 8) {
|
|
bool Failed = false;
|
|
unsigned Result = 0;
|
|
for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
|
|
// If we had an unencodable argument, bail out.
|
|
if (TypeSig[i] > 15) {
|
|
Failed = true;
|
|
break;
|
|
}
|
|
Result = (Result << 4) | TypeSig[e-i-1];
|
|
}
|
|
|
|
// If this could be encoded into a 31-bit word, return it.
|
|
if (!Failed && (Result >> 31) == 0) {
|
|
FixedEncodings.push_back(Result);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we're going to unique the sequence into the
|
|
// LongEncodingTable, and use its offset in the 32-bit table instead.
|
|
LongEncodingTable.add(TypeSig);
|
|
|
|
// This is a placehold that we'll replace after the table is laid out.
|
|
FixedEncodings.push_back(~0U);
|
|
}
|
|
|
|
LongEncodingTable.layout();
|
|
|
|
OS << "// Global intrinsic function declaration type table.\n";
|
|
OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
|
|
|
|
OS << "static const unsigned IIT_Table[] = {\n ";
|
|
|
|
for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
|
|
if ((i & 7) == 7)
|
|
OS << "\n ";
|
|
|
|
// If the entry fit in the table, just emit it.
|
|
if (FixedEncodings[i] != ~0U) {
|
|
OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", ";
|
|
continue;
|
|
}
|
|
|
|
TypeSig.clear();
|
|
ComputeFixedEncoding(Ints[i], TypeSig);
|
|
|
|
|
|
// Otherwise, emit the offset into the long encoding table. We emit it this
|
|
// way so that it is easier to read the offset in the .def file.
|
|
OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
|
|
}
|
|
|
|
OS << "0\n};\n\n";
|
|
|
|
// Emit the shared table of register lists.
|
|
OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
|
|
if (!LongEncodingTable.empty())
|
|
LongEncodingTable.emit(OS, printIITEntry);
|
|
OS << " 255\n};\n\n";
|
|
|
|
OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL
|
|
}
|
|
|
|
namespace {
|
|
struct AttributeComparator {
|
|
bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
|
|
// Sort throwing intrinsics after non-throwing intrinsics.
|
|
if (L->canThrow != R->canThrow)
|
|
return R->canThrow;
|
|
|
|
if (L->isNoDuplicate != R->isNoDuplicate)
|
|
return R->isNoDuplicate;
|
|
|
|
if (L->isNoReturn != R->isNoReturn)
|
|
return R->isNoReturn;
|
|
|
|
if (L->isNoSync != R->isNoSync)
|
|
return R->isNoSync;
|
|
|
|
if (L->isNoFree != R->isNoFree)
|
|
return R->isNoFree;
|
|
|
|
if (L->isWillReturn != R->isWillReturn)
|
|
return R->isWillReturn;
|
|
|
|
if (L->isCold != R->isCold)
|
|
return R->isCold;
|
|
|
|
if (L->isConvergent != R->isConvergent)
|
|
return R->isConvergent;
|
|
|
|
if (L->isSpeculatable != R->isSpeculatable)
|
|
return R->isSpeculatable;
|
|
|
|
if (L->hasSideEffects != R->hasSideEffects)
|
|
return R->hasSideEffects;
|
|
|
|
// Try to order by readonly/readnone attribute.
|
|
CodeGenIntrinsic::ModRefBehavior LK = L->ModRef;
|
|
CodeGenIntrinsic::ModRefBehavior RK = R->ModRef;
|
|
if (LK != RK) return (LK > RK);
|
|
// Order by argument attributes.
|
|
// This is reliable because each side is already sorted internally.
|
|
return (L->ArgumentAttributes < R->ArgumentAttributes);
|
|
}
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
/// EmitAttributes - This emits the Intrinsic::getAttributes method.
|
|
void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
|
|
raw_ostream &OS) {
|
|
OS << "// Add parameter attributes that are not common to all intrinsics.\n";
|
|
OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
|
|
OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
|
|
|
|
// Compute the maximum number of attribute arguments and the map
|
|
typedef std::map<const CodeGenIntrinsic*, unsigned,
|
|
AttributeComparator> UniqAttrMapTy;
|
|
UniqAttrMapTy UniqAttributes;
|
|
unsigned maxArgAttrs = 0;
|
|
unsigned AttrNum = 0;
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
const CodeGenIntrinsic &intrinsic = Ints[i];
|
|
maxArgAttrs =
|
|
std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
|
|
unsigned &N = UniqAttributes[&intrinsic];
|
|
if (N) continue;
|
|
N = ++AttrNum;
|
|
assert(N < 65536 && "Too many unique attributes for table!");
|
|
}
|
|
|
|
// Emit an array of AttributeList. Most intrinsics will have at least one
|
|
// entry, for the function itself (index ~1), which is usually nounwind.
|
|
OS << " static const uint16_t IntrinsicsToAttributesMap[] = {\n";
|
|
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
const CodeGenIntrinsic &intrinsic = Ints[i];
|
|
|
|
OS << " " << UniqAttributes[&intrinsic] << ", // "
|
|
<< intrinsic.Name << "\n";
|
|
}
|
|
OS << " };\n\n";
|
|
|
|
OS << " AttributeList AS[" << maxArgAttrs + 1 << "];\n";
|
|
OS << " unsigned NumAttrs = 0;\n";
|
|
OS << " if (id != 0) {\n";
|
|
OS << " switch(IntrinsicsToAttributesMap[id - 1]) {\n";
|
|
OS << " default: llvm_unreachable(\"Invalid attribute number\");\n";
|
|
for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(),
|
|
E = UniqAttributes.end(); I != E; ++I) {
|
|
OS << " case " << I->second << ": {\n";
|
|
|
|
const CodeGenIntrinsic &intrinsic = *(I->first);
|
|
|
|
// Keep track of the number of attributes we're writing out.
|
|
unsigned numAttrs = 0;
|
|
|
|
// The argument attributes are alreadys sorted by argument index.
|
|
unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size();
|
|
if (ae) {
|
|
while (ai != ae) {
|
|
unsigned attrIdx = intrinsic.ArgumentAttributes[ai].Index;
|
|
|
|
OS << " const Attribute::AttrKind AttrParam" << attrIdx << "[]= {";
|
|
bool addComma = false;
|
|
|
|
bool AllValuesAreZero = true;
|
|
SmallVector<uint64_t, 8> Values;
|
|
do {
|
|
switch (intrinsic.ArgumentAttributes[ai].Kind) {
|
|
case CodeGenIntrinsic::NoCapture:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::NoCapture";
|
|
addComma = true;
|
|
break;
|
|
case CodeGenIntrinsic::NoAlias:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::NoAlias";
|
|
addComma = true;
|
|
break;
|
|
case CodeGenIntrinsic::NoUndef:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::NoUndef";
|
|
addComma = true;
|
|
break;
|
|
case CodeGenIntrinsic::Returned:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::Returned";
|
|
addComma = true;
|
|
break;
|
|
case CodeGenIntrinsic::ReadOnly:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadOnly";
|
|
addComma = true;
|
|
break;
|
|
case CodeGenIntrinsic::WriteOnly:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::WriteOnly";
|
|
addComma = true;
|
|
break;
|
|
case CodeGenIntrinsic::ReadNone:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadNone";
|
|
addComma = true;
|
|
break;
|
|
case CodeGenIntrinsic::ImmArg:
|
|
if (addComma)
|
|
OS << ',';
|
|
OS << "Attribute::ImmArg";
|
|
addComma = true;
|
|
break;
|
|
case CodeGenIntrinsic::Alignment:
|
|
if (addComma)
|
|
OS << ',';
|
|
OS << "Attribute::Alignment";
|
|
addComma = true;
|
|
break;
|
|
}
|
|
uint64_t V = intrinsic.ArgumentAttributes[ai].Value;
|
|
Values.push_back(V);
|
|
AllValuesAreZero &= (V == 0);
|
|
|
|
++ai;
|
|
} while (ai != ae && intrinsic.ArgumentAttributes[ai].Index == attrIdx);
|
|
OS << "};\n";
|
|
|
|
// Generate attribute value array if not all attribute values are zero.
|
|
if (!AllValuesAreZero) {
|
|
OS << " const uint64_t AttrValParam" << attrIdx << "[]= {";
|
|
addComma = false;
|
|
for (const auto V : Values) {
|
|
if (addComma)
|
|
OS << ',';
|
|
OS << V;
|
|
addComma = true;
|
|
}
|
|
OS << "};\n";
|
|
}
|
|
|
|
OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, "
|
|
<< attrIdx << ", AttrParam" << attrIdx;
|
|
if (!AllValuesAreZero)
|
|
OS << ", AttrValParam" << attrIdx;
|
|
OS << ");\n";
|
|
}
|
|
}
|
|
|
|
if (!intrinsic.canThrow ||
|
|
(intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem &&
|
|
!intrinsic.hasSideEffects) ||
|
|
intrinsic.isNoReturn || intrinsic.isNoSync || intrinsic.isNoFree ||
|
|
intrinsic.isWillReturn || intrinsic.isCold || intrinsic.isNoDuplicate ||
|
|
intrinsic.isConvergent || intrinsic.isSpeculatable) {
|
|
OS << " const Attribute::AttrKind Atts[] = {";
|
|
bool addComma = false;
|
|
if (!intrinsic.canThrow) {
|
|
OS << "Attribute::NoUnwind";
|
|
addComma = true;
|
|
}
|
|
if (intrinsic.isNoReturn) {
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::NoReturn";
|
|
addComma = true;
|
|
}
|
|
if (intrinsic.isNoSync) {
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::NoSync";
|
|
addComma = true;
|
|
}
|
|
if (intrinsic.isNoFree) {
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::NoFree";
|
|
addComma = true;
|
|
}
|
|
if (intrinsic.isWillReturn) {
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::WillReturn";
|
|
addComma = true;
|
|
}
|
|
if (intrinsic.isCold) {
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::Cold";
|
|
addComma = true;
|
|
}
|
|
if (intrinsic.isNoDuplicate) {
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::NoDuplicate";
|
|
addComma = true;
|
|
}
|
|
if (intrinsic.isConvergent) {
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::Convergent";
|
|
addComma = true;
|
|
}
|
|
if (intrinsic.isSpeculatable) {
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::Speculatable";
|
|
addComma = true;
|
|
}
|
|
|
|
switch (intrinsic.ModRef) {
|
|
case CodeGenIntrinsic::NoMem:
|
|
if (intrinsic.hasSideEffects)
|
|
break;
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadNone";
|
|
break;
|
|
case CodeGenIntrinsic::ReadArgMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadOnly,";
|
|
OS << "Attribute::ArgMemOnly";
|
|
break;
|
|
case CodeGenIntrinsic::ReadMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadOnly";
|
|
break;
|
|
case CodeGenIntrinsic::ReadInaccessibleMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadOnly,";
|
|
OS << "Attribute::InaccessibleMemOnly";
|
|
break;
|
|
case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadOnly,";
|
|
OS << "Attribute::InaccessibleMemOrArgMemOnly";
|
|
break;
|
|
case CodeGenIntrinsic::WriteArgMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::WriteOnly,";
|
|
OS << "Attribute::ArgMemOnly";
|
|
break;
|
|
case CodeGenIntrinsic::WriteMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::WriteOnly";
|
|
break;
|
|
case CodeGenIntrinsic::WriteInaccessibleMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::WriteOnly,";
|
|
OS << "Attribute::InaccessibleMemOnly";
|
|
break;
|
|
case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::WriteOnly,";
|
|
OS << "Attribute::InaccessibleMemOrArgMemOnly";
|
|
break;
|
|
case CodeGenIntrinsic::ReadWriteArgMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ArgMemOnly";
|
|
break;
|
|
case CodeGenIntrinsic::ReadWriteInaccessibleMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::InaccessibleMemOnly";
|
|
break;
|
|
case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::InaccessibleMemOrArgMemOnly";
|
|
break;
|
|
case CodeGenIntrinsic::ReadWriteMem:
|
|
break;
|
|
}
|
|
OS << "};\n";
|
|
OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, "
|
|
<< "AttributeList::FunctionIndex, Atts);\n";
|
|
}
|
|
|
|
if (numAttrs) {
|
|
OS << " NumAttrs = " << numAttrs << ";\n";
|
|
OS << " break;\n";
|
|
OS << " }\n";
|
|
} else {
|
|
OS << " return AttributeList();\n";
|
|
OS << " }\n";
|
|
}
|
|
}
|
|
|
|
OS << " }\n";
|
|
OS << " }\n";
|
|
OS << " return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n";
|
|
OS << "}\n";
|
|
OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
|
|
const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) {
|
|
StringRef CompilerName = (IsGCC ? "GCC" : "MS");
|
|
typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
|
|
BIMTy BuiltinMap;
|
|
StringToOffsetTable Table;
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
const std::string &BuiltinName =
|
|
IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName;
|
|
if (!BuiltinName.empty()) {
|
|
// Get the map for this target prefix.
|
|
std::map<std::string, std::string> &BIM =
|
|
BuiltinMap[Ints[i].TargetPrefix];
|
|
|
|
if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second)
|
|
PrintFatalError(Ints[i].TheDef->getLoc(),
|
|
"Intrinsic '" + Ints[i].TheDef->getName() +
|
|
"': duplicate " + CompilerName + " builtin name!");
|
|
Table.GetOrAddStringOffset(BuiltinName);
|
|
}
|
|
}
|
|
|
|
OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
|
|
OS << "// This is used by the C front-end. The builtin name is passed\n";
|
|
OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
|
|
OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n";
|
|
OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n";
|
|
|
|
OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
|
|
<< "Builtin(const char "
|
|
<< "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
|
|
|
|
if (Table.Empty()) {
|
|
OS << " return Intrinsic::not_intrinsic;\n";
|
|
OS << "}\n";
|
|
OS << "#endif\n\n";
|
|
return;
|
|
}
|
|
|
|
OS << " static const char BuiltinNames[] = {\n";
|
|
Table.EmitCharArray(OS);
|
|
OS << " };\n\n";
|
|
|
|
OS << " struct BuiltinEntry {\n";
|
|
OS << " Intrinsic::ID IntrinID;\n";
|
|
OS << " unsigned StrTabOffset;\n";
|
|
OS << " const char *getName() const {\n";
|
|
OS << " return &BuiltinNames[StrTabOffset];\n";
|
|
OS << " }\n";
|
|
OS << " bool operator<(StringRef RHS) const {\n";
|
|
OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n";
|
|
OS << " }\n";
|
|
OS << " };\n";
|
|
|
|
OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n";
|
|
|
|
// Note: this could emit significantly better code if we cared.
|
|
for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
|
|
OS << " ";
|
|
if (!I->first.empty())
|
|
OS << "if (TargetPrefix == \"" << I->first << "\") ";
|
|
else
|
|
OS << "/* Target Independent Builtins */ ";
|
|
OS << "{\n";
|
|
|
|
// Emit the comparisons for this target prefix.
|
|
OS << " static const BuiltinEntry " << I->first << "Names[] = {\n";
|
|
for (const auto &P : I->second) {
|
|
OS << " {Intrinsic::" << P.second << ", "
|
|
<< Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
|
|
}
|
|
OS << " };\n";
|
|
OS << " auto I = std::lower_bound(std::begin(" << I->first << "Names),\n";
|
|
OS << " std::end(" << I->first << "Names),\n";
|
|
OS << " BuiltinNameStr);\n";
|
|
OS << " if (I != std::end(" << I->first << "Names) &&\n";
|
|
OS << " I->getName() == BuiltinNameStr)\n";
|
|
OS << " return I->IntrinID;\n";
|
|
OS << " }\n";
|
|
}
|
|
OS << " return ";
|
|
OS << "Intrinsic::not_intrinsic;\n";
|
|
OS << "}\n";
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) {
|
|
IntrinsicEmitter(RK).run(OS, /*Enums=*/true);
|
|
}
|
|
|
|
void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) {
|
|
IntrinsicEmitter(RK).run(OS, /*Enums=*/false);
|
|
}
|