231 lines
8.5 KiB
C++
231 lines
8.5 KiB
C++
//===-- SnippetGenerator.h --------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// Defines the abstract SnippetGenerator class for generating code that allows
|
|
/// measuring a certain property of instructions (e.g. latency).
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_SNIPPETGENERATOR_H
|
|
#define LLVM_TOOLS_LLVM_EXEGESIS_SNIPPETGENERATOR_H
|
|
|
|
#include "Assembler.h"
|
|
#include "BenchmarkCode.h"
|
|
#include "CodeTemplate.h"
|
|
#include "LlvmState.h"
|
|
#include "MCInstrDescView.h"
|
|
#include "RegisterAliasing.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include <cstdlib>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
namespace exegesis {
|
|
|
|
std::vector<CodeTemplate> getSingleton(CodeTemplate &&CT);
|
|
|
|
// Generates code templates that has a self-dependency.
|
|
Expected<std::vector<CodeTemplate>>
|
|
generateSelfAliasingCodeTemplates(InstructionTemplate Variant);
|
|
|
|
// Generates code templates without assignment constraints.
|
|
Expected<std::vector<CodeTemplate>>
|
|
generateUnconstrainedCodeTemplates(const InstructionTemplate &Variant,
|
|
StringRef Msg);
|
|
|
|
// A class representing failures that happened during Benchmark, they are used
|
|
// to report informations to the user.
|
|
class SnippetGeneratorFailure : public StringError {
|
|
public:
|
|
SnippetGeneratorFailure(const Twine &S);
|
|
};
|
|
|
|
// Common code for all benchmark modes.
|
|
class SnippetGenerator {
|
|
public:
|
|
struct Options {
|
|
unsigned MaxConfigsPerOpcode = 1;
|
|
};
|
|
|
|
explicit SnippetGenerator(const LLVMState &State, const Options &Opts);
|
|
|
|
virtual ~SnippetGenerator();
|
|
|
|
// Calls generateCodeTemplate and expands it into one or more BenchmarkCode.
|
|
Error generateConfigurations(const InstructionTemplate &Variant,
|
|
std::vector<BenchmarkCode> &Benchmarks,
|
|
const BitVector &ExtraForbiddenRegs) const;
|
|
|
|
// Given a snippet, computes which registers the setup code needs to define.
|
|
std::vector<RegisterValue> computeRegisterInitialValues(
|
|
const std::vector<InstructionTemplate> &Snippet) const;
|
|
|
|
protected:
|
|
const LLVMState &State;
|
|
const Options Opts;
|
|
|
|
private:
|
|
// API to be implemented by subclasses.
|
|
virtual Expected<std::vector<CodeTemplate>>
|
|
generateCodeTemplates(InstructionTemplate Variant,
|
|
const BitVector &ForbiddenRegisters) const = 0;
|
|
};
|
|
|
|
// A global Random Number Generator to randomize configurations.
|
|
// FIXME: Move random number generation into an object and make it seedable for
|
|
// unit tests.
|
|
std::mt19937 &randomGenerator();
|
|
|
|
// Picks a random unsigned integer from 0 to Max (inclusive).
|
|
size_t randomIndex(size_t Max);
|
|
|
|
// Picks a random bit among the bits set in Vector and returns its index.
|
|
// Precondition: Vector must have at least one bit set.
|
|
size_t randomBit(const BitVector &Vector);
|
|
|
|
// Picks a random configuration, then selects a random def and a random use from
|
|
// it and finally set the selected values in the provided InstructionInstances.
|
|
void setRandomAliasing(const AliasingConfigurations &AliasingConfigurations,
|
|
InstructionTemplate &DefIB, InstructionTemplate &UseIB);
|
|
|
|
// Assigns a Random Value to all Variables in IT that are still Invalid.
|
|
// Do not use any of the registers in `ForbiddenRegs`.
|
|
Error randomizeUnsetVariables(const LLVMState &State,
|
|
const BitVector &ForbiddenRegs,
|
|
InstructionTemplate &IT);
|
|
|
|
// Combination generator.
|
|
//
|
|
// Example: given input {{0, 1}, {2}, {3, 4}} it will produce the following
|
|
// combinations: {0, 2, 3}, {0, 2, 4}, {1, 2, 3}, {1, 2, 4}.
|
|
//
|
|
// It is important to think of input as vector-of-vectors, where the
|
|
// outer vector is the variable space, and inner vector is choice space.
|
|
// The number of choices for each variable can be different.
|
|
//
|
|
// As for implementation, it is useful to think of this as a weird number,
|
|
// where each digit (==variable) may have different base (==number of choices).
|
|
// Thus modelling of 'produce next combination' is exactly analogous to the
|
|
// incrementing of an number - increment lowest digit (pick next choice for the
|
|
// variable), and if it wrapped to the beginning then increment next digit.
|
|
template <typename choice_type, typename choices_storage_type,
|
|
int variable_smallsize>
|
|
class CombinationGenerator {
|
|
template <typename T> struct WrappingIterator {
|
|
using value_type = T;
|
|
|
|
const ArrayRef<value_type> Range;
|
|
typename decltype(Range)::const_iterator Position;
|
|
|
|
// Rewind the tape, placing the position to again point at the beginning.
|
|
void rewind() { Position = Range.begin(); }
|
|
|
|
// Advance position forward, possibly wrapping to the beginning.
|
|
// Returns whether the wrap happened.
|
|
bool operator++() {
|
|
++Position;
|
|
bool Wrapped = Position == Range.end();
|
|
if (Wrapped)
|
|
rewind();
|
|
return Wrapped;
|
|
}
|
|
|
|
// Get the value at which we are currently pointing.
|
|
operator const value_type &() const { return *Position; }
|
|
|
|
WrappingIterator(ArrayRef<value_type> Range_) : Range(Range_) {
|
|
assert(!Range.empty() && "The range must not be empty.");
|
|
rewind();
|
|
}
|
|
};
|
|
|
|
const ArrayRef<choices_storage_type> VariablesChoices;
|
|
|
|
void performGeneration(
|
|
const function_ref<bool(ArrayRef<choice_type>)> Callback) const {
|
|
SmallVector<WrappingIterator<choice_type>, variable_smallsize>
|
|
VariablesState;
|
|
|
|
// 'increment' of the the whole VariablesState is defined identically to the
|
|
// increment of a number: starting from the least significant element,
|
|
// increment it, and if it wrapped, then propagate that carry by also
|
|
// incrementing next (more significant) element.
|
|
auto IncrementState =
|
|
[](MutableArrayRef<WrappingIterator<choice_type>> VariablesState)
|
|
-> bool {
|
|
for (WrappingIterator<choice_type> &Variable :
|
|
llvm::reverse(VariablesState)) {
|
|
bool Wrapped = ++Variable;
|
|
if (!Wrapped)
|
|
return false; // There you go, next combination is ready.
|
|
// We have carry - increment more significant variable next..
|
|
}
|
|
return true; // MSB variable wrapped, no more unique combinations.
|
|
};
|
|
|
|
// Initialize the per-variable state to refer to the possible choices for
|
|
// that variable.
|
|
VariablesState.reserve(VariablesChoices.size());
|
|
for (ArrayRef<choice_type> VC : VariablesChoices)
|
|
VariablesState.emplace_back(VC);
|
|
|
|
// Temporary buffer to store each combination before performing Callback.
|
|
SmallVector<choice_type, variable_smallsize> CurrentCombination;
|
|
CurrentCombination.resize(VariablesState.size());
|
|
|
|
while (true) {
|
|
// Gather the currently-selected variable choices into a vector.
|
|
for (auto I : llvm::zip(VariablesState, CurrentCombination))
|
|
std::get<1>(I) = std::get<0>(I);
|
|
// And pass the new combination into callback, as intended.
|
|
if (/*Abort=*/Callback(CurrentCombination))
|
|
return;
|
|
// And tick the state to next combination, which will be unique.
|
|
if (IncrementState(VariablesState))
|
|
return; // All combinations produced.
|
|
}
|
|
};
|
|
|
|
public:
|
|
CombinationGenerator(ArrayRef<choices_storage_type> VariablesChoices_)
|
|
: VariablesChoices(VariablesChoices_) {
|
|
#ifndef NDEBUG
|
|
assert(!VariablesChoices.empty() && "There should be some variables.");
|
|
llvm::for_each(VariablesChoices, [](ArrayRef<choice_type> VariableChoices) {
|
|
assert(!VariableChoices.empty() &&
|
|
"There must always be some choice, at least a placeholder one.");
|
|
});
|
|
#endif
|
|
}
|
|
|
|
// How many combinations can we produce, max?
|
|
// This is at most how many times the callback will be called.
|
|
size_t numCombinations() const {
|
|
size_t NumVariants = 1;
|
|
for (ArrayRef<choice_type> VariableChoices : VariablesChoices)
|
|
NumVariants *= VariableChoices.size();
|
|
assert(NumVariants >= 1 &&
|
|
"We should always end up producing at least one combination");
|
|
return NumVariants;
|
|
}
|
|
|
|
// Actually perform exhaustive combination generation.
|
|
// Each result will be passed into the callback.
|
|
void generate(const function_ref<bool(ArrayRef<choice_type>)> Callback) {
|
|
performGeneration(Callback);
|
|
}
|
|
};
|
|
|
|
} // namespace exegesis
|
|
} // namespace llvm
|
|
|
|
#endif // LLVM_TOOLS_LLVM_EXEGESIS_SNIPPETGENERATOR_H
|