11141 lines
405 KiB
C++
11141 lines
405 KiB
C++
//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// These classes wrap the information about a call or function
|
|
// definition used to handle ABI compliancy.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "TargetInfo.h"
|
|
#include "ABIInfo.h"
|
|
#include "CGBlocks.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CGValue.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/Basic/CodeGenOptions.h"
|
|
#include "clang/Basic/DiagnosticFrontend.h"
|
|
#include "clang/CodeGen/CGFunctionInfo.h"
|
|
#include "clang/CodeGen/SwiftCallingConv.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/IntrinsicsNVPTX.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm> // std::sort
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
// Helper for coercing an aggregate argument or return value into an integer
|
|
// array of the same size (including padding) and alignment. This alternate
|
|
// coercion happens only for the RenderScript ABI and can be removed after
|
|
// runtimes that rely on it are no longer supported.
|
|
//
|
|
// RenderScript assumes that the size of the argument / return value in the IR
|
|
// is the same as the size of the corresponding qualified type. This helper
|
|
// coerces the aggregate type into an array of the same size (including
|
|
// padding). This coercion is used in lieu of expansion of struct members or
|
|
// other canonical coercions that return a coerced-type of larger size.
|
|
//
|
|
// Ty - The argument / return value type
|
|
// Context - The associated ASTContext
|
|
// LLVMContext - The associated LLVMContext
|
|
static ABIArgInfo coerceToIntArray(QualType Ty,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &LLVMContext) {
|
|
// Alignment and Size are measured in bits.
|
|
const uint64_t Size = Context.getTypeSize(Ty);
|
|
const uint64_t Alignment = Context.getTypeAlign(Ty);
|
|
llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
|
|
const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
|
|
return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
|
|
}
|
|
|
|
static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
|
|
llvm::Value *Array,
|
|
llvm::Value *Value,
|
|
unsigned FirstIndex,
|
|
unsigned LastIndex) {
|
|
// Alternatively, we could emit this as a loop in the source.
|
|
for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
|
|
llvm::Value *Cell =
|
|
Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
|
|
Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
|
|
}
|
|
}
|
|
|
|
static bool isAggregateTypeForABI(QualType T) {
|
|
return !CodeGenFunction::hasScalarEvaluationKind(T) ||
|
|
T->isMemberFunctionPointerType();
|
|
}
|
|
|
|
ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
|
|
bool Realign,
|
|
llvm::Type *Padding) const {
|
|
return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
|
|
Realign, Padding);
|
|
}
|
|
|
|
ABIArgInfo
|
|
ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
|
|
return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
|
|
/*ByVal*/ false, Realign);
|
|
}
|
|
|
|
Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
return Address::invalid();
|
|
}
|
|
|
|
bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
|
|
if (Ty->isPromotableIntegerType())
|
|
return true;
|
|
|
|
if (const auto *EIT = Ty->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
ABIInfo::~ABIInfo() {}
|
|
|
|
/// Does the given lowering require more than the given number of
|
|
/// registers when expanded?
|
|
///
|
|
/// This is intended to be the basis of a reasonable basic implementation
|
|
/// of should{Pass,Return}IndirectlyForSwift.
|
|
///
|
|
/// For most targets, a limit of four total registers is reasonable; this
|
|
/// limits the amount of code required in order to move around the value
|
|
/// in case it wasn't produced immediately prior to the call by the caller
|
|
/// (or wasn't produced in exactly the right registers) or isn't used
|
|
/// immediately within the callee. But some targets may need to further
|
|
/// limit the register count due to an inability to support that many
|
|
/// return registers.
|
|
static bool occupiesMoreThan(CodeGenTypes &cgt,
|
|
ArrayRef<llvm::Type*> scalarTypes,
|
|
unsigned maxAllRegisters) {
|
|
unsigned intCount = 0, fpCount = 0;
|
|
for (llvm::Type *type : scalarTypes) {
|
|
if (type->isPointerTy()) {
|
|
intCount++;
|
|
} else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
|
|
auto ptrWidth = cgt.getTarget().getPointerWidth(0);
|
|
intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
|
|
} else {
|
|
assert(type->isVectorTy() || type->isFloatingPointTy());
|
|
fpCount++;
|
|
}
|
|
}
|
|
|
|
return (intCount + fpCount > maxAllRegisters);
|
|
}
|
|
|
|
bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
|
|
llvm::Type *eltTy,
|
|
unsigned numElts) const {
|
|
// The default implementation of this assumes that the target guarantees
|
|
// 128-bit SIMD support but nothing more.
|
|
return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
|
|
}
|
|
|
|
static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
|
|
CGCXXABI &CXXABI) {
|
|
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
|
|
if (!RD) {
|
|
if (!RT->getDecl()->canPassInRegisters())
|
|
return CGCXXABI::RAA_Indirect;
|
|
return CGCXXABI::RAA_Default;
|
|
}
|
|
return CXXABI.getRecordArgABI(RD);
|
|
}
|
|
|
|
static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
|
|
CGCXXABI &CXXABI) {
|
|
const RecordType *RT = T->getAs<RecordType>();
|
|
if (!RT)
|
|
return CGCXXABI::RAA_Default;
|
|
return getRecordArgABI(RT, CXXABI);
|
|
}
|
|
|
|
static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
|
|
const ABIInfo &Info) {
|
|
QualType Ty = FI.getReturnType();
|
|
|
|
if (const auto *RT = Ty->getAs<RecordType>())
|
|
if (!isa<CXXRecordDecl>(RT->getDecl()) &&
|
|
!RT->getDecl()->canPassInRegisters()) {
|
|
FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
|
|
return true;
|
|
}
|
|
|
|
return CXXABI.classifyReturnType(FI);
|
|
}
|
|
|
|
/// Pass transparent unions as if they were the type of the first element. Sema
|
|
/// should ensure that all elements of the union have the same "machine type".
|
|
static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
|
|
if (const RecordType *UT = Ty->getAsUnionType()) {
|
|
const RecordDecl *UD = UT->getDecl();
|
|
if (UD->hasAttr<TransparentUnionAttr>()) {
|
|
assert(!UD->field_empty() && "sema created an empty transparent union");
|
|
return UD->field_begin()->getType();
|
|
}
|
|
}
|
|
return Ty;
|
|
}
|
|
|
|
CGCXXABI &ABIInfo::getCXXABI() const {
|
|
return CGT.getCXXABI();
|
|
}
|
|
|
|
ASTContext &ABIInfo::getContext() const {
|
|
return CGT.getContext();
|
|
}
|
|
|
|
llvm::LLVMContext &ABIInfo::getVMContext() const {
|
|
return CGT.getLLVMContext();
|
|
}
|
|
|
|
const llvm::DataLayout &ABIInfo::getDataLayout() const {
|
|
return CGT.getDataLayout();
|
|
}
|
|
|
|
const TargetInfo &ABIInfo::getTarget() const {
|
|
return CGT.getTarget();
|
|
}
|
|
|
|
const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
|
|
return CGT.getCodeGenOpts();
|
|
}
|
|
|
|
bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
|
|
|
|
bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
|
|
return false;
|
|
}
|
|
|
|
bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
|
|
uint64_t Members) const {
|
|
return false;
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
|
|
raw_ostream &OS = llvm::errs();
|
|
OS << "(ABIArgInfo Kind=";
|
|
switch (TheKind) {
|
|
case Direct:
|
|
OS << "Direct Type=";
|
|
if (llvm::Type *Ty = getCoerceToType())
|
|
Ty->print(OS);
|
|
else
|
|
OS << "null";
|
|
break;
|
|
case Extend:
|
|
OS << "Extend";
|
|
break;
|
|
case Ignore:
|
|
OS << "Ignore";
|
|
break;
|
|
case InAlloca:
|
|
OS << "InAlloca Offset=" << getInAllocaFieldIndex();
|
|
break;
|
|
case Indirect:
|
|
OS << "Indirect Align=" << getIndirectAlign().getQuantity()
|
|
<< " ByVal=" << getIndirectByVal()
|
|
<< " Realign=" << getIndirectRealign();
|
|
break;
|
|
case IndirectAliased:
|
|
OS << "Indirect Align=" << getIndirectAlign().getQuantity()
|
|
<< " AadrSpace=" << getIndirectAddrSpace()
|
|
<< " Realign=" << getIndirectRealign();
|
|
break;
|
|
case Expand:
|
|
OS << "Expand";
|
|
break;
|
|
case CoerceAndExpand:
|
|
OS << "CoerceAndExpand Type=";
|
|
getCoerceAndExpandType()->print(OS);
|
|
break;
|
|
}
|
|
OS << ")\n";
|
|
}
|
|
|
|
// Dynamically round a pointer up to a multiple of the given alignment.
|
|
static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
|
|
llvm::Value *Ptr,
|
|
CharUnits Align) {
|
|
llvm::Value *PtrAsInt = Ptr;
|
|
// OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
|
|
PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
|
|
PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
|
|
llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
|
|
PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
|
|
llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
|
|
PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
|
|
Ptr->getType(),
|
|
Ptr->getName() + ".aligned");
|
|
return PtrAsInt;
|
|
}
|
|
|
|
/// Emit va_arg for a platform using the common void* representation,
|
|
/// where arguments are simply emitted in an array of slots on the stack.
|
|
///
|
|
/// This version implements the core direct-value passing rules.
|
|
///
|
|
/// \param SlotSize - The size and alignment of a stack slot.
|
|
/// Each argument will be allocated to a multiple of this number of
|
|
/// slots, and all the slots will be aligned to this value.
|
|
/// \param AllowHigherAlign - The slot alignment is not a cap;
|
|
/// an argument type with an alignment greater than the slot size
|
|
/// will be emitted on a higher-alignment address, potentially
|
|
/// leaving one or more empty slots behind as padding. If this
|
|
/// is false, the returned address might be less-aligned than
|
|
/// DirectAlign.
|
|
static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
|
|
Address VAListAddr,
|
|
llvm::Type *DirectTy,
|
|
CharUnits DirectSize,
|
|
CharUnits DirectAlign,
|
|
CharUnits SlotSize,
|
|
bool AllowHigherAlign) {
|
|
// Cast the element type to i8* if necessary. Some platforms define
|
|
// va_list as a struct containing an i8* instead of just an i8*.
|
|
if (VAListAddr.getElementType() != CGF.Int8PtrTy)
|
|
VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
|
|
|
|
llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
|
|
|
|
// If the CC aligns values higher than the slot size, do so if needed.
|
|
Address Addr = Address::invalid();
|
|
if (AllowHigherAlign && DirectAlign > SlotSize) {
|
|
Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
|
|
DirectAlign);
|
|
} else {
|
|
Addr = Address(Ptr, SlotSize);
|
|
}
|
|
|
|
// Advance the pointer past the argument, then store that back.
|
|
CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
|
|
Address NextPtr =
|
|
CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
|
|
CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
|
|
|
|
// If the argument is smaller than a slot, and this is a big-endian
|
|
// target, the argument will be right-adjusted in its slot.
|
|
if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
|
|
!DirectTy->isStructTy()) {
|
|
Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
|
|
}
|
|
|
|
Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
|
|
return Addr;
|
|
}
|
|
|
|
/// Emit va_arg for a platform using the common void* representation,
|
|
/// where arguments are simply emitted in an array of slots on the stack.
|
|
///
|
|
/// \param IsIndirect - Values of this type are passed indirectly.
|
|
/// \param ValueInfo - The size and alignment of this type, generally
|
|
/// computed with getContext().getTypeInfoInChars(ValueTy).
|
|
/// \param SlotSizeAndAlign - The size and alignment of a stack slot.
|
|
/// Each argument will be allocated to a multiple of this number of
|
|
/// slots, and all the slots will be aligned to this value.
|
|
/// \param AllowHigherAlign - The slot alignment is not a cap;
|
|
/// an argument type with an alignment greater than the slot size
|
|
/// will be emitted on a higher-alignment address, potentially
|
|
/// leaving one or more empty slots behind as padding.
|
|
static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType ValueTy, bool IsIndirect,
|
|
TypeInfoChars ValueInfo,
|
|
CharUnits SlotSizeAndAlign,
|
|
bool AllowHigherAlign) {
|
|
// The size and alignment of the value that was passed directly.
|
|
CharUnits DirectSize, DirectAlign;
|
|
if (IsIndirect) {
|
|
DirectSize = CGF.getPointerSize();
|
|
DirectAlign = CGF.getPointerAlign();
|
|
} else {
|
|
DirectSize = ValueInfo.Width;
|
|
DirectAlign = ValueInfo.Align;
|
|
}
|
|
|
|
// Cast the address we've calculated to the right type.
|
|
llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
|
|
if (IsIndirect)
|
|
DirectTy = DirectTy->getPointerTo(0);
|
|
|
|
Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
|
|
DirectSize, DirectAlign,
|
|
SlotSizeAndAlign,
|
|
AllowHigherAlign);
|
|
|
|
if (IsIndirect) {
|
|
Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align);
|
|
}
|
|
|
|
return Addr;
|
|
|
|
}
|
|
|
|
static Address emitMergePHI(CodeGenFunction &CGF,
|
|
Address Addr1, llvm::BasicBlock *Block1,
|
|
Address Addr2, llvm::BasicBlock *Block2,
|
|
const llvm::Twine &Name = "") {
|
|
assert(Addr1.getType() == Addr2.getType());
|
|
llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
|
|
PHI->addIncoming(Addr1.getPointer(), Block1);
|
|
PHI->addIncoming(Addr2.getPointer(), Block2);
|
|
CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
|
|
return Address(PHI, Align);
|
|
}
|
|
|
|
TargetCodeGenInfo::~TargetCodeGenInfo() = default;
|
|
|
|
// If someone can figure out a general rule for this, that would be great.
|
|
// It's probably just doomed to be platform-dependent, though.
|
|
unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
|
|
// Verified for:
|
|
// x86-64 FreeBSD, Linux, Darwin
|
|
// x86-32 FreeBSD, Linux, Darwin
|
|
// PowerPC Linux, Darwin
|
|
// ARM Darwin (*not* EABI)
|
|
// AArch64 Linux
|
|
return 32;
|
|
}
|
|
|
|
bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
|
|
const FunctionNoProtoType *fnType) const {
|
|
// The following conventions are known to require this to be false:
|
|
// x86_stdcall
|
|
// MIPS
|
|
// For everything else, we just prefer false unless we opt out.
|
|
return false;
|
|
}
|
|
|
|
void
|
|
TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
|
|
llvm::SmallString<24> &Opt) const {
|
|
// This assumes the user is passing a library name like "rt" instead of a
|
|
// filename like "librt.a/so", and that they don't care whether it's static or
|
|
// dynamic.
|
|
Opt = "-l";
|
|
Opt += Lib;
|
|
}
|
|
|
|
unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
|
|
// OpenCL kernels are called via an explicit runtime API with arguments
|
|
// set with clSetKernelArg(), not as normal sub-functions.
|
|
// Return SPIR_KERNEL by default as the kernel calling convention to
|
|
// ensure the fingerprint is fixed such way that each OpenCL argument
|
|
// gets one matching argument in the produced kernel function argument
|
|
// list to enable feasible implementation of clSetKernelArg() with
|
|
// aggregates etc. In case we would use the default C calling conv here,
|
|
// clSetKernelArg() might break depending on the target-specific
|
|
// conventions; different targets might split structs passed as values
|
|
// to multiple function arguments etc.
|
|
return llvm::CallingConv::SPIR_KERNEL;
|
|
}
|
|
|
|
llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
|
|
llvm::PointerType *T, QualType QT) const {
|
|
return llvm::ConstantPointerNull::get(T);
|
|
}
|
|
|
|
LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
|
|
const VarDecl *D) const {
|
|
assert(!CGM.getLangOpts().OpenCL &&
|
|
!(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
|
|
"Address space agnostic languages only");
|
|
return D ? D->getType().getAddressSpace() : LangAS::Default;
|
|
}
|
|
|
|
llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
|
|
CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
|
|
LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
|
|
// Since target may map different address spaces in AST to the same address
|
|
// space, an address space conversion may end up as a bitcast.
|
|
if (auto *C = dyn_cast<llvm::Constant>(Src))
|
|
return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
|
|
// Try to preserve the source's name to make IR more readable.
|
|
return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
|
|
}
|
|
|
|
llvm::Constant *
|
|
TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
|
|
LangAS SrcAddr, LangAS DestAddr,
|
|
llvm::Type *DestTy) const {
|
|
// Since target may map different address spaces in AST to the same address
|
|
// space, an address space conversion may end up as a bitcast.
|
|
return llvm::ConstantExpr::getPointerCast(Src, DestTy);
|
|
}
|
|
|
|
llvm::SyncScope::ID
|
|
TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
|
|
SyncScope Scope,
|
|
llvm::AtomicOrdering Ordering,
|
|
llvm::LLVMContext &Ctx) const {
|
|
return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
|
|
}
|
|
|
|
static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
|
|
|
|
/// isEmptyField - Return true iff a the field is "empty", that is it
|
|
/// is an unnamed bit-field or an (array of) empty record(s).
|
|
static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
|
|
bool AllowArrays) {
|
|
if (FD->isUnnamedBitfield())
|
|
return true;
|
|
|
|
QualType FT = FD->getType();
|
|
|
|
// Constant arrays of empty records count as empty, strip them off.
|
|
// Constant arrays of zero length always count as empty.
|
|
bool WasArray = false;
|
|
if (AllowArrays)
|
|
while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
|
|
if (AT->getSize() == 0)
|
|
return true;
|
|
FT = AT->getElementType();
|
|
// The [[no_unique_address]] special case below does not apply to
|
|
// arrays of C++ empty records, so we need to remember this fact.
|
|
WasArray = true;
|
|
}
|
|
|
|
const RecordType *RT = FT->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
|
|
// C++ record fields are never empty, at least in the Itanium ABI.
|
|
//
|
|
// FIXME: We should use a predicate for whether this behavior is true in the
|
|
// current ABI.
|
|
//
|
|
// The exception to the above rule are fields marked with the
|
|
// [[no_unique_address]] attribute (since C++20). Those do count as empty
|
|
// according to the Itanium ABI. The exception applies only to records,
|
|
// not arrays of records, so we must also check whether we stripped off an
|
|
// array type above.
|
|
if (isa<CXXRecordDecl>(RT->getDecl()) &&
|
|
(WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
|
|
return false;
|
|
|
|
return isEmptyRecord(Context, FT, AllowArrays);
|
|
}
|
|
|
|
/// isEmptyRecord - Return true iff a structure contains only empty
|
|
/// fields. Note that a structure with a flexible array member is not
|
|
/// considered empty.
|
|
static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
|
|
const RecordType *RT = T->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return false;
|
|
|
|
// If this is a C++ record, check the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
|
for (const auto &I : CXXRD->bases())
|
|
if (!isEmptyRecord(Context, I.getType(), true))
|
|
return false;
|
|
|
|
for (const auto *I : RD->fields())
|
|
if (!isEmptyField(Context, I, AllowArrays))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isSingleElementStruct - Determine if a structure is a "single
|
|
/// element struct", i.e. it has exactly one non-empty field or
|
|
/// exactly one field which is itself a single element
|
|
/// struct. Structures with flexible array members are never
|
|
/// considered single element structs.
|
|
///
|
|
/// \return The field declaration for the single non-empty field, if
|
|
/// it exists.
|
|
static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
|
|
const RecordType *RT = T->getAs<RecordType>();
|
|
if (!RT)
|
|
return nullptr;
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return nullptr;
|
|
|
|
const Type *Found = nullptr;
|
|
|
|
// If this is a C++ record, check the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
for (const auto &I : CXXRD->bases()) {
|
|
// Ignore empty records.
|
|
if (isEmptyRecord(Context, I.getType(), true))
|
|
continue;
|
|
|
|
// If we already found an element then this isn't a single-element struct.
|
|
if (Found)
|
|
return nullptr;
|
|
|
|
// If this is non-empty and not a single element struct, the composite
|
|
// cannot be a single element struct.
|
|
Found = isSingleElementStruct(I.getType(), Context);
|
|
if (!Found)
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Check for single element.
|
|
for (const auto *FD : RD->fields()) {
|
|
QualType FT = FD->getType();
|
|
|
|
// Ignore empty fields.
|
|
if (isEmptyField(Context, FD, true))
|
|
continue;
|
|
|
|
// If we already found an element then this isn't a single-element
|
|
// struct.
|
|
if (Found)
|
|
return nullptr;
|
|
|
|
// Treat single element arrays as the element.
|
|
while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
|
|
if (AT->getSize().getZExtValue() != 1)
|
|
break;
|
|
FT = AT->getElementType();
|
|
}
|
|
|
|
if (!isAggregateTypeForABI(FT)) {
|
|
Found = FT.getTypePtr();
|
|
} else {
|
|
Found = isSingleElementStruct(FT, Context);
|
|
if (!Found)
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// We don't consider a struct a single-element struct if it has
|
|
// padding beyond the element type.
|
|
if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
|
|
return nullptr;
|
|
|
|
return Found;
|
|
}
|
|
|
|
namespace {
|
|
Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
|
|
const ABIArgInfo &AI) {
|
|
// This default implementation defers to the llvm backend's va_arg
|
|
// instruction. It can handle only passing arguments directly
|
|
// (typically only handled in the backend for primitive types), or
|
|
// aggregates passed indirectly by pointer (NOTE: if the "byval"
|
|
// flag has ABI impact in the callee, this implementation cannot
|
|
// work.)
|
|
|
|
// Only a few cases are covered here at the moment -- those needed
|
|
// by the default abi.
|
|
llvm::Value *Val;
|
|
|
|
if (AI.isIndirect()) {
|
|
assert(!AI.getPaddingType() &&
|
|
"Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
|
|
assert(
|
|
!AI.getIndirectRealign() &&
|
|
"Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
|
|
|
|
auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
|
|
CharUnits TyAlignForABI = TyInfo.Align;
|
|
|
|
llvm::Type *BaseTy =
|
|
llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
|
|
llvm::Value *Addr =
|
|
CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
|
|
return Address(Addr, TyAlignForABI);
|
|
} else {
|
|
assert((AI.isDirect() || AI.isExtend()) &&
|
|
"Unexpected ArgInfo Kind in generic VAArg emitter!");
|
|
|
|
assert(!AI.getInReg() &&
|
|
"Unexpected InReg seen in arginfo in generic VAArg emitter!");
|
|
assert(!AI.getPaddingType() &&
|
|
"Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
|
|
assert(!AI.getDirectOffset() &&
|
|
"Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
|
|
assert(!AI.getCoerceToType() &&
|
|
"Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
|
|
|
|
Address Temp = CGF.CreateMemTemp(Ty, "varet");
|
|
Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
|
|
CGF.Builder.CreateStore(Val, Temp);
|
|
return Temp;
|
|
}
|
|
}
|
|
|
|
/// DefaultABIInfo - The default implementation for ABI specific
|
|
/// details. This implementation provides information which results in
|
|
/// self-consistent and sensible LLVM IR generation, but does not
|
|
/// conform to any particular ABI.
|
|
class DefaultABIInfo : public ABIInfo {
|
|
public:
|
|
DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type);
|
|
}
|
|
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override {
|
|
return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
|
|
}
|
|
};
|
|
|
|
class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
|
|
};
|
|
|
|
ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
|
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
|
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
// Records with non-trivial destructors/copy-constructors should not be
|
|
// passed by value.
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
return getNaturalAlignIndirect(Ty);
|
|
}
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
ASTContext &Context = getContext();
|
|
if (const auto *EIT = Ty->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() >
|
|
Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
|
|
? Context.Int128Ty
|
|
: Context.LongLongTy))
|
|
return getNaturalAlignIndirect(Ty);
|
|
|
|
return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (isAggregateTypeForABI(RetTy))
|
|
return getNaturalAlignIndirect(RetTy);
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (const auto *EIT = RetTy->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() >
|
|
getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
|
|
? getContext().Int128Ty
|
|
: getContext().LongLongTy))
|
|
return getNaturalAlignIndirect(RetTy);
|
|
|
|
return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// WebAssembly ABI Implementation
|
|
//
|
|
// This is a very simple ABI that relies a lot on DefaultABIInfo.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class WebAssemblyABIInfo final : public SwiftABIInfo {
|
|
public:
|
|
enum ABIKind {
|
|
MVP = 0,
|
|
ExperimentalMV = 1,
|
|
};
|
|
|
|
private:
|
|
DefaultABIInfo defaultInfo;
|
|
ABIKind Kind;
|
|
|
|
public:
|
|
explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
|
|
: SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
|
|
|
|
private:
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType Ty) const;
|
|
|
|
// DefaultABIInfo's classifyReturnType and classifyArgumentType are
|
|
// non-virtual, but computeInfo and EmitVAArg are virtual, so we
|
|
// overload them.
|
|
void computeInfo(CGFunctionInfo &FI) const override {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &Arg : FI.arguments())
|
|
Arg.info = classifyArgumentType(Arg.type);
|
|
}
|
|
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
|
|
bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
|
|
bool asReturnValue) const override {
|
|
return occupiesMoreThan(CGT, scalars, /*total*/ 4);
|
|
}
|
|
|
|
bool isSwiftErrorInRegister() const override {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
|
|
public:
|
|
explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
|
|
WebAssemblyABIInfo::ABIKind K)
|
|
: TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override {
|
|
TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
|
|
if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
|
|
if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
|
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
|
llvm::AttrBuilder B;
|
|
B.addAttribute("wasm-import-module", Attr->getImportModule());
|
|
Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
|
|
}
|
|
if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
|
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
|
llvm::AttrBuilder B;
|
|
B.addAttribute("wasm-import-name", Attr->getImportName());
|
|
Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
|
|
}
|
|
if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
|
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
|
llvm::AttrBuilder B;
|
|
B.addAttribute("wasm-export-name", Attr->getExportName());
|
|
Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
|
|
}
|
|
}
|
|
|
|
if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
|
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
|
if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
|
|
Fn->addFnAttr("no-prototype");
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Classify argument of given type \p Ty.
|
|
ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
|
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
|
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
// Records with non-trivial destructors/copy-constructors should not be
|
|
// passed by value.
|
|
if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
// Ignore empty structs/unions.
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
|
return ABIArgInfo::getIgnore();
|
|
// Lower single-element structs to just pass a regular value. TODO: We
|
|
// could do reasonable-size multiple-element structs too, using getExpand(),
|
|
// though watch out for things like bitfields.
|
|
if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
|
|
return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
|
|
// For the experimental multivalue ABI, fully expand all other aggregates
|
|
if (Kind == ABIKind::ExperimentalMV) {
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
assert(RT);
|
|
bool HasBitField = false;
|
|
for (auto *Field : RT->getDecl()->fields()) {
|
|
if (Field->isBitField()) {
|
|
HasBitField = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!HasBitField)
|
|
return ABIArgInfo::getExpand();
|
|
}
|
|
}
|
|
|
|
// Otherwise just do the default thing.
|
|
return defaultInfo.classifyArgumentType(Ty);
|
|
}
|
|
|
|
ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (isAggregateTypeForABI(RetTy)) {
|
|
// Records with non-trivial destructors/copy-constructors should not be
|
|
// returned by value.
|
|
if (!getRecordArgABI(RetTy, getCXXABI())) {
|
|
// Ignore empty structs/unions.
|
|
if (isEmptyRecord(getContext(), RetTy, true))
|
|
return ABIArgInfo::getIgnore();
|
|
// Lower single-element structs to just return a regular value. TODO: We
|
|
// could do reasonable-size multiple-element structs too, using
|
|
// ABIArgInfo::getDirect().
|
|
if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
|
|
return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
|
|
// For the experimental multivalue ABI, return all other aggregates
|
|
if (Kind == ABIKind::ExperimentalMV)
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
}
|
|
|
|
// Otherwise just do the default thing.
|
|
return defaultInfo.classifyReturnType(RetTy);
|
|
}
|
|
|
|
Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
bool IsIndirect = isAggregateTypeForABI(Ty) &&
|
|
!isEmptyRecord(getContext(), Ty, true) &&
|
|
!isSingleElementStruct(Ty, getContext());
|
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
|
|
getContext().getTypeInfoInChars(Ty),
|
|
CharUnits::fromQuantity(4),
|
|
/*AllowHigherAlign=*/true);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// le32/PNaCl bitcode ABI Implementation
|
|
//
|
|
// This is a simplified version of the x86_32 ABI. Arguments and return values
|
|
// are always passed on the stack.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class PNaClABIInfo : public ABIInfo {
|
|
public:
|
|
PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
Address EmitVAArg(CodeGenFunction &CGF,
|
|
Address VAListAddr, QualType Ty) const override;
|
|
};
|
|
|
|
class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
|
|
};
|
|
|
|
void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type);
|
|
}
|
|
|
|
Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
// The PNaCL ABI is a bit odd, in that varargs don't use normal
|
|
// function classification. Structs get passed directly for varargs
|
|
// functions, through a rewriting transform in
|
|
// pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
|
|
// this target to actually support a va_arg instructions with an
|
|
// aggregate type, unlike other targets.
|
|
return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
|
|
}
|
|
|
|
/// Classify argument of given type \p Ty.
|
|
ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
return getNaturalAlignIndirect(Ty);
|
|
} else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
|
|
// Treat an enum type as its underlying type.
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
} else if (Ty->isFloatingType()) {
|
|
// Floating-point types don't go inreg.
|
|
return ABIArgInfo::getDirect();
|
|
} else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
|
|
// Treat extended integers as integers if <=64, otherwise pass indirectly.
|
|
if (EIT->getNumBits() > 64)
|
|
return getNaturalAlignIndirect(Ty);
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// In the PNaCl ABI we always return records/structures on the stack.
|
|
if (isAggregateTypeForABI(RetTy))
|
|
return getNaturalAlignIndirect(RetTy);
|
|
|
|
// Treat extended integers as integers if <=64, otherwise pass indirectly.
|
|
if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
|
|
if (EIT->getNumBits() > 64)
|
|
return getNaturalAlignIndirect(RetTy);
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
/// IsX86_MMXType - Return true if this is an MMX type.
|
|
bool IsX86_MMXType(llvm::Type *IRType) {
|
|
// Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
|
|
return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
|
|
cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
|
|
IRType->getScalarSizeInBits() != 64;
|
|
}
|
|
|
|
static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
|
StringRef Constraint,
|
|
llvm::Type* Ty) {
|
|
bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
|
|
.Cases("y", "&y", "^Ym", true)
|
|
.Default(false);
|
|
if (IsMMXCons && Ty->isVectorTy()) {
|
|
if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
|
|
64) {
|
|
// Invalid MMX constraint
|
|
return nullptr;
|
|
}
|
|
|
|
return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
|
|
}
|
|
|
|
// No operation needed
|
|
return Ty;
|
|
}
|
|
|
|
/// Returns true if this type can be passed in SSE registers with the
|
|
/// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
|
|
static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
|
if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
|
|
if (BT->getKind() == BuiltinType::LongDouble) {
|
|
if (&Context.getTargetInfo().getLongDoubleFormat() ==
|
|
&llvm::APFloat::x87DoubleExtended())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
} else if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
// vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
|
|
// registers specially.
|
|
unsigned VecSize = Context.getTypeSize(VT);
|
|
if (VecSize == 128 || VecSize == 256 || VecSize == 512)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if this aggregate is small enough to be passed in SSE registers
|
|
/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
|
|
static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
|
|
return NumMembers <= 4;
|
|
}
|
|
|
|
/// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
|
|
static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
|
|
auto AI = ABIArgInfo::getDirect(T);
|
|
AI.setInReg(true);
|
|
AI.setCanBeFlattened(false);
|
|
return AI;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86-32 ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Similar to llvm::CCState, but for Clang.
|
|
struct CCState {
|
|
CCState(CGFunctionInfo &FI)
|
|
: IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
|
|
|
|
llvm::SmallBitVector IsPreassigned;
|
|
unsigned CC = CallingConv::CC_C;
|
|
unsigned FreeRegs = 0;
|
|
unsigned FreeSSERegs = 0;
|
|
};
|
|
|
|
/// X86_32ABIInfo - The X86-32 ABI information.
|
|
class X86_32ABIInfo : public SwiftABIInfo {
|
|
enum Class {
|
|
Integer,
|
|
Float
|
|
};
|
|
|
|
static const unsigned MinABIStackAlignInBytes = 4;
|
|
|
|
bool IsDarwinVectorABI;
|
|
bool IsRetSmallStructInRegABI;
|
|
bool IsWin32StructABI;
|
|
bool IsSoftFloatABI;
|
|
bool IsMCUABI;
|
|
unsigned DefaultNumRegisterParameters;
|
|
|
|
static bool isRegisterSize(unsigned Size) {
|
|
return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
|
|
}
|
|
|
|
bool isHomogeneousAggregateBaseType(QualType Ty) const override {
|
|
// FIXME: Assumes vectorcall is in use.
|
|
return isX86VectorTypeForVectorCall(getContext(), Ty);
|
|
}
|
|
|
|
bool isHomogeneousAggregateSmallEnough(const Type *Ty,
|
|
uint64_t NumMembers) const override {
|
|
// FIXME: Assumes vectorcall is in use.
|
|
return isX86VectorCallAggregateSmallEnough(NumMembers);
|
|
}
|
|
|
|
bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
|
|
|
|
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
|
/// such that the argument will be passed in memory.
|
|
ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
|
|
|
|
ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
|
|
|
|
/// Return the alignment to use for the given type on the stack.
|
|
unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
|
|
|
|
Class classify(QualType Ty) const;
|
|
ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
|
|
|
|
/// Updates the number of available free registers, returns
|
|
/// true if any registers were allocated.
|
|
bool updateFreeRegs(QualType Ty, CCState &State) const;
|
|
|
|
bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
|
|
bool &NeedsPadding) const;
|
|
bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
|
|
|
|
bool canExpandIndirectArgument(QualType Ty) const;
|
|
|
|
/// Rewrite the function info so that all memory arguments use
|
|
/// inalloca.
|
|
void rewriteWithInAlloca(CGFunctionInfo &FI) const;
|
|
|
|
void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
|
|
CharUnits &StackOffset, ABIArgInfo &Info,
|
|
QualType Type) const;
|
|
void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
|
|
|
|
public:
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
|
|
X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
|
|
bool RetSmallStructInRegABI, bool Win32StructABI,
|
|
unsigned NumRegisterParameters, bool SoftFloatABI)
|
|
: SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
|
|
IsRetSmallStructInRegABI(RetSmallStructInRegABI),
|
|
IsWin32StructABI(Win32StructABI),
|
|
IsSoftFloatABI(SoftFloatABI),
|
|
IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
|
|
DefaultNumRegisterParameters(NumRegisterParameters) {}
|
|
|
|
bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
|
|
bool asReturnValue) const override {
|
|
// LLVM's x86-32 lowering currently only assigns up to three
|
|
// integer registers and three fp registers. Oddly, it'll use up to
|
|
// four vector registers for vectors, but those can overlap with the
|
|
// scalar registers.
|
|
return occupiesMoreThan(CGT, scalars, /*total*/ 3);
|
|
}
|
|
|
|
bool isSwiftErrorInRegister() const override {
|
|
// x86-32 lowering does not support passing swifterror in a register.
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
|
|
bool RetSmallStructInRegABI, bool Win32StructABI,
|
|
unsigned NumRegisterParameters, bool SoftFloatABI)
|
|
: TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
|
|
CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
|
|
NumRegisterParameters, SoftFloatABI)) {}
|
|
|
|
static bool isStructReturnInRegABI(
|
|
const llvm::Triple &Triple, const CodeGenOptions &Opts);
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override;
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
|
|
// Darwin uses different dwarf register numbers for EH.
|
|
if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
|
|
return 4;
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
|
|
llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
|
StringRef Constraint,
|
|
llvm::Type* Ty) const override {
|
|
return X86AdjustInlineAsmType(CGF, Constraint, Ty);
|
|
}
|
|
|
|
void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
|
|
std::string &Constraints,
|
|
std::vector<llvm::Type *> &ResultRegTypes,
|
|
std::vector<llvm::Type *> &ResultTruncRegTypes,
|
|
std::vector<LValue> &ResultRegDests,
|
|
std::string &AsmString,
|
|
unsigned NumOutputs) const override;
|
|
|
|
llvm::Constant *
|
|
getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
|
|
unsigned Sig = (0xeb << 0) | // jmp rel8
|
|
(0x06 << 8) | // .+0x08
|
|
('v' << 16) |
|
|
('2' << 24);
|
|
return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
|
|
}
|
|
|
|
StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
|
|
return "movl\t%ebp, %ebp"
|
|
"\t\t// marker for objc_retainAutoreleaseReturnValue";
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
/// Rewrite input constraint references after adding some output constraints.
|
|
/// In the case where there is one output and one input and we add one output,
|
|
/// we need to replace all operand references greater than or equal to 1:
|
|
/// mov $0, $1
|
|
/// mov eax, $1
|
|
/// The result will be:
|
|
/// mov $0, $2
|
|
/// mov eax, $2
|
|
static void rewriteInputConstraintReferences(unsigned FirstIn,
|
|
unsigned NumNewOuts,
|
|
std::string &AsmString) {
|
|
std::string Buf;
|
|
llvm::raw_string_ostream OS(Buf);
|
|
size_t Pos = 0;
|
|
while (Pos < AsmString.size()) {
|
|
size_t DollarStart = AsmString.find('$', Pos);
|
|
if (DollarStart == std::string::npos)
|
|
DollarStart = AsmString.size();
|
|
size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
|
|
if (DollarEnd == std::string::npos)
|
|
DollarEnd = AsmString.size();
|
|
OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
|
|
Pos = DollarEnd;
|
|
size_t NumDollars = DollarEnd - DollarStart;
|
|
if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
|
|
// We have an operand reference.
|
|
size_t DigitStart = Pos;
|
|
if (AsmString[DigitStart] == '{') {
|
|
OS << '{';
|
|
++DigitStart;
|
|
}
|
|
size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
|
|
if (DigitEnd == std::string::npos)
|
|
DigitEnd = AsmString.size();
|
|
StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
|
|
unsigned OperandIndex;
|
|
if (!OperandStr.getAsInteger(10, OperandIndex)) {
|
|
if (OperandIndex >= FirstIn)
|
|
OperandIndex += NumNewOuts;
|
|
OS << OperandIndex;
|
|
} else {
|
|
OS << OperandStr;
|
|
}
|
|
Pos = DigitEnd;
|
|
}
|
|
}
|
|
AsmString = std::move(OS.str());
|
|
}
|
|
|
|
/// Add output constraints for EAX:EDX because they are return registers.
|
|
void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
|
|
CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
|
|
std::vector<llvm::Type *> &ResultRegTypes,
|
|
std::vector<llvm::Type *> &ResultTruncRegTypes,
|
|
std::vector<LValue> &ResultRegDests, std::string &AsmString,
|
|
unsigned NumOutputs) const {
|
|
uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
|
|
|
|
// Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
|
|
// larger.
|
|
if (!Constraints.empty())
|
|
Constraints += ',';
|
|
if (RetWidth <= 32) {
|
|
Constraints += "={eax}";
|
|
ResultRegTypes.push_back(CGF.Int32Ty);
|
|
} else {
|
|
// Use the 'A' constraint for EAX:EDX.
|
|
Constraints += "=A";
|
|
ResultRegTypes.push_back(CGF.Int64Ty);
|
|
}
|
|
|
|
// Truncate EAX or EAX:EDX to an integer of the appropriate size.
|
|
llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
|
|
ResultTruncRegTypes.push_back(CoerceTy);
|
|
|
|
// Coerce the integer by bitcasting the return slot pointer.
|
|
ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
|
|
CoerceTy->getPointerTo()));
|
|
ResultRegDests.push_back(ReturnSlot);
|
|
|
|
rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
|
|
}
|
|
|
|
/// shouldReturnTypeInRegister - Determine if the given type should be
|
|
/// returned in a register (for the Darwin and MCU ABI).
|
|
bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
|
|
ASTContext &Context) const {
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
|
|
// For i386, type must be register sized.
|
|
// For the MCU ABI, it only needs to be <= 8-byte
|
|
if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
|
|
return false;
|
|
|
|
if (Ty->isVectorType()) {
|
|
// 64- and 128- bit vectors inside structures are not returned in
|
|
// registers.
|
|
if (Size == 64 || Size == 128)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// If this is a builtin, pointer, enum, complex type, member pointer, or
|
|
// member function pointer it is ok.
|
|
if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
|
|
Ty->isAnyComplexType() || Ty->isEnumeralType() ||
|
|
Ty->isBlockPointerType() || Ty->isMemberPointerType())
|
|
return true;
|
|
|
|
// Arrays are treated like records.
|
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
|
|
return shouldReturnTypeInRegister(AT->getElementType(), Context);
|
|
|
|
// Otherwise, it must be a record type.
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (!RT) return false;
|
|
|
|
// FIXME: Traverse bases here too.
|
|
|
|
// Structure types are passed in register if all fields would be
|
|
// passed in a register.
|
|
for (const auto *FD : RT->getDecl()->fields()) {
|
|
// Empty fields are ignored.
|
|
if (isEmptyField(Context, FD, true))
|
|
continue;
|
|
|
|
// Check fields recursively.
|
|
if (!shouldReturnTypeInRegister(FD->getType(), Context))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
|
|
// Treat complex types as the element type.
|
|
if (const ComplexType *CTy = Ty->getAs<ComplexType>())
|
|
Ty = CTy->getElementType();
|
|
|
|
// Check for a type which we know has a simple scalar argument-passing
|
|
// convention without any padding. (We're specifically looking for 32
|
|
// and 64-bit integer and integer-equivalents, float, and double.)
|
|
if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
|
|
!Ty->isEnumeralType() && !Ty->isBlockPointerType())
|
|
return false;
|
|
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
return Size == 32 || Size == 64;
|
|
}
|
|
|
|
static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
|
|
uint64_t &Size) {
|
|
for (const auto *FD : RD->fields()) {
|
|
// Scalar arguments on the stack get 4 byte alignment on x86. If the
|
|
// argument is smaller than 32-bits, expanding the struct will create
|
|
// alignment padding.
|
|
if (!is32Or64BitBasicType(FD->getType(), Context))
|
|
return false;
|
|
|
|
// FIXME: Reject bit-fields wholesale; there are two problems, we don't know
|
|
// how to expand them yet, and the predicate for telling if a bitfield still
|
|
// counts as "basic" is more complicated than what we were doing previously.
|
|
if (FD->isBitField())
|
|
return false;
|
|
|
|
Size += Context.getTypeSize(FD->getType());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
|
|
uint64_t &Size) {
|
|
// Don't do this if there are any non-empty bases.
|
|
for (const CXXBaseSpecifier &Base : RD->bases()) {
|
|
if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
|
|
Size))
|
|
return false;
|
|
}
|
|
if (!addFieldSizes(Context, RD, Size))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Test whether an argument type which is to be passed indirectly (on the
|
|
/// stack) would have the equivalent layout if it was expanded into separate
|
|
/// arguments. If so, we prefer to do the latter to avoid inhibiting
|
|
/// optimizations.
|
|
bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
|
|
// We can only expand structure types.
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
const RecordDecl *RD = RT->getDecl();
|
|
uint64_t Size = 0;
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
if (!IsWin32StructABI) {
|
|
// On non-Windows, we have to conservatively match our old bitcode
|
|
// prototypes in order to be ABI-compatible at the bitcode level.
|
|
if (!CXXRD->isCLike())
|
|
return false;
|
|
} else {
|
|
// Don't do this for dynamic classes.
|
|
if (CXXRD->isDynamicClass())
|
|
return false;
|
|
}
|
|
if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
|
|
return false;
|
|
} else {
|
|
if (!addFieldSizes(getContext(), RD, Size))
|
|
return false;
|
|
}
|
|
|
|
// We can do this if there was no alignment padding.
|
|
return Size == getContext().getTypeSize(Ty);
|
|
}
|
|
|
|
ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
|
|
// If the return value is indirect, then the hidden argument is consuming one
|
|
// integer register.
|
|
if (State.FreeRegs) {
|
|
--State.FreeRegs;
|
|
if (!IsMCUABI)
|
|
return getNaturalAlignIndirectInReg(RetTy);
|
|
}
|
|
return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
|
|
}
|
|
|
|
ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
|
|
CCState &State) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
const Type *Base = nullptr;
|
|
uint64_t NumElts = 0;
|
|
if ((State.CC == llvm::CallingConv::X86_VectorCall ||
|
|
State.CC == llvm::CallingConv::X86_RegCall) &&
|
|
isHomogeneousAggregate(RetTy, Base, NumElts)) {
|
|
// The LLVM struct type for such an aggregate should lower properly.
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
if (const VectorType *VT = RetTy->getAs<VectorType>()) {
|
|
// On Darwin, some vectors are returned in registers.
|
|
if (IsDarwinVectorABI) {
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
|
|
// 128-bit vectors are a special case; they are returned in
|
|
// registers and we need to make sure to pick a type the LLVM
|
|
// backend will like.
|
|
if (Size == 128)
|
|
return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
|
|
llvm::Type::getInt64Ty(getVMContext()), 2));
|
|
|
|
// Always return in register if it fits in a general purpose
|
|
// register, or if it is 64 bits and has a single element.
|
|
if ((Size == 8 || Size == 16 || Size == 32) ||
|
|
(Size == 64 && VT->getNumElements() == 1))
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
|
Size));
|
|
|
|
return getIndirectReturnResult(RetTy, State);
|
|
}
|
|
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
if (isAggregateTypeForABI(RetTy)) {
|
|
if (const RecordType *RT = RetTy->getAs<RecordType>()) {
|
|
// Structures with flexible arrays are always indirect.
|
|
if (RT->getDecl()->hasFlexibleArrayMember())
|
|
return getIndirectReturnResult(RetTy, State);
|
|
}
|
|
|
|
// If specified, structs and unions are always indirect.
|
|
if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
|
|
return getIndirectReturnResult(RetTy, State);
|
|
|
|
// Ignore empty structs/unions.
|
|
if (isEmptyRecord(getContext(), RetTy, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Small structures which are register sized are generally returned
|
|
// in a register.
|
|
if (shouldReturnTypeInRegister(RetTy, getContext())) {
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
|
|
// As a special-case, if the struct is a "single-element" struct, and
|
|
// the field is of type "float" or "double", return it in a
|
|
// floating-point register. (MSVC does not apply this special case.)
|
|
// We apply a similar transformation for pointer types to improve the
|
|
// quality of the generated IR.
|
|
if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
|
|
if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
|
|
|| SeltTy->hasPointerRepresentation())
|
|
return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
|
|
|
|
// FIXME: We should be able to narrow this integer in cases with dead
|
|
// padding.
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
|
|
}
|
|
|
|
return getIndirectReturnResult(RetTy, State);
|
|
}
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (const auto *EIT = RetTy->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() > 64)
|
|
return getIndirectReturnResult(RetTy, State);
|
|
|
|
return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
|
|
return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
|
|
}
|
|
|
|
static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (!RT)
|
|
return 0;
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
// If this is a C++ record, check the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
|
for (const auto &I : CXXRD->bases())
|
|
if (!isRecordWithSIMDVectorType(Context, I.getType()))
|
|
return false;
|
|
|
|
for (const auto *i : RD->fields()) {
|
|
QualType FT = i->getType();
|
|
|
|
if (isSIMDVectorType(Context, FT))
|
|
return true;
|
|
|
|
if (isRecordWithSIMDVectorType(Context, FT))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
|
|
unsigned Align) const {
|
|
// Otherwise, if the alignment is less than or equal to the minimum ABI
|
|
// alignment, just use the default; the backend will handle this.
|
|
if (Align <= MinABIStackAlignInBytes)
|
|
return 0; // Use default alignment.
|
|
|
|
// On non-Darwin, the stack type alignment is always 4.
|
|
if (!IsDarwinVectorABI) {
|
|
// Set explicit alignment, since we may need to realign the top.
|
|
return MinABIStackAlignInBytes;
|
|
}
|
|
|
|
// Otherwise, if the type contains an SSE vector type, the alignment is 16.
|
|
if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
|
|
isRecordWithSIMDVectorType(getContext(), Ty)))
|
|
return 16;
|
|
|
|
return MinABIStackAlignInBytes;
|
|
}
|
|
|
|
ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
|
|
CCState &State) const {
|
|
if (!ByVal) {
|
|
if (State.FreeRegs) {
|
|
--State.FreeRegs; // Non-byval indirects just use one pointer.
|
|
if (!IsMCUABI)
|
|
return getNaturalAlignIndirectInReg(Ty);
|
|
}
|
|
return getNaturalAlignIndirect(Ty, false);
|
|
}
|
|
|
|
// Compute the byval alignment.
|
|
unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
|
|
unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
|
|
if (StackAlign == 0)
|
|
return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
|
|
|
|
// If the stack alignment is less than the type alignment, realign the
|
|
// argument.
|
|
bool Realign = TypeAlign > StackAlign;
|
|
return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
|
|
/*ByVal=*/true, Realign);
|
|
}
|
|
|
|
X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
|
|
const Type *T = isSingleElementStruct(Ty, getContext());
|
|
if (!T)
|
|
T = Ty.getTypePtr();
|
|
|
|
if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
|
|
BuiltinType::Kind K = BT->getKind();
|
|
if (K == BuiltinType::Float || K == BuiltinType::Double)
|
|
return Float;
|
|
}
|
|
return Integer;
|
|
}
|
|
|
|
bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
|
|
if (!IsSoftFloatABI) {
|
|
Class C = classify(Ty);
|
|
if (C == Float)
|
|
return false;
|
|
}
|
|
|
|
unsigned Size = getContext().getTypeSize(Ty);
|
|
unsigned SizeInRegs = (Size + 31) / 32;
|
|
|
|
if (SizeInRegs == 0)
|
|
return false;
|
|
|
|
if (!IsMCUABI) {
|
|
if (SizeInRegs > State.FreeRegs) {
|
|
State.FreeRegs = 0;
|
|
return false;
|
|
}
|
|
} else {
|
|
// The MCU psABI allows passing parameters in-reg even if there are
|
|
// earlier parameters that are passed on the stack. Also,
|
|
// it does not allow passing >8-byte structs in-register,
|
|
// even if there are 3 free registers available.
|
|
if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
|
|
return false;
|
|
}
|
|
|
|
State.FreeRegs -= SizeInRegs;
|
|
return true;
|
|
}
|
|
|
|
bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
|
|
bool &InReg,
|
|
bool &NeedsPadding) const {
|
|
// On Windows, aggregates other than HFAs are never passed in registers, and
|
|
// they do not consume register slots. Homogenous floating-point aggregates
|
|
// (HFAs) have already been dealt with at this point.
|
|
if (IsWin32StructABI && isAggregateTypeForABI(Ty))
|
|
return false;
|
|
|
|
NeedsPadding = false;
|
|
InReg = !IsMCUABI;
|
|
|
|
if (!updateFreeRegs(Ty, State))
|
|
return false;
|
|
|
|
if (IsMCUABI)
|
|
return true;
|
|
|
|
if (State.CC == llvm::CallingConv::X86_FastCall ||
|
|
State.CC == llvm::CallingConv::X86_VectorCall ||
|
|
State.CC == llvm::CallingConv::X86_RegCall) {
|
|
if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
|
|
NeedsPadding = true;
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
|
|
if (!updateFreeRegs(Ty, State))
|
|
return false;
|
|
|
|
if (IsMCUABI)
|
|
return false;
|
|
|
|
if (State.CC == llvm::CallingConv::X86_FastCall ||
|
|
State.CC == llvm::CallingConv::X86_VectorCall ||
|
|
State.CC == llvm::CallingConv::X86_RegCall) {
|
|
if (getContext().getTypeSize(Ty) > 32)
|
|
return false;
|
|
|
|
return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
|
|
Ty->isReferenceType());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
|
|
// Vectorcall x86 works subtly different than in x64, so the format is
|
|
// a bit different than the x64 version. First, all vector types (not HVAs)
|
|
// are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
|
|
// This differs from the x64 implementation, where the first 6 by INDEX get
|
|
// registers.
|
|
// In the second pass over the arguments, HVAs are passed in the remaining
|
|
// vector registers if possible, or indirectly by address. The address will be
|
|
// passed in ECX/EDX if available. Any other arguments are passed according to
|
|
// the usual fastcall rules.
|
|
MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
|
|
for (int I = 0, E = Args.size(); I < E; ++I) {
|
|
const Type *Base = nullptr;
|
|
uint64_t NumElts = 0;
|
|
const QualType &Ty = Args[I].type;
|
|
if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
|
|
isHomogeneousAggregate(Ty, Base, NumElts)) {
|
|
if (State.FreeSSERegs >= NumElts) {
|
|
State.FreeSSERegs -= NumElts;
|
|
Args[I].info = ABIArgInfo::getDirectInReg();
|
|
State.IsPreassigned.set(I);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
|
|
CCState &State) const {
|
|
// FIXME: Set alignment on indirect arguments.
|
|
bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
|
|
bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
|
|
bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
|
|
|
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
|
TypeInfo TI = getContext().getTypeInfo(Ty);
|
|
|
|
// Check with the C++ ABI first.
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (RT) {
|
|
CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
|
|
if (RAA == CGCXXABI::RAA_Indirect) {
|
|
return getIndirectResult(Ty, false, State);
|
|
} else if (RAA == CGCXXABI::RAA_DirectInMemory) {
|
|
// The field index doesn't matter, we'll fix it up later.
|
|
return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
|
|
}
|
|
}
|
|
|
|
// Regcall uses the concept of a homogenous vector aggregate, similar
|
|
// to other targets.
|
|
const Type *Base = nullptr;
|
|
uint64_t NumElts = 0;
|
|
if ((IsRegCall || IsVectorCall) &&
|
|
isHomogeneousAggregate(Ty, Base, NumElts)) {
|
|
if (State.FreeSSERegs >= NumElts) {
|
|
State.FreeSSERegs -= NumElts;
|
|
|
|
// Vectorcall passes HVAs directly and does not flatten them, but regcall
|
|
// does.
|
|
if (IsVectorCall)
|
|
return getDirectX86Hva();
|
|
|
|
if (Ty->isBuiltinType() || Ty->isVectorType())
|
|
return ABIArgInfo::getDirect();
|
|
return ABIArgInfo::getExpand();
|
|
}
|
|
return getIndirectResult(Ty, /*ByVal=*/false, State);
|
|
}
|
|
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
// Structures with flexible arrays are always indirect.
|
|
// FIXME: This should not be byval!
|
|
if (RT && RT->getDecl()->hasFlexibleArrayMember())
|
|
return getIndirectResult(Ty, true, State);
|
|
|
|
// Ignore empty structs/unions on non-Windows.
|
|
if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
llvm::LLVMContext &LLVMContext = getVMContext();
|
|
llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
|
|
bool NeedsPadding = false;
|
|
bool InReg;
|
|
if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
|
|
unsigned SizeInRegs = (TI.Width + 31) / 32;
|
|
SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
|
|
llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
|
|
if (InReg)
|
|
return ABIArgInfo::getDirectInReg(Result);
|
|
else
|
|
return ABIArgInfo::getDirect(Result);
|
|
}
|
|
llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
|
|
|
|
// Pass over-aligned aggregates on Windows indirectly. This behavior was
|
|
// added in MSVC 2015.
|
|
if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
|
|
return getIndirectResult(Ty, /*ByVal=*/false, State);
|
|
|
|
// Expand small (<= 128-bit) record types when we know that the stack layout
|
|
// of those arguments will match the struct. This is important because the
|
|
// LLVM backend isn't smart enough to remove byval, which inhibits many
|
|
// optimizations.
|
|
// Don't do this for the MCU if there are still free integer registers
|
|
// (see X86_64 ABI for full explanation).
|
|
if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
|
|
canExpandIndirectArgument(Ty))
|
|
return ABIArgInfo::getExpandWithPadding(
|
|
IsFastCall || IsVectorCall || IsRegCall, PaddingType);
|
|
|
|
return getIndirectResult(Ty, true, State);
|
|
}
|
|
|
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
// On Windows, vectors are passed directly if registers are available, or
|
|
// indirectly if not. This avoids the need to align argument memory. Pass
|
|
// user-defined vector types larger than 512 bits indirectly for simplicity.
|
|
if (IsWin32StructABI) {
|
|
if (TI.Width <= 512 && State.FreeSSERegs > 0) {
|
|
--State.FreeSSERegs;
|
|
return ABIArgInfo::getDirectInReg();
|
|
}
|
|
return getIndirectResult(Ty, /*ByVal=*/false, State);
|
|
}
|
|
|
|
// On Darwin, some vectors are passed in memory, we handle this by passing
|
|
// it as an i8/i16/i32/i64.
|
|
if (IsDarwinVectorABI) {
|
|
if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
|
|
(TI.Width == 64 && VT->getNumElements() == 1))
|
|
return ABIArgInfo::getDirect(
|
|
llvm::IntegerType::get(getVMContext(), TI.Width));
|
|
}
|
|
|
|
if (IsX86_MMXType(CGT.ConvertType(Ty)))
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
|
|
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
bool InReg = shouldPrimitiveUseInReg(Ty, State);
|
|
|
|
if (isPromotableIntegerTypeForABI(Ty)) {
|
|
if (InReg)
|
|
return ABIArgInfo::getExtendInReg(Ty);
|
|
return ABIArgInfo::getExtend(Ty);
|
|
}
|
|
|
|
if (const auto * EIT = Ty->getAs<ExtIntType>()) {
|
|
if (EIT->getNumBits() <= 64) {
|
|
if (InReg)
|
|
return ABIArgInfo::getDirectInReg();
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
return getIndirectResult(Ty, /*ByVal=*/false, State);
|
|
}
|
|
|
|
if (InReg)
|
|
return ABIArgInfo::getDirectInReg();
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
CCState State(FI);
|
|
if (IsMCUABI)
|
|
State.FreeRegs = 3;
|
|
else if (State.CC == llvm::CallingConv::X86_FastCall) {
|
|
State.FreeRegs = 2;
|
|
State.FreeSSERegs = 3;
|
|
} else if (State.CC == llvm::CallingConv::X86_VectorCall) {
|
|
State.FreeRegs = 2;
|
|
State.FreeSSERegs = 6;
|
|
} else if (FI.getHasRegParm())
|
|
State.FreeRegs = FI.getRegParm();
|
|
else if (State.CC == llvm::CallingConv::X86_RegCall) {
|
|
State.FreeRegs = 5;
|
|
State.FreeSSERegs = 8;
|
|
} else if (IsWin32StructABI) {
|
|
// Since MSVC 2015, the first three SSE vectors have been passed in
|
|
// registers. The rest are passed indirectly.
|
|
State.FreeRegs = DefaultNumRegisterParameters;
|
|
State.FreeSSERegs = 3;
|
|
} else
|
|
State.FreeRegs = DefaultNumRegisterParameters;
|
|
|
|
if (!::classifyReturnType(getCXXABI(), FI, *this)) {
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
|
|
} else if (FI.getReturnInfo().isIndirect()) {
|
|
// The C++ ABI is not aware of register usage, so we have to check if the
|
|
// return value was sret and put it in a register ourselves if appropriate.
|
|
if (State.FreeRegs) {
|
|
--State.FreeRegs; // The sret parameter consumes a register.
|
|
if (!IsMCUABI)
|
|
FI.getReturnInfo().setInReg(true);
|
|
}
|
|
}
|
|
|
|
// The chain argument effectively gives us another free register.
|
|
if (FI.isChainCall())
|
|
++State.FreeRegs;
|
|
|
|
// For vectorcall, do a first pass over the arguments, assigning FP and vector
|
|
// arguments to XMM registers as available.
|
|
if (State.CC == llvm::CallingConv::X86_VectorCall)
|
|
runVectorCallFirstPass(FI, State);
|
|
|
|
bool UsedInAlloca = false;
|
|
MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
|
|
for (int I = 0, E = Args.size(); I < E; ++I) {
|
|
// Skip arguments that have already been assigned.
|
|
if (State.IsPreassigned.test(I))
|
|
continue;
|
|
|
|
Args[I].info = classifyArgumentType(Args[I].type, State);
|
|
UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
|
|
}
|
|
|
|
// If we needed to use inalloca for any argument, do a second pass and rewrite
|
|
// all the memory arguments to use inalloca.
|
|
if (UsedInAlloca)
|
|
rewriteWithInAlloca(FI);
|
|
}
|
|
|
|
void
|
|
X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
|
|
CharUnits &StackOffset, ABIArgInfo &Info,
|
|
QualType Type) const {
|
|
// Arguments are always 4-byte-aligned.
|
|
CharUnits WordSize = CharUnits::fromQuantity(4);
|
|
assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
|
|
|
|
// sret pointers and indirect things will require an extra pointer
|
|
// indirection, unless they are byval. Most things are byval, and will not
|
|
// require this indirection.
|
|
bool IsIndirect = false;
|
|
if (Info.isIndirect() && !Info.getIndirectByVal())
|
|
IsIndirect = true;
|
|
Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
|
|
llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
|
|
if (IsIndirect)
|
|
LLTy = LLTy->getPointerTo(0);
|
|
FrameFields.push_back(LLTy);
|
|
StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
|
|
|
|
// Insert padding bytes to respect alignment.
|
|
CharUnits FieldEnd = StackOffset;
|
|
StackOffset = FieldEnd.alignTo(WordSize);
|
|
if (StackOffset != FieldEnd) {
|
|
CharUnits NumBytes = StackOffset - FieldEnd;
|
|
llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
|
|
Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
|
|
FrameFields.push_back(Ty);
|
|
}
|
|
}
|
|
|
|
static bool isArgInAlloca(const ABIArgInfo &Info) {
|
|
// Leave ignored and inreg arguments alone.
|
|
switch (Info.getKind()) {
|
|
case ABIArgInfo::InAlloca:
|
|
return true;
|
|
case ABIArgInfo::Ignore:
|
|
case ABIArgInfo::IndirectAliased:
|
|
return false;
|
|
case ABIArgInfo::Indirect:
|
|
case ABIArgInfo::Direct:
|
|
case ABIArgInfo::Extend:
|
|
return !Info.getInReg();
|
|
case ABIArgInfo::Expand:
|
|
case ABIArgInfo::CoerceAndExpand:
|
|
// These are aggregate types which are never passed in registers when
|
|
// inalloca is involved.
|
|
return true;
|
|
}
|
|
llvm_unreachable("invalid enum");
|
|
}
|
|
|
|
void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
|
|
assert(IsWin32StructABI && "inalloca only supported on win32");
|
|
|
|
// Build a packed struct type for all of the arguments in memory.
|
|
SmallVector<llvm::Type *, 6> FrameFields;
|
|
|
|
// The stack alignment is always 4.
|
|
CharUnits StackAlign = CharUnits::fromQuantity(4);
|
|
|
|
CharUnits StackOffset;
|
|
CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
|
|
|
|
// Put 'this' into the struct before 'sret', if necessary.
|
|
bool IsThisCall =
|
|
FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
|
|
ABIArgInfo &Ret = FI.getReturnInfo();
|
|
if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
|
|
isArgInAlloca(I->info)) {
|
|
addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
|
|
++I;
|
|
}
|
|
|
|
// Put the sret parameter into the inalloca struct if it's in memory.
|
|
if (Ret.isIndirect() && !Ret.getInReg()) {
|
|
addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
|
|
// On Windows, the hidden sret parameter is always returned in eax.
|
|
Ret.setInAllocaSRet(IsWin32StructABI);
|
|
}
|
|
|
|
// Skip the 'this' parameter in ecx.
|
|
if (IsThisCall)
|
|
++I;
|
|
|
|
// Put arguments passed in memory into the struct.
|
|
for (; I != E; ++I) {
|
|
if (isArgInAlloca(I->info))
|
|
addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
|
|
}
|
|
|
|
FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
|
|
/*isPacked=*/true),
|
|
StackAlign);
|
|
}
|
|
|
|
Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
|
|
Address VAListAddr, QualType Ty) const {
|
|
|
|
auto TypeInfo = getContext().getTypeInfoInChars(Ty);
|
|
|
|
// x86-32 changes the alignment of certain arguments on the stack.
|
|
//
|
|
// Just messing with TypeInfo like this works because we never pass
|
|
// anything indirectly.
|
|
TypeInfo.Align = CharUnits::fromQuantity(
|
|
getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
|
|
|
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
|
|
TypeInfo, CharUnits::fromQuantity(4),
|
|
/*AllowHigherAlign*/ true);
|
|
}
|
|
|
|
bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
|
|
const llvm::Triple &Triple, const CodeGenOptions &Opts) {
|
|
assert(Triple.getArch() == llvm::Triple::x86);
|
|
|
|
switch (Opts.getStructReturnConvention()) {
|
|
case CodeGenOptions::SRCK_Default:
|
|
break;
|
|
case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
|
|
return false;
|
|
case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
|
|
return true;
|
|
}
|
|
|
|
if (Triple.isOSDarwin() || Triple.isOSIAMCU())
|
|
return true;
|
|
|
|
switch (Triple.getOS()) {
|
|
case llvm::Triple::DragonFly:
|
|
case llvm::Triple::FreeBSD:
|
|
case llvm::Triple::OpenBSD:
|
|
case llvm::Triple::Win32:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) {
|
|
if (!FD->hasAttr<AnyX86InterruptAttr>())
|
|
return;
|
|
|
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
|
Fn->setCallingConv(llvm::CallingConv::X86_INTR);
|
|
if (FD->getNumParams() == 0)
|
|
return;
|
|
|
|
auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
|
|
llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
|
|
llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
|
|
Fn->getContext(), ByValTy);
|
|
Fn->addParamAttr(0, NewAttr);
|
|
}
|
|
|
|
void X86_32TargetCodeGenInfo::setTargetAttributes(
|
|
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
|
|
if (GV->isDeclaration())
|
|
return;
|
|
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
|
|
if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
|
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
|
Fn->addFnAttr("stackrealign");
|
|
}
|
|
|
|
addX86InterruptAttrs(FD, GV, CGM);
|
|
}
|
|
}
|
|
|
|
bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
|
|
CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const {
|
|
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
|
|
|
|
// 0-7 are the eight integer registers; the order is different
|
|
// on Darwin (for EH), but the range is the same.
|
|
// 8 is %eip.
|
|
AssignToArrayRange(Builder, Address, Four8, 0, 8);
|
|
|
|
if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
|
|
// 12-16 are st(0..4). Not sure why we stop at 4.
|
|
// These have size 16, which is sizeof(long double) on
|
|
// platforms with 8-byte alignment for that type.
|
|
llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
|
|
AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
|
|
|
|
} else {
|
|
// 9 is %eflags, which doesn't get a size on Darwin for some
|
|
// reason.
|
|
Builder.CreateAlignedStore(
|
|
Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
|
|
CharUnits::One());
|
|
|
|
// 11-16 are st(0..5). Not sure why we stop at 5.
|
|
// These have size 12, which is sizeof(long double) on
|
|
// platforms with 4-byte alignment for that type.
|
|
llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
|
|
AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86-64 ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
namespace {
|
|
/// The AVX ABI level for X86 targets.
|
|
enum class X86AVXABILevel {
|
|
None,
|
|
AVX,
|
|
AVX512
|
|
};
|
|
|
|
/// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
|
|
static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
|
|
switch (AVXLevel) {
|
|
case X86AVXABILevel::AVX512:
|
|
return 512;
|
|
case X86AVXABILevel::AVX:
|
|
return 256;
|
|
case X86AVXABILevel::None:
|
|
return 128;
|
|
}
|
|
llvm_unreachable("Unknown AVXLevel");
|
|
}
|
|
|
|
/// X86_64ABIInfo - The X86_64 ABI information.
|
|
class X86_64ABIInfo : public SwiftABIInfo {
|
|
enum Class {
|
|
Integer = 0,
|
|
SSE,
|
|
SSEUp,
|
|
X87,
|
|
X87Up,
|
|
ComplexX87,
|
|
NoClass,
|
|
Memory
|
|
};
|
|
|
|
/// merge - Implement the X86_64 ABI merging algorithm.
|
|
///
|
|
/// Merge an accumulating classification \arg Accum with a field
|
|
/// classification \arg Field.
|
|
///
|
|
/// \param Accum - The accumulating classification. This should
|
|
/// always be either NoClass or the result of a previous merge
|
|
/// call. In addition, this should never be Memory (the caller
|
|
/// should just return Memory for the aggregate).
|
|
static Class merge(Class Accum, Class Field);
|
|
|
|
/// postMerge - Implement the X86_64 ABI post merging algorithm.
|
|
///
|
|
/// Post merger cleanup, reduces a malformed Hi and Lo pair to
|
|
/// final MEMORY or SSE classes when necessary.
|
|
///
|
|
/// \param AggregateSize - The size of the current aggregate in
|
|
/// the classification process.
|
|
///
|
|
/// \param Lo - The classification for the parts of the type
|
|
/// residing in the low word of the containing object.
|
|
///
|
|
/// \param Hi - The classification for the parts of the type
|
|
/// residing in the higher words of the containing object.
|
|
///
|
|
void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
|
|
|
|
/// classify - Determine the x86_64 register classes in which the
|
|
/// given type T should be passed.
|
|
///
|
|
/// \param Lo - The classification for the parts of the type
|
|
/// residing in the low word of the containing object.
|
|
///
|
|
/// \param Hi - The classification for the parts of the type
|
|
/// residing in the high word of the containing object.
|
|
///
|
|
/// \param OffsetBase - The bit offset of this type in the
|
|
/// containing object. Some parameters are classified different
|
|
/// depending on whether they straddle an eightbyte boundary.
|
|
///
|
|
/// \param isNamedArg - Whether the argument in question is a "named"
|
|
/// argument, as used in AMD64-ABI 3.5.7.
|
|
///
|
|
/// If a word is unused its result will be NoClass; if a type should
|
|
/// be passed in Memory then at least the classification of \arg Lo
|
|
/// will be Memory.
|
|
///
|
|
/// The \arg Lo class will be NoClass iff the argument is ignored.
|
|
///
|
|
/// If the \arg Lo class is ComplexX87, then the \arg Hi class will
|
|
/// also be ComplexX87.
|
|
void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
|
|
bool isNamedArg) const;
|
|
|
|
llvm::Type *GetByteVectorType(QualType Ty) const;
|
|
llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
|
|
unsigned IROffset, QualType SourceTy,
|
|
unsigned SourceOffset) const;
|
|
llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
|
|
unsigned IROffset, QualType SourceTy,
|
|
unsigned SourceOffset) const;
|
|
|
|
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
|
/// such that the argument will be returned in memory.
|
|
ABIArgInfo getIndirectReturnResult(QualType Ty) const;
|
|
|
|
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
|
/// such that the argument will be passed in memory.
|
|
///
|
|
/// \param freeIntRegs - The number of free integer registers remaining
|
|
/// available.
|
|
ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
|
|
unsigned &neededInt, unsigned &neededSSE,
|
|
bool isNamedArg) const;
|
|
|
|
ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
|
|
unsigned &NeededSSE) const;
|
|
|
|
ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
|
|
unsigned &NeededSSE) const;
|
|
|
|
bool IsIllegalVectorType(QualType Ty) const;
|
|
|
|
/// The 0.98 ABI revision clarified a lot of ambiguities,
|
|
/// unfortunately in ways that were not always consistent with
|
|
/// certain previous compilers. In particular, platforms which
|
|
/// required strict binary compatibility with older versions of GCC
|
|
/// may need to exempt themselves.
|
|
bool honorsRevision0_98() const {
|
|
return !getTarget().getTriple().isOSDarwin();
|
|
}
|
|
|
|
/// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
|
|
/// classify it as INTEGER (for compatibility with older clang compilers).
|
|
bool classifyIntegerMMXAsSSE() const {
|
|
// Clang <= 3.8 did not do this.
|
|
if (getContext().getLangOpts().getClangABICompat() <=
|
|
LangOptions::ClangABI::Ver3_8)
|
|
return false;
|
|
|
|
const llvm::Triple &Triple = getTarget().getTriple();
|
|
if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
|
|
return false;
|
|
if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// GCC classifies vectors of __int128 as memory.
|
|
bool passInt128VectorsInMem() const {
|
|
// Clang <= 9.0 did not do this.
|
|
if (getContext().getLangOpts().getClangABICompat() <=
|
|
LangOptions::ClangABI::Ver9)
|
|
return false;
|
|
|
|
const llvm::Triple &T = getTarget().getTriple();
|
|
return T.isOSLinux() || T.isOSNetBSD();
|
|
}
|
|
|
|
X86AVXABILevel AVXLevel;
|
|
// Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
|
|
// 64-bit hardware.
|
|
bool Has64BitPointers;
|
|
|
|
public:
|
|
X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
|
|
SwiftABIInfo(CGT), AVXLevel(AVXLevel),
|
|
Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
|
|
}
|
|
|
|
bool isPassedUsingAVXType(QualType type) const {
|
|
unsigned neededInt, neededSSE;
|
|
// The freeIntRegs argument doesn't matter here.
|
|
ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
|
|
/*isNamedArg*/true);
|
|
if (info.isDirect()) {
|
|
llvm::Type *ty = info.getCoerceToType();
|
|
if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
|
|
return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
|
|
bool has64BitPointers() const {
|
|
return Has64BitPointers;
|
|
}
|
|
|
|
bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
|
|
bool asReturnValue) const override {
|
|
return occupiesMoreThan(CGT, scalars, /*total*/ 4);
|
|
}
|
|
bool isSwiftErrorInRegister() const override {
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
|
|
class WinX86_64ABIInfo : public SwiftABIInfo {
|
|
public:
|
|
WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
|
|
: SwiftABIInfo(CGT), AVXLevel(AVXLevel),
|
|
IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
|
|
bool isHomogeneousAggregateBaseType(QualType Ty) const override {
|
|
// FIXME: Assumes vectorcall is in use.
|
|
return isX86VectorTypeForVectorCall(getContext(), Ty);
|
|
}
|
|
|
|
bool isHomogeneousAggregateSmallEnough(const Type *Ty,
|
|
uint64_t NumMembers) const override {
|
|
// FIXME: Assumes vectorcall is in use.
|
|
return isX86VectorCallAggregateSmallEnough(NumMembers);
|
|
}
|
|
|
|
bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
|
|
bool asReturnValue) const override {
|
|
return occupiesMoreThan(CGT, scalars, /*total*/ 4);
|
|
}
|
|
|
|
bool isSwiftErrorInRegister() const override {
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
|
|
bool IsVectorCall, bool IsRegCall) const;
|
|
ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
|
|
const ABIArgInfo ¤t) const;
|
|
|
|
X86AVXABILevel AVXLevel;
|
|
|
|
bool IsMingw64;
|
|
};
|
|
|
|
class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
|
|
: TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
|
|
|
|
const X86_64ABIInfo &getABIInfo() const {
|
|
return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
|
|
}
|
|
|
|
/// Disable tail call on x86-64. The epilogue code before the tail jump blocks
|
|
/// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
|
|
bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
|
|
return 7;
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override {
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
|
|
|
|
// 0-15 are the 16 integer registers.
|
|
// 16 is %rip.
|
|
AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
|
|
return false;
|
|
}
|
|
|
|
llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
|
StringRef Constraint,
|
|
llvm::Type* Ty) const override {
|
|
return X86AdjustInlineAsmType(CGF, Constraint, Ty);
|
|
}
|
|
|
|
bool isNoProtoCallVariadic(const CallArgList &args,
|
|
const FunctionNoProtoType *fnType) const override {
|
|
// The default CC on x86-64 sets %al to the number of SSA
|
|
// registers used, and GCC sets this when calling an unprototyped
|
|
// function, so we override the default behavior. However, don't do
|
|
// that when AVX types are involved: the ABI explicitly states it is
|
|
// undefined, and it doesn't work in practice because of how the ABI
|
|
// defines varargs anyway.
|
|
if (fnType->getCallConv() == CC_C) {
|
|
bool HasAVXType = false;
|
|
for (CallArgList::const_iterator
|
|
it = args.begin(), ie = args.end(); it != ie; ++it) {
|
|
if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
|
|
HasAVXType = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!HasAVXType)
|
|
return true;
|
|
}
|
|
|
|
return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
|
|
}
|
|
|
|
llvm::Constant *
|
|
getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
|
|
unsigned Sig = (0xeb << 0) | // jmp rel8
|
|
(0x06 << 8) | // .+0x08
|
|
('v' << 16) |
|
|
('2' << 24);
|
|
return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
|
|
}
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override {
|
|
if (GV->isDeclaration())
|
|
return;
|
|
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
|
|
if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
|
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
|
Fn->addFnAttr("stackrealign");
|
|
}
|
|
|
|
addX86InterruptAttrs(FD, GV, CGM);
|
|
}
|
|
}
|
|
|
|
void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
|
|
const FunctionDecl *Caller,
|
|
const FunctionDecl *Callee,
|
|
const CallArgList &Args) const override;
|
|
};
|
|
|
|
static void initFeatureMaps(const ASTContext &Ctx,
|
|
llvm::StringMap<bool> &CallerMap,
|
|
const FunctionDecl *Caller,
|
|
llvm::StringMap<bool> &CalleeMap,
|
|
const FunctionDecl *Callee) {
|
|
if (CalleeMap.empty() && CallerMap.empty()) {
|
|
// The caller is potentially nullptr in the case where the call isn't in a
|
|
// function. In this case, the getFunctionFeatureMap ensures we just get
|
|
// the TU level setting (since it cannot be modified by 'target'..
|
|
Ctx.getFunctionFeatureMap(CallerMap, Caller);
|
|
Ctx.getFunctionFeatureMap(CalleeMap, Callee);
|
|
}
|
|
}
|
|
|
|
static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
|
|
SourceLocation CallLoc,
|
|
const llvm::StringMap<bool> &CallerMap,
|
|
const llvm::StringMap<bool> &CalleeMap,
|
|
QualType Ty, StringRef Feature,
|
|
bool IsArgument) {
|
|
bool CallerHasFeat = CallerMap.lookup(Feature);
|
|
bool CalleeHasFeat = CalleeMap.lookup(Feature);
|
|
if (!CallerHasFeat && !CalleeHasFeat)
|
|
return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
|
|
<< IsArgument << Ty << Feature;
|
|
|
|
// Mixing calling conventions here is very clearly an error.
|
|
if (!CallerHasFeat || !CalleeHasFeat)
|
|
return Diag.Report(CallLoc, diag::err_avx_calling_convention)
|
|
<< IsArgument << Ty << Feature;
|
|
|
|
// Else, both caller and callee have the required feature, so there is no need
|
|
// to diagnose.
|
|
return false;
|
|
}
|
|
|
|
static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
|
|
SourceLocation CallLoc,
|
|
const llvm::StringMap<bool> &CallerMap,
|
|
const llvm::StringMap<bool> &CalleeMap, QualType Ty,
|
|
bool IsArgument) {
|
|
uint64_t Size = Ctx.getTypeSize(Ty);
|
|
if (Size > 256)
|
|
return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
|
|
"avx512f", IsArgument);
|
|
|
|
if (Size > 128)
|
|
return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
|
|
IsArgument);
|
|
|
|
return false;
|
|
}
|
|
|
|
void X86_64TargetCodeGenInfo::checkFunctionCallABI(
|
|
CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
|
|
const FunctionDecl *Callee, const CallArgList &Args) const {
|
|
llvm::StringMap<bool> CallerMap;
|
|
llvm::StringMap<bool> CalleeMap;
|
|
unsigned ArgIndex = 0;
|
|
|
|
// We need to loop through the actual call arguments rather than the the
|
|
// function's parameters, in case this variadic.
|
|
for (const CallArg &Arg : Args) {
|
|
// The "avx" feature changes how vectors >128 in size are passed. "avx512f"
|
|
// additionally changes how vectors >256 in size are passed. Like GCC, we
|
|
// warn when a function is called with an argument where this will change.
|
|
// Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
|
|
// the caller and callee features are mismatched.
|
|
// Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
|
|
// change its ABI with attribute-target after this call.
|
|
if (Arg.getType()->isVectorType() &&
|
|
CGM.getContext().getTypeSize(Arg.getType()) > 128) {
|
|
initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
|
|
QualType Ty = Arg.getType();
|
|
// The CallArg seems to have desugared the type already, so for clearer
|
|
// diagnostics, replace it with the type in the FunctionDecl if possible.
|
|
if (ArgIndex < Callee->getNumParams())
|
|
Ty = Callee->getParamDecl(ArgIndex)->getType();
|
|
|
|
if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
|
|
CalleeMap, Ty, /*IsArgument*/ true))
|
|
return;
|
|
}
|
|
++ArgIndex;
|
|
}
|
|
|
|
// Check return always, as we don't have a good way of knowing in codegen
|
|
// whether this value is used, tail-called, etc.
|
|
if (Callee->getReturnType()->isVectorType() &&
|
|
CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
|
|
initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
|
|
checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
|
|
CalleeMap, Callee->getReturnType(),
|
|
/*IsArgument*/ false);
|
|
}
|
|
}
|
|
|
|
static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
|
|
// If the argument does not end in .lib, automatically add the suffix.
|
|
// If the argument contains a space, enclose it in quotes.
|
|
// This matches the behavior of MSVC.
|
|
bool Quote = (Lib.find(' ') != StringRef::npos);
|
|
std::string ArgStr = Quote ? "\"" : "";
|
|
ArgStr += Lib;
|
|
if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
|
|
ArgStr += ".lib";
|
|
ArgStr += Quote ? "\"" : "";
|
|
return ArgStr;
|
|
}
|
|
|
|
class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
|
|
public:
|
|
WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
|
|
bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
|
|
unsigned NumRegisterParameters)
|
|
: X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
|
|
Win32StructABI, NumRegisterParameters, false) {}
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override;
|
|
|
|
void getDependentLibraryOption(llvm::StringRef Lib,
|
|
llvm::SmallString<24> &Opt) const override {
|
|
Opt = "/DEFAULTLIB:";
|
|
Opt += qualifyWindowsLibrary(Lib);
|
|
}
|
|
|
|
void getDetectMismatchOption(llvm::StringRef Name,
|
|
llvm::StringRef Value,
|
|
llvm::SmallString<32> &Opt) const override {
|
|
Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
|
|
}
|
|
};
|
|
|
|
static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) {
|
|
if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
|
|
|
|
if (CGM.getCodeGenOpts().StackProbeSize != 4096)
|
|
Fn->addFnAttr("stack-probe-size",
|
|
llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
|
|
if (CGM.getCodeGenOpts().NoStackArgProbe)
|
|
Fn->addFnAttr("no-stack-arg-probe");
|
|
}
|
|
}
|
|
|
|
void WinX86_32TargetCodeGenInfo::setTargetAttributes(
|
|
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
|
|
X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
|
|
if (GV->isDeclaration())
|
|
return;
|
|
addStackProbeTargetAttributes(D, GV, CGM);
|
|
}
|
|
|
|
class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
|
|
X86AVXABILevel AVXLevel)
|
|
: TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override;
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
|
|
return 7;
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override {
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
|
|
|
|
// 0-15 are the 16 integer registers.
|
|
// 16 is %rip.
|
|
AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
|
|
return false;
|
|
}
|
|
|
|
void getDependentLibraryOption(llvm::StringRef Lib,
|
|
llvm::SmallString<24> &Opt) const override {
|
|
Opt = "/DEFAULTLIB:";
|
|
Opt += qualifyWindowsLibrary(Lib);
|
|
}
|
|
|
|
void getDetectMismatchOption(llvm::StringRef Name,
|
|
llvm::StringRef Value,
|
|
llvm::SmallString<32> &Opt) const override {
|
|
Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
|
|
}
|
|
};
|
|
|
|
void WinX86_64TargetCodeGenInfo::setTargetAttributes(
|
|
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
|
|
TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
|
|
if (GV->isDeclaration())
|
|
return;
|
|
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
|
|
if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
|
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
|
Fn->addFnAttr("stackrealign");
|
|
}
|
|
|
|
addX86InterruptAttrs(FD, GV, CGM);
|
|
}
|
|
|
|
addStackProbeTargetAttributes(D, GV, CGM);
|
|
}
|
|
}
|
|
|
|
void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
|
|
Class &Hi) const {
|
|
// AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
|
|
//
|
|
// (a) If one of the classes is Memory, the whole argument is passed in
|
|
// memory.
|
|
//
|
|
// (b) If X87UP is not preceded by X87, the whole argument is passed in
|
|
// memory.
|
|
//
|
|
// (c) If the size of the aggregate exceeds two eightbytes and the first
|
|
// eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
|
|
// argument is passed in memory. NOTE: This is necessary to keep the
|
|
// ABI working for processors that don't support the __m256 type.
|
|
//
|
|
// (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
|
|
//
|
|
// Some of these are enforced by the merging logic. Others can arise
|
|
// only with unions; for example:
|
|
// union { _Complex double; unsigned; }
|
|
//
|
|
// Note that clauses (b) and (c) were added in 0.98.
|
|
//
|
|
if (Hi == Memory)
|
|
Lo = Memory;
|
|
if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
|
|
Lo = Memory;
|
|
if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
|
|
Lo = Memory;
|
|
if (Hi == SSEUp && Lo != SSE)
|
|
Hi = SSE;
|
|
}
|
|
|
|
X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
|
|
// AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
|
|
// classified recursively so that always two fields are
|
|
// considered. The resulting class is calculated according to
|
|
// the classes of the fields in the eightbyte:
|
|
//
|
|
// (a) If both classes are equal, this is the resulting class.
|
|
//
|
|
// (b) If one of the classes is NO_CLASS, the resulting class is
|
|
// the other class.
|
|
//
|
|
// (c) If one of the classes is MEMORY, the result is the MEMORY
|
|
// class.
|
|
//
|
|
// (d) If one of the classes is INTEGER, the result is the
|
|
// INTEGER.
|
|
//
|
|
// (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
|
|
// MEMORY is used as class.
|
|
//
|
|
// (f) Otherwise class SSE is used.
|
|
|
|
// Accum should never be memory (we should have returned) or
|
|
// ComplexX87 (because this cannot be passed in a structure).
|
|
assert((Accum != Memory && Accum != ComplexX87) &&
|
|
"Invalid accumulated classification during merge.");
|
|
if (Accum == Field || Field == NoClass)
|
|
return Accum;
|
|
if (Field == Memory)
|
|
return Memory;
|
|
if (Accum == NoClass)
|
|
return Field;
|
|
if (Accum == Integer || Field == Integer)
|
|
return Integer;
|
|
if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
|
|
Accum == X87 || Accum == X87Up)
|
|
return Memory;
|
|
return SSE;
|
|
}
|
|
|
|
void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
|
|
Class &Lo, Class &Hi, bool isNamedArg) const {
|
|
// FIXME: This code can be simplified by introducing a simple value class for
|
|
// Class pairs with appropriate constructor methods for the various
|
|
// situations.
|
|
|
|
// FIXME: Some of the split computations are wrong; unaligned vectors
|
|
// shouldn't be passed in registers for example, so there is no chance they
|
|
// can straddle an eightbyte. Verify & simplify.
|
|
|
|
Lo = Hi = NoClass;
|
|
|
|
Class &Current = OffsetBase < 64 ? Lo : Hi;
|
|
Current = Memory;
|
|
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
|
BuiltinType::Kind k = BT->getKind();
|
|
|
|
if (k == BuiltinType::Void) {
|
|
Current = NoClass;
|
|
} else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
|
|
Lo = Integer;
|
|
Hi = Integer;
|
|
} else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
|
|
Current = Integer;
|
|
} else if (k == BuiltinType::Float || k == BuiltinType::Double) {
|
|
Current = SSE;
|
|
} else if (k == BuiltinType::LongDouble) {
|
|
const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
|
|
if (LDF == &llvm::APFloat::IEEEquad()) {
|
|
Lo = SSE;
|
|
Hi = SSEUp;
|
|
} else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
|
|
Lo = X87;
|
|
Hi = X87Up;
|
|
} else if (LDF == &llvm::APFloat::IEEEdouble()) {
|
|
Current = SSE;
|
|
} else
|
|
llvm_unreachable("unexpected long double representation!");
|
|
}
|
|
// FIXME: _Decimal32 and _Decimal64 are SSE.
|
|
// FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
|
|
return;
|
|
}
|
|
|
|
if (const EnumType *ET = Ty->getAs<EnumType>()) {
|
|
// Classify the underlying integer type.
|
|
classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
|
|
return;
|
|
}
|
|
|
|
if (Ty->hasPointerRepresentation()) {
|
|
Current = Integer;
|
|
return;
|
|
}
|
|
|
|
if (Ty->isMemberPointerType()) {
|
|
if (Ty->isMemberFunctionPointerType()) {
|
|
if (Has64BitPointers) {
|
|
// If Has64BitPointers, this is an {i64, i64}, so classify both
|
|
// Lo and Hi now.
|
|
Lo = Hi = Integer;
|
|
} else {
|
|
// Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
|
|
// straddles an eightbyte boundary, Hi should be classified as well.
|
|
uint64_t EB_FuncPtr = (OffsetBase) / 64;
|
|
uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
|
|
if (EB_FuncPtr != EB_ThisAdj) {
|
|
Lo = Hi = Integer;
|
|
} else {
|
|
Current = Integer;
|
|
}
|
|
}
|
|
} else {
|
|
Current = Integer;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
uint64_t Size = getContext().getTypeSize(VT);
|
|
if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
|
|
// gcc passes the following as integer:
|
|
// 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
|
|
// 2 bytes - <2 x char>, <1 x short>
|
|
// 1 byte - <1 x char>
|
|
Current = Integer;
|
|
|
|
// If this type crosses an eightbyte boundary, it should be
|
|
// split.
|
|
uint64_t EB_Lo = (OffsetBase) / 64;
|
|
uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
|
|
if (EB_Lo != EB_Hi)
|
|
Hi = Lo;
|
|
} else if (Size == 64) {
|
|
QualType ElementType = VT->getElementType();
|
|
|
|
// gcc passes <1 x double> in memory. :(
|
|
if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
|
|
return;
|
|
|
|
// gcc passes <1 x long long> as SSE but clang used to unconditionally
|
|
// pass them as integer. For platforms where clang is the de facto
|
|
// platform compiler, we must continue to use integer.
|
|
if (!classifyIntegerMMXAsSSE() &&
|
|
(ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
|
|
ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
|
|
ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
|
|
ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
|
|
Current = Integer;
|
|
else
|
|
Current = SSE;
|
|
|
|
// If this type crosses an eightbyte boundary, it should be
|
|
// split.
|
|
if (OffsetBase && OffsetBase != 64)
|
|
Hi = Lo;
|
|
} else if (Size == 128 ||
|
|
(isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
|
|
QualType ElementType = VT->getElementType();
|
|
|
|
// gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
|
|
if (passInt128VectorsInMem() && Size != 128 &&
|
|
(ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
|
|
ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
|
|
return;
|
|
|
|
// Arguments of 256-bits are split into four eightbyte chunks. The
|
|
// least significant one belongs to class SSE and all the others to class
|
|
// SSEUP. The original Lo and Hi design considers that types can't be
|
|
// greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
|
|
// This design isn't correct for 256-bits, but since there're no cases
|
|
// where the upper parts would need to be inspected, avoid adding
|
|
// complexity and just consider Hi to match the 64-256 part.
|
|
//
|
|
// Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
|
|
// registers if they are "named", i.e. not part of the "..." of a
|
|
// variadic function.
|
|
//
|
|
// Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
|
|
// split into eight eightbyte chunks, one SSE and seven SSEUP.
|
|
Lo = SSE;
|
|
Hi = SSEUp;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
|
|
QualType ET = getContext().getCanonicalType(CT->getElementType());
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (ET->isIntegralOrEnumerationType()) {
|
|
if (Size <= 64)
|
|
Current = Integer;
|
|
else if (Size <= 128)
|
|
Lo = Hi = Integer;
|
|
} else if (ET == getContext().FloatTy) {
|
|
Current = SSE;
|
|
} else if (ET == getContext().DoubleTy) {
|
|
Lo = Hi = SSE;
|
|
} else if (ET == getContext().LongDoubleTy) {
|
|
const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
|
|
if (LDF == &llvm::APFloat::IEEEquad())
|
|
Current = Memory;
|
|
else if (LDF == &llvm::APFloat::x87DoubleExtended())
|
|
Current = ComplexX87;
|
|
else if (LDF == &llvm::APFloat::IEEEdouble())
|
|
Lo = Hi = SSE;
|
|
else
|
|
llvm_unreachable("unexpected long double representation!");
|
|
}
|
|
|
|
// If this complex type crosses an eightbyte boundary then it
|
|
// should be split.
|
|
uint64_t EB_Real = (OffsetBase) / 64;
|
|
uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
|
|
if (Hi == NoClass && EB_Real != EB_Imag)
|
|
Hi = Lo;
|
|
|
|
return;
|
|
}
|
|
|
|
if (const auto *EITy = Ty->getAs<ExtIntType>()) {
|
|
if (EITy->getNumBits() <= 64)
|
|
Current = Integer;
|
|
else if (EITy->getNumBits() <= 128)
|
|
Lo = Hi = Integer;
|
|
// Larger values need to get passed in memory.
|
|
return;
|
|
}
|
|
|
|
if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
|
|
// Arrays are treated like structures.
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
|
|
// than eight eightbytes, ..., it has class MEMORY.
|
|
if (Size > 512)
|
|
return;
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
|
|
// fields, it has class MEMORY.
|
|
//
|
|
// Only need to check alignment of array base.
|
|
if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
|
|
return;
|
|
|
|
// Otherwise implement simplified merge. We could be smarter about
|
|
// this, but it isn't worth it and would be harder to verify.
|
|
Current = NoClass;
|
|
uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
|
|
uint64_t ArraySize = AT->getSize().getZExtValue();
|
|
|
|
// The only case a 256-bit wide vector could be used is when the array
|
|
// contains a single 256-bit element. Since Lo and Hi logic isn't extended
|
|
// to work for sizes wider than 128, early check and fallback to memory.
|
|
//
|
|
if (Size > 128 &&
|
|
(Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
|
|
return;
|
|
|
|
for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
|
|
Class FieldLo, FieldHi;
|
|
classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
|
|
Lo = merge(Lo, FieldLo);
|
|
Hi = merge(Hi, FieldHi);
|
|
if (Lo == Memory || Hi == Memory)
|
|
break;
|
|
}
|
|
|
|
postMerge(Size, Lo, Hi);
|
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
|
|
return;
|
|
}
|
|
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
|
|
// than eight eightbytes, ..., it has class MEMORY.
|
|
if (Size > 512)
|
|
return;
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
|
|
// copy constructor or a non-trivial destructor, it is passed by invisible
|
|
// reference.
|
|
if (getRecordArgABI(RT, getCXXABI()))
|
|
return;
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
// Assume variable sized types are passed in memory.
|
|
if (RD->hasFlexibleArrayMember())
|
|
return;
|
|
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
|
|
|
// Reset Lo class, this will be recomputed.
|
|
Current = NoClass;
|
|
|
|
// If this is a C++ record, classify the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
for (const auto &I : CXXRD->bases()) {
|
|
assert(!I.isVirtual() && !I.getType()->isDependentType() &&
|
|
"Unexpected base class!");
|
|
const auto *Base =
|
|
cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
|
|
|
|
// Classify this field.
|
|
//
|
|
// AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
|
|
// single eightbyte, each is classified separately. Each eightbyte gets
|
|
// initialized to class NO_CLASS.
|
|
Class FieldLo, FieldHi;
|
|
uint64_t Offset =
|
|
OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
|
|
classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
|
|
Lo = merge(Lo, FieldLo);
|
|
Hi = merge(Hi, FieldHi);
|
|
if (Lo == Memory || Hi == Memory) {
|
|
postMerge(Size, Lo, Hi);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Classify the fields one at a time, merging the results.
|
|
unsigned idx = 0;
|
|
bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
|
|
LangOptions::ClangABI::Ver11 ||
|
|
getContext().getTargetInfo().getTriple().isPS4();
|
|
bool IsUnion = RT->isUnionType() && !UseClang11Compat;
|
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i, ++idx) {
|
|
uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
|
|
bool BitField = i->isBitField();
|
|
|
|
// Ignore padding bit-fields.
|
|
if (BitField && i->isUnnamedBitfield())
|
|
continue;
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
|
|
// eight eightbytes, or it contains unaligned fields, it has class MEMORY.
|
|
//
|
|
// The only case a 256-bit or a 512-bit wide vector could be used is when
|
|
// the struct contains a single 256-bit or 512-bit element. Early check
|
|
// and fallback to memory.
|
|
//
|
|
// FIXME: Extended the Lo and Hi logic properly to work for size wider
|
|
// than 128.
|
|
if (Size > 128 &&
|
|
((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
|
|
Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
|
|
Lo = Memory;
|
|
postMerge(Size, Lo, Hi);
|
|
return;
|
|
}
|
|
// Note, skip this test for bit-fields, see below.
|
|
if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
|
|
Lo = Memory;
|
|
postMerge(Size, Lo, Hi);
|
|
return;
|
|
}
|
|
|
|
// Classify this field.
|
|
//
|
|
// AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
|
|
// exceeds a single eightbyte, each is classified
|
|
// separately. Each eightbyte gets initialized to class
|
|
// NO_CLASS.
|
|
Class FieldLo, FieldHi;
|
|
|
|
// Bit-fields require special handling, they do not force the
|
|
// structure to be passed in memory even if unaligned, and
|
|
// therefore they can straddle an eightbyte.
|
|
if (BitField) {
|
|
assert(!i->isUnnamedBitfield());
|
|
uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
|
|
uint64_t Size = i->getBitWidthValue(getContext());
|
|
|
|
uint64_t EB_Lo = Offset / 64;
|
|
uint64_t EB_Hi = (Offset + Size - 1) / 64;
|
|
|
|
if (EB_Lo) {
|
|
assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
|
|
FieldLo = NoClass;
|
|
FieldHi = Integer;
|
|
} else {
|
|
FieldLo = Integer;
|
|
FieldHi = EB_Hi ? Integer : NoClass;
|
|
}
|
|
} else
|
|
classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
|
|
Lo = merge(Lo, FieldLo);
|
|
Hi = merge(Hi, FieldHi);
|
|
if (Lo == Memory || Hi == Memory)
|
|
break;
|
|
}
|
|
|
|
postMerge(Size, Lo, Hi);
|
|
}
|
|
}
|
|
|
|
ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
|
|
// If this is a scalar LLVM value then assume LLVM will pass it in the right
|
|
// place naturally.
|
|
if (!isAggregateTypeForABI(Ty)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (Ty->isExtIntType())
|
|
return getNaturalAlignIndirect(Ty);
|
|
|
|
return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
return getNaturalAlignIndirect(Ty);
|
|
}
|
|
|
|
bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
|
|
if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
|
|
uint64_t Size = getContext().getTypeSize(VecTy);
|
|
unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
|
|
if (Size <= 64 || Size > LargestVector)
|
|
return true;
|
|
QualType EltTy = VecTy->getElementType();
|
|
if (passInt128VectorsInMem() &&
|
|
(EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
|
|
EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
|
|
unsigned freeIntRegs) const {
|
|
// If this is a scalar LLVM value then assume LLVM will pass it in the right
|
|
// place naturally.
|
|
//
|
|
// This assumption is optimistic, as there could be free registers available
|
|
// when we need to pass this argument in memory, and LLVM could try to pass
|
|
// the argument in the free register. This does not seem to happen currently,
|
|
// but this code would be much safer if we could mark the argument with
|
|
// 'onstack'. See PR12193.
|
|
if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
|
|
!Ty->isExtIntType()) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
// Compute the byval alignment. We specify the alignment of the byval in all
|
|
// cases so that the mid-level optimizer knows the alignment of the byval.
|
|
unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
|
|
|
|
// Attempt to avoid passing indirect results using byval when possible. This
|
|
// is important for good codegen.
|
|
//
|
|
// We do this by coercing the value into a scalar type which the backend can
|
|
// handle naturally (i.e., without using byval).
|
|
//
|
|
// For simplicity, we currently only do this when we have exhausted all of the
|
|
// free integer registers. Doing this when there are free integer registers
|
|
// would require more care, as we would have to ensure that the coerced value
|
|
// did not claim the unused register. That would require either reording the
|
|
// arguments to the function (so that any subsequent inreg values came first),
|
|
// or only doing this optimization when there were no following arguments that
|
|
// might be inreg.
|
|
//
|
|
// We currently expect it to be rare (particularly in well written code) for
|
|
// arguments to be passed on the stack when there are still free integer
|
|
// registers available (this would typically imply large structs being passed
|
|
// by value), so this seems like a fair tradeoff for now.
|
|
//
|
|
// We can revisit this if the backend grows support for 'onstack' parameter
|
|
// attributes. See PR12193.
|
|
if (freeIntRegs == 0) {
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
// If this type fits in an eightbyte, coerce it into the matching integral
|
|
// type, which will end up on the stack (with alignment 8).
|
|
if (Align == 8 && Size <= 64)
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
|
Size));
|
|
}
|
|
|
|
return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
|
|
}
|
|
|
|
/// The ABI specifies that a value should be passed in a full vector XMM/YMM
|
|
/// register. Pick an LLVM IR type that will be passed as a vector register.
|
|
llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
|
|
// Wrapper structs/arrays that only contain vectors are passed just like
|
|
// vectors; strip them off if present.
|
|
if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
|
|
Ty = QualType(InnerTy, 0);
|
|
|
|
llvm::Type *IRType = CGT.ConvertType(Ty);
|
|
if (isa<llvm::VectorType>(IRType)) {
|
|
// Don't pass vXi128 vectors in their native type, the backend can't
|
|
// legalize them.
|
|
if (passInt128VectorsInMem() &&
|
|
cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
|
|
// Use a vXi64 vector.
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
|
|
Size / 64);
|
|
}
|
|
|
|
return IRType;
|
|
}
|
|
|
|
if (IRType->getTypeID() == llvm::Type::FP128TyID)
|
|
return IRType;
|
|
|
|
// We couldn't find the preferred IR vector type for 'Ty'.
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
|
|
|
|
|
|
// Return a LLVM IR vector type based on the size of 'Ty'.
|
|
return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
|
|
Size / 64);
|
|
}
|
|
|
|
/// BitsContainNoUserData - Return true if the specified [start,end) bit range
|
|
/// is known to either be off the end of the specified type or being in
|
|
/// alignment padding. The user type specified is known to be at most 128 bits
|
|
/// in size, and have passed through X86_64ABIInfo::classify with a successful
|
|
/// classification that put one of the two halves in the INTEGER class.
|
|
///
|
|
/// It is conservatively correct to return false.
|
|
static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
|
|
unsigned EndBit, ASTContext &Context) {
|
|
// If the bytes being queried are off the end of the type, there is no user
|
|
// data hiding here. This handles analysis of builtins, vectors and other
|
|
// types that don't contain interesting padding.
|
|
unsigned TySize = (unsigned)Context.getTypeSize(Ty);
|
|
if (TySize <= StartBit)
|
|
return true;
|
|
|
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
|
|
unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
|
|
unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
|
|
|
|
// Check each element to see if the element overlaps with the queried range.
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
// If the element is after the span we care about, then we're done..
|
|
unsigned EltOffset = i*EltSize;
|
|
if (EltOffset >= EndBit) break;
|
|
|
|
unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
|
|
if (!BitsContainNoUserData(AT->getElementType(), EltStart,
|
|
EndBit-EltOffset, Context))
|
|
return false;
|
|
}
|
|
// If it overlaps no elements, then it is safe to process as padding.
|
|
return true;
|
|
}
|
|
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
// If this is a C++ record, check the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
for (const auto &I : CXXRD->bases()) {
|
|
assert(!I.isVirtual() && !I.getType()->isDependentType() &&
|
|
"Unexpected base class!");
|
|
const auto *Base =
|
|
cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
|
|
|
|
// If the base is after the span we care about, ignore it.
|
|
unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
|
|
if (BaseOffset >= EndBit) continue;
|
|
|
|
unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
|
|
if (!BitsContainNoUserData(I.getType(), BaseStart,
|
|
EndBit-BaseOffset, Context))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Verify that no field has data that overlaps the region of interest. Yes
|
|
// this could be sped up a lot by being smarter about queried fields,
|
|
// however we're only looking at structs up to 16 bytes, so we don't care
|
|
// much.
|
|
unsigned idx = 0;
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i, ++idx) {
|
|
unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
|
|
|
|
// If we found a field after the region we care about, then we're done.
|
|
if (FieldOffset >= EndBit) break;
|
|
|
|
unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
|
|
if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
|
|
Context))
|
|
return false;
|
|
}
|
|
|
|
// If nothing in this record overlapped the area of interest, then we're
|
|
// clean.
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
|
|
/// float member at the specified offset. For example, {int,{float}} has a
|
|
/// float at offset 4. It is conservatively correct for this routine to return
|
|
/// false.
|
|
static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
|
|
const llvm::DataLayout &TD) {
|
|
// Base case if we find a float.
|
|
if (IROffset == 0 && IRType->isFloatTy())
|
|
return true;
|
|
|
|
// If this is a struct, recurse into the field at the specified offset.
|
|
if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
|
|
const llvm::StructLayout *SL = TD.getStructLayout(STy);
|
|
unsigned Elt = SL->getElementContainingOffset(IROffset);
|
|
IROffset -= SL->getElementOffset(Elt);
|
|
return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
|
|
}
|
|
|
|
// If this is an array, recurse into the field at the specified offset.
|
|
if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
|
|
llvm::Type *EltTy = ATy->getElementType();
|
|
unsigned EltSize = TD.getTypeAllocSize(EltTy);
|
|
IROffset -= IROffset/EltSize*EltSize;
|
|
return ContainsFloatAtOffset(EltTy, IROffset, TD);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
|
|
/// low 8 bytes of an XMM register, corresponding to the SSE class.
|
|
llvm::Type *X86_64ABIInfo::
|
|
GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
|
|
QualType SourceTy, unsigned SourceOffset) const {
|
|
// The only three choices we have are either double, <2 x float>, or float. We
|
|
// pass as float if the last 4 bytes is just padding. This happens for
|
|
// structs that contain 3 floats.
|
|
if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
|
|
SourceOffset*8+64, getContext()))
|
|
return llvm::Type::getFloatTy(getVMContext());
|
|
|
|
// We want to pass as <2 x float> if the LLVM IR type contains a float at
|
|
// offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
|
|
// case.
|
|
if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
|
|
ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
|
|
return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()),
|
|
2);
|
|
|
|
return llvm::Type::getDoubleTy(getVMContext());
|
|
}
|
|
|
|
|
|
/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
|
|
/// an 8-byte GPR. This means that we either have a scalar or we are talking
|
|
/// about the high or low part of an up-to-16-byte struct. This routine picks
|
|
/// the best LLVM IR type to represent this, which may be i64 or may be anything
|
|
/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
|
|
/// etc).
|
|
///
|
|
/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
|
|
/// the source type. IROffset is an offset in bytes into the LLVM IR type that
|
|
/// the 8-byte value references. PrefType may be null.
|
|
///
|
|
/// SourceTy is the source-level type for the entire argument. SourceOffset is
|
|
/// an offset into this that we're processing (which is always either 0 or 8).
|
|
///
|
|
llvm::Type *X86_64ABIInfo::
|
|
GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
|
|
QualType SourceTy, unsigned SourceOffset) const {
|
|
// If we're dealing with an un-offset LLVM IR type, then it means that we're
|
|
// returning an 8-byte unit starting with it. See if we can safely use it.
|
|
if (IROffset == 0) {
|
|
// Pointers and int64's always fill the 8-byte unit.
|
|
if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
|
|
IRType->isIntegerTy(64))
|
|
return IRType;
|
|
|
|
// If we have a 1/2/4-byte integer, we can use it only if the rest of the
|
|
// goodness in the source type is just tail padding. This is allowed to
|
|
// kick in for struct {double,int} on the int, but not on
|
|
// struct{double,int,int} because we wouldn't return the second int. We
|
|
// have to do this analysis on the source type because we can't depend on
|
|
// unions being lowered a specific way etc.
|
|
if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
|
|
IRType->isIntegerTy(32) ||
|
|
(isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
|
|
unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
|
|
cast<llvm::IntegerType>(IRType)->getBitWidth();
|
|
|
|
if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
|
|
SourceOffset*8+64, getContext()))
|
|
return IRType;
|
|
}
|
|
}
|
|
|
|
if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
|
|
// If this is a struct, recurse into the field at the specified offset.
|
|
const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
|
|
if (IROffset < SL->getSizeInBytes()) {
|
|
unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
|
|
IROffset -= SL->getElementOffset(FieldIdx);
|
|
|
|
return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
|
|
SourceTy, SourceOffset);
|
|
}
|
|
}
|
|
|
|
if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
|
|
llvm::Type *EltTy = ATy->getElementType();
|
|
unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
|
|
unsigned EltOffset = IROffset/EltSize*EltSize;
|
|
return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
|
|
SourceOffset);
|
|
}
|
|
|
|
// Okay, we don't have any better idea of what to pass, so we pass this in an
|
|
// integer register that isn't too big to fit the rest of the struct.
|
|
unsigned TySizeInBytes =
|
|
(unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
|
|
|
|
assert(TySizeInBytes != SourceOffset && "Empty field?");
|
|
|
|
// It is always safe to classify this as an integer type up to i64 that
|
|
// isn't larger than the structure.
|
|
return llvm::IntegerType::get(getVMContext(),
|
|
std::min(TySizeInBytes-SourceOffset, 8U)*8);
|
|
}
|
|
|
|
|
|
/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
|
|
/// be used as elements of a two register pair to pass or return, return a
|
|
/// first class aggregate to represent them. For example, if the low part of
|
|
/// a by-value argument should be passed as i32* and the high part as float,
|
|
/// return {i32*, float}.
|
|
static llvm::Type *
|
|
GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
|
|
const llvm::DataLayout &TD) {
|
|
// In order to correctly satisfy the ABI, we need to the high part to start
|
|
// at offset 8. If the high and low parts we inferred are both 4-byte types
|
|
// (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
|
|
// the second element at offset 8. Check for this:
|
|
unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
|
|
unsigned HiAlign = TD.getABITypeAlignment(Hi);
|
|
unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
|
|
assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
|
|
|
|
// To handle this, we have to increase the size of the low part so that the
|
|
// second element will start at an 8 byte offset. We can't increase the size
|
|
// of the second element because it might make us access off the end of the
|
|
// struct.
|
|
if (HiStart != 8) {
|
|
// There are usually two sorts of types the ABI generation code can produce
|
|
// for the low part of a pair that aren't 8 bytes in size: float or
|
|
// i8/i16/i32. This can also include pointers when they are 32-bit (X32 and
|
|
// NaCl).
|
|
// Promote these to a larger type.
|
|
if (Lo->isFloatTy())
|
|
Lo = llvm::Type::getDoubleTy(Lo->getContext());
|
|
else {
|
|
assert((Lo->isIntegerTy() || Lo->isPointerTy())
|
|
&& "Invalid/unknown lo type");
|
|
Lo = llvm::Type::getInt64Ty(Lo->getContext());
|
|
}
|
|
}
|
|
|
|
llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
|
|
|
|
// Verify that the second element is at an 8-byte offset.
|
|
assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
|
|
"Invalid x86-64 argument pair!");
|
|
return Result;
|
|
}
|
|
|
|
ABIArgInfo X86_64ABIInfo::
|
|
classifyReturnType(QualType RetTy) const {
|
|
// AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
|
|
// classification algorithm.
|
|
X86_64ABIInfo::Class Lo, Hi;
|
|
classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
|
|
|
|
// Check some invariants.
|
|
assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
|
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
|
|
|
|
llvm::Type *ResType = nullptr;
|
|
switch (Lo) {
|
|
case NoClass:
|
|
if (Hi == NoClass)
|
|
return ABIArgInfo::getIgnore();
|
|
// If the low part is just padding, it takes no register, leave ResType
|
|
// null.
|
|
assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
|
|
"Unknown missing lo part");
|
|
break;
|
|
|
|
case SSEUp:
|
|
case X87Up:
|
|
llvm_unreachable("Invalid classification for lo word.");
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
|
|
// hidden argument.
|
|
case Memory:
|
|
return getIndirectReturnResult(RetTy);
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
|
|
// available register of the sequence %rax, %rdx is used.
|
|
case Integer:
|
|
ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
|
|
|
|
// If we have a sign or zero extended integer, make sure to return Extend
|
|
// so that the parameter gets the right LLVM IR attributes.
|
|
if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (RetTy->isIntegralOrEnumerationType() &&
|
|
isPromotableIntegerTypeForABI(RetTy))
|
|
return ABIArgInfo::getExtend(RetTy);
|
|
}
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
|
|
// available SSE register of the sequence %xmm0, %xmm1 is used.
|
|
case SSE:
|
|
ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
|
|
// returned on the X87 stack in %st0 as 80-bit x87 number.
|
|
case X87:
|
|
ResType = llvm::Type::getX86_FP80Ty(getVMContext());
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
|
|
// part of the value is returned in %st0 and the imaginary part in
|
|
// %st1.
|
|
case ComplexX87:
|
|
assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
|
|
ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
|
|
llvm::Type::getX86_FP80Ty(getVMContext()));
|
|
break;
|
|
}
|
|
|
|
llvm::Type *HighPart = nullptr;
|
|
switch (Hi) {
|
|
// Memory was handled previously and X87 should
|
|
// never occur as a hi class.
|
|
case Memory:
|
|
case X87:
|
|
llvm_unreachable("Invalid classification for hi word.");
|
|
|
|
case ComplexX87: // Previously handled.
|
|
case NoClass:
|
|
break;
|
|
|
|
case Integer:
|
|
HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
|
|
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
|
break;
|
|
case SSE:
|
|
HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
|
|
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
|
|
// is passed in the next available eightbyte chunk if the last used
|
|
// vector register.
|
|
//
|
|
// SSEUP should always be preceded by SSE, just widen.
|
|
case SSEUp:
|
|
assert(Lo == SSE && "Unexpected SSEUp classification.");
|
|
ResType = GetByteVectorType(RetTy);
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
|
|
// returned together with the previous X87 value in %st0.
|
|
case X87Up:
|
|
// If X87Up is preceded by X87, we don't need to do
|
|
// anything. However, in some cases with unions it may not be
|
|
// preceded by X87. In such situations we follow gcc and pass the
|
|
// extra bits in an SSE reg.
|
|
if (Lo != X87) {
|
|
HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
|
|
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// If a high part was specified, merge it together with the low part. It is
|
|
// known to pass in the high eightbyte of the result. We do this by forming a
|
|
// first class struct aggregate with the high and low part: {low, high}
|
|
if (HighPart)
|
|
ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
|
|
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
|
|
ABIArgInfo X86_64ABIInfo::classifyArgumentType(
|
|
QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
|
|
bool isNamedArg)
|
|
const
|
|
{
|
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
|
|
|
X86_64ABIInfo::Class Lo, Hi;
|
|
classify(Ty, 0, Lo, Hi, isNamedArg);
|
|
|
|
// Check some invariants.
|
|
// FIXME: Enforce these by construction.
|
|
assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
|
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
|
|
|
|
neededInt = 0;
|
|
neededSSE = 0;
|
|
llvm::Type *ResType = nullptr;
|
|
switch (Lo) {
|
|
case NoClass:
|
|
if (Hi == NoClass)
|
|
return ABIArgInfo::getIgnore();
|
|
// If the low part is just padding, it takes no register, leave ResType
|
|
// null.
|
|
assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
|
|
"Unknown missing lo part");
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
|
|
// on the stack.
|
|
case Memory:
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
|
|
// COMPLEX_X87, it is passed in memory.
|
|
case X87:
|
|
case ComplexX87:
|
|
if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
|
|
++neededInt;
|
|
return getIndirectResult(Ty, freeIntRegs);
|
|
|
|
case SSEUp:
|
|
case X87Up:
|
|
llvm_unreachable("Invalid classification for lo word.");
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
|
|
// available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
|
|
// and %r9 is used.
|
|
case Integer:
|
|
++neededInt;
|
|
|
|
// Pick an 8-byte type based on the preferred type.
|
|
ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
|
|
|
|
// If we have a sign or zero extended integer, make sure to return Extend
|
|
// so that the parameter gets the right LLVM IR attributes.
|
|
if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (Ty->isIntegralOrEnumerationType() &&
|
|
isPromotableIntegerTypeForABI(Ty))
|
|
return ABIArgInfo::getExtend(Ty);
|
|
}
|
|
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
|
|
// available SSE register is used, the registers are taken in the
|
|
// order from %xmm0 to %xmm7.
|
|
case SSE: {
|
|
llvm::Type *IRType = CGT.ConvertType(Ty);
|
|
ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
|
|
++neededSSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
llvm::Type *HighPart = nullptr;
|
|
switch (Hi) {
|
|
// Memory was handled previously, ComplexX87 and X87 should
|
|
// never occur as hi classes, and X87Up must be preceded by X87,
|
|
// which is passed in memory.
|
|
case Memory:
|
|
case X87:
|
|
case ComplexX87:
|
|
llvm_unreachable("Invalid classification for hi word.");
|
|
|
|
case NoClass: break;
|
|
|
|
case Integer:
|
|
++neededInt;
|
|
// Pick an 8-byte type based on the preferred type.
|
|
HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
|
|
|
|
if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
|
break;
|
|
|
|
// X87Up generally doesn't occur here (long double is passed in
|
|
// memory), except in situations involving unions.
|
|
case X87Up:
|
|
case SSE:
|
|
HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
|
|
|
|
if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
|
|
|
++neededSSE;
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
|
|
// eightbyte is passed in the upper half of the last used SSE
|
|
// register. This only happens when 128-bit vectors are passed.
|
|
case SSEUp:
|
|
assert(Lo == SSE && "Unexpected SSEUp classification");
|
|
ResType = GetByteVectorType(Ty);
|
|
break;
|
|
}
|
|
|
|
// If a high part was specified, merge it together with the low part. It is
|
|
// known to pass in the high eightbyte of the result. We do this by forming a
|
|
// first class struct aggregate with the high and low part: {low, high}
|
|
if (HighPart)
|
|
ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
|
|
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
|
|
ABIArgInfo
|
|
X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
|
|
unsigned &NeededSSE) const {
|
|
auto RT = Ty->getAs<RecordType>();
|
|
assert(RT && "classifyRegCallStructType only valid with struct types");
|
|
|
|
if (RT->getDecl()->hasFlexibleArrayMember())
|
|
return getIndirectReturnResult(Ty);
|
|
|
|
// Sum up bases
|
|
if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
|
|
if (CXXRD->isDynamicClass()) {
|
|
NeededInt = NeededSSE = 0;
|
|
return getIndirectReturnResult(Ty);
|
|
}
|
|
|
|
for (const auto &I : CXXRD->bases())
|
|
if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
|
|
.isIndirect()) {
|
|
NeededInt = NeededSSE = 0;
|
|
return getIndirectReturnResult(Ty);
|
|
}
|
|
}
|
|
|
|
// Sum up members
|
|
for (const auto *FD : RT->getDecl()->fields()) {
|
|
if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
|
|
if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
|
|
.isIndirect()) {
|
|
NeededInt = NeededSSE = 0;
|
|
return getIndirectReturnResult(Ty);
|
|
}
|
|
} else {
|
|
unsigned LocalNeededInt, LocalNeededSSE;
|
|
if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
|
|
LocalNeededSSE, true)
|
|
.isIndirect()) {
|
|
NeededInt = NeededSSE = 0;
|
|
return getIndirectReturnResult(Ty);
|
|
}
|
|
NeededInt += LocalNeededInt;
|
|
NeededSSE += LocalNeededSSE;
|
|
}
|
|
}
|
|
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
|
|
unsigned &NeededInt,
|
|
unsigned &NeededSSE) const {
|
|
|
|
NeededInt = 0;
|
|
NeededSSE = 0;
|
|
|
|
return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
|
|
}
|
|
|
|
void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
|
|
const unsigned CallingConv = FI.getCallingConvention();
|
|
// It is possible to force Win64 calling convention on any x86_64 target by
|
|
// using __attribute__((ms_abi)). In such case to correctly emit Win64
|
|
// compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
|
|
if (CallingConv == llvm::CallingConv::Win64) {
|
|
WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
|
|
Win64ABIInfo.computeInfo(FI);
|
|
return;
|
|
}
|
|
|
|
bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
|
|
|
|
// Keep track of the number of assigned registers.
|
|
unsigned FreeIntRegs = IsRegCall ? 11 : 6;
|
|
unsigned FreeSSERegs = IsRegCall ? 16 : 8;
|
|
unsigned NeededInt, NeededSSE;
|
|
|
|
if (!::classifyReturnType(getCXXABI(), FI, *this)) {
|
|
if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
|
|
!FI.getReturnType()->getTypePtr()->isUnionType()) {
|
|
FI.getReturnInfo() =
|
|
classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
|
|
if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
|
|
FreeIntRegs -= NeededInt;
|
|
FreeSSERegs -= NeededSSE;
|
|
} else {
|
|
FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
|
|
}
|
|
} else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
|
|
getContext().getCanonicalType(FI.getReturnType()
|
|
->getAs<ComplexType>()
|
|
->getElementType()) ==
|
|
getContext().LongDoubleTy)
|
|
// Complex Long Double Type is passed in Memory when Regcall
|
|
// calling convention is used.
|
|
FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
|
|
else
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
}
|
|
|
|
// If the return value is indirect, then the hidden argument is consuming one
|
|
// integer register.
|
|
if (FI.getReturnInfo().isIndirect())
|
|
--FreeIntRegs;
|
|
|
|
// The chain argument effectively gives us another free register.
|
|
if (FI.isChainCall())
|
|
++FreeIntRegs;
|
|
|
|
unsigned NumRequiredArgs = FI.getNumRequiredArgs();
|
|
// AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
|
|
// get assigned (in left-to-right order) for passing as follows...
|
|
unsigned ArgNo = 0;
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
it != ie; ++it, ++ArgNo) {
|
|
bool IsNamedArg = ArgNo < NumRequiredArgs;
|
|
|
|
if (IsRegCall && it->type->isStructureOrClassType())
|
|
it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
|
|
else
|
|
it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
|
|
NeededSSE, IsNamedArg);
|
|
|
|
// AMD64-ABI 3.2.3p3: If there are no registers available for any
|
|
// eightbyte of an argument, the whole argument is passed on the
|
|
// stack. If registers have already been assigned for some
|
|
// eightbytes of such an argument, the assignments get reverted.
|
|
if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
|
|
FreeIntRegs -= NeededInt;
|
|
FreeSSERegs -= NeededSSE;
|
|
} else {
|
|
it->info = getIndirectResult(it->type, FreeIntRegs);
|
|
}
|
|
}
|
|
}
|
|
|
|
static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
|
|
Address VAListAddr, QualType Ty) {
|
|
Address overflow_arg_area_p =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
|
|
llvm::Value *overflow_arg_area =
|
|
CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
|
|
// byte boundary if alignment needed by type exceeds 8 byte boundary.
|
|
// It isn't stated explicitly in the standard, but in practice we use
|
|
// alignment greater than 16 where necessary.
|
|
CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
|
|
if (Align > CharUnits::fromQuantity(8)) {
|
|
overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
|
|
Align);
|
|
}
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
|
|
llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
|
|
llvm::Value *Res =
|
|
CGF.Builder.CreateBitCast(overflow_arg_area,
|
|
llvm::PointerType::getUnqual(LTy));
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
|
|
// l->overflow_arg_area + sizeof(type).
|
|
// AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
|
|
// an 8 byte boundary.
|
|
|
|
uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
|
|
llvm::Value *Offset =
|
|
llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
|
|
overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
|
|
"overflow_arg_area.next");
|
|
CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
|
|
return Address(Res, Align);
|
|
}
|
|
|
|
Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
// Assume that va_list type is correct; should be pointer to LLVM type:
|
|
// struct {
|
|
// i32 gp_offset;
|
|
// i32 fp_offset;
|
|
// i8* overflow_arg_area;
|
|
// i8* reg_save_area;
|
|
// };
|
|
unsigned neededInt, neededSSE;
|
|
|
|
Ty = getContext().getCanonicalType(Ty);
|
|
ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
|
|
/*isNamedArg*/false);
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
|
|
// in the registers. If not go to step 7.
|
|
if (!neededInt && !neededSSE)
|
|
return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
|
|
// general purpose registers needed to pass type and num_fp to hold
|
|
// the number of floating point registers needed.
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
|
|
// registers. In the case: l->gp_offset > 48 - num_gp * 8 or
|
|
// l->fp_offset > 304 - num_fp * 16 go to step 7.
|
|
//
|
|
// NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
|
|
// register save space).
|
|
|
|
llvm::Value *InRegs = nullptr;
|
|
Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
|
|
llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
|
|
if (neededInt) {
|
|
gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
|
|
gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
|
|
InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
|
|
InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
|
|
}
|
|
|
|
if (neededSSE) {
|
|
fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
|
|
fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
|
|
llvm::Value *FitsInFP =
|
|
llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
|
|
FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
|
|
InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
|
|
}
|
|
|
|
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
|
|
llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
|
|
CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
|
|
|
|
// Emit code to load the value if it was passed in registers.
|
|
|
|
CGF.EmitBlock(InRegBlock);
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
|
|
// an offset of l->gp_offset and/or l->fp_offset. This may require
|
|
// copying to a temporary location in case the parameter is passed
|
|
// in different register classes or requires an alignment greater
|
|
// than 8 for general purpose registers and 16 for XMM registers.
|
|
//
|
|
// FIXME: This really results in shameful code when we end up needing to
|
|
// collect arguments from different places; often what should result in a
|
|
// simple assembling of a structure from scattered addresses has many more
|
|
// loads than necessary. Can we clean this up?
|
|
llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
|
|
llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
|
|
CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
|
|
|
|
Address RegAddr = Address::invalid();
|
|
if (neededInt && neededSSE) {
|
|
// FIXME: Cleanup.
|
|
assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
|
|
llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
|
|
Address Tmp = CGF.CreateMemTemp(Ty);
|
|
Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
|
|
assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
|
|
llvm::Type *TyLo = ST->getElementType(0);
|
|
llvm::Type *TyHi = ST->getElementType(1);
|
|
assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
|
|
"Unexpected ABI info for mixed regs");
|
|
llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
|
|
llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
|
|
llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
|
|
llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
|
|
llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
|
|
llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
|
|
|
|
// Copy the first element.
|
|
// FIXME: Our choice of alignment here and below is probably pessimistic.
|
|
llvm::Value *V = CGF.Builder.CreateAlignedLoad(
|
|
TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
|
|
CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
|
|
|
|
// Copy the second element.
|
|
V = CGF.Builder.CreateAlignedLoad(
|
|
TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
|
|
CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
|
|
|
|
RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
|
|
} else if (neededInt) {
|
|
RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
|
|
CharUnits::fromQuantity(8));
|
|
RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
|
|
|
|
// Copy to a temporary if necessary to ensure the appropriate alignment.
|
|
auto TInfo = getContext().getTypeInfoInChars(Ty);
|
|
uint64_t TySize = TInfo.Width.getQuantity();
|
|
CharUnits TyAlign = TInfo.Align;
|
|
|
|
// Copy into a temporary if the type is more aligned than the
|
|
// register save area.
|
|
if (TyAlign.getQuantity() > 8) {
|
|
Address Tmp = CGF.CreateMemTemp(Ty);
|
|
CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
|
|
RegAddr = Tmp;
|
|
}
|
|
|
|
} else if (neededSSE == 1) {
|
|
RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
|
|
CharUnits::fromQuantity(16));
|
|
RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
|
|
} else {
|
|
assert(neededSSE == 2 && "Invalid number of needed registers!");
|
|
// SSE registers are spaced 16 bytes apart in the register save
|
|
// area, we need to collect the two eightbytes together.
|
|
// The ABI isn't explicit about this, but it seems reasonable
|
|
// to assume that the slots are 16-byte aligned, since the stack is
|
|
// naturally 16-byte aligned and the prologue is expected to store
|
|
// all the SSE registers to the RSA.
|
|
Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
|
|
CharUnits::fromQuantity(16));
|
|
Address RegAddrHi =
|
|
CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
|
|
CharUnits::fromQuantity(16));
|
|
llvm::Type *ST = AI.canHaveCoerceToType()
|
|
? AI.getCoerceToType()
|
|
: llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
|
|
llvm::Value *V;
|
|
Address Tmp = CGF.CreateMemTemp(Ty);
|
|
Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
|
|
V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
|
|
RegAddrLo, ST->getStructElementType(0)));
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
|
|
V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
|
|
RegAddrHi, ST->getStructElementType(1)));
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
|
|
|
|
RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
|
|
}
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 5. Set:
|
|
// l->gp_offset = l->gp_offset + num_gp * 8
|
|
// l->fp_offset = l->fp_offset + num_fp * 16.
|
|
if (neededInt) {
|
|
llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
|
|
gp_offset_p);
|
|
}
|
|
if (neededSSE) {
|
|
llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
|
|
fp_offset_p);
|
|
}
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
// Emit code to load the value if it was passed in memory.
|
|
|
|
CGF.EmitBlock(InMemBlock);
|
|
Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
|
|
|
|
// Return the appropriate result.
|
|
|
|
CGF.EmitBlock(ContBlock);
|
|
Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
|
|
"vaarg.addr");
|
|
return ResAddr;
|
|
}
|
|
|
|
Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
|
|
CGF.getContext().getTypeInfoInChars(Ty),
|
|
CharUnits::fromQuantity(8),
|
|
/*allowHigherAlign*/ false);
|
|
}
|
|
|
|
ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
|
|
QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const {
|
|
const Type *Base = nullptr;
|
|
uint64_t NumElts = 0;
|
|
|
|
if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
|
|
isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
|
|
FreeSSERegs -= NumElts;
|
|
return getDirectX86Hva();
|
|
}
|
|
return current;
|
|
}
|
|
|
|
ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
|
|
bool IsReturnType, bool IsVectorCall,
|
|
bool IsRegCall) const {
|
|
|
|
if (Ty->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
TypeInfo Info = getContext().getTypeInfo(Ty);
|
|
uint64_t Width = Info.Width;
|
|
CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
|
|
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (RT) {
|
|
if (!IsReturnType) {
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
|
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
}
|
|
|
|
if (RT->getDecl()->hasFlexibleArrayMember())
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
|
|
}
|
|
|
|
const Type *Base = nullptr;
|
|
uint64_t NumElts = 0;
|
|
// vectorcall adds the concept of a homogenous vector aggregate, similar to
|
|
// other targets.
|
|
if ((IsVectorCall || IsRegCall) &&
|
|
isHomogeneousAggregate(Ty, Base, NumElts)) {
|
|
if (IsRegCall) {
|
|
if (FreeSSERegs >= NumElts) {
|
|
FreeSSERegs -= NumElts;
|
|
if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
|
|
return ABIArgInfo::getDirect();
|
|
return ABIArgInfo::getExpand();
|
|
}
|
|
return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
|
|
} else if (IsVectorCall) {
|
|
if (FreeSSERegs >= NumElts &&
|
|
(IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
|
|
FreeSSERegs -= NumElts;
|
|
return ABIArgInfo::getDirect();
|
|
} else if (IsReturnType) {
|
|
return ABIArgInfo::getExpand();
|
|
} else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
|
|
// HVAs are delayed and reclassified in the 2nd step.
|
|
return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Ty->isMemberPointerType()) {
|
|
// If the member pointer is represented by an LLVM int or ptr, pass it
|
|
// directly.
|
|
llvm::Type *LLTy = CGT.ConvertType(Ty);
|
|
if (LLTy->isPointerTy() || LLTy->isIntegerTy())
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
|
|
// MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
|
|
// not 1, 2, 4, or 8 bytes, must be passed by reference."
|
|
if (Width > 64 || !llvm::isPowerOf2_64(Width))
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
|
|
// Otherwise, coerce it to a small integer.
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
|
|
}
|
|
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Bool:
|
|
// Bool type is always extended to the ABI, other builtin types are not
|
|
// extended.
|
|
return ABIArgInfo::getExtend(Ty);
|
|
|
|
case BuiltinType::LongDouble:
|
|
// Mingw64 GCC uses the old 80 bit extended precision floating point
|
|
// unit. It passes them indirectly through memory.
|
|
if (IsMingw64) {
|
|
const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
|
|
if (LDF == &llvm::APFloat::x87DoubleExtended())
|
|
return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
|
|
}
|
|
break;
|
|
|
|
case BuiltinType::Int128:
|
|
case BuiltinType::UInt128:
|
|
// If it's a parameter type, the normal ABI rule is that arguments larger
|
|
// than 8 bytes are passed indirectly. GCC follows it. We follow it too,
|
|
// even though it isn't particularly efficient.
|
|
if (!IsReturnType)
|
|
return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
|
|
|
|
// Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
|
|
// Clang matches them for compatibility.
|
|
return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
|
|
llvm::Type::getInt64Ty(getVMContext()), 2));
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Ty->isExtIntType()) {
|
|
// MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
|
|
// not 1, 2, 4, or 8 bytes, must be passed by reference."
|
|
// However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
|
|
// anyway as long is it fits in them, so we don't have to check the power of
|
|
// 2.
|
|
if (Width <= 64)
|
|
return ABIArgInfo::getDirect();
|
|
return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
|
|
}
|
|
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
const unsigned CC = FI.getCallingConvention();
|
|
bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
|
|
bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
|
|
|
|
// If __attribute__((sysv_abi)) is in use, use the SysV argument
|
|
// classification rules.
|
|
if (CC == llvm::CallingConv::X86_64_SysV) {
|
|
X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
|
|
SysVABIInfo.computeInfo(FI);
|
|
return;
|
|
}
|
|
|
|
unsigned FreeSSERegs = 0;
|
|
if (IsVectorCall) {
|
|
// We can use up to 4 SSE return registers with vectorcall.
|
|
FreeSSERegs = 4;
|
|
} else if (IsRegCall) {
|
|
// RegCall gives us 16 SSE registers.
|
|
FreeSSERegs = 16;
|
|
}
|
|
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
|
|
IsVectorCall, IsRegCall);
|
|
|
|
if (IsVectorCall) {
|
|
// We can use up to 6 SSE register parameters with vectorcall.
|
|
FreeSSERegs = 6;
|
|
} else if (IsRegCall) {
|
|
// RegCall gives us 16 SSE registers, we can reuse the return registers.
|
|
FreeSSERegs = 16;
|
|
}
|
|
|
|
unsigned ArgNum = 0;
|
|
unsigned ZeroSSERegs = 0;
|
|
for (auto &I : FI.arguments()) {
|
|
// Vectorcall in x64 only permits the first 6 arguments to be passed as
|
|
// XMM/YMM registers. After the sixth argument, pretend no vector
|
|
// registers are left.
|
|
unsigned *MaybeFreeSSERegs =
|
|
(IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
|
|
I.info =
|
|
classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
|
|
++ArgNum;
|
|
}
|
|
|
|
if (IsVectorCall) {
|
|
// For vectorcall, assign aggregate HVAs to any free vector registers in a
|
|
// second pass.
|
|
for (auto &I : FI.arguments())
|
|
I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
|
|
}
|
|
}
|
|
|
|
Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
|
|
bool IsIndirect = false;
|
|
|
|
// MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
|
|
// not 1, 2, 4, or 8 bytes, must be passed by reference."
|
|
if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
|
|
uint64_t Width = getContext().getTypeSize(Ty);
|
|
IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
|
|
}
|
|
|
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
|
|
CGF.getContext().getTypeInfoInChars(Ty),
|
|
CharUnits::fromQuantity(8),
|
|
/*allowHigherAlign*/ false);
|
|
}
|
|
|
|
static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address, bool Is64Bit,
|
|
bool IsAIX) {
|
|
// This is calculated from the LLVM and GCC tables and verified
|
|
// against gcc output. AFAIK all PPC ABIs use the same encoding.
|
|
|
|
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::IntegerType *i8 = CGF.Int8Ty;
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
|
|
llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
|
|
|
|
// 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
|
|
AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
|
|
|
|
// 32-63: fp0-31, the 8-byte floating-point registers
|
|
AssignToArrayRange(Builder, Address, Eight8, 32, 63);
|
|
|
|
// 64-67 are various 4-byte or 8-byte special-purpose registers:
|
|
// 64: mq
|
|
// 65: lr
|
|
// 66: ctr
|
|
// 67: ap
|
|
AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
|
|
|
|
// 68-76 are various 4-byte special-purpose registers:
|
|
// 68-75 cr0-7
|
|
// 76: xer
|
|
AssignToArrayRange(Builder, Address, Four8, 68, 76);
|
|
|
|
// 77-108: v0-31, the 16-byte vector registers
|
|
AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
|
|
|
|
// 109: vrsave
|
|
// 110: vscr
|
|
AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
|
|
|
|
// AIX does not utilize the rest of the registers.
|
|
if (IsAIX)
|
|
return false;
|
|
|
|
// 111: spe_acc
|
|
// 112: spefscr
|
|
// 113: sfp
|
|
AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
|
|
|
|
if (!Is64Bit)
|
|
return false;
|
|
|
|
// TODO: Need to verify if these registers are used on 64 bit AIX with Power8
|
|
// or above CPU.
|
|
// 64-bit only registers:
|
|
// 114: tfhar
|
|
// 115: tfiar
|
|
// 116: texasr
|
|
AssignToArrayRange(Builder, Address, Eight8, 114, 116);
|
|
|
|
return false;
|
|
}
|
|
|
|
// AIX
|
|
namespace {
|
|
/// AIXABIInfo - The AIX XCOFF ABI information.
|
|
class AIXABIInfo : public ABIInfo {
|
|
const bool Is64Bit;
|
|
const unsigned PtrByteSize;
|
|
CharUnits getParamTypeAlignment(QualType Ty) const;
|
|
|
|
public:
|
|
AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
|
|
: ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
|
|
|
|
bool isPromotableTypeForABI(QualType Ty) const;
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType Ty) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type);
|
|
}
|
|
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
};
|
|
|
|
class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
const bool Is64Bit;
|
|
|
|
public:
|
|
AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
|
|
: TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
|
|
Is64Bit(Is64Bit) {}
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
return 1; // r1 is the dedicated stack pointer
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
};
|
|
} // namespace
|
|
|
|
// Return true if the ABI requires Ty to be passed sign- or zero-
|
|
// extended to 32/64 bits.
|
|
bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
// Promotable integer types are required to be promoted by the ABI.
|
|
if (Ty->isPromotableIntegerType())
|
|
return true;
|
|
|
|
if (!Is64Bit)
|
|
return false;
|
|
|
|
// For 64 bit mode, in addition to the usual promotable integer types, we also
|
|
// need to extend all 32-bit types, since the ABI requires promotion to 64
|
|
// bits.
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Int:
|
|
case BuiltinType::UInt:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isAnyComplexType())
|
|
return ABIArgInfo::getDirect();
|
|
|
|
if (RetTy->isVectorType())
|
|
return ABIArgInfo::getDirect();
|
|
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (isAggregateTypeForABI(RetTy))
|
|
return getNaturalAlignIndirect(RetTy);
|
|
|
|
return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
|
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
|
|
|
if (Ty->isAnyComplexType())
|
|
return ABIArgInfo::getDirect();
|
|
|
|
if (Ty->isVectorType())
|
|
return ABIArgInfo::getDirect();
|
|
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
// Records with non-trivial destructors/copy-constructors should not be
|
|
// passed by value.
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
CharUnits CCAlign = getParamTypeAlignment(Ty);
|
|
CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
|
|
|
|
return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
|
|
/*Realign*/ TyAlign > CCAlign);
|
|
}
|
|
|
|
return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
|
|
// Complex types are passed just like their elements.
|
|
if (const ComplexType *CTy = Ty->getAs<ComplexType>())
|
|
Ty = CTy->getElementType();
|
|
|
|
if (Ty->isVectorType())
|
|
return CharUnits::fromQuantity(16);
|
|
|
|
// If the structure contains a vector type, the alignment is 16.
|
|
if (isRecordWithSIMDVectorType(getContext(), Ty))
|
|
return CharUnits::fromQuantity(16);
|
|
|
|
return CharUnits::fromQuantity(PtrByteSize);
|
|
}
|
|
|
|
Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
if (Ty->isAnyComplexType())
|
|
llvm::report_fatal_error("complex type is not supported on AIX yet");
|
|
|
|
if (Ty->isVectorType())
|
|
llvm::report_fatal_error(
|
|
"vector types are not yet supported for variadic functions on AIX");
|
|
|
|
auto TypeInfo = getContext().getTypeInfoInChars(Ty);
|
|
TypeInfo.Align = getParamTypeAlignment(Ty);
|
|
|
|
CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
|
|
|
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
|
|
SlotSize, /*AllowHigher*/ true);
|
|
}
|
|
|
|
bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
|
|
CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
|
|
return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
|
|
}
|
|
|
|
// PowerPC-32
|
|
namespace {
|
|
/// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
|
|
class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
|
|
bool IsSoftFloatABI;
|
|
bool IsRetSmallStructInRegABI;
|
|
|
|
CharUnits getParamTypeAlignment(QualType Ty) const;
|
|
|
|
public:
|
|
PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
|
|
bool RetSmallStructInRegABI)
|
|
: DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
|
|
IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type);
|
|
}
|
|
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
};
|
|
|
|
class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
|
|
bool RetSmallStructInRegABI)
|
|
: TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
|
|
CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
|
|
|
|
static bool isStructReturnInRegABI(const llvm::Triple &Triple,
|
|
const CodeGenOptions &Opts);
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
// This is recovered from gcc output.
|
|
return 1; // r1 is the dedicated stack pointer
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
};
|
|
}
|
|
|
|
CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
|
|
// Complex types are passed just like their elements.
|
|
if (const ComplexType *CTy = Ty->getAs<ComplexType>())
|
|
Ty = CTy->getElementType();
|
|
|
|
if (Ty->isVectorType())
|
|
return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
|
|
: 4);
|
|
|
|
// For single-element float/vector structs, we consider the whole type
|
|
// to have the same alignment requirements as its single element.
|
|
const Type *AlignTy = nullptr;
|
|
if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
|
|
const BuiltinType *BT = EltType->getAs<BuiltinType>();
|
|
if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
|
|
(BT && BT->isFloatingPoint()))
|
|
AlignTy = EltType;
|
|
}
|
|
|
|
if (AlignTy)
|
|
return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
|
|
return CharUnits::fromQuantity(4);
|
|
}
|
|
|
|
ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
|
|
uint64_t Size;
|
|
|
|
// -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
|
|
if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
|
|
(Size = getContext().getTypeSize(RetTy)) <= 64) {
|
|
// System V ABI (1995), page 3-22, specified:
|
|
// > A structure or union whose size is less than or equal to 8 bytes
|
|
// > shall be returned in r3 and r4, as if it were first stored in the
|
|
// > 8-byte aligned memory area and then the low addressed word were
|
|
// > loaded into r3 and the high-addressed word into r4. Bits beyond
|
|
// > the last member of the structure or union are not defined.
|
|
//
|
|
// GCC for big-endian PPC32 inserts the pad before the first member,
|
|
// not "beyond the last member" of the struct. To stay compatible
|
|
// with GCC, we coerce the struct to an integer of the same size.
|
|
// LLVM will extend it and return i32 in r3, or i64 in r3:r4.
|
|
if (Size == 0)
|
|
return ABIArgInfo::getIgnore();
|
|
else {
|
|
llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
}
|
|
|
|
return DefaultABIInfo::classifyReturnType(RetTy);
|
|
}
|
|
|
|
// TODO: this implementation is now likely redundant with
|
|
// DefaultABIInfo::EmitVAArg.
|
|
Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
|
|
QualType Ty) const {
|
|
if (getTarget().getTriple().isOSDarwin()) {
|
|
auto TI = getContext().getTypeInfoInChars(Ty);
|
|
TI.Align = getParamTypeAlignment(Ty);
|
|
|
|
CharUnits SlotSize = CharUnits::fromQuantity(4);
|
|
return emitVoidPtrVAArg(CGF, VAList, Ty,
|
|
classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
|
|
/*AllowHigherAlign=*/true);
|
|
}
|
|
|
|
const unsigned OverflowLimit = 8;
|
|
if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
|
|
// TODO: Implement this. For now ignore.
|
|
(void)CTy;
|
|
return Address::invalid(); // FIXME?
|
|
}
|
|
|
|
// struct __va_list_tag {
|
|
// unsigned char gpr;
|
|
// unsigned char fpr;
|
|
// unsigned short reserved;
|
|
// void *overflow_arg_area;
|
|
// void *reg_save_area;
|
|
// };
|
|
|
|
bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
|
|
bool isInt = !Ty->isFloatingType();
|
|
bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
|
|
|
|
// All aggregates are passed indirectly? That doesn't seem consistent
|
|
// with the argument-lowering code.
|
|
bool isIndirect = isAggregateTypeForABI(Ty);
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
// The calling convention either uses 1-2 GPRs or 1 FPR.
|
|
Address NumRegsAddr = Address::invalid();
|
|
if (isInt || IsSoftFloatABI) {
|
|
NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
|
|
} else {
|
|
NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
|
|
}
|
|
|
|
llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
|
|
|
|
// "Align" the register count when TY is i64.
|
|
if (isI64 || (isF64 && IsSoftFloatABI)) {
|
|
NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
|
|
NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
|
|
}
|
|
|
|
llvm::Value *CC =
|
|
Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
|
|
|
|
llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
|
|
llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
|
|
llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
|
|
|
|
Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
|
|
|
|
llvm::Type *DirectTy = CGF.ConvertType(Ty);
|
|
if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
|
|
|
|
// Case 1: consume registers.
|
|
Address RegAddr = Address::invalid();
|
|
{
|
|
CGF.EmitBlock(UsingRegs);
|
|
|
|
Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
|
|
RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
|
|
CharUnits::fromQuantity(8));
|
|
assert(RegAddr.getElementType() == CGF.Int8Ty);
|
|
|
|
// Floating-point registers start after the general-purpose registers.
|
|
if (!(isInt || IsSoftFloatABI)) {
|
|
RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
|
|
CharUnits::fromQuantity(32));
|
|
}
|
|
|
|
// Get the address of the saved value by scaling the number of
|
|
// registers we've used by the number of
|
|
CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
|
|
llvm::Value *RegOffset =
|
|
Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
|
|
RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
|
|
RegAddr.getPointer(), RegOffset),
|
|
RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
|
|
RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
|
|
|
|
// Increase the used-register count.
|
|
NumRegs =
|
|
Builder.CreateAdd(NumRegs,
|
|
Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
|
|
Builder.CreateStore(NumRegs, NumRegsAddr);
|
|
|
|
CGF.EmitBranch(Cont);
|
|
}
|
|
|
|
// Case 2: consume space in the overflow area.
|
|
Address MemAddr = Address::invalid();
|
|
{
|
|
CGF.EmitBlock(UsingOverflow);
|
|
|
|
Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
|
|
|
|
// Everything in the overflow area is rounded up to a size of at least 4.
|
|
CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
|
|
|
|
CharUnits Size;
|
|
if (!isIndirect) {
|
|
auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
|
|
Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
|
|
} else {
|
|
Size = CGF.getPointerSize();
|
|
}
|
|
|
|
Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
|
|
Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
|
|
OverflowAreaAlign);
|
|
// Round up address of argument to alignment
|
|
CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
|
|
if (Align > OverflowAreaAlign) {
|
|
llvm::Value *Ptr = OverflowArea.getPointer();
|
|
OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
|
|
Align);
|
|
}
|
|
|
|
MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
|
|
|
|
// Increase the overflow area.
|
|
OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
|
|
Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
|
|
CGF.EmitBranch(Cont);
|
|
}
|
|
|
|
CGF.EmitBlock(Cont);
|
|
|
|
// Merge the cases with a phi.
|
|
Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
|
|
"vaarg.addr");
|
|
|
|
// Load the pointer if the argument was passed indirectly.
|
|
if (isIndirect) {
|
|
Result = Address(Builder.CreateLoad(Result, "aggr"),
|
|
getContext().getTypeAlignInChars(Ty));
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
|
|
const llvm::Triple &Triple, const CodeGenOptions &Opts) {
|
|
assert(Triple.isPPC32());
|
|
|
|
switch (Opts.getStructReturnConvention()) {
|
|
case CodeGenOptions::SRCK_Default:
|
|
break;
|
|
case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
|
|
return false;
|
|
case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
|
|
return true;
|
|
}
|
|
|
|
if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const {
|
|
return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
|
|
/*IsAIX*/ false);
|
|
}
|
|
|
|
// PowerPC-64
|
|
|
|
namespace {
|
|
/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
|
|
class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
|
|
public:
|
|
enum ABIKind {
|
|
ELFv1 = 0,
|
|
ELFv2
|
|
};
|
|
|
|
private:
|
|
static const unsigned GPRBits = 64;
|
|
ABIKind Kind;
|
|
bool IsSoftFloatABI;
|
|
|
|
public:
|
|
PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind,
|
|
bool SoftFloatABI)
|
|
: SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {}
|
|
|
|
bool isPromotableTypeForABI(QualType Ty) const;
|
|
CharUnits getParamTypeAlignment(QualType Ty) const;
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType Ty) const;
|
|
|
|
bool isHomogeneousAggregateBaseType(QualType Ty) const override;
|
|
bool isHomogeneousAggregateSmallEnough(const Type *Ty,
|
|
uint64_t Members) const override;
|
|
|
|
// TODO: We can add more logic to computeInfo to improve performance.
|
|
// Example: For aggregate arguments that fit in a register, we could
|
|
// use getDirectInReg (as is done below for structs containing a single
|
|
// floating-point value) to avoid pushing them to memory on function
|
|
// entry. This would require changing the logic in PPCISelLowering
|
|
// when lowering the parameters in the caller and args in the callee.
|
|
void computeInfo(CGFunctionInfo &FI) const override {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &I : FI.arguments()) {
|
|
// We rely on the default argument classification for the most part.
|
|
// One exception: An aggregate containing a single floating-point
|
|
// or vector item must be passed in a register if one is available.
|
|
const Type *T = isSingleElementStruct(I.type, getContext());
|
|
if (T) {
|
|
const BuiltinType *BT = T->getAs<BuiltinType>();
|
|
if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
|
|
(BT && BT->isFloatingPoint())) {
|
|
QualType QT(T, 0);
|
|
I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
|
|
continue;
|
|
}
|
|
}
|
|
I.info = classifyArgumentType(I.type);
|
|
}
|
|
}
|
|
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
|
|
bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
|
|
bool asReturnValue) const override {
|
|
return occupiesMoreThan(CGT, scalars, /*total*/ 4);
|
|
}
|
|
|
|
bool isSwiftErrorInRegister() const override {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
|
|
public:
|
|
PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
|
|
PPC64_SVR4_ABIInfo::ABIKind Kind,
|
|
bool SoftFloatABI)
|
|
: TargetCodeGenInfo(
|
|
std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
// This is recovered from gcc output.
|
|
return 1; // r1 is the dedicated stack pointer
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
};
|
|
|
|
class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
|
|
public:
|
|
PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
// This is recovered from gcc output.
|
|
return 1; // r1 is the dedicated stack pointer
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
};
|
|
|
|
}
|
|
|
|
// Return true if the ABI requires Ty to be passed sign- or zero-
|
|
// extended to 64 bits.
|
|
bool
|
|
PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
// Promotable integer types are required to be promoted by the ABI.
|
|
if (isPromotableIntegerTypeForABI(Ty))
|
|
return true;
|
|
|
|
// In addition to the usual promotable integer types, we also need to
|
|
// extend all 32-bit types, since the ABI requires promotion to 64 bits.
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Int:
|
|
case BuiltinType::UInt:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (const auto *EIT = Ty->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() < 64)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isAlignedParamType - Determine whether a type requires 16-byte or
|
|
/// higher alignment in the parameter area. Always returns at least 8.
|
|
CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
|
|
// Complex types are passed just like their elements.
|
|
if (const ComplexType *CTy = Ty->getAs<ComplexType>())
|
|
Ty = CTy->getElementType();
|
|
|
|
// Only vector types of size 16 bytes need alignment (larger types are
|
|
// passed via reference, smaller types are not aligned).
|
|
if (Ty->isVectorType()) {
|
|
return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
|
|
} else if (Ty->isRealFloatingType() &&
|
|
&getContext().getFloatTypeSemantics(Ty) ==
|
|
&llvm::APFloat::IEEEquad()) {
|
|
// According to ABI document section 'Optional Save Areas': If extended
|
|
// precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
|
|
// format are supported, map them to a single quadword, quadword aligned.
|
|
return CharUnits::fromQuantity(16);
|
|
}
|
|
|
|
// For single-element float/vector structs, we consider the whole type
|
|
// to have the same alignment requirements as its single element.
|
|
const Type *AlignAsType = nullptr;
|
|
const Type *EltType = isSingleElementStruct(Ty, getContext());
|
|
if (EltType) {
|
|
const BuiltinType *BT = EltType->getAs<BuiltinType>();
|
|
if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
|
|
(BT && BT->isFloatingPoint()))
|
|
AlignAsType = EltType;
|
|
}
|
|
|
|
// Likewise for ELFv2 homogeneous aggregates.
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (!AlignAsType && Kind == ELFv2 &&
|
|
isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
|
|
AlignAsType = Base;
|
|
|
|
// With special case aggregates, only vector base types need alignment.
|
|
if (AlignAsType) {
|
|
return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
|
|
}
|
|
|
|
// Otherwise, we only need alignment for any aggregate type that
|
|
// has an alignment requirement of >= 16 bytes.
|
|
if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
|
|
return CharUnits::fromQuantity(16);
|
|
}
|
|
|
|
return CharUnits::fromQuantity(8);
|
|
}
|
|
|
|
/// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
|
|
/// aggregate. Base is set to the base element type, and Members is set
|
|
/// to the number of base elements.
|
|
bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
|
|
uint64_t &Members) const {
|
|
if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
|
|
uint64_t NElements = AT->getSize().getZExtValue();
|
|
if (NElements == 0)
|
|
return false;
|
|
if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
|
|
return false;
|
|
Members *= NElements;
|
|
} else if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return false;
|
|
|
|
Members = 0;
|
|
|
|
// If this is a C++ record, check the properties of the record such as
|
|
// bases and ABI specific restrictions
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD))
|
|
return false;
|
|
|
|
for (const auto &I : CXXRD->bases()) {
|
|
// Ignore empty records.
|
|
if (isEmptyRecord(getContext(), I.getType(), true))
|
|
continue;
|
|
|
|
uint64_t FldMembers;
|
|
if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
|
|
return false;
|
|
|
|
Members += FldMembers;
|
|
}
|
|
}
|
|
|
|
for (const auto *FD : RD->fields()) {
|
|
// Ignore (non-zero arrays of) empty records.
|
|
QualType FT = FD->getType();
|
|
while (const ConstantArrayType *AT =
|
|
getContext().getAsConstantArrayType(FT)) {
|
|
if (AT->getSize().getZExtValue() == 0)
|
|
return false;
|
|
FT = AT->getElementType();
|
|
}
|
|
if (isEmptyRecord(getContext(), FT, true))
|
|
continue;
|
|
|
|
// For compatibility with GCC, ignore empty bitfields in C++ mode.
|
|
if (getContext().getLangOpts().CPlusPlus &&
|
|
FD->isZeroLengthBitField(getContext()))
|
|
continue;
|
|
|
|
uint64_t FldMembers;
|
|
if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
|
|
return false;
|
|
|
|
Members = (RD->isUnion() ?
|
|
std::max(Members, FldMembers) : Members + FldMembers);
|
|
}
|
|
|
|
if (!Base)
|
|
return false;
|
|
|
|
// Ensure there is no padding.
|
|
if (getContext().getTypeSize(Base) * Members !=
|
|
getContext().getTypeSize(Ty))
|
|
return false;
|
|
} else {
|
|
Members = 1;
|
|
if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
|
|
Members = 2;
|
|
Ty = CT->getElementType();
|
|
}
|
|
|
|
// Most ABIs only support float, double, and some vector type widths.
|
|
if (!isHomogeneousAggregateBaseType(Ty))
|
|
return false;
|
|
|
|
// The base type must be the same for all members. Types that
|
|
// agree in both total size and mode (float vs. vector) are
|
|
// treated as being equivalent here.
|
|
const Type *TyPtr = Ty.getTypePtr();
|
|
if (!Base) {
|
|
Base = TyPtr;
|
|
// If it's a non-power-of-2 vector, its size is already a power-of-2,
|
|
// so make sure to widen it explicitly.
|
|
if (const VectorType *VT = Base->getAs<VectorType>()) {
|
|
QualType EltTy = VT->getElementType();
|
|
unsigned NumElements =
|
|
getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
|
|
Base = getContext()
|
|
.getVectorType(EltTy, NumElements, VT->getVectorKind())
|
|
.getTypePtr();
|
|
}
|
|
}
|
|
|
|
if (Base->isVectorType() != TyPtr->isVectorType() ||
|
|
getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
|
|
return false;
|
|
}
|
|
return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
|
|
}
|
|
|
|
bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
|
|
// Homogeneous aggregates for ELFv2 must have base types of float,
|
|
// double, long double, or 128-bit vectors.
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
|
if (BT->getKind() == BuiltinType::Float ||
|
|
BT->getKind() == BuiltinType::Double ||
|
|
BT->getKind() == BuiltinType::LongDouble ||
|
|
(getContext().getTargetInfo().hasFloat128Type() &&
|
|
(BT->getKind() == BuiltinType::Float128))) {
|
|
if (IsSoftFloatABI)
|
|
return false;
|
|
return true;
|
|
}
|
|
}
|
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
if (getContext().getTypeSize(VT) == 128)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
|
|
const Type *Base, uint64_t Members) const {
|
|
// Vector and fp128 types require one register, other floating point types
|
|
// require one or two registers depending on their size.
|
|
uint32_t NumRegs =
|
|
((getContext().getTargetInfo().hasFloat128Type() &&
|
|
Base->isFloat128Type()) ||
|
|
Base->isVectorType()) ? 1
|
|
: (getContext().getTypeSize(Base) + 63) / 64;
|
|
|
|
// Homogeneous Aggregates may occupy at most 8 registers.
|
|
return Members * NumRegs <= 8;
|
|
}
|
|
|
|
ABIArgInfo
|
|
PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
|
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
|
|
|
if (Ty->isAnyComplexType())
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
|
|
// or via reference (larger than 16 bytes).
|
|
if (Ty->isVectorType()) {
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (Size > 128)
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
else if (Size < 128) {
|
|
llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
}
|
|
|
|
if (const auto *EIT = Ty->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() > 128)
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
|
|
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
|
|
uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
|
|
|
|
// ELFv2 homogeneous aggregates are passed as array types.
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (Kind == ELFv2 &&
|
|
isHomogeneousAggregate(Ty, Base, Members)) {
|
|
llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
|
|
llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
|
|
// If an aggregate may end up fully in registers, we do not
|
|
// use the ByVal method, but pass the aggregate as array.
|
|
// This is usually beneficial since we avoid forcing the
|
|
// back-end to store the argument to memory.
|
|
uint64_t Bits = getContext().getTypeSize(Ty);
|
|
if (Bits > 0 && Bits <= 8 * GPRBits) {
|
|
llvm::Type *CoerceTy;
|
|
|
|
// Types up to 8 bytes are passed as integer type (which will be
|
|
// properly aligned in the argument save area doubleword).
|
|
if (Bits <= GPRBits)
|
|
CoerceTy =
|
|
llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
|
|
// Larger types are passed as arrays, with the base type selected
|
|
// according to the required alignment in the save area.
|
|
else {
|
|
uint64_t RegBits = ABIAlign * 8;
|
|
uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
|
|
llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
|
|
CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
|
|
}
|
|
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
|
|
// All other aggregates are passed ByVal.
|
|
return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
|
|
/*ByVal=*/true,
|
|
/*Realign=*/TyAlign > ABIAlign);
|
|
}
|
|
|
|
return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
ABIArgInfo
|
|
PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (RetTy->isAnyComplexType())
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
|
|
// or via reference (larger than 16 bytes).
|
|
if (RetTy->isVectorType()) {
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
if (Size > 128)
|
|
return getNaturalAlignIndirect(RetTy);
|
|
else if (Size < 128) {
|
|
llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
}
|
|
|
|
if (const auto *EIT = RetTy->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() > 128)
|
|
return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
|
|
|
|
if (isAggregateTypeForABI(RetTy)) {
|
|
// ELFv2 homogeneous aggregates are returned as array types.
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (Kind == ELFv2 &&
|
|
isHomogeneousAggregate(RetTy, Base, Members)) {
|
|
llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
|
|
llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
|
|
// ELFv2 small aggregates are returned in up to two registers.
|
|
uint64_t Bits = getContext().getTypeSize(RetTy);
|
|
if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
|
|
if (Bits == 0)
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
llvm::Type *CoerceTy;
|
|
if (Bits > GPRBits) {
|
|
CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
|
|
CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
|
|
} else
|
|
CoerceTy =
|
|
llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
|
|
// All other aggregates are returned indirectly.
|
|
return getNaturalAlignIndirect(RetTy);
|
|
}
|
|
|
|
return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
|
|
Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
auto TypeInfo = getContext().getTypeInfoInChars(Ty);
|
|
TypeInfo.Align = getParamTypeAlignment(Ty);
|
|
|
|
CharUnits SlotSize = CharUnits::fromQuantity(8);
|
|
|
|
// If we have a complex type and the base type is smaller than 8 bytes,
|
|
// the ABI calls for the real and imaginary parts to be right-adjusted
|
|
// in separate doublewords. However, Clang expects us to produce a
|
|
// pointer to a structure with the two parts packed tightly. So generate
|
|
// loads of the real and imaginary parts relative to the va_list pointer,
|
|
// and store them to a temporary structure.
|
|
if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
|
|
CharUnits EltSize = TypeInfo.Width / 2;
|
|
if (EltSize < SlotSize) {
|
|
Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
|
|
SlotSize * 2, SlotSize,
|
|
SlotSize, /*AllowHigher*/ true);
|
|
|
|
Address RealAddr = Addr;
|
|
Address ImagAddr = RealAddr;
|
|
if (CGF.CGM.getDataLayout().isBigEndian()) {
|
|
RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
|
|
SlotSize - EltSize);
|
|
ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
|
|
2 * SlotSize - EltSize);
|
|
} else {
|
|
ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
|
|
}
|
|
|
|
llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
|
|
RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
|
|
ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
|
|
llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
|
|
llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
|
|
|
|
Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
|
|
CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
|
|
/*init*/ true);
|
|
return Temp;
|
|
}
|
|
}
|
|
|
|
// Otherwise, just use the general rule.
|
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
|
|
TypeInfo, SlotSize, /*AllowHigher*/ true);
|
|
}
|
|
|
|
bool
|
|
PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
|
|
CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const {
|
|
return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
|
|
/*IsAIX*/ false);
|
|
}
|
|
|
|
bool
|
|
PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const {
|
|
return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
|
|
/*IsAIX*/ false);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AArch64 ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class AArch64ABIInfo : public SwiftABIInfo {
|
|
public:
|
|
enum ABIKind {
|
|
AAPCS = 0,
|
|
DarwinPCS,
|
|
Win64
|
|
};
|
|
|
|
private:
|
|
ABIKind Kind;
|
|
|
|
public:
|
|
AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
|
|
: SwiftABIInfo(CGT), Kind(Kind) {}
|
|
|
|
private:
|
|
ABIKind getABIKind() const { return Kind; }
|
|
bool isDarwinPCS() const { return Kind == DarwinPCS; }
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
|
ABIArgInfo coerceIllegalVector(QualType Ty) const;
|
|
bool isHomogeneousAggregateBaseType(QualType Ty) const override;
|
|
bool isHomogeneousAggregateSmallEnough(const Type *Ty,
|
|
uint64_t Members) const override;
|
|
|
|
bool isIllegalVectorType(QualType Ty) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override {
|
|
if (!::classifyReturnType(getCXXABI(), FI, *this))
|
|
FI.getReturnInfo() =
|
|
classifyReturnType(FI.getReturnType(), FI.isVariadic());
|
|
|
|
for (auto &it : FI.arguments())
|
|
it.info = classifyArgumentType(it.type);
|
|
}
|
|
|
|
Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const;
|
|
|
|
Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const;
|
|
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override {
|
|
llvm::Type *BaseTy = CGF.ConvertType(Ty);
|
|
if (isa<llvm::ScalableVectorType>(BaseTy))
|
|
llvm::report_fatal_error("Passing SVE types to variadic functions is "
|
|
"currently not supported");
|
|
|
|
return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
|
|
: isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
|
|
: EmitAAPCSVAArg(VAListAddr, Ty, CGF);
|
|
}
|
|
|
|
Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
|
|
bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
|
|
bool asReturnValue) const override {
|
|
return occupiesMoreThan(CGT, scalars, /*total*/ 4);
|
|
}
|
|
bool isSwiftErrorInRegister() const override {
|
|
return true;
|
|
}
|
|
|
|
bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
|
|
unsigned elts) const override;
|
|
|
|
bool allowBFloatArgsAndRet() const override {
|
|
return getTarget().hasBFloat16Type();
|
|
}
|
|
};
|
|
|
|
class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
|
|
: TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
|
|
|
|
StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
|
|
return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
|
|
}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
return 31;
|
|
}
|
|
|
|
bool doesReturnSlotInterfereWithArgs() const override { return false; }
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override {
|
|
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
|
|
if (!FD)
|
|
return;
|
|
|
|
const auto *TA = FD->getAttr<TargetAttr>();
|
|
if (TA == nullptr)
|
|
return;
|
|
|
|
ParsedTargetAttr Attr = TA->parse();
|
|
if (Attr.BranchProtection.empty())
|
|
return;
|
|
|
|
TargetInfo::BranchProtectionInfo BPI;
|
|
StringRef Error;
|
|
(void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
|
|
BPI, Error);
|
|
assert(Error.empty());
|
|
|
|
auto *Fn = cast<llvm::Function>(GV);
|
|
static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
|
|
Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
|
|
|
|
if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
|
|
Fn->addFnAttr("sign-return-address-key",
|
|
BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
|
|
? "a_key"
|
|
: "b_key");
|
|
}
|
|
|
|
Fn->addFnAttr("branch-target-enforcement",
|
|
BPI.BranchTargetEnforcement ? "true" : "false");
|
|
}
|
|
};
|
|
|
|
class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
|
|
public:
|
|
WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
|
|
: AArch64TargetCodeGenInfo(CGT, K) {}
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override;
|
|
|
|
void getDependentLibraryOption(llvm::StringRef Lib,
|
|
llvm::SmallString<24> &Opt) const override {
|
|
Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
|
|
}
|
|
|
|
void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
|
|
llvm::SmallString<32> &Opt) const override {
|
|
Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
|
|
}
|
|
};
|
|
|
|
void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
|
|
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
|
|
AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
|
|
if (GV->isDeclaration())
|
|
return;
|
|
addStackProbeTargetAttributes(D, GV, CGM);
|
|
}
|
|
}
|
|
|
|
ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
|
|
assert(Ty->isVectorType() && "expected vector type!");
|
|
|
|
const auto *VT = Ty->castAs<VectorType>();
|
|
if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
|
|
assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
|
|
assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
|
|
BuiltinType::UChar &&
|
|
"unexpected builtin type for SVE predicate!");
|
|
return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
|
|
llvm::Type::getInt1Ty(getVMContext()), 16));
|
|
}
|
|
|
|
if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
|
|
assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
|
|
|
|
const auto *BT = VT->getElementType()->castAs<BuiltinType>();
|
|
llvm::ScalableVectorType *ResType = nullptr;
|
|
switch (BT->getKind()) {
|
|
default:
|
|
llvm_unreachable("unexpected builtin type for SVE vector!");
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::UChar:
|
|
ResType = llvm::ScalableVectorType::get(
|
|
llvm::Type::getInt8Ty(getVMContext()), 16);
|
|
break;
|
|
case BuiltinType::Short:
|
|
case BuiltinType::UShort:
|
|
ResType = llvm::ScalableVectorType::get(
|
|
llvm::Type::getInt16Ty(getVMContext()), 8);
|
|
break;
|
|
case BuiltinType::Int:
|
|
case BuiltinType::UInt:
|
|
ResType = llvm::ScalableVectorType::get(
|
|
llvm::Type::getInt32Ty(getVMContext()), 4);
|
|
break;
|
|
case BuiltinType::Long:
|
|
case BuiltinType::ULong:
|
|
ResType = llvm::ScalableVectorType::get(
|
|
llvm::Type::getInt64Ty(getVMContext()), 2);
|
|
break;
|
|
case BuiltinType::Half:
|
|
ResType = llvm::ScalableVectorType::get(
|
|
llvm::Type::getHalfTy(getVMContext()), 8);
|
|
break;
|
|
case BuiltinType::Float:
|
|
ResType = llvm::ScalableVectorType::get(
|
|
llvm::Type::getFloatTy(getVMContext()), 4);
|
|
break;
|
|
case BuiltinType::Double:
|
|
ResType = llvm::ScalableVectorType::get(
|
|
llvm::Type::getDoubleTy(getVMContext()), 2);
|
|
break;
|
|
case BuiltinType::BFloat16:
|
|
ResType = llvm::ScalableVectorType::get(
|
|
llvm::Type::getBFloatTy(getVMContext()), 8);
|
|
break;
|
|
}
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
// Android promotes <2 x i8> to i16, not i32
|
|
if (isAndroid() && (Size <= 16)) {
|
|
llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
if (Size <= 32) {
|
|
llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
if (Size == 64) {
|
|
auto *ResType =
|
|
llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
if (Size == 128) {
|
|
auto *ResType =
|
|
llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
}
|
|
|
|
ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
|
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
|
|
|
// Handle illegal vector types here.
|
|
if (isIllegalVectorType(Ty))
|
|
return coerceIllegalVector(Ty);
|
|
|
|
if (!isAggregateTypeForABI(Ty)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (const auto *EIT = Ty->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() > 128)
|
|
return getNaturalAlignIndirect(Ty);
|
|
|
|
return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
|
|
? ABIArgInfo::getExtend(Ty)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
// Structures with either a non-trivial destructor or a non-trivial
|
|
// copy constructor are always indirect.
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
|
|
CGCXXABI::RAA_DirectInMemory);
|
|
}
|
|
|
|
// Empty records are always ignored on Darwin, but actually passed in C++ mode
|
|
// elsewhere for GNU compatibility.
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
|
|
if (IsEmpty || Size == 0) {
|
|
if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// GNU C mode. The only argument that gets ignored is an empty one with size
|
|
// 0.
|
|
if (IsEmpty && Size == 0)
|
|
return ABIArgInfo::getIgnore();
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
|
}
|
|
|
|
// Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (isHomogeneousAggregate(Ty, Base, Members)) {
|
|
return ABIArgInfo::getDirect(
|
|
llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
|
|
}
|
|
|
|
// Aggregates <= 16 bytes are passed directly in registers or on the stack.
|
|
if (Size <= 128) {
|
|
// On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
|
|
// same size and alignment.
|
|
if (getTarget().isRenderScriptTarget()) {
|
|
return coerceToIntArray(Ty, getContext(), getVMContext());
|
|
}
|
|
unsigned Alignment;
|
|
if (Kind == AArch64ABIInfo::AAPCS) {
|
|
Alignment = getContext().getTypeUnadjustedAlign(Ty);
|
|
Alignment = Alignment < 128 ? 64 : 128;
|
|
} else {
|
|
Alignment = std::max(getContext().getTypeAlign(Ty),
|
|
(unsigned)getTarget().getPointerWidth(0));
|
|
}
|
|
Size = llvm::alignTo(Size, Alignment);
|
|
|
|
// We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
|
|
// For aggregates with 16-byte alignment, we use i128.
|
|
llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
|
|
return ABIArgInfo::getDirect(
|
|
Size == Alignment ? BaseTy
|
|
: llvm::ArrayType::get(BaseTy, Size / Alignment));
|
|
}
|
|
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
}
|
|
|
|
ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
|
|
bool IsVariadic) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (const auto *VT = RetTy->getAs<VectorType>()) {
|
|
if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
|
|
VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
|
|
return coerceIllegalVector(RetTy);
|
|
}
|
|
|
|
// Large vector types should be returned via memory.
|
|
if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
|
|
return getNaturalAlignIndirect(RetTy);
|
|
|
|
if (!isAggregateTypeForABI(RetTy)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (const auto *EIT = RetTy->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() > 128)
|
|
return getNaturalAlignIndirect(RetTy);
|
|
|
|
return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
|
|
? ABIArgInfo::getExtend(RetTy)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (isHomogeneousAggregate(RetTy, Base, Members) &&
|
|
!(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
|
|
IsVariadic))
|
|
// Homogeneous Floating-point Aggregates (HFAs) are returned directly.
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// Aggregates <= 16 bytes are returned directly in registers or on the stack.
|
|
if (Size <= 128) {
|
|
// On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
|
|
// same size and alignment.
|
|
if (getTarget().isRenderScriptTarget()) {
|
|
return coerceToIntArray(RetTy, getContext(), getVMContext());
|
|
}
|
|
unsigned Alignment = getContext().getTypeAlign(RetTy);
|
|
Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
|
|
|
|
// We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
|
|
// For aggregates with 16-byte alignment, we use i128.
|
|
if (Alignment < 128 && Size == 128) {
|
|
llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
|
|
return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
|
|
}
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
|
|
}
|
|
|
|
return getNaturalAlignIndirect(RetTy);
|
|
}
|
|
|
|
/// isIllegalVectorType - check whether the vector type is legal for AArch64.
|
|
bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
|
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
// Check whether VT is a fixed-length SVE vector. These types are
|
|
// represented as scalable vectors in function args/return and must be
|
|
// coerced from fixed vectors.
|
|
if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
|
|
VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
|
|
return true;
|
|
|
|
// Check whether VT is legal.
|
|
unsigned NumElements = VT->getNumElements();
|
|
uint64_t Size = getContext().getTypeSize(VT);
|
|
// NumElements should be power of 2.
|
|
if (!llvm::isPowerOf2_32(NumElements))
|
|
return true;
|
|
|
|
// arm64_32 has to be compatible with the ARM logic here, which allows huge
|
|
// vectors for some reason.
|
|
llvm::Triple Triple = getTarget().getTriple();
|
|
if (Triple.getArch() == llvm::Triple::aarch64_32 &&
|
|
Triple.isOSBinFormatMachO())
|
|
return Size <= 32;
|
|
|
|
return Size != 64 && (Size != 128 || NumElements == 1);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
|
|
llvm::Type *eltTy,
|
|
unsigned elts) const {
|
|
if (!llvm::isPowerOf2_32(elts))
|
|
return false;
|
|
if (totalSize.getQuantity() != 8 &&
|
|
(totalSize.getQuantity() != 16 || elts == 1))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
|
|
// Homogeneous aggregates for AAPCS64 must have base types of a floating
|
|
// point type or a short-vector type. This is the same as the 32-bit ABI,
|
|
// but with the difference that any floating-point type is allowed,
|
|
// including __fp16.
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
|
if (BT->isFloatingPoint())
|
|
return true;
|
|
} else if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
unsigned VecSize = getContext().getTypeSize(VT);
|
|
if (VecSize == 64 || VecSize == 128)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
|
|
uint64_t Members) const {
|
|
return Members <= 4;
|
|
}
|
|
|
|
Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
|
|
QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
ABIArgInfo AI = classifyArgumentType(Ty);
|
|
bool IsIndirect = AI.isIndirect();
|
|
|
|
llvm::Type *BaseTy = CGF.ConvertType(Ty);
|
|
if (IsIndirect)
|
|
BaseTy = llvm::PointerType::getUnqual(BaseTy);
|
|
else if (AI.getCoerceToType())
|
|
BaseTy = AI.getCoerceToType();
|
|
|
|
unsigned NumRegs = 1;
|
|
if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
|
|
BaseTy = ArrTy->getElementType();
|
|
NumRegs = ArrTy->getNumElements();
|
|
}
|
|
bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
|
|
|
|
// The AArch64 va_list type and handling is specified in the Procedure Call
|
|
// Standard, section B.4:
|
|
//
|
|
// struct {
|
|
// void *__stack;
|
|
// void *__gr_top;
|
|
// void *__vr_top;
|
|
// int __gr_offs;
|
|
// int __vr_offs;
|
|
// };
|
|
|
|
llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
|
|
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
|
|
llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
|
|
|
|
CharUnits TySize = getContext().getTypeSizeInChars(Ty);
|
|
CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
|
|
|
|
Address reg_offs_p = Address::invalid();
|
|
llvm::Value *reg_offs = nullptr;
|
|
int reg_top_index;
|
|
int RegSize = IsIndirect ? 8 : TySize.getQuantity();
|
|
if (!IsFPR) {
|
|
// 3 is the field number of __gr_offs
|
|
reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
|
|
reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
|
|
reg_top_index = 1; // field number for __gr_top
|
|
RegSize = llvm::alignTo(RegSize, 8);
|
|
} else {
|
|
// 4 is the field number of __vr_offs.
|
|
reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
|
|
reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
|
|
reg_top_index = 2; // field number for __vr_top
|
|
RegSize = 16 * NumRegs;
|
|
}
|
|
|
|
//=======================================
|
|
// Find out where argument was passed
|
|
//=======================================
|
|
|
|
// If reg_offs >= 0 we're already using the stack for this type of
|
|
// argument. We don't want to keep updating reg_offs (in case it overflows,
|
|
// though anyone passing 2GB of arguments, each at most 16 bytes, deserves
|
|
// whatever they get).
|
|
llvm::Value *UsingStack = nullptr;
|
|
UsingStack = CGF.Builder.CreateICmpSGE(
|
|
reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
|
|
|
|
CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
|
|
|
|
// Otherwise, at least some kind of argument could go in these registers, the
|
|
// question is whether this particular type is too big.
|
|
CGF.EmitBlock(MaybeRegBlock);
|
|
|
|
// Integer arguments may need to correct register alignment (for example a
|
|
// "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
|
|
// align __gr_offs to calculate the potential address.
|
|
if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
|
|
int Align = TyAlign.getQuantity();
|
|
|
|
reg_offs = CGF.Builder.CreateAdd(
|
|
reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
|
|
"align_regoffs");
|
|
reg_offs = CGF.Builder.CreateAnd(
|
|
reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
|
|
"aligned_regoffs");
|
|
}
|
|
|
|
// Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
|
|
// The fact that this is done unconditionally reflects the fact that
|
|
// allocating an argument to the stack also uses up all the remaining
|
|
// registers of the appropriate kind.
|
|
llvm::Value *NewOffset = nullptr;
|
|
NewOffset = CGF.Builder.CreateAdd(
|
|
reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
|
|
CGF.Builder.CreateStore(NewOffset, reg_offs_p);
|
|
|
|
// Now we're in a position to decide whether this argument really was in
|
|
// registers or not.
|
|
llvm::Value *InRegs = nullptr;
|
|
InRegs = CGF.Builder.CreateICmpSLE(
|
|
NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
|
|
|
|
CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
|
|
|
|
//=======================================
|
|
// Argument was in registers
|
|
//=======================================
|
|
|
|
// Now we emit the code for if the argument was originally passed in
|
|
// registers. First start the appropriate block:
|
|
CGF.EmitBlock(InRegBlock);
|
|
|
|
llvm::Value *reg_top = nullptr;
|
|
Address reg_top_p =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
|
|
reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
|
|
Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
|
|
CharUnits::fromQuantity(IsFPR ? 16 : 8));
|
|
Address RegAddr = Address::invalid();
|
|
llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
|
|
|
|
if (IsIndirect) {
|
|
// If it's been passed indirectly (actually a struct), whatever we find from
|
|
// stored registers or on the stack will actually be a struct **.
|
|
MemTy = llvm::PointerType::getUnqual(MemTy);
|
|
}
|
|
|
|
const Type *Base = nullptr;
|
|
uint64_t NumMembers = 0;
|
|
bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
|
|
if (IsHFA && NumMembers > 1) {
|
|
// Homogeneous aggregates passed in registers will have their elements split
|
|
// and stored 16-bytes apart regardless of size (they're notionally in qN,
|
|
// qN+1, ...). We reload and store into a temporary local variable
|
|
// contiguously.
|
|
assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
|
|
auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
|
|
llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
|
|
llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
|
|
Address Tmp = CGF.CreateTempAlloca(HFATy,
|
|
std::max(TyAlign, BaseTyInfo.Align));
|
|
|
|
// On big-endian platforms, the value will be right-aligned in its slot.
|
|
int Offset = 0;
|
|
if (CGF.CGM.getDataLayout().isBigEndian() &&
|
|
BaseTyInfo.Width.getQuantity() < 16)
|
|
Offset = 16 - BaseTyInfo.Width.getQuantity();
|
|
|
|
for (unsigned i = 0; i < NumMembers; ++i) {
|
|
CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
|
|
Address LoadAddr =
|
|
CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
|
|
LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
|
|
|
|
Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
|
|
|
|
llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
|
|
CGF.Builder.CreateStore(Elem, StoreAddr);
|
|
}
|
|
|
|
RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
|
|
} else {
|
|
// Otherwise the object is contiguous in memory.
|
|
|
|
// It might be right-aligned in its slot.
|
|
CharUnits SlotSize = BaseAddr.getAlignment();
|
|
if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
|
|
(IsHFA || !isAggregateTypeForABI(Ty)) &&
|
|
TySize < SlotSize) {
|
|
CharUnits Offset = SlotSize - TySize;
|
|
BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
|
|
}
|
|
|
|
RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
|
|
}
|
|
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
//=======================================
|
|
// Argument was on the stack
|
|
//=======================================
|
|
CGF.EmitBlock(OnStackBlock);
|
|
|
|
Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
|
|
llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
|
|
|
|
// Again, stack arguments may need realignment. In this case both integer and
|
|
// floating-point ones might be affected.
|
|
if (!IsIndirect && TyAlign.getQuantity() > 8) {
|
|
int Align = TyAlign.getQuantity();
|
|
|
|
OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
|
|
|
|
OnStackPtr = CGF.Builder.CreateAdd(
|
|
OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
|
|
"align_stack");
|
|
OnStackPtr = CGF.Builder.CreateAnd(
|
|
OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
|
|
"align_stack");
|
|
|
|
OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
|
|
}
|
|
Address OnStackAddr(OnStackPtr,
|
|
std::max(CharUnits::fromQuantity(8), TyAlign));
|
|
|
|
// All stack slots are multiples of 8 bytes.
|
|
CharUnits StackSlotSize = CharUnits::fromQuantity(8);
|
|
CharUnits StackSize;
|
|
if (IsIndirect)
|
|
StackSize = StackSlotSize;
|
|
else
|
|
StackSize = TySize.alignTo(StackSlotSize);
|
|
|
|
llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
|
|
llvm::Value *NewStack =
|
|
CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
|
|
|
|
// Write the new value of __stack for the next call to va_arg
|
|
CGF.Builder.CreateStore(NewStack, stack_p);
|
|
|
|
if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
|
|
TySize < StackSlotSize) {
|
|
CharUnits Offset = StackSlotSize - TySize;
|
|
OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
|
|
}
|
|
|
|
OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
|
|
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
//=======================================
|
|
// Tidy up
|
|
//=======================================
|
|
CGF.EmitBlock(ContBlock);
|
|
|
|
Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
|
|
OnStackAddr, OnStackBlock, "vaargs.addr");
|
|
|
|
if (IsIndirect)
|
|
return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
|
|
TyAlign);
|
|
|
|
return ResAddr;
|
|
}
|
|
|
|
Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
// The backend's lowering doesn't support va_arg for aggregates or
|
|
// illegal vector types. Lower VAArg here for these cases and use
|
|
// the LLVM va_arg instruction for everything else.
|
|
if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
|
|
return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
|
|
|
|
uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
|
|
CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
|
|
|
|
// Empty records are ignored for parameter passing purposes.
|
|
if (isEmptyRecord(getContext(), Ty, true)) {
|
|
Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
|
|
Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
|
|
return Addr;
|
|
}
|
|
|
|
// The size of the actual thing passed, which might end up just
|
|
// being a pointer for indirect types.
|
|
auto TyInfo = getContext().getTypeInfoInChars(Ty);
|
|
|
|
// Arguments bigger than 16 bytes which aren't homogeneous
|
|
// aggregates should be passed indirectly.
|
|
bool IsIndirect = false;
|
|
if (TyInfo.Width.getQuantity() > 16) {
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
|
|
}
|
|
|
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
|
|
TyInfo, SlotSize, /*AllowHigherAlign*/ true);
|
|
}
|
|
|
|
Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
|
|
CGF.getContext().getTypeInfoInChars(Ty),
|
|
CharUnits::fromQuantity(8),
|
|
/*allowHigherAlign*/ false);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class ARMABIInfo : public SwiftABIInfo {
|
|
public:
|
|
enum ABIKind {
|
|
APCS = 0,
|
|
AAPCS = 1,
|
|
AAPCS_VFP = 2,
|
|
AAPCS16_VFP = 3,
|
|
};
|
|
|
|
private:
|
|
ABIKind Kind;
|
|
bool IsFloatABISoftFP;
|
|
|
|
public:
|
|
ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
|
|
: SwiftABIInfo(CGT), Kind(_Kind) {
|
|
setCCs();
|
|
IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
|
|
CGT.getCodeGenOpts().FloatABI == ""; // default
|
|
}
|
|
|
|
bool isEABI() const {
|
|
switch (getTarget().getTriple().getEnvironment()) {
|
|
case llvm::Triple::Android:
|
|
case llvm::Triple::EABI:
|
|
case llvm::Triple::EABIHF:
|
|
case llvm::Triple::GNUEABI:
|
|
case llvm::Triple::GNUEABIHF:
|
|
case llvm::Triple::MuslEABI:
|
|
case llvm::Triple::MuslEABIHF:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool isEABIHF() const {
|
|
switch (getTarget().getTriple().getEnvironment()) {
|
|
case llvm::Triple::EABIHF:
|
|
case llvm::Triple::GNUEABIHF:
|
|
case llvm::Triple::MuslEABIHF:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ABIKind getABIKind() const { return Kind; }
|
|
|
|
bool allowBFloatArgsAndRet() const override {
|
|
return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
|
|
}
|
|
|
|
private:
|
|
ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
|
|
unsigned functionCallConv) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
|
|
unsigned functionCallConv) const;
|
|
ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
|
|
uint64_t Members) const;
|
|
ABIArgInfo coerceIllegalVector(QualType Ty) const;
|
|
bool isIllegalVectorType(QualType Ty) const;
|
|
bool containsAnyFP16Vectors(QualType Ty) const;
|
|
|
|
bool isHomogeneousAggregateBaseType(QualType Ty) const override;
|
|
bool isHomogeneousAggregateSmallEnough(const Type *Ty,
|
|
uint64_t Members) const override;
|
|
|
|
bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
|
|
llvm::CallingConv::ID getLLVMDefaultCC() const;
|
|
llvm::CallingConv::ID getABIDefaultCC() const;
|
|
void setCCs();
|
|
|
|
bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
|
|
bool asReturnValue) const override {
|
|
return occupiesMoreThan(CGT, scalars, /*total*/ 4);
|
|
}
|
|
bool isSwiftErrorInRegister() const override {
|
|
return true;
|
|
}
|
|
bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
|
|
unsigned elts) const override;
|
|
};
|
|
|
|
class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
|
|
: TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
|
|
|
|
const ARMABIInfo &getABIInfo() const {
|
|
return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
|
|
}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
return 13;
|
|
}
|
|
|
|
StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
|
|
return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override {
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
|
|
|
|
// 0-15 are the 16 integer registers.
|
|
AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
|
|
return false;
|
|
}
|
|
|
|
unsigned getSizeOfUnwindException() const override {
|
|
if (getABIInfo().isEABI()) return 88;
|
|
return TargetCodeGenInfo::getSizeOfUnwindException();
|
|
}
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override {
|
|
if (GV->isDeclaration())
|
|
return;
|
|
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
|
|
if (!FD)
|
|
return;
|
|
|
|
const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
|
|
if (!Attr)
|
|
return;
|
|
|
|
const char *Kind;
|
|
switch (Attr->getInterrupt()) {
|
|
case ARMInterruptAttr::Generic: Kind = ""; break;
|
|
case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
|
|
case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
|
|
case ARMInterruptAttr::SWI: Kind = "SWI"; break;
|
|
case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
|
|
case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
|
|
}
|
|
|
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
|
|
|
Fn->addFnAttr("interrupt", Kind);
|
|
|
|
ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
|
|
if (ABI == ARMABIInfo::APCS)
|
|
return;
|
|
|
|
// AAPCS guarantees that sp will be 8-byte aligned on any public interface,
|
|
// however this is not necessarily true on taking any interrupt. Instruct
|
|
// the backend to perform a realignment as part of the function prologue.
|
|
llvm::AttrBuilder B;
|
|
B.addStackAlignmentAttr(8);
|
|
Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
|
|
}
|
|
};
|
|
|
|
class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
|
|
public:
|
|
WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
|
|
: ARMTargetCodeGenInfo(CGT, K) {}
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override;
|
|
|
|
void getDependentLibraryOption(llvm::StringRef Lib,
|
|
llvm::SmallString<24> &Opt) const override {
|
|
Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
|
|
}
|
|
|
|
void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
|
|
llvm::SmallString<32> &Opt) const override {
|
|
Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
|
|
}
|
|
};
|
|
|
|
void WindowsARMTargetCodeGenInfo::setTargetAttributes(
|
|
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
|
|
ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
|
|
if (GV->isDeclaration())
|
|
return;
|
|
addStackProbeTargetAttributes(D, GV, CGM);
|
|
}
|
|
}
|
|
|
|
void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
if (!::classifyReturnType(getCXXABI(), FI, *this))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
|
|
FI.getCallingConvention());
|
|
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type, FI.isVariadic(),
|
|
FI.getCallingConvention());
|
|
|
|
|
|
// Always honor user-specified calling convention.
|
|
if (FI.getCallingConvention() != llvm::CallingConv::C)
|
|
return;
|
|
|
|
llvm::CallingConv::ID cc = getRuntimeCC();
|
|
if (cc != llvm::CallingConv::C)
|
|
FI.setEffectiveCallingConvention(cc);
|
|
}
|
|
|
|
/// Return the default calling convention that LLVM will use.
|
|
llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
|
|
// The default calling convention that LLVM will infer.
|
|
if (isEABIHF() || getTarget().getTriple().isWatchABI())
|
|
return llvm::CallingConv::ARM_AAPCS_VFP;
|
|
else if (isEABI())
|
|
return llvm::CallingConv::ARM_AAPCS;
|
|
else
|
|
return llvm::CallingConv::ARM_APCS;
|
|
}
|
|
|
|
/// Return the calling convention that our ABI would like us to use
|
|
/// as the C calling convention.
|
|
llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
|
|
switch (getABIKind()) {
|
|
case APCS: return llvm::CallingConv::ARM_APCS;
|
|
case AAPCS: return llvm::CallingConv::ARM_AAPCS;
|
|
case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
|
|
case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
|
|
}
|
|
llvm_unreachable("bad ABI kind");
|
|
}
|
|
|
|
void ARMABIInfo::setCCs() {
|
|
assert(getRuntimeCC() == llvm::CallingConv::C);
|
|
|
|
// Don't muddy up the IR with a ton of explicit annotations if
|
|
// they'd just match what LLVM will infer from the triple.
|
|
llvm::CallingConv::ID abiCC = getABIDefaultCC();
|
|
if (abiCC != getLLVMDefaultCC())
|
|
RuntimeCC = abiCC;
|
|
}
|
|
|
|
ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (Size <= 32) {
|
|
llvm::Type *ResType =
|
|
llvm::Type::getInt32Ty(getVMContext());
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
if (Size == 64 || Size == 128) {
|
|
auto *ResType = llvm::FixedVectorType::get(
|
|
llvm::Type::getInt32Ty(getVMContext()), Size / 32);
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
}
|
|
|
|
ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
|
|
const Type *Base,
|
|
uint64_t Members) const {
|
|
assert(Base && "Base class should be set for homogeneous aggregate");
|
|
// Base can be a floating-point or a vector.
|
|
if (const VectorType *VT = Base->getAs<VectorType>()) {
|
|
// FP16 vectors should be converted to integer vectors
|
|
if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
|
|
uint64_t Size = getContext().getTypeSize(VT);
|
|
auto *NewVecTy = llvm::FixedVectorType::get(
|
|
llvm::Type::getInt32Ty(getVMContext()), Size / 32);
|
|
llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
|
|
return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
|
|
}
|
|
}
|
|
return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
|
|
}
|
|
|
|
ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
|
|
unsigned functionCallConv) const {
|
|
// 6.1.2.1 The following argument types are VFP CPRCs:
|
|
// A single-precision floating-point type (including promoted
|
|
// half-precision types); A double-precision floating-point type;
|
|
// A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
|
|
// with a Base Type of a single- or double-precision floating-point type,
|
|
// 64-bit containerized vectors or 128-bit containerized vectors with one
|
|
// to four Elements.
|
|
// Variadic functions should always marshal to the base standard.
|
|
bool IsAAPCS_VFP =
|
|
!isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
|
|
|
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
|
|
|
// Handle illegal vector types here.
|
|
if (isIllegalVectorType(Ty))
|
|
return coerceIllegalVector(Ty);
|
|
|
|
if (!isAggregateTypeForABI(Ty)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
}
|
|
|
|
if (const auto *EIT = Ty->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() > 64)
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
|
|
|
|
return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
|
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
}
|
|
|
|
// Ignore empty records.
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (IsAAPCS_VFP) {
|
|
// Homogeneous Aggregates need to be expanded when we can fit the aggregate
|
|
// into VFP registers.
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (isHomogeneousAggregate(Ty, Base, Members))
|
|
return classifyHomogeneousAggregate(Ty, Base, Members);
|
|
} else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
|
|
// WatchOS does have homogeneous aggregates. Note that we intentionally use
|
|
// this convention even for a variadic function: the backend will use GPRs
|
|
// if needed.
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (isHomogeneousAggregate(Ty, Base, Members)) {
|
|
assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
|
|
llvm::Type *Ty =
|
|
llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
|
|
return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
|
|
}
|
|
}
|
|
|
|
if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
|
|
getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
|
|
// WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
|
|
// bigger than 128-bits, they get placed in space allocated by the caller,
|
|
// and a pointer is passed.
|
|
return ABIArgInfo::getIndirect(
|
|
CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
|
|
}
|
|
|
|
// Support byval for ARM.
|
|
// The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
|
|
// most 8-byte. We realign the indirect argument if type alignment is bigger
|
|
// than ABI alignment.
|
|
uint64_t ABIAlign = 4;
|
|
uint64_t TyAlign;
|
|
if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
|
|
getABIKind() == ARMABIInfo::AAPCS) {
|
|
TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
|
|
ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
|
|
} else {
|
|
TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
|
|
}
|
|
if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
|
|
assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
|
|
return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
|
|
/*ByVal=*/true,
|
|
/*Realign=*/TyAlign > ABIAlign);
|
|
}
|
|
|
|
// On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
|
|
// same size and alignment.
|
|
if (getTarget().isRenderScriptTarget()) {
|
|
return coerceToIntArray(Ty, getContext(), getVMContext());
|
|
}
|
|
|
|
// Otherwise, pass by coercing to a structure of the appropriate size.
|
|
llvm::Type* ElemTy;
|
|
unsigned SizeRegs;
|
|
// FIXME: Try to match the types of the arguments more accurately where
|
|
// we can.
|
|
if (TyAlign <= 4) {
|
|
ElemTy = llvm::Type::getInt32Ty(getVMContext());
|
|
SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
|
|
} else {
|
|
ElemTy = llvm::Type::getInt64Ty(getVMContext());
|
|
SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
|
|
}
|
|
|
|
return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
|
|
}
|
|
|
|
static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) {
|
|
// APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
|
|
// is called integer-like if its size is less than or equal to one word, and
|
|
// the offset of each of its addressable sub-fields is zero.
|
|
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
|
|
// Check that the type fits in a word.
|
|
if (Size > 32)
|
|
return false;
|
|
|
|
// FIXME: Handle vector types!
|
|
if (Ty->isVectorType())
|
|
return false;
|
|
|
|
// Float types are never treated as "integer like".
|
|
if (Ty->isRealFloatingType())
|
|
return false;
|
|
|
|
// If this is a builtin or pointer type then it is ok.
|
|
if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
|
|
return true;
|
|
|
|
// Small complex integer types are "integer like".
|
|
if (const ComplexType *CT = Ty->getAs<ComplexType>())
|
|
return isIntegerLikeType(CT->getElementType(), Context, VMContext);
|
|
|
|
// Single element and zero sized arrays should be allowed, by the definition
|
|
// above, but they are not.
|
|
|
|
// Otherwise, it must be a record type.
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (!RT) return false;
|
|
|
|
// Ignore records with flexible arrays.
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return false;
|
|
|
|
// Check that all sub-fields are at offset 0, and are themselves "integer
|
|
// like".
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
bool HadField = false;
|
|
unsigned idx = 0;
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i, ++idx) {
|
|
const FieldDecl *FD = *i;
|
|
|
|
// Bit-fields are not addressable, we only need to verify they are "integer
|
|
// like". We still have to disallow a subsequent non-bitfield, for example:
|
|
// struct { int : 0; int x }
|
|
// is non-integer like according to gcc.
|
|
if (FD->isBitField()) {
|
|
if (!RD->isUnion())
|
|
HadField = true;
|
|
|
|
if (!isIntegerLikeType(FD->getType(), Context, VMContext))
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
// Check if this field is at offset 0.
|
|
if (Layout.getFieldOffset(idx) != 0)
|
|
return false;
|
|
|
|
if (!isIntegerLikeType(FD->getType(), Context, VMContext))
|
|
return false;
|
|
|
|
// Only allow at most one field in a structure. This doesn't match the
|
|
// wording above, but follows gcc in situations with a field following an
|
|
// empty structure.
|
|
if (!RD->isUnion()) {
|
|
if (HadField)
|
|
return false;
|
|
|
|
HadField = true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
|
|
unsigned functionCallConv) const {
|
|
|
|
// Variadic functions should always marshal to the base standard.
|
|
bool IsAAPCS_VFP =
|
|
!isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
|
|
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (const VectorType *VT = RetTy->getAs<VectorType>()) {
|
|
// Large vector types should be returned via memory.
|
|
if (getContext().getTypeSize(RetTy) > 128)
|
|
return getNaturalAlignIndirect(RetTy);
|
|
// TODO: FP16/BF16 vectors should be converted to integer vectors
|
|
// This check is similar to isIllegalVectorType - refactor?
|
|
if ((!getTarget().hasLegalHalfType() &&
|
|
(VT->getElementType()->isFloat16Type() ||
|
|
VT->getElementType()->isHalfType())) ||
|
|
(IsFloatABISoftFP &&
|
|
VT->getElementType()->isBFloat16Type()))
|
|
return coerceIllegalVector(RetTy);
|
|
}
|
|
|
|
if (!isAggregateTypeForABI(RetTy)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (const auto *EIT = RetTy->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() > 64)
|
|
return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
|
|
|
|
return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
|
|
: ABIArgInfo::getDirect();
|
|
}
|
|
|
|
// Are we following APCS?
|
|
if (getABIKind() == APCS) {
|
|
if (isEmptyRecord(getContext(), RetTy, false))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Complex types are all returned as packed integers.
|
|
//
|
|
// FIXME: Consider using 2 x vector types if the back end handles them
|
|
// correctly.
|
|
if (RetTy->isAnyComplexType())
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(
|
|
getVMContext(), getContext().getTypeSize(RetTy)));
|
|
|
|
// Integer like structures are returned in r0.
|
|
if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
|
|
// Return in the smallest viable integer type.
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
if (Size <= 8)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
|
if (Size <= 16)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
|
}
|
|
|
|
// Otherwise return in memory.
|
|
return getNaturalAlignIndirect(RetTy);
|
|
}
|
|
|
|
// Otherwise this is an AAPCS variant.
|
|
|
|
if (isEmptyRecord(getContext(), RetTy, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Check for homogeneous aggregates with AAPCS-VFP.
|
|
if (IsAAPCS_VFP) {
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (isHomogeneousAggregate(RetTy, Base, Members))
|
|
return classifyHomogeneousAggregate(RetTy, Base, Members);
|
|
}
|
|
|
|
// Aggregates <= 4 bytes are returned in r0; other aggregates
|
|
// are returned indirectly.
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
if (Size <= 32) {
|
|
// On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
|
|
// same size and alignment.
|
|
if (getTarget().isRenderScriptTarget()) {
|
|
return coerceToIntArray(RetTy, getContext(), getVMContext());
|
|
}
|
|
if (getDataLayout().isBigEndian())
|
|
// Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
|
|
|
// Return in the smallest viable integer type.
|
|
if (Size <= 8)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
|
if (Size <= 16)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
|
} else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
|
|
llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
|
|
llvm::Type *CoerceTy =
|
|
llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
|
|
return getNaturalAlignIndirect(RetTy);
|
|
}
|
|
|
|
/// isIllegalVector - check whether Ty is an illegal vector type.
|
|
bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
|
|
if (const VectorType *VT = Ty->getAs<VectorType> ()) {
|
|
// On targets that don't support half, fp16 or bfloat, they are expanded
|
|
// into float, and we don't want the ABI to depend on whether or not they
|
|
// are supported in hardware. Thus return false to coerce vectors of these
|
|
// types into integer vectors.
|
|
// We do not depend on hasLegalHalfType for bfloat as it is a
|
|
// separate IR type.
|
|
if ((!getTarget().hasLegalHalfType() &&
|
|
(VT->getElementType()->isFloat16Type() ||
|
|
VT->getElementType()->isHalfType())) ||
|
|
(IsFloatABISoftFP &&
|
|
VT->getElementType()->isBFloat16Type()))
|
|
return true;
|
|
if (isAndroid()) {
|
|
// Android shipped using Clang 3.1, which supported a slightly different
|
|
// vector ABI. The primary differences were that 3-element vector types
|
|
// were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
|
|
// accepts that legacy behavior for Android only.
|
|
// Check whether VT is legal.
|
|
unsigned NumElements = VT->getNumElements();
|
|
// NumElements should be power of 2 or equal to 3.
|
|
if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
|
|
return true;
|
|
} else {
|
|
// Check whether VT is legal.
|
|
unsigned NumElements = VT->getNumElements();
|
|
uint64_t Size = getContext().getTypeSize(VT);
|
|
// NumElements should be power of 2.
|
|
if (!llvm::isPowerOf2_32(NumElements))
|
|
return true;
|
|
// Size should be greater than 32 bits.
|
|
return Size <= 32;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Return true if a type contains any 16-bit floating point vectors
|
|
bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
|
|
if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
|
|
uint64_t NElements = AT->getSize().getZExtValue();
|
|
if (NElements == 0)
|
|
return false;
|
|
return containsAnyFP16Vectors(AT->getElementType());
|
|
} else if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
// If this is a C++ record, check the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
|
if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
|
|
return containsAnyFP16Vectors(B.getType());
|
|
}))
|
|
return true;
|
|
|
|
if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
|
|
return FD && containsAnyFP16Vectors(FD->getType());
|
|
}))
|
|
return true;
|
|
|
|
return false;
|
|
} else {
|
|
if (const VectorType *VT = Ty->getAs<VectorType>())
|
|
return (VT->getElementType()->isFloat16Type() ||
|
|
VT->getElementType()->isBFloat16Type() ||
|
|
VT->getElementType()->isHalfType());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
|
|
llvm::Type *eltTy,
|
|
unsigned numElts) const {
|
|
if (!llvm::isPowerOf2_32(numElts))
|
|
return false;
|
|
unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
|
|
if (size > 64)
|
|
return false;
|
|
if (vectorSize.getQuantity() != 8 &&
|
|
(vectorSize.getQuantity() != 16 || numElts == 1))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
|
|
// Homogeneous aggregates for AAPCS-VFP must have base types of float,
|
|
// double, or 64-bit or 128-bit vectors.
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
|
if (BT->getKind() == BuiltinType::Float ||
|
|
BT->getKind() == BuiltinType::Double ||
|
|
BT->getKind() == BuiltinType::LongDouble)
|
|
return true;
|
|
} else if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
unsigned VecSize = getContext().getTypeSize(VT);
|
|
if (VecSize == 64 || VecSize == 128)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
|
|
uint64_t Members) const {
|
|
return Members <= 4;
|
|
}
|
|
|
|
bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
|
|
bool acceptHalf) const {
|
|
// Give precedence to user-specified calling conventions.
|
|
if (callConvention != llvm::CallingConv::C)
|
|
return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
|
|
else
|
|
return (getABIKind() == AAPCS_VFP) ||
|
|
(acceptHalf && (getABIKind() == AAPCS16_VFP));
|
|
}
|
|
|
|
Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
CharUnits SlotSize = CharUnits::fromQuantity(4);
|
|
|
|
// Empty records are ignored for parameter passing purposes.
|
|
if (isEmptyRecord(getContext(), Ty, true)) {
|
|
Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
|
|
Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
|
|
return Addr;
|
|
}
|
|
|
|
CharUnits TySize = getContext().getTypeSizeInChars(Ty);
|
|
CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
|
|
|
|
// Use indirect if size of the illegal vector is bigger than 16 bytes.
|
|
bool IsIndirect = false;
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
|
|
IsIndirect = true;
|
|
|
|
// ARMv7k passes structs bigger than 16 bytes indirectly, in space
|
|
// allocated by the caller.
|
|
} else if (TySize > CharUnits::fromQuantity(16) &&
|
|
getABIKind() == ARMABIInfo::AAPCS16_VFP &&
|
|
!isHomogeneousAggregate(Ty, Base, Members)) {
|
|
IsIndirect = true;
|
|
|
|
// Otherwise, bound the type's ABI alignment.
|
|
// The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
|
|
// APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
|
|
// Our callers should be prepared to handle an under-aligned address.
|
|
} else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
|
|
getABIKind() == ARMABIInfo::AAPCS) {
|
|
TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
|
|
TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
|
|
} else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
|
|
// ARMv7k allows type alignment up to 16 bytes.
|
|
TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
|
|
TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
|
|
} else {
|
|
TyAlignForABI = CharUnits::fromQuantity(4);
|
|
}
|
|
|
|
TypeInfoChars TyInfo(TySize, TyAlignForABI, false);
|
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
|
|
SlotSize, /*AllowHigherAlign*/ true);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NVPTX ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class NVPTXTargetCodeGenInfo;
|
|
|
|
class NVPTXABIInfo : public ABIInfo {
|
|
NVPTXTargetCodeGenInfo &CGInfo;
|
|
|
|
public:
|
|
NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
|
|
: ABIInfo(CGT), CGInfo(Info) {}
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType Ty) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
bool isUnsupportedType(QualType T) const;
|
|
ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
|
|
};
|
|
|
|
class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &M) const override;
|
|
bool shouldEmitStaticExternCAliases() const override;
|
|
|
|
llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
|
|
// On the device side, surface reference is represented as an object handle
|
|
// in 64-bit integer.
|
|
return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
|
|
}
|
|
|
|
llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
|
|
// On the device side, texture reference is represented as an object handle
|
|
// in 64-bit integer.
|
|
return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
|
|
}
|
|
|
|
bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
|
|
LValue Src) const override {
|
|
emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
|
|
return true;
|
|
}
|
|
|
|
bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
|
|
LValue Src) const override {
|
|
emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
// Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
|
|
// resulting MDNode to the nvvm.annotations MDNode.
|
|
static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
|
|
int Operand);
|
|
|
|
static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
|
|
LValue Src) {
|
|
llvm::Value *Handle = nullptr;
|
|
llvm::Constant *C =
|
|
llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
|
|
// Lookup `addrspacecast` through the constant pointer if any.
|
|
if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
|
|
C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
|
|
if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
|
|
// Load the handle from the specific global variable using
|
|
// `nvvm.texsurf.handle.internal` intrinsic.
|
|
Handle = CGF.EmitRuntimeCall(
|
|
CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
|
|
{GV->getType()}),
|
|
{GV}, "texsurf_handle");
|
|
} else
|
|
Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
|
|
CGF.EmitStoreOfScalar(Handle, Dst);
|
|
}
|
|
};
|
|
|
|
/// Checks if the type is unsupported directly by the current target.
|
|
bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
|
|
ASTContext &Context = getContext();
|
|
if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
|
|
return true;
|
|
if (!Context.getTargetInfo().hasFloat128Type() &&
|
|
(T->isFloat128Type() ||
|
|
(T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
|
|
return true;
|
|
if (const auto *EIT = T->getAs<ExtIntType>())
|
|
return EIT->getNumBits() >
|
|
(Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
|
|
if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
|
|
Context.getTypeSize(T) > 64U)
|
|
return true;
|
|
if (const auto *AT = T->getAsArrayTypeUnsafe())
|
|
return isUnsupportedType(AT->getElementType());
|
|
const auto *RT = T->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
// If this is a C++ record, check the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
|
for (const CXXBaseSpecifier &I : CXXRD->bases())
|
|
if (isUnsupportedType(I.getType()))
|
|
return true;
|
|
|
|
for (const FieldDecl *I : RD->fields())
|
|
if (isUnsupportedType(I->getType()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Coerce the given type into an array with maximum allowed size of elements.
|
|
ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
|
|
unsigned MaxSize) const {
|
|
// Alignment and Size are measured in bits.
|
|
const uint64_t Size = getContext().getTypeSize(Ty);
|
|
const uint64_t Alignment = getContext().getTypeAlign(Ty);
|
|
const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
|
|
llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
|
|
const uint64_t NumElements = (Size + Div - 1) / Div;
|
|
return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
|
|
}
|
|
|
|
ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (getContext().getLangOpts().OpenMP &&
|
|
getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
|
|
return coerceToIntArrayWithLimit(RetTy, 64);
|
|
|
|
// note: this is different from default ABI
|
|
if (!RetTy->isScalarType())
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
// Return aggregates type as indirect by value
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
// Under CUDA device compilation, tex/surf builtin types are replaced with
|
|
// object types and passed directly.
|
|
if (getContext().getLangOpts().CUDAIsDevice) {
|
|
if (Ty->isCUDADeviceBuiltinSurfaceType())
|
|
return ABIArgInfo::getDirect(
|
|
CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
|
|
if (Ty->isCUDADeviceBuiltinTextureType())
|
|
return ABIArgInfo::getDirect(
|
|
CGInfo.getCUDADeviceBuiltinTextureDeviceType());
|
|
}
|
|
return getNaturalAlignIndirect(Ty, /* byval */ true);
|
|
}
|
|
|
|
if (const auto *EIT = Ty->getAs<ExtIntType>()) {
|
|
if ((EIT->getNumBits() > 128) ||
|
|
(!getContext().getTargetInfo().hasInt128Type() &&
|
|
EIT->getNumBits() > 64))
|
|
return getNaturalAlignIndirect(Ty, /* byval */ true);
|
|
}
|
|
|
|
return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type);
|
|
|
|
// Always honor user-specified calling convention.
|
|
if (FI.getCallingConvention() != llvm::CallingConv::C)
|
|
return;
|
|
|
|
FI.setEffectiveCallingConvention(getRuntimeCC());
|
|
}
|
|
|
|
Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
llvm_unreachable("NVPTX does not support varargs");
|
|
}
|
|
|
|
void NVPTXTargetCodeGenInfo::setTargetAttributes(
|
|
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
|
|
if (GV->isDeclaration())
|
|
return;
|
|
const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
|
|
if (VD) {
|
|
if (M.getLangOpts().CUDA) {
|
|
if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
|
|
addNVVMMetadata(GV, "surface", 1);
|
|
else if (VD->getType()->isCUDADeviceBuiltinTextureType())
|
|
addNVVMMetadata(GV, "texture", 1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
|
|
if (!FD) return;
|
|
|
|
llvm::Function *F = cast<llvm::Function>(GV);
|
|
|
|
// Perform special handling in OpenCL mode
|
|
if (M.getLangOpts().OpenCL) {
|
|
// Use OpenCL function attributes to check for kernel functions
|
|
// By default, all functions are device functions
|
|
if (FD->hasAttr<OpenCLKernelAttr>()) {
|
|
// OpenCL __kernel functions get kernel metadata
|
|
// Create !{<func-ref>, metadata !"kernel", i32 1} node
|
|
addNVVMMetadata(F, "kernel", 1);
|
|
// And kernel functions are not subject to inlining
|
|
F->addFnAttr(llvm::Attribute::NoInline);
|
|
}
|
|
}
|
|
|
|
// Perform special handling in CUDA mode.
|
|
if (M.getLangOpts().CUDA) {
|
|
// CUDA __global__ functions get a kernel metadata entry. Since
|
|
// __global__ functions cannot be called from the device, we do not
|
|
// need to set the noinline attribute.
|
|
if (FD->hasAttr<CUDAGlobalAttr>()) {
|
|
// Create !{<func-ref>, metadata !"kernel", i32 1} node
|
|
addNVVMMetadata(F, "kernel", 1);
|
|
}
|
|
if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
|
|
// Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
|
|
llvm::APSInt MaxThreads(32);
|
|
MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
|
|
if (MaxThreads > 0)
|
|
addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
|
|
|
|
// min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
|
|
// not specified in __launch_bounds__ or if the user specified a 0 value,
|
|
// we don't have to add a PTX directive.
|
|
if (Attr->getMinBlocks()) {
|
|
llvm::APSInt MinBlocks(32);
|
|
MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
|
|
if (MinBlocks > 0)
|
|
// Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
|
|
addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
|
|
StringRef Name, int Operand) {
|
|
llvm::Module *M = GV->getParent();
|
|
llvm::LLVMContext &Ctx = M->getContext();
|
|
|
|
// Get "nvvm.annotations" metadata node
|
|
llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
|
|
|
|
llvm::Metadata *MDVals[] = {
|
|
llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
|
|
llvm::ConstantAsMetadata::get(
|
|
llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
|
|
// Append metadata to nvvm.annotations
|
|
MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
|
|
}
|
|
|
|
bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SystemZ ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class SystemZABIInfo : public SwiftABIInfo {
|
|
bool HasVector;
|
|
bool IsSoftFloatABI;
|
|
|
|
public:
|
|
SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
|
|
: SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
|
|
|
|
bool isPromotableIntegerTypeForABI(QualType Ty) const;
|
|
bool isCompoundType(QualType Ty) const;
|
|
bool isVectorArgumentType(QualType Ty) const;
|
|
bool isFPArgumentType(QualType Ty) const;
|
|
QualType GetSingleElementType(QualType Ty) const;
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType ArgTy) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type);
|
|
}
|
|
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
|
|
bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
|
|
bool asReturnValue) const override {
|
|
return occupiesMoreThan(CGT, scalars, /*total*/ 4);
|
|
}
|
|
bool isSwiftErrorInRegister() const override {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
|
|
: TargetCodeGenInfo(
|
|
std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
|
|
};
|
|
|
|
}
|
|
|
|
bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
// Promotable integer types are required to be promoted by the ABI.
|
|
if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
|
|
return true;
|
|
|
|
if (const auto *EIT = Ty->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() < 64)
|
|
return true;
|
|
|
|
// 32-bit values must also be promoted.
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Int:
|
|
case BuiltinType::UInt:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SystemZABIInfo::isCompoundType(QualType Ty) const {
|
|
return (Ty->isAnyComplexType() ||
|
|
Ty->isVectorType() ||
|
|
isAggregateTypeForABI(Ty));
|
|
}
|
|
|
|
bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
|
|
return (HasVector &&
|
|
Ty->isVectorType() &&
|
|
getContext().getTypeSize(Ty) <= 128);
|
|
}
|
|
|
|
bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
|
|
if (IsSoftFloatABI)
|
|
return false;
|
|
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Float:
|
|
case BuiltinType::Double:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
|
|
if (RT && RT->isStructureOrClassType()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
QualType Found;
|
|
|
|
// If this is a C++ record, check the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
|
for (const auto &I : CXXRD->bases()) {
|
|
QualType Base = I.getType();
|
|
|
|
// Empty bases don't affect things either way.
|
|
if (isEmptyRecord(getContext(), Base, true))
|
|
continue;
|
|
|
|
if (!Found.isNull())
|
|
return Ty;
|
|
Found = GetSingleElementType(Base);
|
|
}
|
|
|
|
// Check the fields.
|
|
for (const auto *FD : RD->fields()) {
|
|
// For compatibility with GCC, ignore empty bitfields in C++ mode.
|
|
// Unlike isSingleElementStruct(), empty structure and array fields
|
|
// do count. So do anonymous bitfields that aren't zero-sized.
|
|
if (getContext().getLangOpts().CPlusPlus &&
|
|
FD->isZeroLengthBitField(getContext()))
|
|
continue;
|
|
// Like isSingleElementStruct(), ignore C++20 empty data members.
|
|
if (FD->hasAttr<NoUniqueAddressAttr>() &&
|
|
isEmptyRecord(getContext(), FD->getType(), true))
|
|
continue;
|
|
|
|
// Unlike isSingleElementStruct(), arrays do not count.
|
|
// Nested structures still do though.
|
|
if (!Found.isNull())
|
|
return Ty;
|
|
Found = GetSingleElementType(FD->getType());
|
|
}
|
|
|
|
// Unlike isSingleElementStruct(), trailing padding is allowed.
|
|
// An 8-byte aligned struct s { float f; } is passed as a double.
|
|
if (!Found.isNull())
|
|
return Found;
|
|
}
|
|
|
|
return Ty;
|
|
}
|
|
|
|
Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
// Assume that va_list type is correct; should be pointer to LLVM type:
|
|
// struct {
|
|
// i64 __gpr;
|
|
// i64 __fpr;
|
|
// i8 *__overflow_arg_area;
|
|
// i8 *__reg_save_area;
|
|
// };
|
|
|
|
// Every non-vector argument occupies 8 bytes and is passed by preference
|
|
// in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are
|
|
// always passed on the stack.
|
|
Ty = getContext().getCanonicalType(Ty);
|
|
auto TyInfo = getContext().getTypeInfoInChars(Ty);
|
|
llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
|
|
llvm::Type *DirectTy = ArgTy;
|
|
ABIArgInfo AI = classifyArgumentType(Ty);
|
|
bool IsIndirect = AI.isIndirect();
|
|
bool InFPRs = false;
|
|
bool IsVector = false;
|
|
CharUnits UnpaddedSize;
|
|
CharUnits DirectAlign;
|
|
if (IsIndirect) {
|
|
DirectTy = llvm::PointerType::getUnqual(DirectTy);
|
|
UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
|
|
} else {
|
|
if (AI.getCoerceToType())
|
|
ArgTy = AI.getCoerceToType();
|
|
InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
|
|
IsVector = ArgTy->isVectorTy();
|
|
UnpaddedSize = TyInfo.Width;
|
|
DirectAlign = TyInfo.Align;
|
|
}
|
|
CharUnits PaddedSize = CharUnits::fromQuantity(8);
|
|
if (IsVector && UnpaddedSize > PaddedSize)
|
|
PaddedSize = CharUnits::fromQuantity(16);
|
|
assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
|
|
|
|
CharUnits Padding = (PaddedSize - UnpaddedSize);
|
|
|
|
llvm::Type *IndexTy = CGF.Int64Ty;
|
|
llvm::Value *PaddedSizeV =
|
|
llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
|
|
|
|
if (IsVector) {
|
|
// Work out the address of a vector argument on the stack.
|
|
// Vector arguments are always passed in the high bits of a
|
|
// single (8 byte) or double (16 byte) stack slot.
|
|
Address OverflowArgAreaPtr =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
|
|
Address OverflowArgArea =
|
|
Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
|
|
TyInfo.Align);
|
|
Address MemAddr =
|
|
CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
|
|
|
|
// Update overflow_arg_area_ptr pointer
|
|
llvm::Value *NewOverflowArgArea =
|
|
CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
|
|
"overflow_arg_area");
|
|
CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
|
|
|
|
return MemAddr;
|
|
}
|
|
|
|
assert(PaddedSize.getQuantity() == 8);
|
|
|
|
unsigned MaxRegs, RegCountField, RegSaveIndex;
|
|
CharUnits RegPadding;
|
|
if (InFPRs) {
|
|
MaxRegs = 4; // Maximum of 4 FPR arguments
|
|
RegCountField = 1; // __fpr
|
|
RegSaveIndex = 16; // save offset for f0
|
|
RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
|
|
} else {
|
|
MaxRegs = 5; // Maximum of 5 GPR arguments
|
|
RegCountField = 0; // __gpr
|
|
RegSaveIndex = 2; // save offset for r2
|
|
RegPadding = Padding; // values are passed in the low bits of a GPR
|
|
}
|
|
|
|
Address RegCountPtr =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
|
|
llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
|
|
llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
|
|
llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
|
|
"fits_in_regs");
|
|
|
|
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
|
|
llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
|
|
CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
|
|
|
|
// Emit code to load the value if it was passed in registers.
|
|
CGF.EmitBlock(InRegBlock);
|
|
|
|
// Work out the address of an argument register.
|
|
llvm::Value *ScaledRegCount =
|
|
CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
|
|
llvm::Value *RegBase =
|
|
llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
|
|
+ RegPadding.getQuantity());
|
|
llvm::Value *RegOffset =
|
|
CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
|
|
Address RegSaveAreaPtr =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
|
|
llvm::Value *RegSaveArea =
|
|
CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
|
|
Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
|
|
"raw_reg_addr"),
|
|
PaddedSize);
|
|
Address RegAddr =
|
|
CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
|
|
|
|
// Update the register count
|
|
llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
|
|
llvm::Value *NewRegCount =
|
|
CGF.Builder.CreateAdd(RegCount, One, "reg_count");
|
|
CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
// Emit code to load the value if it was passed in memory.
|
|
CGF.EmitBlock(InMemBlock);
|
|
|
|
// Work out the address of a stack argument.
|
|
Address OverflowArgAreaPtr =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
|
|
Address OverflowArgArea =
|
|
Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
|
|
PaddedSize);
|
|
Address RawMemAddr =
|
|
CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
|
|
Address MemAddr =
|
|
CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
|
|
|
|
// Update overflow_arg_area_ptr pointer
|
|
llvm::Value *NewOverflowArgArea =
|
|
CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
|
|
"overflow_arg_area");
|
|
CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
// Return the appropriate result.
|
|
CGF.EmitBlock(ContBlock);
|
|
Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
|
|
MemAddr, InMemBlock, "va_arg.addr");
|
|
|
|
if (IsIndirect)
|
|
ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
|
|
TyInfo.Align);
|
|
|
|
return ResAddr;
|
|
}
|
|
|
|
ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
if (isVectorArgumentType(RetTy))
|
|
return ABIArgInfo::getDirect();
|
|
if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
|
|
return getNaturalAlignIndirect(RetTy);
|
|
return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
|
|
// Handle the generic C++ ABI.
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
// Integers and enums are extended to full register width.
|
|
if (isPromotableIntegerTypeForABI(Ty))
|
|
return ABIArgInfo::getExtend(Ty);
|
|
|
|
// Handle vector types and vector-like structure types. Note that
|
|
// as opposed to float-like structure types, we do not allow any
|
|
// padding for vector-like structures, so verify the sizes match.
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
QualType SingleElementTy = GetSingleElementType(Ty);
|
|
if (isVectorArgumentType(SingleElementTy) &&
|
|
getContext().getTypeSize(SingleElementTy) == Size)
|
|
return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
|
|
|
|
// Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
|
|
if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
|
|
// Handle small structures.
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
// Structures with flexible arrays have variable length, so really
|
|
// fail the size test above.
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
|
|
// The structure is passed as an unextended integer, a float, or a double.
|
|
llvm::Type *PassTy;
|
|
if (isFPArgumentType(SingleElementTy)) {
|
|
assert(Size == 32 || Size == 64);
|
|
if (Size == 32)
|
|
PassTy = llvm::Type::getFloatTy(getVMContext());
|
|
else
|
|
PassTy = llvm::Type::getDoubleTy(getVMContext());
|
|
} else
|
|
PassTy = llvm::IntegerType::get(getVMContext(), Size);
|
|
return ABIArgInfo::getDirect(PassTy);
|
|
}
|
|
|
|
// Non-structure compounds are passed indirectly.
|
|
if (isCompoundType(Ty))
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
|
|
return ABIArgInfo::getDirect(nullptr);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MSP430 ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class MSP430ABIInfo : public DefaultABIInfo {
|
|
static ABIArgInfo complexArgInfo() {
|
|
ABIArgInfo Info = ABIArgInfo::getDirect();
|
|
Info.setCanBeFlattened(false);
|
|
return Info;
|
|
}
|
|
|
|
public:
|
|
MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isAnyComplexType())
|
|
return complexArgInfo();
|
|
|
|
return DefaultABIInfo::classifyReturnType(RetTy);
|
|
}
|
|
|
|
ABIArgInfo classifyArgumentType(QualType RetTy) const {
|
|
if (RetTy->isAnyComplexType())
|
|
return complexArgInfo();
|
|
|
|
return DefaultABIInfo::classifyArgumentType(RetTy);
|
|
}
|
|
|
|
// Just copy the original implementations because
|
|
// DefaultABIInfo::classify{Return,Argument}Type() are not virtual
|
|
void computeInfo(CGFunctionInfo &FI) const override {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type);
|
|
}
|
|
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override {
|
|
return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
|
|
}
|
|
};
|
|
|
|
class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &M) const override;
|
|
};
|
|
|
|
}
|
|
|
|
void MSP430TargetCodeGenInfo::setTargetAttributes(
|
|
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
|
|
if (GV->isDeclaration())
|
|
return;
|
|
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
|
|
const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
|
|
if (!InterruptAttr)
|
|
return;
|
|
|
|
// Handle 'interrupt' attribute:
|
|
llvm::Function *F = cast<llvm::Function>(GV);
|
|
|
|
// Step 1: Set ISR calling convention.
|
|
F->setCallingConv(llvm::CallingConv::MSP430_INTR);
|
|
|
|
// Step 2: Add attributes goodness.
|
|
F->addFnAttr(llvm::Attribute::NoInline);
|
|
F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MIPS ABI Implementation. This works for both little-endian and
|
|
// big-endian variants.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class MipsABIInfo : public ABIInfo {
|
|
bool IsO32;
|
|
unsigned MinABIStackAlignInBytes, StackAlignInBytes;
|
|
void CoerceToIntArgs(uint64_t TySize,
|
|
SmallVectorImpl<llvm::Type *> &ArgList) const;
|
|
llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
|
|
llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
|
|
llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
|
|
public:
|
|
MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
|
|
ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
|
|
StackAlignInBytes(IsO32 ? 8 : 16) {}
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
ABIArgInfo extendType(QualType Ty) const;
|
|
};
|
|
|
|
class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
unsigned SizeOfUnwindException;
|
|
public:
|
|
MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
|
|
: TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
|
|
SizeOfUnwindException(IsO32 ? 24 : 32) {}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
|
|
return 29;
|
|
}
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override {
|
|
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
|
|
if (!FD) return;
|
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
|
|
|
if (FD->hasAttr<MipsLongCallAttr>())
|
|
Fn->addFnAttr("long-call");
|
|
else if (FD->hasAttr<MipsShortCallAttr>())
|
|
Fn->addFnAttr("short-call");
|
|
|
|
// Other attributes do not have a meaning for declarations.
|
|
if (GV->isDeclaration())
|
|
return;
|
|
|
|
if (FD->hasAttr<Mips16Attr>()) {
|
|
Fn->addFnAttr("mips16");
|
|
}
|
|
else if (FD->hasAttr<NoMips16Attr>()) {
|
|
Fn->addFnAttr("nomips16");
|
|
}
|
|
|
|
if (FD->hasAttr<MicroMipsAttr>())
|
|
Fn->addFnAttr("micromips");
|
|
else if (FD->hasAttr<NoMicroMipsAttr>())
|
|
Fn->addFnAttr("nomicromips");
|
|
|
|
const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
|
|
if (!Attr)
|
|
return;
|
|
|
|
const char *Kind;
|
|
switch (Attr->getInterrupt()) {
|
|
case MipsInterruptAttr::eic: Kind = "eic"; break;
|
|
case MipsInterruptAttr::sw0: Kind = "sw0"; break;
|
|
case MipsInterruptAttr::sw1: Kind = "sw1"; break;
|
|
case MipsInterruptAttr::hw0: Kind = "hw0"; break;
|
|
case MipsInterruptAttr::hw1: Kind = "hw1"; break;
|
|
case MipsInterruptAttr::hw2: Kind = "hw2"; break;
|
|
case MipsInterruptAttr::hw3: Kind = "hw3"; break;
|
|
case MipsInterruptAttr::hw4: Kind = "hw4"; break;
|
|
case MipsInterruptAttr::hw5: Kind = "hw5"; break;
|
|
}
|
|
|
|
Fn->addFnAttr("interrupt", Kind);
|
|
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
|
|
unsigned getSizeOfUnwindException() const override {
|
|
return SizeOfUnwindException;
|
|
}
|
|
};
|
|
}
|
|
|
|
void MipsABIInfo::CoerceToIntArgs(
|
|
uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
|
|
llvm::IntegerType *IntTy =
|
|
llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
|
|
|
|
// Add (TySize / MinABIStackAlignInBytes) args of IntTy.
|
|
for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
|
|
ArgList.push_back(IntTy);
|
|
|
|
// If necessary, add one more integer type to ArgList.
|
|
unsigned R = TySize % (MinABIStackAlignInBytes * 8);
|
|
|
|
if (R)
|
|
ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
|
|
}
|
|
|
|
// In N32/64, an aligned double precision floating point field is passed in
|
|
// a register.
|
|
llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
|
|
SmallVector<llvm::Type*, 8> ArgList, IntArgList;
|
|
|
|
if (IsO32) {
|
|
CoerceToIntArgs(TySize, ArgList);
|
|
return llvm::StructType::get(getVMContext(), ArgList);
|
|
}
|
|
|
|
if (Ty->isComplexType())
|
|
return CGT.ConvertType(Ty);
|
|
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
|
|
// Unions/vectors are passed in integer registers.
|
|
if (!RT || !RT->isStructureOrClassType()) {
|
|
CoerceToIntArgs(TySize, ArgList);
|
|
return llvm::StructType::get(getVMContext(), ArgList);
|
|
}
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
|
assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
|
|
|
|
uint64_t LastOffset = 0;
|
|
unsigned idx = 0;
|
|
llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
|
|
|
|
// Iterate over fields in the struct/class and check if there are any aligned
|
|
// double fields.
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i, ++idx) {
|
|
const QualType Ty = i->getType();
|
|
const BuiltinType *BT = Ty->getAs<BuiltinType>();
|
|
|
|
if (!BT || BT->getKind() != BuiltinType::Double)
|
|
continue;
|
|
|
|
uint64_t Offset = Layout.getFieldOffset(idx);
|
|
if (Offset % 64) // Ignore doubles that are not aligned.
|
|
continue;
|
|
|
|
// Add ((Offset - LastOffset) / 64) args of type i64.
|
|
for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
|
|
ArgList.push_back(I64);
|
|
|
|
// Add double type.
|
|
ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
|
|
LastOffset = Offset + 64;
|
|
}
|
|
|
|
CoerceToIntArgs(TySize - LastOffset, IntArgList);
|
|
ArgList.append(IntArgList.begin(), IntArgList.end());
|
|
|
|
return llvm::StructType::get(getVMContext(), ArgList);
|
|
}
|
|
|
|
llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
|
|
uint64_t Offset) const {
|
|
if (OrigOffset + MinABIStackAlignInBytes > Offset)
|
|
return nullptr;
|
|
|
|
return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
|
|
}
|
|
|
|
ABIArgInfo
|
|
MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
|
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
|
|
|
uint64_t OrigOffset = Offset;
|
|
uint64_t TySize = getContext().getTypeSize(Ty);
|
|
uint64_t Align = getContext().getTypeAlign(Ty) / 8;
|
|
|
|
Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
|
|
(uint64_t)StackAlignInBytes);
|
|
unsigned CurrOffset = llvm::alignTo(Offset, Align);
|
|
Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
|
|
|
|
if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
|
|
// Ignore empty aggregates.
|
|
if (TySize == 0)
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
|
|
Offset = OrigOffset + MinABIStackAlignInBytes;
|
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
}
|
|
|
|
// If we have reached here, aggregates are passed directly by coercing to
|
|
// another structure type. Padding is inserted if the offset of the
|
|
// aggregate is unaligned.
|
|
ABIArgInfo ArgInfo =
|
|
ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
|
|
getPaddingType(OrigOffset, CurrOffset));
|
|
ArgInfo.setInReg(true);
|
|
return ArgInfo;
|
|
}
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
// Make sure we pass indirectly things that are too large.
|
|
if (const auto *EIT = Ty->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() > 128 ||
|
|
(EIT->getNumBits() > 64 &&
|
|
!getContext().getTargetInfo().hasInt128Type()))
|
|
return getNaturalAlignIndirect(Ty);
|
|
|
|
// All integral types are promoted to the GPR width.
|
|
if (Ty->isIntegralOrEnumerationType())
|
|
return extendType(Ty);
|
|
|
|
return ABIArgInfo::getDirect(
|
|
nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
|
|
}
|
|
|
|
llvm::Type*
|
|
MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
|
|
const RecordType *RT = RetTy->getAs<RecordType>();
|
|
SmallVector<llvm::Type*, 8> RTList;
|
|
|
|
if (RT && RT->isStructureOrClassType()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
|
unsigned FieldCnt = Layout.getFieldCount();
|
|
|
|
// N32/64 returns struct/classes in floating point registers if the
|
|
// following conditions are met:
|
|
// 1. The size of the struct/class is no larger than 128-bit.
|
|
// 2. The struct/class has one or two fields all of which are floating
|
|
// point types.
|
|
// 3. The offset of the first field is zero (this follows what gcc does).
|
|
//
|
|
// Any other composite results are returned in integer registers.
|
|
//
|
|
if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
|
|
RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
|
|
for (; b != e; ++b) {
|
|
const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
|
|
|
|
if (!BT || !BT->isFloatingPoint())
|
|
break;
|
|
|
|
RTList.push_back(CGT.ConvertType(b->getType()));
|
|
}
|
|
|
|
if (b == e)
|
|
return llvm::StructType::get(getVMContext(), RTList,
|
|
RD->hasAttr<PackedAttr>());
|
|
|
|
RTList.clear();
|
|
}
|
|
}
|
|
|
|
CoerceToIntArgs(Size, RTList);
|
|
return llvm::StructType::get(getVMContext(), RTList);
|
|
}
|
|
|
|
ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// O32 doesn't treat zero-sized structs differently from other structs.
|
|
// However, N32/N64 ignores zero sized return values.
|
|
if (!IsO32 && Size == 0)
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
|
|
if (Size <= 128) {
|
|
if (RetTy->isAnyComplexType())
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// O32 returns integer vectors in registers and N32/N64 returns all small
|
|
// aggregates in registers.
|
|
if (!IsO32 ||
|
|
(RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
|
|
ABIArgInfo ArgInfo =
|
|
ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
|
|
ArgInfo.setInReg(true);
|
|
return ArgInfo;
|
|
}
|
|
}
|
|
|
|
return getNaturalAlignIndirect(RetTy);
|
|
}
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
// Make sure we pass indirectly things that are too large.
|
|
if (const auto *EIT = RetTy->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() > 128 ||
|
|
(EIT->getNumBits() > 64 &&
|
|
!getContext().getTargetInfo().hasInt128Type()))
|
|
return getNaturalAlignIndirect(RetTy);
|
|
|
|
if (isPromotableIntegerTypeForABI(RetTy))
|
|
return ABIArgInfo::getExtend(RetTy);
|
|
|
|
if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
|
|
RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
|
|
return ABIArgInfo::getSignExtend(RetTy);
|
|
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
ABIArgInfo &RetInfo = FI.getReturnInfo();
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
RetInfo = classifyReturnType(FI.getReturnType());
|
|
|
|
// Check if a pointer to an aggregate is passed as a hidden argument.
|
|
uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
|
|
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type, Offset);
|
|
}
|
|
|
|
Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType OrigTy) const {
|
|
QualType Ty = OrigTy;
|
|
|
|
// Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
|
|
// Pointers are also promoted in the same way but this only matters for N32.
|
|
unsigned SlotSizeInBits = IsO32 ? 32 : 64;
|
|
unsigned PtrWidth = getTarget().getPointerWidth(0);
|
|
bool DidPromote = false;
|
|
if ((Ty->isIntegerType() &&
|
|
getContext().getIntWidth(Ty) < SlotSizeInBits) ||
|
|
(Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
|
|
DidPromote = true;
|
|
Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
|
|
Ty->isSignedIntegerType());
|
|
}
|
|
|
|
auto TyInfo = getContext().getTypeInfoInChars(Ty);
|
|
|
|
// The alignment of things in the argument area is never larger than
|
|
// StackAlignInBytes.
|
|
TyInfo.Align =
|
|
std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
|
|
|
|
// MinABIStackAlignInBytes is the size of argument slots on the stack.
|
|
CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
|
|
|
|
Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
|
|
TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
|
|
|
|
|
|
// If there was a promotion, "unpromote" into a temporary.
|
|
// TODO: can we just use a pointer into a subset of the original slot?
|
|
if (DidPromote) {
|
|
Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
|
|
llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
|
|
|
|
// Truncate down to the right width.
|
|
llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
|
|
: CGF.IntPtrTy);
|
|
llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
|
|
if (OrigTy->isPointerType())
|
|
V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
|
|
|
|
CGF.Builder.CreateStore(V, Temp);
|
|
Addr = Temp;
|
|
}
|
|
|
|
return Addr;
|
|
}
|
|
|
|
ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
|
|
int TySize = getContext().getTypeSize(Ty);
|
|
|
|
// MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
|
|
if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
|
|
return ABIArgInfo::getSignExtend(Ty);
|
|
|
|
return ABIArgInfo::getExtend(Ty);
|
|
}
|
|
|
|
bool
|
|
MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const {
|
|
// This information comes from gcc's implementation, which seems to
|
|
// as canonical as it gets.
|
|
|
|
// Everything on MIPS is 4 bytes. Double-precision FP registers
|
|
// are aliased to pairs of single-precision FP registers.
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
|
|
|
|
// 0-31 are the general purpose registers, $0 - $31.
|
|
// 32-63 are the floating-point registers, $f0 - $f31.
|
|
// 64 and 65 are the multiply/divide registers, $hi and $lo.
|
|
// 66 is the (notional, I think) register for signal-handler return.
|
|
AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
|
|
|
|
// 67-74 are the floating-point status registers, $fcc0 - $fcc7.
|
|
// They are one bit wide and ignored here.
|
|
|
|
// 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
|
|
// (coprocessor 1 is the FP unit)
|
|
// 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
|
|
// 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
|
|
// 176-181 are the DSP accumulator registers.
|
|
AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AVR ABI Implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
AVRTargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override {
|
|
if (GV->isDeclaration())
|
|
return;
|
|
const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
|
|
if (!FD) return;
|
|
auto *Fn = cast<llvm::Function>(GV);
|
|
|
|
if (FD->getAttr<AVRInterruptAttr>())
|
|
Fn->addFnAttr("interrupt");
|
|
|
|
if (FD->getAttr<AVRSignalAttr>())
|
|
Fn->addFnAttr("signal");
|
|
}
|
|
};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
|
|
// Currently subclassed only to implement custom OpenCL C function attribute
|
|
// handling.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
|
|
public:
|
|
TCETargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: DefaultTargetCodeGenInfo(CGT) {}
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &M) const override;
|
|
};
|
|
|
|
void TCETargetCodeGenInfo::setTargetAttributes(
|
|
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
|
|
if (GV->isDeclaration())
|
|
return;
|
|
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
|
|
if (!FD) return;
|
|
|
|
llvm::Function *F = cast<llvm::Function>(GV);
|
|
|
|
if (M.getLangOpts().OpenCL) {
|
|
if (FD->hasAttr<OpenCLKernelAttr>()) {
|
|
// OpenCL C Kernel functions are not subject to inlining
|
|
F->addFnAttr(llvm::Attribute::NoInline);
|
|
const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
|
|
if (Attr) {
|
|
// Convert the reqd_work_group_size() attributes to metadata.
|
|
llvm::LLVMContext &Context = F->getContext();
|
|
llvm::NamedMDNode *OpenCLMetadata =
|
|
M.getModule().getOrInsertNamedMetadata(
|
|
"opencl.kernel_wg_size_info");
|
|
|
|
SmallVector<llvm::Metadata *, 5> Operands;
|
|
Operands.push_back(llvm::ConstantAsMetadata::get(F));
|
|
|
|
Operands.push_back(
|
|
llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
|
|
M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
|
|
Operands.push_back(
|
|
llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
|
|
M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
|
|
Operands.push_back(
|
|
llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
|
|
M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
|
|
|
|
// Add a boolean constant operand for "required" (true) or "hint"
|
|
// (false) for implementing the work_group_size_hint attr later.
|
|
// Currently always true as the hint is not yet implemented.
|
|
Operands.push_back(
|
|
llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
|
|
OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Hexagon ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class HexagonABIInfo : public DefaultABIInfo {
|
|
public:
|
|
HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
|
|
|
|
private:
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
|
|
QualType Ty) const;
|
|
Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
|
|
QualType Ty) const;
|
|
Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
|
|
QualType Ty) const;
|
|
};
|
|
|
|
class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
return 29;
|
|
}
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &GCM) const override {
|
|
if (GV->isDeclaration())
|
|
return;
|
|
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
|
|
if (!FD)
|
|
return;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
unsigned RegsLeft = 6;
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type, &RegsLeft);
|
|
}
|
|
|
|
static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
|
|
assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
|
|
" through registers");
|
|
|
|
if (*RegsLeft == 0)
|
|
return false;
|
|
|
|
if (Size <= 32) {
|
|
(*RegsLeft)--;
|
|
return true;
|
|
}
|
|
|
|
if (2 <= (*RegsLeft & (~1U))) {
|
|
*RegsLeft = (*RegsLeft & (~1U)) - 2;
|
|
return true;
|
|
}
|
|
|
|
// Next available register was r5 but candidate was greater than 32-bits so it
|
|
// has to go on the stack. However we still consume r5
|
|
if (*RegsLeft == 1)
|
|
*RegsLeft = 0;
|
|
|
|
return false;
|
|
}
|
|
|
|
ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
|
|
unsigned *RegsLeft) const {
|
|
if (!isAggregateTypeForABI(Ty)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (Size <= 64)
|
|
HexagonAdjustRegsLeft(Size, RegsLeft);
|
|
|
|
if (Size > 64 && Ty->isExtIntType())
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
|
|
|
|
return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
|
|
: ABIArgInfo::getDirect();
|
|
}
|
|
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
// Ignore empty records.
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
unsigned Align = getContext().getTypeAlign(Ty);
|
|
|
|
if (Size > 64)
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
|
|
|
|
if (HexagonAdjustRegsLeft(Size, RegsLeft))
|
|
Align = Size <= 32 ? 32 : 64;
|
|
if (Size <= Align) {
|
|
// Pass in the smallest viable integer type.
|
|
if (!llvm::isPowerOf2_64(Size))
|
|
Size = llvm::NextPowerOf2(Size);
|
|
return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
|
|
}
|
|
return DefaultABIInfo::classifyArgumentType(Ty);
|
|
}
|
|
|
|
ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
const TargetInfo &T = CGT.getTarget();
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
|
|
if (RetTy->getAs<VectorType>()) {
|
|
// HVX vectors are returned in vector registers or register pairs.
|
|
if (T.hasFeature("hvx")) {
|
|
assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
|
|
uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
|
|
if (Size == VecSize || Size == 2*VecSize)
|
|
return ABIArgInfo::getDirectInReg();
|
|
}
|
|
// Large vector types should be returned via memory.
|
|
if (Size > 64)
|
|
return getNaturalAlignIndirect(RetTy);
|
|
}
|
|
|
|
if (!isAggregateTypeForABI(RetTy)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (Size > 64 && RetTy->isExtIntType())
|
|
return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
|
|
|
|
return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
|
|
: ABIArgInfo::getDirect();
|
|
}
|
|
|
|
if (isEmptyRecord(getContext(), RetTy, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Aggregates <= 8 bytes are returned in registers, other aggregates
|
|
// are returned indirectly.
|
|
if (Size <= 64) {
|
|
// Return in the smallest viable integer type.
|
|
if (!llvm::isPowerOf2_64(Size))
|
|
Size = llvm::NextPowerOf2(Size);
|
|
return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
|
|
}
|
|
return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
|
|
}
|
|
|
|
Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
|
|
Address VAListAddr,
|
|
QualType Ty) const {
|
|
// Load the overflow area pointer.
|
|
Address __overflow_area_pointer_p =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
|
|
llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
|
|
__overflow_area_pointer_p, "__overflow_area_pointer");
|
|
|
|
uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
|
|
if (Align > 4) {
|
|
// Alignment should be a power of 2.
|
|
assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
|
|
|
|
// overflow_arg_area = (overflow_arg_area + align - 1) & -align;
|
|
llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
|
|
|
|
// Add offset to the current pointer to access the argument.
|
|
__overflow_area_pointer =
|
|
CGF.Builder.CreateGEP(__overflow_area_pointer, Offset);
|
|
llvm::Value *AsInt =
|
|
CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
|
|
|
|
// Create a mask which should be "AND"ed
|
|
// with (overflow_arg_area + align - 1)
|
|
llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
|
|
__overflow_area_pointer = CGF.Builder.CreateIntToPtr(
|
|
CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
|
|
"__overflow_area_pointer.align");
|
|
}
|
|
|
|
// Get the type of the argument from memory and bitcast
|
|
// overflow area pointer to the argument type.
|
|
llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
|
|
Address AddrTyped = CGF.Builder.CreateBitCast(
|
|
Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
|
|
llvm::PointerType::getUnqual(PTy));
|
|
|
|
// Round up to the minimum stack alignment for varargs which is 4 bytes.
|
|
uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
|
|
|
|
__overflow_area_pointer = CGF.Builder.CreateGEP(
|
|
__overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
|
|
"__overflow_area_pointer.next");
|
|
CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
|
|
|
|
return AddrTyped;
|
|
}
|
|
|
|
Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
|
|
Address VAListAddr,
|
|
QualType Ty) const {
|
|
// FIXME: Need to handle alignment
|
|
llvm::Type *BP = CGF.Int8PtrTy;
|
|
llvm::Type *BPP = CGF.Int8PtrPtrTy;
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
|
// Handle address alignment for type alignment > 32 bits
|
|
uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
|
|
if (TyAlign > 4) {
|
|
assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
|
|
llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
|
|
AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
|
|
AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
|
|
Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
|
|
}
|
|
llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
Address AddrTyped = Builder.CreateBitCast(
|
|
Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
|
|
|
|
uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
|
|
llvm::Value *NextAddr = Builder.CreateGEP(
|
|
Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
return AddrTyped;
|
|
}
|
|
|
|
Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
|
|
Address VAListAddr,
|
|
QualType Ty) const {
|
|
int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
|
|
|
|
if (ArgSize > 8)
|
|
return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
|
|
|
|
// Here we have check if the argument is in register area or
|
|
// in overflow area.
|
|
// If the saved register area pointer + argsize rounded up to alignment >
|
|
// saved register area end pointer, argument is in overflow area.
|
|
unsigned RegsLeft = 6;
|
|
Ty = CGF.getContext().getCanonicalType(Ty);
|
|
(void)classifyArgumentType(Ty, &RegsLeft);
|
|
|
|
llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
|
|
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
|
|
llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
|
|
|
|
// Get rounded size of the argument.GCC does not allow vararg of
|
|
// size < 4 bytes. We follow the same logic here.
|
|
ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
|
|
int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
|
|
|
|
// Argument may be in saved register area
|
|
CGF.EmitBlock(MaybeRegBlock);
|
|
|
|
// Load the current saved register area pointer.
|
|
Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
|
|
VAListAddr, 0, "__current_saved_reg_area_pointer_p");
|
|
llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
|
|
__current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
|
|
|
|
// Load the saved register area end pointer.
|
|
Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
|
|
VAListAddr, 1, "__saved_reg_area_end_pointer_p");
|
|
llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
|
|
__saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
|
|
|
|
// If the size of argument is > 4 bytes, check if the stack
|
|
// location is aligned to 8 bytes
|
|
if (ArgAlign > 4) {
|
|
|
|
llvm::Value *__current_saved_reg_area_pointer_int =
|
|
CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
|
|
CGF.Int32Ty);
|
|
|
|
__current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
|
|
__current_saved_reg_area_pointer_int,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
|
|
"align_current_saved_reg_area_pointer");
|
|
|
|
__current_saved_reg_area_pointer_int =
|
|
CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
|
|
"align_current_saved_reg_area_pointer");
|
|
|
|
__current_saved_reg_area_pointer =
|
|
CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
|
|
__current_saved_reg_area_pointer->getType(),
|
|
"align_current_saved_reg_area_pointer");
|
|
}
|
|
|
|
llvm::Value *__new_saved_reg_area_pointer =
|
|
CGF.Builder.CreateGEP(__current_saved_reg_area_pointer,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
|
|
"__new_saved_reg_area_pointer");
|
|
|
|
llvm::Value *UsingStack = 0;
|
|
UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
|
|
__saved_reg_area_end_pointer);
|
|
|
|
CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
|
|
|
|
// Argument in saved register area
|
|
// Implement the block where argument is in register saved area
|
|
CGF.EmitBlock(InRegBlock);
|
|
|
|
llvm::Type *PTy = CGF.ConvertType(Ty);
|
|
llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
|
|
__current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
|
|
|
|
CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
|
|
__current_saved_reg_area_pointer_p);
|
|
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
// Argument in overflow area
|
|
// Implement the block where the argument is in overflow area.
|
|
CGF.EmitBlock(OnStackBlock);
|
|
|
|
// Load the overflow area pointer
|
|
Address __overflow_area_pointer_p =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
|
|
llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
|
|
__overflow_area_pointer_p, "__overflow_area_pointer");
|
|
|
|
// Align the overflow area pointer according to the alignment of the argument
|
|
if (ArgAlign > 4) {
|
|
llvm::Value *__overflow_area_pointer_int =
|
|
CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
|
|
|
|
__overflow_area_pointer_int =
|
|
CGF.Builder.CreateAdd(__overflow_area_pointer_int,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
|
|
"align_overflow_area_pointer");
|
|
|
|
__overflow_area_pointer_int =
|
|
CGF.Builder.CreateAnd(__overflow_area_pointer_int,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
|
|
"align_overflow_area_pointer");
|
|
|
|
__overflow_area_pointer = CGF.Builder.CreateIntToPtr(
|
|
__overflow_area_pointer_int, __overflow_area_pointer->getType(),
|
|
"align_overflow_area_pointer");
|
|
}
|
|
|
|
// Get the pointer for next argument in overflow area and store it
|
|
// to overflow area pointer.
|
|
llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
|
|
__overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
|
|
"__overflow_area_pointer.next");
|
|
|
|
CGF.Builder.CreateStore(__new_overflow_area_pointer,
|
|
__overflow_area_pointer_p);
|
|
|
|
CGF.Builder.CreateStore(__new_overflow_area_pointer,
|
|
__current_saved_reg_area_pointer_p);
|
|
|
|
// Bitcast the overflow area pointer to the type of argument.
|
|
llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
|
|
llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
|
|
__overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
|
|
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
// Get the correct pointer to load the variable argument
|
|
// Implement the ContBlock
|
|
CGF.EmitBlock(ContBlock);
|
|
|
|
llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
|
|
llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
|
|
ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
|
|
ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
|
|
|
|
return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
|
|
}
|
|
|
|
Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
|
|
if (getTarget().getTriple().isMusl())
|
|
return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
|
|
|
|
return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lanai ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class LanaiABIInfo : public DefaultABIInfo {
|
|
public:
|
|
LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
|
|
|
|
bool shouldUseInReg(QualType Ty, CCState &State) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override {
|
|
CCState State(FI);
|
|
// Lanai uses 4 registers to pass arguments unless the function has the
|
|
// regparm attribute set.
|
|
if (FI.getHasRegParm()) {
|
|
State.FreeRegs = FI.getRegParm();
|
|
} else {
|
|
State.FreeRegs = 4;
|
|
}
|
|
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type, State);
|
|
}
|
|
|
|
ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
|
|
unsigned Size = getContext().getTypeSize(Ty);
|
|
unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
|
|
|
|
if (SizeInRegs == 0)
|
|
return false;
|
|
|
|
if (SizeInRegs > State.FreeRegs) {
|
|
State.FreeRegs = 0;
|
|
return false;
|
|
}
|
|
|
|
State.FreeRegs -= SizeInRegs;
|
|
|
|
return true;
|
|
}
|
|
|
|
ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
|
|
CCState &State) const {
|
|
if (!ByVal) {
|
|
if (State.FreeRegs) {
|
|
--State.FreeRegs; // Non-byval indirects just use one pointer.
|
|
return getNaturalAlignIndirectInReg(Ty);
|
|
}
|
|
return getNaturalAlignIndirect(Ty, false);
|
|
}
|
|
|
|
// Compute the byval alignment.
|
|
const unsigned MinABIStackAlignInBytes = 4;
|
|
unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
|
|
return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
|
|
/*Realign=*/TypeAlign >
|
|
MinABIStackAlignInBytes);
|
|
}
|
|
|
|
ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
|
|
CCState &State) const {
|
|
// Check with the C++ ABI first.
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (RT) {
|
|
CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
|
|
if (RAA == CGCXXABI::RAA_Indirect) {
|
|
return getIndirectResult(Ty, /*ByVal=*/false, State);
|
|
} else if (RAA == CGCXXABI::RAA_DirectInMemory) {
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
|
|
}
|
|
}
|
|
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
// Structures with flexible arrays are always indirect.
|
|
if (RT && RT->getDecl()->hasFlexibleArrayMember())
|
|
return getIndirectResult(Ty, /*ByVal=*/true, State);
|
|
|
|
// Ignore empty structs/unions.
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
llvm::LLVMContext &LLVMContext = getVMContext();
|
|
unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
|
|
if (SizeInRegs <= State.FreeRegs) {
|
|
llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
|
|
SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
|
|
llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
|
|
State.FreeRegs -= SizeInRegs;
|
|
return ABIArgInfo::getDirectInReg(Result);
|
|
} else {
|
|
State.FreeRegs = 0;
|
|
}
|
|
return getIndirectResult(Ty, true, State);
|
|
}
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const auto *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
bool InReg = shouldUseInReg(Ty, State);
|
|
|
|
// Don't pass >64 bit integers in registers.
|
|
if (const auto *EIT = Ty->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() > 64)
|
|
return getIndirectResult(Ty, /*ByVal=*/true, State);
|
|
|
|
if (isPromotableIntegerTypeForABI(Ty)) {
|
|
if (InReg)
|
|
return ABIArgInfo::getDirectInReg();
|
|
return ABIArgInfo::getExtend(Ty);
|
|
}
|
|
if (InReg)
|
|
return ABIArgInfo::getDirectInReg();
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
namespace {
|
|
class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
|
|
};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AMDGPU ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class AMDGPUABIInfo final : public DefaultABIInfo {
|
|
private:
|
|
static const unsigned MaxNumRegsForArgsRet = 16;
|
|
|
|
unsigned numRegsForType(QualType Ty) const;
|
|
|
|
bool isHomogeneousAggregateBaseType(QualType Ty) const override;
|
|
bool isHomogeneousAggregateSmallEnough(const Type *Base,
|
|
uint64_t Members) const override;
|
|
|
|
// Coerce HIP scalar pointer arguments from generic pointers to global ones.
|
|
llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
|
|
unsigned ToAS) const {
|
|
// Single value types.
|
|
if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
|
|
return llvm::PointerType::get(
|
|
cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
|
|
return Ty;
|
|
}
|
|
|
|
public:
|
|
explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
|
|
DefaultABIInfo(CGT) {}
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
|
|
ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
};
|
|
|
|
bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
|
|
const Type *Base, uint64_t Members) const {
|
|
uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
|
|
|
|
// Homogeneous Aggregates may occupy at most 16 registers.
|
|
return Members * NumRegs <= MaxNumRegsForArgsRet;
|
|
}
|
|
|
|
/// Estimate number of registers the type will use when passed in registers.
|
|
unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
|
|
unsigned NumRegs = 0;
|
|
|
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
// Compute from the number of elements. The reported size is based on the
|
|
// in-memory size, which includes the padding 4th element for 3-vectors.
|
|
QualType EltTy = VT->getElementType();
|
|
unsigned EltSize = getContext().getTypeSize(EltTy);
|
|
|
|
// 16-bit element vectors should be passed as packed.
|
|
if (EltSize == 16)
|
|
return (VT->getNumElements() + 1) / 2;
|
|
|
|
unsigned EltNumRegs = (EltSize + 31) / 32;
|
|
return EltNumRegs * VT->getNumElements();
|
|
}
|
|
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
assert(!RD->hasFlexibleArrayMember());
|
|
|
|
for (const FieldDecl *Field : RD->fields()) {
|
|
QualType FieldTy = Field->getType();
|
|
NumRegs += numRegsForType(FieldTy);
|
|
}
|
|
|
|
return NumRegs;
|
|
}
|
|
|
|
return (getContext().getTypeSize(Ty) + 31) / 32;
|
|
}
|
|
|
|
void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
llvm::CallingConv::ID CC = FI.getCallingConvention();
|
|
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
|
|
unsigned NumRegsLeft = MaxNumRegsForArgsRet;
|
|
for (auto &Arg : FI.arguments()) {
|
|
if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
|
|
Arg.info = classifyKernelArgumentType(Arg.type);
|
|
} else {
|
|
Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
|
|
}
|
|
}
|
|
}
|
|
|
|
Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
llvm_unreachable("AMDGPU does not support varargs");
|
|
}
|
|
|
|
ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (isAggregateTypeForABI(RetTy)) {
|
|
// Records with non-trivial destructors/copy-constructors should not be
|
|
// returned by value.
|
|
if (!getRecordArgABI(RetTy, getCXXABI())) {
|
|
// Ignore empty structs/unions.
|
|
if (isEmptyRecord(getContext(), RetTy, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Lower single-element structs to just return a regular value.
|
|
if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
|
|
return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
|
|
|
|
if (const RecordType *RT = RetTy->getAs<RecordType>()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return DefaultABIInfo::classifyReturnType(RetTy);
|
|
}
|
|
|
|
// Pack aggregates <= 4 bytes into single VGPR or pair.
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
if (Size <= 16)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
|
|
|
|
if (Size <= 32)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
|
|
|
if (Size <= 64) {
|
|
llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
|
|
return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
|
|
}
|
|
|
|
if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
}
|
|
|
|
// Otherwise just do the default thing.
|
|
return DefaultABIInfo::classifyReturnType(RetTy);
|
|
}
|
|
|
|
/// For kernels all parameters are really passed in a special buffer. It doesn't
|
|
/// make sense to pass anything byval, so everything must be direct.
|
|
ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
|
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
|
|
|
// TODO: Can we omit empty structs?
|
|
|
|
if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
|
|
Ty = QualType(SeltTy, 0);
|
|
|
|
llvm::Type *OrigLTy = CGT.ConvertType(Ty);
|
|
llvm::Type *LTy = OrigLTy;
|
|
if (getContext().getLangOpts().HIP) {
|
|
LTy = coerceKernelArgumentType(
|
|
OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
|
|
/*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
|
|
}
|
|
|
|
// FIXME: Should also use this for OpenCL, but it requires addressing the
|
|
// problem of kernels being called.
|
|
//
|
|
// FIXME: This doesn't apply the optimization of coercing pointers in structs
|
|
// to global address space when using byref. This would require implementing a
|
|
// new kind of coercion of the in-memory type when for indirect arguments.
|
|
if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
|
|
isAggregateTypeForABI(Ty)) {
|
|
return ABIArgInfo::getIndirectAliased(
|
|
getContext().getTypeAlignInChars(Ty),
|
|
getContext().getTargetAddressSpace(LangAS::opencl_constant),
|
|
false /*Realign*/, nullptr /*Padding*/);
|
|
}
|
|
|
|
// If we set CanBeFlattened to true, CodeGen will expand the struct to its
|
|
// individual elements, which confuses the Clover OpenCL backend; therefore we
|
|
// have to set it to false here. Other args of getDirect() are just defaults.
|
|
return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
|
|
}
|
|
|
|
ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
|
|
unsigned &NumRegsLeft) const {
|
|
assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
|
|
|
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
|
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
// Records with non-trivial destructors/copy-constructors should not be
|
|
// passed by value.
|
|
if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
// Ignore empty structs/unions.
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Lower single-element structs to just pass a regular value. TODO: We
|
|
// could do reasonable-size multiple-element structs too, using getExpand(),
|
|
// though watch out for things like bitfields.
|
|
if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
|
|
return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
|
|
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return DefaultABIInfo::classifyArgumentType(Ty);
|
|
}
|
|
|
|
// Pack aggregates <= 8 bytes into single VGPR or pair.
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (Size <= 64) {
|
|
unsigned NumRegs = (Size + 31) / 32;
|
|
NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
|
|
|
|
if (Size <= 16)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
|
|
|
|
if (Size <= 32)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
|
|
|
// XXX: Should this be i64 instead, and should the limit increase?
|
|
llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
|
|
return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
|
|
}
|
|
|
|
if (NumRegsLeft > 0) {
|
|
unsigned NumRegs = numRegsForType(Ty);
|
|
if (NumRegsLeft >= NumRegs) {
|
|
NumRegsLeft -= NumRegs;
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise just do the default thing.
|
|
ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
|
|
if (!ArgInfo.isIndirect()) {
|
|
unsigned NumRegs = numRegsForType(Ty);
|
|
NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
|
|
}
|
|
|
|
return ArgInfo;
|
|
}
|
|
|
|
class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &M) const override;
|
|
unsigned getOpenCLKernelCallingConv() const override;
|
|
|
|
llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
|
|
llvm::PointerType *T, QualType QT) const override;
|
|
|
|
LangAS getASTAllocaAddressSpace() const override {
|
|
return getLangASFromTargetAS(
|
|
getABIInfo().getDataLayout().getAllocaAddrSpace());
|
|
}
|
|
LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
|
|
const VarDecl *D) const override;
|
|
llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
|
|
SyncScope Scope,
|
|
llvm::AtomicOrdering Ordering,
|
|
llvm::LLVMContext &Ctx) const override;
|
|
llvm::Function *
|
|
createEnqueuedBlockKernel(CodeGenFunction &CGF,
|
|
llvm::Function *BlockInvokeFunc,
|
|
llvm::Value *BlockLiteral) const override;
|
|
bool shouldEmitStaticExternCAliases() const override;
|
|
void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
|
|
};
|
|
}
|
|
|
|
static bool requiresAMDGPUProtectedVisibility(const Decl *D,
|
|
llvm::GlobalValue *GV) {
|
|
if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
|
|
return false;
|
|
|
|
return D->hasAttr<OpenCLKernelAttr>() ||
|
|
(isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
|
|
(isa<VarDecl>(D) &&
|
|
(D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
|
|
cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
|
|
cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
|
|
}
|
|
|
|
void AMDGPUTargetCodeGenInfo::setTargetAttributes(
|
|
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
|
|
if (requiresAMDGPUProtectedVisibility(D, GV)) {
|
|
GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
|
|
GV->setDSOLocal(true);
|
|
}
|
|
|
|
if (GV->isDeclaration())
|
|
return;
|
|
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
|
|
if (!FD)
|
|
return;
|
|
|
|
llvm::Function *F = cast<llvm::Function>(GV);
|
|
|
|
const auto *ReqdWGS = M.getLangOpts().OpenCL ?
|
|
FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
|
|
|
|
|
|
const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
|
|
FD->hasAttr<OpenCLKernelAttr>();
|
|
const bool IsHIPKernel = M.getLangOpts().HIP &&
|
|
FD->hasAttr<CUDAGlobalAttr>();
|
|
if ((IsOpenCLKernel || IsHIPKernel) &&
|
|
(M.getTriple().getOS() == llvm::Triple::AMDHSA))
|
|
F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
|
|
|
|
if (IsHIPKernel)
|
|
F->addFnAttr("uniform-work-group-size", "true");
|
|
|
|
|
|
const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
|
|
if (ReqdWGS || FlatWGS) {
|
|
unsigned Min = 0;
|
|
unsigned Max = 0;
|
|
if (FlatWGS) {
|
|
Min = FlatWGS->getMin()
|
|
->EvaluateKnownConstInt(M.getContext())
|
|
.getExtValue();
|
|
Max = FlatWGS->getMax()
|
|
->EvaluateKnownConstInt(M.getContext())
|
|
.getExtValue();
|
|
}
|
|
if (ReqdWGS && Min == 0 && Max == 0)
|
|
Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
|
|
|
|
if (Min != 0) {
|
|
assert(Min <= Max && "Min must be less than or equal Max");
|
|
|
|
std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
|
|
F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
|
|
} else
|
|
assert(Max == 0 && "Max must be zero");
|
|
} else if (IsOpenCLKernel || IsHIPKernel) {
|
|
// By default, restrict the maximum size to a value specified by
|
|
// --gpu-max-threads-per-block=n or its default value.
|
|
std::string AttrVal =
|
|
std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock);
|
|
F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
|
|
}
|
|
|
|
if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
|
|
unsigned Min =
|
|
Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
|
|
unsigned Max = Attr->getMax() ? Attr->getMax()
|
|
->EvaluateKnownConstInt(M.getContext())
|
|
.getExtValue()
|
|
: 0;
|
|
|
|
if (Min != 0) {
|
|
assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
|
|
|
|
std::string AttrVal = llvm::utostr(Min);
|
|
if (Max != 0)
|
|
AttrVal = AttrVal + "," + llvm::utostr(Max);
|
|
F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
|
|
} else
|
|
assert(Max == 0 && "Max must be zero");
|
|
}
|
|
|
|
if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
|
|
unsigned NumSGPR = Attr->getNumSGPR();
|
|
|
|
if (NumSGPR != 0)
|
|
F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
|
|
}
|
|
|
|
if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
|
|
uint32_t NumVGPR = Attr->getNumVGPR();
|
|
|
|
if (NumVGPR != 0)
|
|
F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
|
|
}
|
|
|
|
if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
|
|
F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
|
|
}
|
|
|
|
unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
|
|
return llvm::CallingConv::AMDGPU_KERNEL;
|
|
}
|
|
|
|
// Currently LLVM assumes null pointers always have value 0,
|
|
// which results in incorrectly transformed IR. Therefore, instead of
|
|
// emitting null pointers in private and local address spaces, a null
|
|
// pointer in generic address space is emitted which is casted to a
|
|
// pointer in local or private address space.
|
|
llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
|
|
const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
|
|
QualType QT) const {
|
|
if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
|
|
return llvm::ConstantPointerNull::get(PT);
|
|
|
|
auto &Ctx = CGM.getContext();
|
|
auto NPT = llvm::PointerType::get(PT->getElementType(),
|
|
Ctx.getTargetAddressSpace(LangAS::opencl_generic));
|
|
return llvm::ConstantExpr::getAddrSpaceCast(
|
|
llvm::ConstantPointerNull::get(NPT), PT);
|
|
}
|
|
|
|
LangAS
|
|
AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
|
|
const VarDecl *D) const {
|
|
assert(!CGM.getLangOpts().OpenCL &&
|
|
!(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
|
|
"Address space agnostic languages only");
|
|
LangAS DefaultGlobalAS = getLangASFromTargetAS(
|
|
CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
|
|
if (!D)
|
|
return DefaultGlobalAS;
|
|
|
|
LangAS AddrSpace = D->getType().getAddressSpace();
|
|
assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
|
|
if (AddrSpace != LangAS::Default)
|
|
return AddrSpace;
|
|
|
|
if (CGM.isTypeConstant(D->getType(), false)) {
|
|
if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
|
|
return ConstAS.getValue();
|
|
}
|
|
return DefaultGlobalAS;
|
|
}
|
|
|
|
llvm::SyncScope::ID
|
|
AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
|
|
SyncScope Scope,
|
|
llvm::AtomicOrdering Ordering,
|
|
llvm::LLVMContext &Ctx) const {
|
|
std::string Name;
|
|
switch (Scope) {
|
|
case SyncScope::OpenCLWorkGroup:
|
|
Name = "workgroup";
|
|
break;
|
|
case SyncScope::OpenCLDevice:
|
|
Name = "agent";
|
|
break;
|
|
case SyncScope::OpenCLAllSVMDevices:
|
|
Name = "";
|
|
break;
|
|
case SyncScope::OpenCLSubGroup:
|
|
Name = "wavefront";
|
|
}
|
|
|
|
if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
|
|
if (!Name.empty())
|
|
Name = Twine(Twine(Name) + Twine("-")).str();
|
|
|
|
Name = Twine(Twine(Name) + Twine("one-as")).str();
|
|
}
|
|
|
|
return Ctx.getOrInsertSyncScopeID(Name);
|
|
}
|
|
|
|
bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
|
|
return false;
|
|
}
|
|
|
|
void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
|
|
const FunctionType *&FT) const {
|
|
FT = getABIInfo().getContext().adjustFunctionType(
|
|
FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SPARC v8 ABI Implementation.
|
|
// Based on the SPARC Compliance Definition version 2.4.1.
|
|
//
|
|
// Ensures that complex values are passed in registers.
|
|
//
|
|
namespace {
|
|
class SparcV8ABIInfo : public DefaultABIInfo {
|
|
public:
|
|
SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
|
|
|
|
private:
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
ABIArgInfo
|
|
SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
|
|
if (Ty->isAnyComplexType()) {
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
else {
|
|
return DefaultABIInfo::classifyReturnType(Ty);
|
|
}
|
|
}
|
|
|
|
void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &Arg : FI.arguments())
|
|
Arg.info = classifyArgumentType(Arg.type);
|
|
}
|
|
|
|
namespace {
|
|
class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SPARC v9 ABI Implementation.
|
|
// Based on the SPARC Compliance Definition version 2.4.1.
|
|
//
|
|
// Function arguments a mapped to a nominal "parameter array" and promoted to
|
|
// registers depending on their type. Each argument occupies 8 or 16 bytes in
|
|
// the array, structs larger than 16 bytes are passed indirectly.
|
|
//
|
|
// One case requires special care:
|
|
//
|
|
// struct mixed {
|
|
// int i;
|
|
// float f;
|
|
// };
|
|
//
|
|
// When a struct mixed is passed by value, it only occupies 8 bytes in the
|
|
// parameter array, but the int is passed in an integer register, and the float
|
|
// is passed in a floating point register. This is represented as two arguments
|
|
// with the LLVM IR inreg attribute:
|
|
//
|
|
// declare void f(i32 inreg %i, float inreg %f)
|
|
//
|
|
// The code generator will only allocate 4 bytes from the parameter array for
|
|
// the inreg arguments. All other arguments are allocated a multiple of 8
|
|
// bytes.
|
|
//
|
|
namespace {
|
|
class SparcV9ABIInfo : public ABIInfo {
|
|
public:
|
|
SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
private:
|
|
ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
|
|
// Coercion type builder for structs passed in registers. The coercion type
|
|
// serves two purposes:
|
|
//
|
|
// 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
|
|
// in registers.
|
|
// 2. Expose aligned floating point elements as first-level elements, so the
|
|
// code generator knows to pass them in floating point registers.
|
|
//
|
|
// We also compute the InReg flag which indicates that the struct contains
|
|
// aligned 32-bit floats.
|
|
//
|
|
struct CoerceBuilder {
|
|
llvm::LLVMContext &Context;
|
|
const llvm::DataLayout &DL;
|
|
SmallVector<llvm::Type*, 8> Elems;
|
|
uint64_t Size;
|
|
bool InReg;
|
|
|
|
CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
|
|
: Context(c), DL(dl), Size(0), InReg(false) {}
|
|
|
|
// Pad Elems with integers until Size is ToSize.
|
|
void pad(uint64_t ToSize) {
|
|
assert(ToSize >= Size && "Cannot remove elements");
|
|
if (ToSize == Size)
|
|
return;
|
|
|
|
// Finish the current 64-bit word.
|
|
uint64_t Aligned = llvm::alignTo(Size, 64);
|
|
if (Aligned > Size && Aligned <= ToSize) {
|
|
Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
|
|
Size = Aligned;
|
|
}
|
|
|
|
// Add whole 64-bit words.
|
|
while (Size + 64 <= ToSize) {
|
|
Elems.push_back(llvm::Type::getInt64Ty(Context));
|
|
Size += 64;
|
|
}
|
|
|
|
// Final in-word padding.
|
|
if (Size < ToSize) {
|
|
Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
|
|
Size = ToSize;
|
|
}
|
|
}
|
|
|
|
// Add a floating point element at Offset.
|
|
void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
|
|
// Unaligned floats are treated as integers.
|
|
if (Offset % Bits)
|
|
return;
|
|
// The InReg flag is only required if there are any floats < 64 bits.
|
|
if (Bits < 64)
|
|
InReg = true;
|
|
pad(Offset);
|
|
Elems.push_back(Ty);
|
|
Size = Offset + Bits;
|
|
}
|
|
|
|
// Add a struct type to the coercion type, starting at Offset (in bits).
|
|
void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
|
|
const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
|
|
for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
|
|
llvm::Type *ElemTy = StrTy->getElementType(i);
|
|
uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
|
|
switch (ElemTy->getTypeID()) {
|
|
case llvm::Type::StructTyID:
|
|
addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
|
|
break;
|
|
case llvm::Type::FloatTyID:
|
|
addFloat(ElemOffset, ElemTy, 32);
|
|
break;
|
|
case llvm::Type::DoubleTyID:
|
|
addFloat(ElemOffset, ElemTy, 64);
|
|
break;
|
|
case llvm::Type::FP128TyID:
|
|
addFloat(ElemOffset, ElemTy, 128);
|
|
break;
|
|
case llvm::Type::PointerTyID:
|
|
if (ElemOffset % 64 == 0) {
|
|
pad(ElemOffset);
|
|
Elems.push_back(ElemTy);
|
|
Size += 64;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if Ty is a usable substitute for the coercion type.
|
|
bool isUsableType(llvm::StructType *Ty) const {
|
|
return llvm::makeArrayRef(Elems) == Ty->elements();
|
|
}
|
|
|
|
// Get the coercion type as a literal struct type.
|
|
llvm::Type *getType() const {
|
|
if (Elems.size() == 1)
|
|
return Elems.front();
|
|
else
|
|
return llvm::StructType::get(Context, Elems);
|
|
}
|
|
};
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
ABIArgInfo
|
|
SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
|
|
if (Ty->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
// Anything too big to fit in registers is passed with an explicit indirect
|
|
// pointer / sret pointer.
|
|
if (Size > SizeLimit)
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
// Integer types smaller than a register are extended.
|
|
if (Size < 64 && Ty->isIntegerType())
|
|
return ABIArgInfo::getExtend(Ty);
|
|
|
|
if (const auto *EIT = Ty->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() < 64)
|
|
return ABIArgInfo::getExtend(Ty);
|
|
|
|
// Other non-aggregates go in registers.
|
|
if (!isAggregateTypeForABI(Ty))
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// If a C++ object has either a non-trivial copy constructor or a non-trivial
|
|
// destructor, it is passed with an explicit indirect pointer / sret pointer.
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
// This is a small aggregate type that should be passed in registers.
|
|
// Build a coercion type from the LLVM struct type.
|
|
llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
|
|
if (!StrTy)
|
|
return ABIArgInfo::getDirect();
|
|
|
|
CoerceBuilder CB(getVMContext(), getDataLayout());
|
|
CB.addStruct(0, StrTy);
|
|
CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
|
|
|
|
// Try to use the original type for coercion.
|
|
llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
|
|
|
|
if (CB.InReg)
|
|
return ABIArgInfo::getDirectInReg(CoerceTy);
|
|
else
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
|
|
Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
ABIArgInfo AI = classifyType(Ty, 16 * 8);
|
|
llvm::Type *ArgTy = CGT.ConvertType(Ty);
|
|
if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
|
|
AI.setCoerceToType(ArgTy);
|
|
|
|
CharUnits SlotSize = CharUnits::fromQuantity(8);
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
|
|
llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
|
|
|
|
auto TypeInfo = getContext().getTypeInfoInChars(Ty);
|
|
|
|
Address ArgAddr = Address::invalid();
|
|
CharUnits Stride;
|
|
switch (AI.getKind()) {
|
|
case ABIArgInfo::Expand:
|
|
case ABIArgInfo::CoerceAndExpand:
|
|
case ABIArgInfo::InAlloca:
|
|
llvm_unreachable("Unsupported ABI kind for va_arg");
|
|
|
|
case ABIArgInfo::Extend: {
|
|
Stride = SlotSize;
|
|
CharUnits Offset = SlotSize - TypeInfo.Width;
|
|
ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Direct: {
|
|
auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
|
|
Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
|
|
ArgAddr = Addr;
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Indirect:
|
|
case ABIArgInfo::IndirectAliased:
|
|
Stride = SlotSize;
|
|
ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
|
|
ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
|
|
TypeInfo.Align);
|
|
break;
|
|
|
|
case ABIArgInfo::Ignore:
|
|
return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align);
|
|
}
|
|
|
|
// Update VAList.
|
|
Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
|
|
Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
|
|
|
|
return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
|
|
}
|
|
|
|
void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyType(I.type, 16 * 8);
|
|
}
|
|
|
|
namespace {
|
|
class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
return 14;
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool
|
|
SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const {
|
|
// This is calculated from the LLVM and GCC tables and verified
|
|
// against gcc output. AFAIK all ABIs use the same encoding.
|
|
|
|
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::IntegerType *i8 = CGF.Int8Ty;
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
|
|
|
|
// 0-31: the 8-byte general-purpose registers
|
|
AssignToArrayRange(Builder, Address, Eight8, 0, 31);
|
|
|
|
// 32-63: f0-31, the 4-byte floating-point registers
|
|
AssignToArrayRange(Builder, Address, Four8, 32, 63);
|
|
|
|
// Y = 64
|
|
// PSR = 65
|
|
// WIM = 66
|
|
// TBR = 67
|
|
// PC = 68
|
|
// NPC = 69
|
|
// FSR = 70
|
|
// CSR = 71
|
|
AssignToArrayRange(Builder, Address, Eight8, 64, 71);
|
|
|
|
// 72-87: d0-15, the 8-byte floating-point registers
|
|
AssignToArrayRange(Builder, Address, Eight8, 72, 87);
|
|
|
|
return false;
|
|
}
|
|
|
|
// ARC ABI implementation.
|
|
namespace {
|
|
|
|
class ARCABIInfo : public DefaultABIInfo {
|
|
public:
|
|
using DefaultABIInfo::DefaultABIInfo;
|
|
|
|
private:
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
|
|
void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
|
|
if (!State.FreeRegs)
|
|
return;
|
|
if (Info.isIndirect() && Info.getInReg())
|
|
State.FreeRegs--;
|
|
else if (Info.isDirect() && Info.getInReg()) {
|
|
unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
|
|
if (sz < State.FreeRegs)
|
|
State.FreeRegs -= sz;
|
|
else
|
|
State.FreeRegs = 0;
|
|
}
|
|
}
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override {
|
|
CCState State(FI);
|
|
// ARC uses 8 registers to pass arguments.
|
|
State.FreeRegs = 8;
|
|
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
updateState(FI.getReturnInfo(), FI.getReturnType(), State);
|
|
for (auto &I : FI.arguments()) {
|
|
I.info = classifyArgumentType(I.type, State.FreeRegs);
|
|
updateState(I.info, I.type, State);
|
|
}
|
|
}
|
|
|
|
ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
|
|
ABIArgInfo getIndirectByValue(QualType Ty) const;
|
|
ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
};
|
|
|
|
class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
ARCTargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
|
|
};
|
|
|
|
|
|
ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
|
|
return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
|
|
getNaturalAlignIndirect(Ty, false);
|
|
}
|
|
|
|
ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
|
|
// Compute the byval alignment.
|
|
const unsigned MinABIStackAlignInBytes = 4;
|
|
unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
|
|
return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
|
|
TypeAlign > MinABIStackAlignInBytes);
|
|
}
|
|
|
|
Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
|
|
getContext().getTypeInfoInChars(Ty),
|
|
CharUnits::fromQuantity(4), true);
|
|
}
|
|
|
|
ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
|
|
uint8_t FreeRegs) const {
|
|
// Handle the generic C++ ABI.
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (RT) {
|
|
CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
|
|
if (RAA == CGCXXABI::RAA_Indirect)
|
|
return getIndirectByRef(Ty, FreeRegs > 0);
|
|
|
|
if (RAA == CGCXXABI::RAA_DirectInMemory)
|
|
return getIndirectByValue(Ty);
|
|
}
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
|
|
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
// Structures with flexible arrays are always indirect.
|
|
if (RT && RT->getDecl()->hasFlexibleArrayMember())
|
|
return getIndirectByValue(Ty);
|
|
|
|
// Ignore empty structs/unions.
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
llvm::LLVMContext &LLVMContext = getVMContext();
|
|
|
|
llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
|
|
SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
|
|
llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
|
|
|
|
return FreeRegs >= SizeInRegs ?
|
|
ABIArgInfo::getDirectInReg(Result) :
|
|
ABIArgInfo::getDirect(Result, 0, nullptr, false);
|
|
}
|
|
|
|
if (const auto *EIT = Ty->getAs<ExtIntType>())
|
|
if (EIT->getNumBits() > 64)
|
|
return getIndirectByValue(Ty);
|
|
|
|
return isPromotableIntegerTypeForABI(Ty)
|
|
? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
|
|
: ABIArgInfo::getExtend(Ty))
|
|
: (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isAnyComplexType())
|
|
return ABIArgInfo::getDirectInReg();
|
|
|
|
// Arguments of size > 4 registers are indirect.
|
|
auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
|
|
if (RetSize > 4)
|
|
return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
|
|
|
|
return DefaultABIInfo::classifyReturnType(RetTy);
|
|
}
|
|
|
|
} // End anonymous namespace.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// XCore ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// A SmallStringEnc instance is used to build up the TypeString by passing
|
|
/// it by reference between functions that append to it.
|
|
typedef llvm::SmallString<128> SmallStringEnc;
|
|
|
|
/// TypeStringCache caches the meta encodings of Types.
|
|
///
|
|
/// The reason for caching TypeStrings is two fold:
|
|
/// 1. To cache a type's encoding for later uses;
|
|
/// 2. As a means to break recursive member type inclusion.
|
|
///
|
|
/// A cache Entry can have a Status of:
|
|
/// NonRecursive: The type encoding is not recursive;
|
|
/// Recursive: The type encoding is recursive;
|
|
/// Incomplete: An incomplete TypeString;
|
|
/// IncompleteUsed: An incomplete TypeString that has been used in a
|
|
/// Recursive type encoding.
|
|
///
|
|
/// A NonRecursive entry will have all of its sub-members expanded as fully
|
|
/// as possible. Whilst it may contain types which are recursive, the type
|
|
/// itself is not recursive and thus its encoding may be safely used whenever
|
|
/// the type is encountered.
|
|
///
|
|
/// A Recursive entry will have all of its sub-members expanded as fully as
|
|
/// possible. The type itself is recursive and it may contain other types which
|
|
/// are recursive. The Recursive encoding must not be used during the expansion
|
|
/// of a recursive type's recursive branch. For simplicity the code uses
|
|
/// IncompleteCount to reject all usage of Recursive encodings for member types.
|
|
///
|
|
/// An Incomplete entry is always a RecordType and only encodes its
|
|
/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
|
|
/// are placed into the cache during type expansion as a means to identify and
|
|
/// handle recursive inclusion of types as sub-members. If there is recursion
|
|
/// the entry becomes IncompleteUsed.
|
|
///
|
|
/// During the expansion of a RecordType's members:
|
|
///
|
|
/// If the cache contains a NonRecursive encoding for the member type, the
|
|
/// cached encoding is used;
|
|
///
|
|
/// If the cache contains a Recursive encoding for the member type, the
|
|
/// cached encoding is 'Swapped' out, as it may be incorrect, and...
|
|
///
|
|
/// If the member is a RecordType, an Incomplete encoding is placed into the
|
|
/// cache to break potential recursive inclusion of itself as a sub-member;
|
|
///
|
|
/// Once a member RecordType has been expanded, its temporary incomplete
|
|
/// entry is removed from the cache. If a Recursive encoding was swapped out
|
|
/// it is swapped back in;
|
|
///
|
|
/// If an incomplete entry is used to expand a sub-member, the incomplete
|
|
/// entry is marked as IncompleteUsed. The cache keeps count of how many
|
|
/// IncompleteUsed entries it currently contains in IncompleteUsedCount;
|
|
///
|
|
/// If a member's encoding is found to be a NonRecursive or Recursive viz:
|
|
/// IncompleteUsedCount==0, the member's encoding is added to the cache.
|
|
/// Else the member is part of a recursive type and thus the recursion has
|
|
/// been exited too soon for the encoding to be correct for the member.
|
|
///
|
|
class TypeStringCache {
|
|
enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
|
|
struct Entry {
|
|
std::string Str; // The encoded TypeString for the type.
|
|
enum Status State; // Information about the encoding in 'Str'.
|
|
std::string Swapped; // A temporary place holder for a Recursive encoding
|
|
// during the expansion of RecordType's members.
|
|
};
|
|
std::map<const IdentifierInfo *, struct Entry> Map;
|
|
unsigned IncompleteCount; // Number of Incomplete entries in the Map.
|
|
unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
|
|
public:
|
|
TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
|
|
void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
|
|
bool removeIncomplete(const IdentifierInfo *ID);
|
|
void addIfComplete(const IdentifierInfo *ID, StringRef Str,
|
|
bool IsRecursive);
|
|
StringRef lookupStr(const IdentifierInfo *ID);
|
|
};
|
|
|
|
/// TypeString encodings for enum & union fields must be order.
|
|
/// FieldEncoding is a helper for this ordering process.
|
|
class FieldEncoding {
|
|
bool HasName;
|
|
std::string Enc;
|
|
public:
|
|
FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
|
|
StringRef str() { return Enc; }
|
|
bool operator<(const FieldEncoding &rhs) const {
|
|
if (HasName != rhs.HasName) return HasName;
|
|
return Enc < rhs.Enc;
|
|
}
|
|
};
|
|
|
|
class XCoreABIInfo : public DefaultABIInfo {
|
|
public:
|
|
XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
};
|
|
|
|
class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
mutable TypeStringCache TSC;
|
|
void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
|
|
const CodeGen::CodeGenModule &M) const;
|
|
|
|
public:
|
|
XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
|
|
void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
|
|
const llvm::MapVector<GlobalDecl, StringRef>
|
|
&MangledDeclNames) const override;
|
|
};
|
|
|
|
} // End anonymous namespace.
|
|
|
|
// TODO: this implementation is likely now redundant with the default
|
|
// EmitVAArg.
|
|
Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
// Get the VAList.
|
|
CharUnits SlotSize = CharUnits::fromQuantity(4);
|
|
Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
|
|
|
|
// Handle the argument.
|
|
ABIArgInfo AI = classifyArgumentType(Ty);
|
|
CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
|
|
llvm::Type *ArgTy = CGT.ConvertType(Ty);
|
|
if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
|
|
AI.setCoerceToType(ArgTy);
|
|
llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
|
|
|
|
Address Val = Address::invalid();
|
|
CharUnits ArgSize = CharUnits::Zero();
|
|
switch (AI.getKind()) {
|
|
case ABIArgInfo::Expand:
|
|
case ABIArgInfo::CoerceAndExpand:
|
|
case ABIArgInfo::InAlloca:
|
|
llvm_unreachable("Unsupported ABI kind for va_arg");
|
|
case ABIArgInfo::Ignore:
|
|
Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
|
|
ArgSize = CharUnits::Zero();
|
|
break;
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Direct:
|
|
Val = Builder.CreateBitCast(AP, ArgPtrTy);
|
|
ArgSize = CharUnits::fromQuantity(
|
|
getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
|
|
ArgSize = ArgSize.alignTo(SlotSize);
|
|
break;
|
|
case ABIArgInfo::Indirect:
|
|
case ABIArgInfo::IndirectAliased:
|
|
Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
|
|
Val = Address(Builder.CreateLoad(Val), TypeAlign);
|
|
ArgSize = SlotSize;
|
|
break;
|
|
}
|
|
|
|
// Increment the VAList.
|
|
if (!ArgSize.isZero()) {
|
|
Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
|
|
Builder.CreateStore(APN.getPointer(), VAListAddr);
|
|
}
|
|
|
|
return Val;
|
|
}
|
|
|
|
/// During the expansion of a RecordType, an incomplete TypeString is placed
|
|
/// into the cache as a means to identify and break recursion.
|
|
/// If there is a Recursive encoding in the cache, it is swapped out and will
|
|
/// be reinserted by removeIncomplete().
|
|
/// All other types of encoding should have been used rather than arriving here.
|
|
void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
|
|
std::string StubEnc) {
|
|
if (!ID)
|
|
return;
|
|
Entry &E = Map[ID];
|
|
assert( (E.Str.empty() || E.State == Recursive) &&
|
|
"Incorrectly use of addIncomplete");
|
|
assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
|
|
E.Swapped.swap(E.Str); // swap out the Recursive
|
|
E.Str.swap(StubEnc);
|
|
E.State = Incomplete;
|
|
++IncompleteCount;
|
|
}
|
|
|
|
/// Once the RecordType has been expanded, the temporary incomplete TypeString
|
|
/// must be removed from the cache.
|
|
/// If a Recursive was swapped out by addIncomplete(), it will be replaced.
|
|
/// Returns true if the RecordType was defined recursively.
|
|
bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
|
|
if (!ID)
|
|
return false;
|
|
auto I = Map.find(ID);
|
|
assert(I != Map.end() && "Entry not present");
|
|
Entry &E = I->second;
|
|
assert( (E.State == Incomplete ||
|
|
E.State == IncompleteUsed) &&
|
|
"Entry must be an incomplete type");
|
|
bool IsRecursive = false;
|
|
if (E.State == IncompleteUsed) {
|
|
// We made use of our Incomplete encoding, thus we are recursive.
|
|
IsRecursive = true;
|
|
--IncompleteUsedCount;
|
|
}
|
|
if (E.Swapped.empty())
|
|
Map.erase(I);
|
|
else {
|
|
// Swap the Recursive back.
|
|
E.Swapped.swap(E.Str);
|
|
E.Swapped.clear();
|
|
E.State = Recursive;
|
|
}
|
|
--IncompleteCount;
|
|
return IsRecursive;
|
|
}
|
|
|
|
/// Add the encoded TypeString to the cache only if it is NonRecursive or
|
|
/// Recursive (viz: all sub-members were expanded as fully as possible).
|
|
void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
|
|
bool IsRecursive) {
|
|
if (!ID || IncompleteUsedCount)
|
|
return; // No key or it is is an incomplete sub-type so don't add.
|
|
Entry &E = Map[ID];
|
|
if (IsRecursive && !E.Str.empty()) {
|
|
assert(E.State==Recursive && E.Str.size() == Str.size() &&
|
|
"This is not the same Recursive entry");
|
|
// The parent container was not recursive after all, so we could have used
|
|
// this Recursive sub-member entry after all, but we assumed the worse when
|
|
// we started viz: IncompleteCount!=0.
|
|
return;
|
|
}
|
|
assert(E.Str.empty() && "Entry already present");
|
|
E.Str = Str.str();
|
|
E.State = IsRecursive? Recursive : NonRecursive;
|
|
}
|
|
|
|
/// Return a cached TypeString encoding for the ID. If there isn't one, or we
|
|
/// are recursively expanding a type (IncompleteCount != 0) and the cached
|
|
/// encoding is Recursive, return an empty StringRef.
|
|
StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
|
|
if (!ID)
|
|
return StringRef(); // We have no key.
|
|
auto I = Map.find(ID);
|
|
if (I == Map.end())
|
|
return StringRef(); // We have no encoding.
|
|
Entry &E = I->second;
|
|
if (E.State == Recursive && IncompleteCount)
|
|
return StringRef(); // We don't use Recursive encodings for member types.
|
|
|
|
if (E.State == Incomplete) {
|
|
// The incomplete type is being used to break out of recursion.
|
|
E.State = IncompleteUsed;
|
|
++IncompleteUsedCount;
|
|
}
|
|
return E.Str;
|
|
}
|
|
|
|
/// The XCore ABI includes a type information section that communicates symbol
|
|
/// type information to the linker. The linker uses this information to verify
|
|
/// safety/correctness of things such as array bound and pointers et al.
|
|
/// The ABI only requires C (and XC) language modules to emit TypeStrings.
|
|
/// This type information (TypeString) is emitted into meta data for all global
|
|
/// symbols: definitions, declarations, functions & variables.
|
|
///
|
|
/// The TypeString carries type, qualifier, name, size & value details.
|
|
/// Please see 'Tools Development Guide' section 2.16.2 for format details:
|
|
/// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
|
|
/// The output is tested by test/CodeGen/xcore-stringtype.c.
|
|
///
|
|
static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC);
|
|
|
|
/// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
|
|
void XCoreTargetCodeGenInfo::emitTargetMD(
|
|
const Decl *D, llvm::GlobalValue *GV,
|
|
const CodeGen::CodeGenModule &CGM) const {
|
|
SmallStringEnc Enc;
|
|
if (getTypeString(Enc, D, CGM, TSC)) {
|
|
llvm::LLVMContext &Ctx = CGM.getModule().getContext();
|
|
llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
|
|
llvm::MDString::get(Ctx, Enc.str())};
|
|
llvm::NamedMDNode *MD =
|
|
CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
|
|
MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
|
|
}
|
|
}
|
|
|
|
void XCoreTargetCodeGenInfo::emitTargetMetadata(
|
|
CodeGen::CodeGenModule &CGM,
|
|
const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
|
|
// Warning, new MangledDeclNames may be appended within this loop.
|
|
// We rely on MapVector insertions adding new elements to the end
|
|
// of the container.
|
|
for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
|
|
auto Val = *(MangledDeclNames.begin() + I);
|
|
llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
|
|
if (GV) {
|
|
const Decl *D = Val.first.getDecl()->getMostRecentDecl();
|
|
emitTargetMD(D, GV, CGM);
|
|
}
|
|
}
|
|
}
|
|
//===----------------------------------------------------------------------===//
|
|
// SPIR ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class SPIRABIInfo : public DefaultABIInfo {
|
|
public:
|
|
SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
|
|
|
|
private:
|
|
void setCCs();
|
|
};
|
|
} // end anonymous namespace
|
|
namespace {
|
|
class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {}
|
|
unsigned getOpenCLKernelCallingConv() const override;
|
|
};
|
|
|
|
} // End anonymous namespace.
|
|
void SPIRABIInfo::setCCs() {
|
|
assert(getRuntimeCC() == llvm::CallingConv::C);
|
|
RuntimeCC = llvm::CallingConv::SPIR_FUNC;
|
|
}
|
|
|
|
namespace clang {
|
|
namespace CodeGen {
|
|
void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
|
|
DefaultABIInfo SPIRABI(CGM.getTypes());
|
|
SPIRABI.computeInfo(FI);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
|
|
return llvm::CallingConv::SPIR_KERNEL;
|
|
}
|
|
|
|
static bool appendType(SmallStringEnc &Enc, QualType QType,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC);
|
|
|
|
/// Helper function for appendRecordType().
|
|
/// Builds a SmallVector containing the encoded field types in declaration
|
|
/// order.
|
|
static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
|
|
const RecordDecl *RD,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC) {
|
|
for (const auto *Field : RD->fields()) {
|
|
SmallStringEnc Enc;
|
|
Enc += "m(";
|
|
Enc += Field->getName();
|
|
Enc += "){";
|
|
if (Field->isBitField()) {
|
|
Enc += "b(";
|
|
llvm::raw_svector_ostream OS(Enc);
|
|
OS << Field->getBitWidthValue(CGM.getContext());
|
|
Enc += ':';
|
|
}
|
|
if (!appendType(Enc, Field->getType(), CGM, TSC))
|
|
return false;
|
|
if (Field->isBitField())
|
|
Enc += ')';
|
|
Enc += '}';
|
|
FE.emplace_back(!Field->getName().empty(), Enc);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Appends structure and union types to Enc and adds encoding to cache.
|
|
/// Recursively calls appendType (via extractFieldType) for each field.
|
|
/// Union types have their fields ordered according to the ABI.
|
|
static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC, const IdentifierInfo *ID) {
|
|
// Append the cached TypeString if we have one.
|
|
StringRef TypeString = TSC.lookupStr(ID);
|
|
if (!TypeString.empty()) {
|
|
Enc += TypeString;
|
|
return true;
|
|
}
|
|
|
|
// Start to emit an incomplete TypeString.
|
|
size_t Start = Enc.size();
|
|
Enc += (RT->isUnionType()? 'u' : 's');
|
|
Enc += '(';
|
|
if (ID)
|
|
Enc += ID->getName();
|
|
Enc += "){";
|
|
|
|
// We collect all encoded fields and order as necessary.
|
|
bool IsRecursive = false;
|
|
const RecordDecl *RD = RT->getDecl()->getDefinition();
|
|
if (RD && !RD->field_empty()) {
|
|
// An incomplete TypeString stub is placed in the cache for this RecordType
|
|
// so that recursive calls to this RecordType will use it whilst building a
|
|
// complete TypeString for this RecordType.
|
|
SmallVector<FieldEncoding, 16> FE;
|
|
std::string StubEnc(Enc.substr(Start).str());
|
|
StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
|
|
TSC.addIncomplete(ID, std::move(StubEnc));
|
|
if (!extractFieldType(FE, RD, CGM, TSC)) {
|
|
(void) TSC.removeIncomplete(ID);
|
|
return false;
|
|
}
|
|
IsRecursive = TSC.removeIncomplete(ID);
|
|
// The ABI requires unions to be sorted but not structures.
|
|
// See FieldEncoding::operator< for sort algorithm.
|
|
if (RT->isUnionType())
|
|
llvm::sort(FE);
|
|
// We can now complete the TypeString.
|
|
unsigned E = FE.size();
|
|
for (unsigned I = 0; I != E; ++I) {
|
|
if (I)
|
|
Enc += ',';
|
|
Enc += FE[I].str();
|
|
}
|
|
}
|
|
Enc += '}';
|
|
TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
|
|
return true;
|
|
}
|
|
|
|
/// Appends enum types to Enc and adds the encoding to the cache.
|
|
static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
|
|
TypeStringCache &TSC,
|
|
const IdentifierInfo *ID) {
|
|
// Append the cached TypeString if we have one.
|
|
StringRef TypeString = TSC.lookupStr(ID);
|
|
if (!TypeString.empty()) {
|
|
Enc += TypeString;
|
|
return true;
|
|
}
|
|
|
|
size_t Start = Enc.size();
|
|
Enc += "e(";
|
|
if (ID)
|
|
Enc += ID->getName();
|
|
Enc += "){";
|
|
|
|
// We collect all encoded enumerations and order them alphanumerically.
|
|
if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
|
|
SmallVector<FieldEncoding, 16> FE;
|
|
for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
|
|
++I) {
|
|
SmallStringEnc EnumEnc;
|
|
EnumEnc += "m(";
|
|
EnumEnc += I->getName();
|
|
EnumEnc += "){";
|
|
I->getInitVal().toString(EnumEnc);
|
|
EnumEnc += '}';
|
|
FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
|
|
}
|
|
llvm::sort(FE);
|
|
unsigned E = FE.size();
|
|
for (unsigned I = 0; I != E; ++I) {
|
|
if (I)
|
|
Enc += ',';
|
|
Enc += FE[I].str();
|
|
}
|
|
}
|
|
Enc += '}';
|
|
TSC.addIfComplete(ID, Enc.substr(Start), false);
|
|
return true;
|
|
}
|
|
|
|
/// Appends type's qualifier to Enc.
|
|
/// This is done prior to appending the type's encoding.
|
|
static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
|
|
// Qualifiers are emitted in alphabetical order.
|
|
static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
|
|
int Lookup = 0;
|
|
if (QT.isConstQualified())
|
|
Lookup += 1<<0;
|
|
if (QT.isRestrictQualified())
|
|
Lookup += 1<<1;
|
|
if (QT.isVolatileQualified())
|
|
Lookup += 1<<2;
|
|
Enc += Table[Lookup];
|
|
}
|
|
|
|
/// Appends built-in types to Enc.
|
|
static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
|
|
const char *EncType;
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Void:
|
|
EncType = "0";
|
|
break;
|
|
case BuiltinType::Bool:
|
|
EncType = "b";
|
|
break;
|
|
case BuiltinType::Char_U:
|
|
EncType = "uc";
|
|
break;
|
|
case BuiltinType::UChar:
|
|
EncType = "uc";
|
|
break;
|
|
case BuiltinType::SChar:
|
|
EncType = "sc";
|
|
break;
|
|
case BuiltinType::UShort:
|
|
EncType = "us";
|
|
break;
|
|
case BuiltinType::Short:
|
|
EncType = "ss";
|
|
break;
|
|
case BuiltinType::UInt:
|
|
EncType = "ui";
|
|
break;
|
|
case BuiltinType::Int:
|
|
EncType = "si";
|
|
break;
|
|
case BuiltinType::ULong:
|
|
EncType = "ul";
|
|
break;
|
|
case BuiltinType::Long:
|
|
EncType = "sl";
|
|
break;
|
|
case BuiltinType::ULongLong:
|
|
EncType = "ull";
|
|
break;
|
|
case BuiltinType::LongLong:
|
|
EncType = "sll";
|
|
break;
|
|
case BuiltinType::Float:
|
|
EncType = "ft";
|
|
break;
|
|
case BuiltinType::Double:
|
|
EncType = "d";
|
|
break;
|
|
case BuiltinType::LongDouble:
|
|
EncType = "ld";
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
Enc += EncType;
|
|
return true;
|
|
}
|
|
|
|
/// Appends a pointer encoding to Enc before calling appendType for the pointee.
|
|
static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC) {
|
|
Enc += "p(";
|
|
if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
|
|
return false;
|
|
Enc += ')';
|
|
return true;
|
|
}
|
|
|
|
/// Appends array encoding to Enc before calling appendType for the element.
|
|
static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
|
|
const ArrayType *AT,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC, StringRef NoSizeEnc) {
|
|
if (AT->getSizeModifier() != ArrayType::Normal)
|
|
return false;
|
|
Enc += "a(";
|
|
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
|
|
CAT->getSize().toStringUnsigned(Enc);
|
|
else
|
|
Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
|
|
Enc += ':';
|
|
// The Qualifiers should be attached to the type rather than the array.
|
|
appendQualifier(Enc, QT);
|
|
if (!appendType(Enc, AT->getElementType(), CGM, TSC))
|
|
return false;
|
|
Enc += ')';
|
|
return true;
|
|
}
|
|
|
|
/// Appends a function encoding to Enc, calling appendType for the return type
|
|
/// and the arguments.
|
|
static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC) {
|
|
Enc += "f{";
|
|
if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
|
|
return false;
|
|
Enc += "}(";
|
|
if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
|
|
// N.B. we are only interested in the adjusted param types.
|
|
auto I = FPT->param_type_begin();
|
|
auto E = FPT->param_type_end();
|
|
if (I != E) {
|
|
do {
|
|
if (!appendType(Enc, *I, CGM, TSC))
|
|
return false;
|
|
++I;
|
|
if (I != E)
|
|
Enc += ',';
|
|
} while (I != E);
|
|
if (FPT->isVariadic())
|
|
Enc += ",va";
|
|
} else {
|
|
if (FPT->isVariadic())
|
|
Enc += "va";
|
|
else
|
|
Enc += '0';
|
|
}
|
|
}
|
|
Enc += ')';
|
|
return true;
|
|
}
|
|
|
|
/// Handles the type's qualifier before dispatching a call to handle specific
|
|
/// type encodings.
|
|
static bool appendType(SmallStringEnc &Enc, QualType QType,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC) {
|
|
|
|
QualType QT = QType.getCanonicalType();
|
|
|
|
if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
|
|
// The Qualifiers should be attached to the type rather than the array.
|
|
// Thus we don't call appendQualifier() here.
|
|
return appendArrayType(Enc, QT, AT, CGM, TSC, "");
|
|
|
|
appendQualifier(Enc, QT);
|
|
|
|
if (const BuiltinType *BT = QT->getAs<BuiltinType>())
|
|
return appendBuiltinType(Enc, BT);
|
|
|
|
if (const PointerType *PT = QT->getAs<PointerType>())
|
|
return appendPointerType(Enc, PT, CGM, TSC);
|
|
|
|
if (const EnumType *ET = QT->getAs<EnumType>())
|
|
return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
|
|
|
|
if (const RecordType *RT = QT->getAsStructureType())
|
|
return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
|
|
|
|
if (const RecordType *RT = QT->getAsUnionType())
|
|
return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
|
|
|
|
if (const FunctionType *FT = QT->getAs<FunctionType>())
|
|
return appendFunctionType(Enc, FT, CGM, TSC);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC) {
|
|
if (!D)
|
|
return false;
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (FD->getLanguageLinkage() != CLanguageLinkage)
|
|
return false;
|
|
return appendType(Enc, FD->getType(), CGM, TSC);
|
|
}
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
if (VD->getLanguageLinkage() != CLanguageLinkage)
|
|
return false;
|
|
QualType QT = VD->getType().getCanonicalType();
|
|
if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
|
|
// Global ArrayTypes are given a size of '*' if the size is unknown.
|
|
// The Qualifiers should be attached to the type rather than the array.
|
|
// Thus we don't call appendQualifier() here.
|
|
return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
|
|
}
|
|
return appendType(Enc, QT, CGM, TSC);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RISCV ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class RISCVABIInfo : public DefaultABIInfo {
|
|
private:
|
|
// Size of the integer ('x') registers in bits.
|
|
unsigned XLen;
|
|
// Size of the floating point ('f') registers in bits. Note that the target
|
|
// ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
|
|
// with soft float ABI has FLen==0).
|
|
unsigned FLen;
|
|
static const int NumArgGPRs = 8;
|
|
static const int NumArgFPRs = 8;
|
|
bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
|
|
llvm::Type *&Field1Ty,
|
|
CharUnits &Field1Off,
|
|
llvm::Type *&Field2Ty,
|
|
CharUnits &Field2Off) const;
|
|
|
|
public:
|
|
RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
|
|
: DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
|
|
|
|
// DefaultABIInfo's classifyReturnType and classifyArgumentType are
|
|
// non-virtual, but computeInfo is virtual, so we overload it.
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
|
|
int &ArgFPRsLeft) const;
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
|
|
ABIArgInfo extendType(QualType Ty) const;
|
|
|
|
bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
|
|
CharUnits &Field1Off, llvm::Type *&Field2Ty,
|
|
CharUnits &Field2Off, int &NeededArgGPRs,
|
|
int &NeededArgFPRs) const;
|
|
ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
|
|
CharUnits Field1Off,
|
|
llvm::Type *Field2Ty,
|
|
CharUnits Field2Off) const;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
QualType RetTy = FI.getReturnType();
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(RetTy);
|
|
|
|
// IsRetIndirect is true if classifyArgumentType indicated the value should
|
|
// be passed indirect, or if the type size is a scalar greater than 2*XLen
|
|
// and not a complex type with elements <= FLen. e.g. fp128 is passed direct
|
|
// in LLVM IR, relying on the backend lowering code to rewrite the argument
|
|
// list and pass indirectly on RV32.
|
|
bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
|
|
if (!IsRetIndirect && RetTy->isScalarType() &&
|
|
getContext().getTypeSize(RetTy) > (2 * XLen)) {
|
|
if (RetTy->isComplexType() && FLen) {
|
|
QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
|
|
IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
|
|
} else {
|
|
// This is a normal scalar > 2*XLen, such as fp128 on RV32.
|
|
IsRetIndirect = true;
|
|
}
|
|
}
|
|
|
|
// We must track the number of GPRs used in order to conform to the RISC-V
|
|
// ABI, as integer scalars passed in registers should have signext/zeroext
|
|
// when promoted, but are anyext if passed on the stack. As GPR usage is
|
|
// different for variadic arguments, we must also track whether we are
|
|
// examining a vararg or not.
|
|
int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
|
|
int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
|
|
int NumFixedArgs = FI.getNumRequiredArgs();
|
|
|
|
int ArgNum = 0;
|
|
for (auto &ArgInfo : FI.arguments()) {
|
|
bool IsFixed = ArgNum < NumFixedArgs;
|
|
ArgInfo.info =
|
|
classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
|
|
ArgNum++;
|
|
}
|
|
}
|
|
|
|
// Returns true if the struct is a potential candidate for the floating point
|
|
// calling convention. If this function returns true, the caller is
|
|
// responsible for checking that if there is only a single field then that
|
|
// field is a float.
|
|
bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
|
|
llvm::Type *&Field1Ty,
|
|
CharUnits &Field1Off,
|
|
llvm::Type *&Field2Ty,
|
|
CharUnits &Field2Off) const {
|
|
bool IsInt = Ty->isIntegralOrEnumerationType();
|
|
bool IsFloat = Ty->isRealFloatingType();
|
|
|
|
if (IsInt || IsFloat) {
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (IsInt && Size > XLen)
|
|
return false;
|
|
// Can't be eligible if larger than the FP registers. Half precision isn't
|
|
// currently supported on RISC-V and the ABI hasn't been confirmed, so
|
|
// default to the integer ABI in that case.
|
|
if (IsFloat && (Size > FLen || Size < 32))
|
|
return false;
|
|
// Can't be eligible if an integer type was already found (int+int pairs
|
|
// are not eligible).
|
|
if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
|
|
return false;
|
|
if (!Field1Ty) {
|
|
Field1Ty = CGT.ConvertType(Ty);
|
|
Field1Off = CurOff;
|
|
return true;
|
|
}
|
|
if (!Field2Ty) {
|
|
Field2Ty = CGT.ConvertType(Ty);
|
|
Field2Off = CurOff;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (auto CTy = Ty->getAs<ComplexType>()) {
|
|
if (Field1Ty)
|
|
return false;
|
|
QualType EltTy = CTy->getElementType();
|
|
if (getContext().getTypeSize(EltTy) > FLen)
|
|
return false;
|
|
Field1Ty = CGT.ConvertType(EltTy);
|
|
Field1Off = CurOff;
|
|
Field2Ty = Field1Ty;
|
|
Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
|
|
return true;
|
|
}
|
|
|
|
if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
|
|
uint64_t ArraySize = ATy->getSize().getZExtValue();
|
|
QualType EltTy = ATy->getElementType();
|
|
CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
|
|
for (uint64_t i = 0; i < ArraySize; ++i) {
|
|
bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
|
|
Field1Off, Field2Ty, Field2Off);
|
|
if (!Ret)
|
|
return false;
|
|
CurOff += EltSize;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (const auto *RTy = Ty->getAs<RecordType>()) {
|
|
// Structures with either a non-trivial destructor or a non-trivial
|
|
// copy constructor are not eligible for the FP calling convention.
|
|
if (getRecordArgABI(Ty, CGT.getCXXABI()))
|
|
return false;
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
|
return true;
|
|
const RecordDecl *RD = RTy->getDecl();
|
|
// Unions aren't eligible unless they're empty (which is caught above).
|
|
if (RD->isUnion())
|
|
return false;
|
|
int ZeroWidthBitFieldCount = 0;
|
|
for (const FieldDecl *FD : RD->fields()) {
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
|
uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
|
|
QualType QTy = FD->getType();
|
|
if (FD->isBitField()) {
|
|
unsigned BitWidth = FD->getBitWidthValue(getContext());
|
|
// Allow a bitfield with a type greater than XLen as long as the
|
|
// bitwidth is XLen or less.
|
|
if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
|
|
QTy = getContext().getIntTypeForBitwidth(XLen, false);
|
|
if (BitWidth == 0) {
|
|
ZeroWidthBitFieldCount++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
bool Ret = detectFPCCEligibleStructHelper(
|
|
QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
|
|
Field1Ty, Field1Off, Field2Ty, Field2Off);
|
|
if (!Ret)
|
|
return false;
|
|
|
|
// As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
|
|
// or int+fp structs, but are ignored for a struct with an fp field and
|
|
// any number of zero-width bitfields.
|
|
if (Field2Ty && ZeroWidthBitFieldCount > 0)
|
|
return false;
|
|
}
|
|
return Field1Ty != nullptr;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Determine if a struct is eligible for passing according to the floating
|
|
// point calling convention (i.e., when flattened it contains a single fp
|
|
// value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
|
|
// NeededArgGPRs are incremented appropriately.
|
|
bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
|
|
CharUnits &Field1Off,
|
|
llvm::Type *&Field2Ty,
|
|
CharUnits &Field2Off,
|
|
int &NeededArgGPRs,
|
|
int &NeededArgFPRs) const {
|
|
Field1Ty = nullptr;
|
|
Field2Ty = nullptr;
|
|
NeededArgGPRs = 0;
|
|
NeededArgFPRs = 0;
|
|
bool IsCandidate = detectFPCCEligibleStructHelper(
|
|
Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
|
|
// Not really a candidate if we have a single int but no float.
|
|
if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
|
|
return false;
|
|
if (!IsCandidate)
|
|
return false;
|
|
if (Field1Ty && Field1Ty->isFloatingPointTy())
|
|
NeededArgFPRs++;
|
|
else if (Field1Ty)
|
|
NeededArgGPRs++;
|
|
if (Field2Ty && Field2Ty->isFloatingPointTy())
|
|
NeededArgFPRs++;
|
|
else if (Field2Ty)
|
|
NeededArgGPRs++;
|
|
return true;
|
|
}
|
|
|
|
// Call getCoerceAndExpand for the two-element flattened struct described by
|
|
// Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
|
|
// appropriate coerceToType and unpaddedCoerceToType.
|
|
ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
|
|
llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
|
|
CharUnits Field2Off) const {
|
|
SmallVector<llvm::Type *, 3> CoerceElts;
|
|
SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
|
|
if (!Field1Off.isZero())
|
|
CoerceElts.push_back(llvm::ArrayType::get(
|
|
llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
|
|
|
|
CoerceElts.push_back(Field1Ty);
|
|
UnpaddedCoerceElts.push_back(Field1Ty);
|
|
|
|
if (!Field2Ty) {
|
|
return ABIArgInfo::getCoerceAndExpand(
|
|
llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
|
|
UnpaddedCoerceElts[0]);
|
|
}
|
|
|
|
CharUnits Field2Align =
|
|
CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
|
|
CharUnits Field1End = Field1Off +
|
|
CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
|
|
CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
|
|
|
|
CharUnits Padding = CharUnits::Zero();
|
|
if (Field2Off > Field2OffNoPadNoPack)
|
|
Padding = Field2Off - Field2OffNoPadNoPack;
|
|
else if (Field2Off != Field2Align && Field2Off > Field1End)
|
|
Padding = Field2Off - Field1End;
|
|
|
|
bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
|
|
|
|
if (!Padding.isZero())
|
|
CoerceElts.push_back(llvm::ArrayType::get(
|
|
llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
|
|
|
|
CoerceElts.push_back(Field2Ty);
|
|
UnpaddedCoerceElts.push_back(Field2Ty);
|
|
|
|
auto CoerceToType =
|
|
llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
|
|
auto UnpaddedCoerceToType =
|
|
llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
|
|
|
|
return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
|
|
}
|
|
|
|
ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
|
|
int &ArgGPRsLeft,
|
|
int &ArgFPRsLeft) const {
|
|
assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
|
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
|
|
|
// Structures with either a non-trivial destructor or a non-trivial
|
|
// copy constructor are always passed indirectly.
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
|
|
if (ArgGPRsLeft)
|
|
ArgGPRsLeft -= 1;
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
|
|
CGCXXABI::RAA_DirectInMemory);
|
|
}
|
|
|
|
// Ignore empty structs/unions.
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
// Pass floating point values via FPRs if possible.
|
|
if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
|
|
FLen >= Size && ArgFPRsLeft) {
|
|
ArgFPRsLeft--;
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
// Complex types for the hard float ABI must be passed direct rather than
|
|
// using CoerceAndExpand.
|
|
if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
|
|
QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
|
|
if (getContext().getTypeSize(EltTy) <= FLen) {
|
|
ArgFPRsLeft -= 2;
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
}
|
|
|
|
if (IsFixed && FLen && Ty->isStructureOrClassType()) {
|
|
llvm::Type *Field1Ty = nullptr;
|
|
llvm::Type *Field2Ty = nullptr;
|
|
CharUnits Field1Off = CharUnits::Zero();
|
|
CharUnits Field2Off = CharUnits::Zero();
|
|
int NeededArgGPRs;
|
|
int NeededArgFPRs;
|
|
bool IsCandidate =
|
|
detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
|
|
NeededArgGPRs, NeededArgFPRs);
|
|
if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
|
|
NeededArgFPRs <= ArgFPRsLeft) {
|
|
ArgGPRsLeft -= NeededArgGPRs;
|
|
ArgFPRsLeft -= NeededArgFPRs;
|
|
return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
|
|
Field2Off);
|
|
}
|
|
}
|
|
|
|
uint64_t NeededAlign = getContext().getTypeAlign(Ty);
|
|
bool MustUseStack = false;
|
|
// Determine the number of GPRs needed to pass the current argument
|
|
// according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
|
|
// register pairs, so may consume 3 registers.
|
|
int NeededArgGPRs = 1;
|
|
if (!IsFixed && NeededAlign == 2 * XLen)
|
|
NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
|
|
else if (Size > XLen && Size <= 2 * XLen)
|
|
NeededArgGPRs = 2;
|
|
|
|
if (NeededArgGPRs > ArgGPRsLeft) {
|
|
MustUseStack = true;
|
|
NeededArgGPRs = ArgGPRsLeft;
|
|
}
|
|
|
|
ArgGPRsLeft -= NeededArgGPRs;
|
|
|
|
if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
// All integral types are promoted to XLen width, unless passed on the
|
|
// stack.
|
|
if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
|
|
return extendType(Ty);
|
|
}
|
|
|
|
if (const auto *EIT = Ty->getAs<ExtIntType>()) {
|
|
if (EIT->getNumBits() < XLen && !MustUseStack)
|
|
return extendType(Ty);
|
|
if (EIT->getNumBits() > 128 ||
|
|
(!getContext().getTargetInfo().hasInt128Type() &&
|
|
EIT->getNumBits() > 64))
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
}
|
|
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
// Aggregates which are <= 2*XLen will be passed in registers if possible,
|
|
// so coerce to integers.
|
|
if (Size <= 2 * XLen) {
|
|
unsigned Alignment = getContext().getTypeAlign(Ty);
|
|
|
|
// Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
|
|
// required, and a 2-element XLen array if only XLen alignment is required.
|
|
if (Size <= XLen) {
|
|
return ABIArgInfo::getDirect(
|
|
llvm::IntegerType::get(getVMContext(), XLen));
|
|
} else if (Alignment == 2 * XLen) {
|
|
return ABIArgInfo::getDirect(
|
|
llvm::IntegerType::get(getVMContext(), 2 * XLen));
|
|
} else {
|
|
return ABIArgInfo::getDirect(llvm::ArrayType::get(
|
|
llvm::IntegerType::get(getVMContext(), XLen), 2));
|
|
}
|
|
}
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
}
|
|
|
|
ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
int ArgGPRsLeft = 2;
|
|
int ArgFPRsLeft = FLen ? 2 : 0;
|
|
|
|
// The rules for return and argument types are the same, so defer to
|
|
// classifyArgumentType.
|
|
return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
|
|
ArgFPRsLeft);
|
|
}
|
|
|
|
Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
|
|
|
|
// Empty records are ignored for parameter passing purposes.
|
|
if (isEmptyRecord(getContext(), Ty, true)) {
|
|
Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
|
|
Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
|
|
return Addr;
|
|
}
|
|
|
|
auto TInfo = getContext().getTypeInfoInChars(Ty);
|
|
|
|
// Arguments bigger than 2*Xlen bytes are passed indirectly.
|
|
bool IsIndirect = TInfo.Width > 2 * SlotSize;
|
|
|
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
|
|
SlotSize, /*AllowHigherAlign=*/true);
|
|
}
|
|
|
|
ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
|
|
int TySize = getContext().getTypeSize(Ty);
|
|
// RV64 ABI requires unsigned 32 bit integers to be sign extended.
|
|
if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
|
|
return ABIArgInfo::getSignExtend(Ty);
|
|
return ABIArgInfo::getExtend(Ty);
|
|
}
|
|
|
|
namespace {
|
|
class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
|
|
unsigned FLen)
|
|
: TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override {
|
|
const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
|
|
if (!FD) return;
|
|
|
|
const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
|
|
if (!Attr)
|
|
return;
|
|
|
|
const char *Kind;
|
|
switch (Attr->getInterrupt()) {
|
|
case RISCVInterruptAttr::user: Kind = "user"; break;
|
|
case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
|
|
case RISCVInterruptAttr::machine: Kind = "machine"; break;
|
|
}
|
|
|
|
auto *Fn = cast<llvm::Function>(GV);
|
|
|
|
Fn->addFnAttr("interrupt", Kind);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VE ABI Implementation.
|
|
//
|
|
namespace {
|
|
class VEABIInfo : public DefaultABIInfo {
|
|
public:
|
|
VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
|
|
|
|
private:
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
|
|
if (Ty->isAnyComplexType())
|
|
return ABIArgInfo::getDirect();
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (Size < 64 && Ty->isIntegerType())
|
|
return ABIArgInfo::getExtend(Ty);
|
|
return DefaultABIInfo::classifyReturnType(Ty);
|
|
}
|
|
|
|
ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
|
|
if (Ty->isAnyComplexType())
|
|
return ABIArgInfo::getDirect();
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (Size < 64 && Ty->isIntegerType())
|
|
return ABIArgInfo::getExtend(Ty);
|
|
return DefaultABIInfo::classifyArgumentType(Ty);
|
|
}
|
|
|
|
void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &Arg : FI.arguments())
|
|
Arg.info = classifyArgumentType(Arg.type);
|
|
}
|
|
|
|
namespace {
|
|
class VETargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
VETargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
|
|
// VE ABI requires the arguments of variadic and prototype-less functions
|
|
// are passed in both registers and memory.
|
|
bool isNoProtoCallVariadic(const CallArgList &args,
|
|
const FunctionNoProtoType *fnType) const override {
|
|
return true;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Driver code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool CodeGenModule::supportsCOMDAT() const {
|
|
return getTriple().supportsCOMDAT();
|
|
}
|
|
|
|
const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
|
|
if (TheTargetCodeGenInfo)
|
|
return *TheTargetCodeGenInfo;
|
|
|
|
// Helper to set the unique_ptr while still keeping the return value.
|
|
auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
|
|
this->TheTargetCodeGenInfo.reset(P);
|
|
return *P;
|
|
};
|
|
|
|
const llvm::Triple &Triple = getTarget().getTriple();
|
|
switch (Triple.getArch()) {
|
|
default:
|
|
return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
|
|
|
|
case llvm::Triple::le32:
|
|
return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
|
|
case llvm::Triple::mips:
|
|
case llvm::Triple::mipsel:
|
|
if (Triple.getOS() == llvm::Triple::NaCl)
|
|
return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
|
|
return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
|
|
|
|
case llvm::Triple::mips64:
|
|
case llvm::Triple::mips64el:
|
|
return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
|
|
|
|
case llvm::Triple::avr:
|
|
return SetCGInfo(new AVRTargetCodeGenInfo(Types));
|
|
|
|
case llvm::Triple::aarch64:
|
|
case llvm::Triple::aarch64_32:
|
|
case llvm::Triple::aarch64_be: {
|
|
AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
|
|
if (getTarget().getABI() == "darwinpcs")
|
|
Kind = AArch64ABIInfo::DarwinPCS;
|
|
else if (Triple.isOSWindows())
|
|
return SetCGInfo(
|
|
new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
|
|
|
|
return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
|
|
}
|
|
|
|
case llvm::Triple::wasm32:
|
|
case llvm::Triple::wasm64: {
|
|
WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
|
|
if (getTarget().getABI() == "experimental-mv")
|
|
Kind = WebAssemblyABIInfo::ExperimentalMV;
|
|
return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
|
|
}
|
|
|
|
case llvm::Triple::arm:
|
|
case llvm::Triple::armeb:
|
|
case llvm::Triple::thumb:
|
|
case llvm::Triple::thumbeb: {
|
|
if (Triple.getOS() == llvm::Triple::Win32) {
|
|
return SetCGInfo(
|
|
new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
|
|
}
|
|
|
|
ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
|
|
StringRef ABIStr = getTarget().getABI();
|
|
if (ABIStr == "apcs-gnu")
|
|
Kind = ARMABIInfo::APCS;
|
|
else if (ABIStr == "aapcs16")
|
|
Kind = ARMABIInfo::AAPCS16_VFP;
|
|
else if (CodeGenOpts.FloatABI == "hard" ||
|
|
(CodeGenOpts.FloatABI != "soft" &&
|
|
(Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
|
|
Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
|
|
Triple.getEnvironment() == llvm::Triple::EABIHF)))
|
|
Kind = ARMABIInfo::AAPCS_VFP;
|
|
|
|
return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
|
|
}
|
|
|
|
case llvm::Triple::ppc: {
|
|
if (Triple.isOSAIX())
|
|
return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
|
|
|
|
bool IsSoftFloat =
|
|
CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
|
|
bool RetSmallStructInRegABI =
|
|
PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
|
|
return SetCGInfo(
|
|
new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
|
|
}
|
|
case llvm::Triple::ppcle: {
|
|
bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
|
|
bool RetSmallStructInRegABI =
|
|
PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
|
|
return SetCGInfo(
|
|
new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
|
|
}
|
|
case llvm::Triple::ppc64:
|
|
if (Triple.isOSAIX())
|
|
return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
|
|
|
|
if (Triple.isOSBinFormatELF()) {
|
|
PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
|
|
if (getTarget().getABI() == "elfv2")
|
|
Kind = PPC64_SVR4_ABIInfo::ELFv2;
|
|
bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
|
|
|
|
return SetCGInfo(
|
|
new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
|
|
}
|
|
return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
|
|
case llvm::Triple::ppc64le: {
|
|
assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
|
|
PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
|
|
if (getTarget().getABI() == "elfv1")
|
|
Kind = PPC64_SVR4_ABIInfo::ELFv1;
|
|
bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
|
|
|
|
return SetCGInfo(
|
|
new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
|
|
}
|
|
|
|
case llvm::Triple::nvptx:
|
|
case llvm::Triple::nvptx64:
|
|
return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
|
|
|
|
case llvm::Triple::msp430:
|
|
return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
|
|
|
|
case llvm::Triple::riscv32:
|
|
case llvm::Triple::riscv64: {
|
|
StringRef ABIStr = getTarget().getABI();
|
|
unsigned XLen = getTarget().getPointerWidth(0);
|
|
unsigned ABIFLen = 0;
|
|
if (ABIStr.endswith("f"))
|
|
ABIFLen = 32;
|
|
else if (ABIStr.endswith("d"))
|
|
ABIFLen = 64;
|
|
return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
|
|
}
|
|
|
|
case llvm::Triple::systemz: {
|
|
bool SoftFloat = CodeGenOpts.FloatABI == "soft";
|
|
bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
|
|
return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
|
|
}
|
|
|
|
case llvm::Triple::tce:
|
|
case llvm::Triple::tcele:
|
|
return SetCGInfo(new TCETargetCodeGenInfo(Types));
|
|
|
|
case llvm::Triple::x86: {
|
|
bool IsDarwinVectorABI = Triple.isOSDarwin();
|
|
bool RetSmallStructInRegABI =
|
|
X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
|
|
bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
|
|
|
|
if (Triple.getOS() == llvm::Triple::Win32) {
|
|
return SetCGInfo(new WinX86_32TargetCodeGenInfo(
|
|
Types, IsDarwinVectorABI, RetSmallStructInRegABI,
|
|
IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
|
|
} else {
|
|
return SetCGInfo(new X86_32TargetCodeGenInfo(
|
|
Types, IsDarwinVectorABI, RetSmallStructInRegABI,
|
|
IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
|
|
CodeGenOpts.FloatABI == "soft"));
|
|
}
|
|
}
|
|
|
|
case llvm::Triple::x86_64: {
|
|
StringRef ABI = getTarget().getABI();
|
|
X86AVXABILevel AVXLevel =
|
|
(ABI == "avx512"
|
|
? X86AVXABILevel::AVX512
|
|
: ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
|
|
|
|
switch (Triple.getOS()) {
|
|
case llvm::Triple::Win32:
|
|
return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
|
|
default:
|
|
return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
|
|
}
|
|
}
|
|
case llvm::Triple::hexagon:
|
|
return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
|
|
case llvm::Triple::lanai:
|
|
return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
|
|
case llvm::Triple::r600:
|
|
return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
|
|
case llvm::Triple::amdgcn:
|
|
return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
|
|
case llvm::Triple::sparc:
|
|
return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
|
|
case llvm::Triple::sparcv9:
|
|
return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
|
|
case llvm::Triple::xcore:
|
|
return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
|
|
case llvm::Triple::arc:
|
|
return SetCGInfo(new ARCTargetCodeGenInfo(Types));
|
|
case llvm::Triple::spir:
|
|
case llvm::Triple::spir64:
|
|
return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
|
|
case llvm::Triple::ve:
|
|
return SetCGInfo(new VETargetCodeGenInfo(Types));
|
|
}
|
|
}
|
|
|
|
/// Create an OpenCL kernel for an enqueued block.
|
|
///
|
|
/// The kernel has the same function type as the block invoke function. Its
|
|
/// name is the name of the block invoke function postfixed with "_kernel".
|
|
/// It simply calls the block invoke function then returns.
|
|
llvm::Function *
|
|
TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
|
|
llvm::Function *Invoke,
|
|
llvm::Value *BlockLiteral) const {
|
|
auto *InvokeFT = Invoke->getFunctionType();
|
|
llvm::SmallVector<llvm::Type *, 2> ArgTys;
|
|
for (auto &P : InvokeFT->params())
|
|
ArgTys.push_back(P);
|
|
auto &C = CGF.getLLVMContext();
|
|
std::string Name = Invoke->getName().str() + "_kernel";
|
|
auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
|
|
auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
|
|
&CGF.CGM.getModule());
|
|
auto IP = CGF.Builder.saveIP();
|
|
auto *BB = llvm::BasicBlock::Create(C, "entry", F);
|
|
auto &Builder = CGF.Builder;
|
|
Builder.SetInsertPoint(BB);
|
|
llvm::SmallVector<llvm::Value *, 2> Args;
|
|
for (auto &A : F->args())
|
|
Args.push_back(&A);
|
|
llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
|
|
call->setCallingConv(Invoke->getCallingConv());
|
|
Builder.CreateRetVoid();
|
|
Builder.restoreIP(IP);
|
|
return F;
|
|
}
|
|
|
|
/// Create an OpenCL kernel for an enqueued block.
|
|
///
|
|
/// The type of the first argument (the block literal) is the struct type
|
|
/// of the block literal instead of a pointer type. The first argument
|
|
/// (block literal) is passed directly by value to the kernel. The kernel
|
|
/// allocates the same type of struct on stack and stores the block literal
|
|
/// to it and passes its pointer to the block invoke function. The kernel
|
|
/// has "enqueued-block" function attribute and kernel argument metadata.
|
|
llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
|
|
CodeGenFunction &CGF, llvm::Function *Invoke,
|
|
llvm::Value *BlockLiteral) const {
|
|
auto &Builder = CGF.Builder;
|
|
auto &C = CGF.getLLVMContext();
|
|
|
|
auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
|
|
auto *InvokeFT = Invoke->getFunctionType();
|
|
llvm::SmallVector<llvm::Type *, 2> ArgTys;
|
|
llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
|
|
llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
|
|
llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
|
|
llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
|
|
llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
|
|
llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
|
|
|
|
ArgTys.push_back(BlockTy);
|
|
ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
|
|
AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
|
|
ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
|
|
ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
|
|
AccessQuals.push_back(llvm::MDString::get(C, "none"));
|
|
ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
|
|
for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
|
|
ArgTys.push_back(InvokeFT->getParamType(I));
|
|
ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
|
|
AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
|
|
AccessQuals.push_back(llvm::MDString::get(C, "none"));
|
|
ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
|
|
ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
|
|
ArgNames.push_back(
|
|
llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
|
|
}
|
|
std::string Name = Invoke->getName().str() + "_kernel";
|
|
auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
|
|
auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
|
|
&CGF.CGM.getModule());
|
|
F->addFnAttr("enqueued-block");
|
|
auto IP = CGF.Builder.saveIP();
|
|
auto *BB = llvm::BasicBlock::Create(C, "entry", F);
|
|
Builder.SetInsertPoint(BB);
|
|
const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
|
|
auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
|
|
BlockPtr->setAlignment(BlockAlign);
|
|
Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
|
|
auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
|
|
llvm::SmallVector<llvm::Value *, 2> Args;
|
|
Args.push_back(Cast);
|
|
for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
|
|
Args.push_back(I);
|
|
llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
|
|
call->setCallingConv(Invoke->getCallingConv());
|
|
Builder.CreateRetVoid();
|
|
Builder.restoreIP(IP);
|
|
|
|
F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
|
|
F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
|
|
F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
|
|
F->setMetadata("kernel_arg_base_type",
|
|
llvm::MDNode::get(C, ArgBaseTypeNames));
|
|
F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
|
|
if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
|
|
F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
|
|
|
|
return F;
|
|
}
|