665 lines
21 KiB
C++
665 lines
21 KiB
C++
//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// These classes implement wrappers around llvm::Value in order to
|
|
// fully represent the range of values for C L- and R- values.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
|
|
#define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "Address.h"
|
|
#include "CodeGenTBAA.h"
|
|
|
|
namespace llvm {
|
|
class Constant;
|
|
class MDNode;
|
|
}
|
|
|
|
namespace clang {
|
|
namespace CodeGen {
|
|
class AggValueSlot;
|
|
class CodeGenFunction;
|
|
struct CGBitFieldInfo;
|
|
|
|
/// RValue - This trivial value class is used to represent the result of an
|
|
/// expression that is evaluated. It can be one of three things: either a
|
|
/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
|
|
/// address of an aggregate value in memory.
|
|
class RValue {
|
|
enum Flavor { Scalar, Complex, Aggregate };
|
|
|
|
// The shift to make to an aggregate's alignment to make it look
|
|
// like a pointer.
|
|
enum { AggAlignShift = 4 };
|
|
|
|
// Stores first value and flavor.
|
|
llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
|
|
// Stores second value and volatility.
|
|
llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
|
|
|
|
public:
|
|
bool isScalar() const { return V1.getInt() == Scalar; }
|
|
bool isComplex() const { return V1.getInt() == Complex; }
|
|
bool isAggregate() const { return V1.getInt() == Aggregate; }
|
|
|
|
bool isVolatileQualified() const { return V2.getInt(); }
|
|
|
|
/// getScalarVal() - Return the Value* of this scalar value.
|
|
llvm::Value *getScalarVal() const {
|
|
assert(isScalar() && "Not a scalar!");
|
|
return V1.getPointer();
|
|
}
|
|
|
|
/// getComplexVal - Return the real/imag components of this complex value.
|
|
///
|
|
std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
|
|
return std::make_pair(V1.getPointer(), V2.getPointer());
|
|
}
|
|
|
|
/// getAggregateAddr() - Return the Value* of the address of the aggregate.
|
|
Address getAggregateAddress() const {
|
|
assert(isAggregate() && "Not an aggregate!");
|
|
auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift;
|
|
return Address(V1.getPointer(), CharUnits::fromQuantity(align));
|
|
}
|
|
llvm::Value *getAggregatePointer() const {
|
|
assert(isAggregate() && "Not an aggregate!");
|
|
return V1.getPointer();
|
|
}
|
|
|
|
static RValue getIgnored() {
|
|
// FIXME: should we make this a more explicit state?
|
|
return get(nullptr);
|
|
}
|
|
|
|
static RValue get(llvm::Value *V) {
|
|
RValue ER;
|
|
ER.V1.setPointer(V);
|
|
ER.V1.setInt(Scalar);
|
|
ER.V2.setInt(false);
|
|
return ER;
|
|
}
|
|
static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
|
|
RValue ER;
|
|
ER.V1.setPointer(V1);
|
|
ER.V2.setPointer(V2);
|
|
ER.V1.setInt(Complex);
|
|
ER.V2.setInt(false);
|
|
return ER;
|
|
}
|
|
static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
|
|
return getComplex(C.first, C.second);
|
|
}
|
|
// FIXME: Aggregate rvalues need to retain information about whether they are
|
|
// volatile or not. Remove default to find all places that probably get this
|
|
// wrong.
|
|
static RValue getAggregate(Address addr, bool isVolatile = false) {
|
|
RValue ER;
|
|
ER.V1.setPointer(addr.getPointer());
|
|
ER.V1.setInt(Aggregate);
|
|
|
|
auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity());
|
|
ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift));
|
|
ER.V2.setInt(isVolatile);
|
|
return ER;
|
|
}
|
|
};
|
|
|
|
/// Does an ARC strong l-value have precise lifetime?
|
|
enum ARCPreciseLifetime_t {
|
|
ARCImpreciseLifetime, ARCPreciseLifetime
|
|
};
|
|
|
|
/// The source of the alignment of an l-value; an expression of
|
|
/// confidence in the alignment actually matching the estimate.
|
|
enum class AlignmentSource {
|
|
/// The l-value was an access to a declared entity or something
|
|
/// equivalently strong, like the address of an array allocated by a
|
|
/// language runtime.
|
|
Decl,
|
|
|
|
/// The l-value was considered opaque, so the alignment was
|
|
/// determined from a type, but that type was an explicitly-aligned
|
|
/// typedef.
|
|
AttributedType,
|
|
|
|
/// The l-value was considered opaque, so the alignment was
|
|
/// determined from a type.
|
|
Type
|
|
};
|
|
|
|
/// Given that the base address has the given alignment source, what's
|
|
/// our confidence in the alignment of the field?
|
|
static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) {
|
|
// For now, we don't distinguish fields of opaque pointers from
|
|
// top-level declarations, but maybe we should.
|
|
return AlignmentSource::Decl;
|
|
}
|
|
|
|
class LValueBaseInfo {
|
|
AlignmentSource AlignSource;
|
|
|
|
public:
|
|
explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type)
|
|
: AlignSource(Source) {}
|
|
AlignmentSource getAlignmentSource() const { return AlignSource; }
|
|
void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; }
|
|
|
|
void mergeForCast(const LValueBaseInfo &Info) {
|
|
setAlignmentSource(Info.getAlignmentSource());
|
|
}
|
|
};
|
|
|
|
/// LValue - This represents an lvalue references. Because C/C++ allow
|
|
/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
|
|
/// bitrange.
|
|
class LValue {
|
|
enum {
|
|
Simple, // This is a normal l-value, use getAddress().
|
|
VectorElt, // This is a vector element l-value (V[i]), use getVector*
|
|
BitField, // This is a bitfield l-value, use getBitfield*.
|
|
ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
|
|
GlobalReg, // This is a register l-value, use getGlobalReg()
|
|
MatrixElt // This is a matrix element, use getVector*
|
|
} LVType;
|
|
|
|
llvm::Value *V;
|
|
|
|
union {
|
|
// Index into a vector subscript: V[i]
|
|
llvm::Value *VectorIdx;
|
|
|
|
// ExtVector element subset: V.xyx
|
|
llvm::Constant *VectorElts;
|
|
|
|
// BitField start bit and size
|
|
const CGBitFieldInfo *BitFieldInfo;
|
|
};
|
|
|
|
QualType Type;
|
|
|
|
// 'const' is unused here
|
|
Qualifiers Quals;
|
|
|
|
// The alignment to use when accessing this lvalue. (For vector elements,
|
|
// this is the alignment of the whole vector.)
|
|
unsigned Alignment;
|
|
|
|
// objective-c's ivar
|
|
bool Ivar:1;
|
|
|
|
// objective-c's ivar is an array
|
|
bool ObjIsArray:1;
|
|
|
|
// LValue is non-gc'able for any reason, including being a parameter or local
|
|
// variable.
|
|
bool NonGC: 1;
|
|
|
|
// Lvalue is a global reference of an objective-c object
|
|
bool GlobalObjCRef : 1;
|
|
|
|
// Lvalue is a thread local reference
|
|
bool ThreadLocalRef : 1;
|
|
|
|
// Lvalue has ARC imprecise lifetime. We store this inverted to try
|
|
// to make the default bitfield pattern all-zeroes.
|
|
bool ImpreciseLifetime : 1;
|
|
|
|
// This flag shows if a nontemporal load/stores should be used when accessing
|
|
// this lvalue.
|
|
bool Nontemporal : 1;
|
|
|
|
LValueBaseInfo BaseInfo;
|
|
TBAAAccessInfo TBAAInfo;
|
|
|
|
Expr *BaseIvarExp;
|
|
|
|
private:
|
|
void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment,
|
|
LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
|
|
assert((!Alignment.isZero() || Type->isIncompleteType()) &&
|
|
"initializing l-value with zero alignment!");
|
|
this->Type = Type;
|
|
this->Quals = Quals;
|
|
const unsigned MaxAlign = 1U << 31;
|
|
this->Alignment = Alignment.getQuantity() <= MaxAlign
|
|
? Alignment.getQuantity()
|
|
: MaxAlign;
|
|
assert(this->Alignment == Alignment.getQuantity() &&
|
|
"Alignment exceeds allowed max!");
|
|
this->BaseInfo = BaseInfo;
|
|
this->TBAAInfo = TBAAInfo;
|
|
|
|
// Initialize Objective-C flags.
|
|
this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
|
|
this->ImpreciseLifetime = false;
|
|
this->Nontemporal = false;
|
|
this->ThreadLocalRef = false;
|
|
this->BaseIvarExp = nullptr;
|
|
}
|
|
|
|
public:
|
|
bool isSimple() const { return LVType == Simple; }
|
|
bool isVectorElt() const { return LVType == VectorElt; }
|
|
bool isBitField() const { return LVType == BitField; }
|
|
bool isExtVectorElt() const { return LVType == ExtVectorElt; }
|
|
bool isGlobalReg() const { return LVType == GlobalReg; }
|
|
bool isMatrixElt() const { return LVType == MatrixElt; }
|
|
|
|
bool isVolatileQualified() const { return Quals.hasVolatile(); }
|
|
bool isRestrictQualified() const { return Quals.hasRestrict(); }
|
|
unsigned getVRQualifiers() const {
|
|
return Quals.getCVRQualifiers() & ~Qualifiers::Const;
|
|
}
|
|
|
|
QualType getType() const { return Type; }
|
|
|
|
Qualifiers::ObjCLifetime getObjCLifetime() const {
|
|
return Quals.getObjCLifetime();
|
|
}
|
|
|
|
bool isObjCIvar() const { return Ivar; }
|
|
void setObjCIvar(bool Value) { Ivar = Value; }
|
|
|
|
bool isObjCArray() const { return ObjIsArray; }
|
|
void setObjCArray(bool Value) { ObjIsArray = Value; }
|
|
|
|
bool isNonGC () const { return NonGC; }
|
|
void setNonGC(bool Value) { NonGC = Value; }
|
|
|
|
bool isGlobalObjCRef() const { return GlobalObjCRef; }
|
|
void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
|
|
|
|
bool isThreadLocalRef() const { return ThreadLocalRef; }
|
|
void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
|
|
|
|
ARCPreciseLifetime_t isARCPreciseLifetime() const {
|
|
return ARCPreciseLifetime_t(!ImpreciseLifetime);
|
|
}
|
|
void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
|
|
ImpreciseLifetime = (value == ARCImpreciseLifetime);
|
|
}
|
|
bool isNontemporal() const { return Nontemporal; }
|
|
void setNontemporal(bool Value) { Nontemporal = Value; }
|
|
|
|
bool isObjCWeak() const {
|
|
return Quals.getObjCGCAttr() == Qualifiers::Weak;
|
|
}
|
|
bool isObjCStrong() const {
|
|
return Quals.getObjCGCAttr() == Qualifiers::Strong;
|
|
}
|
|
|
|
bool isVolatile() const {
|
|
return Quals.hasVolatile();
|
|
}
|
|
|
|
Expr *getBaseIvarExp() const { return BaseIvarExp; }
|
|
void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
|
|
|
|
TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; }
|
|
void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; }
|
|
|
|
const Qualifiers &getQuals() const { return Quals; }
|
|
Qualifiers &getQuals() { return Quals; }
|
|
|
|
LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
|
|
|
|
CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
|
|
void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
|
|
|
|
LValueBaseInfo getBaseInfo() const { return BaseInfo; }
|
|
void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; }
|
|
|
|
// simple lvalue
|
|
llvm::Value *getPointer(CodeGenFunction &CGF) const {
|
|
assert(isSimple());
|
|
return V;
|
|
}
|
|
Address getAddress(CodeGenFunction &CGF) const {
|
|
return Address(getPointer(CGF), getAlignment());
|
|
}
|
|
void setAddress(Address address) {
|
|
assert(isSimple());
|
|
V = address.getPointer();
|
|
Alignment = address.getAlignment().getQuantity();
|
|
}
|
|
|
|
// vector elt lvalue
|
|
Address getVectorAddress() const {
|
|
return Address(getVectorPointer(), getAlignment());
|
|
}
|
|
llvm::Value *getVectorPointer() const {
|
|
assert(isVectorElt());
|
|
return V;
|
|
}
|
|
llvm::Value *getVectorIdx() const {
|
|
assert(isVectorElt());
|
|
return VectorIdx;
|
|
}
|
|
|
|
Address getMatrixAddress() const {
|
|
return Address(getMatrixPointer(), getAlignment());
|
|
}
|
|
llvm::Value *getMatrixPointer() const {
|
|
assert(isMatrixElt());
|
|
return V;
|
|
}
|
|
llvm::Value *getMatrixIdx() const {
|
|
assert(isMatrixElt());
|
|
return VectorIdx;
|
|
}
|
|
|
|
// extended vector elements.
|
|
Address getExtVectorAddress() const {
|
|
return Address(getExtVectorPointer(), getAlignment());
|
|
}
|
|
llvm::Value *getExtVectorPointer() const {
|
|
assert(isExtVectorElt());
|
|
return V;
|
|
}
|
|
llvm::Constant *getExtVectorElts() const {
|
|
assert(isExtVectorElt());
|
|
return VectorElts;
|
|
}
|
|
|
|
// bitfield lvalue
|
|
Address getBitFieldAddress() const {
|
|
return Address(getBitFieldPointer(), getAlignment());
|
|
}
|
|
llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; }
|
|
const CGBitFieldInfo &getBitFieldInfo() const {
|
|
assert(isBitField());
|
|
return *BitFieldInfo;
|
|
}
|
|
|
|
// global register lvalue
|
|
llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; }
|
|
|
|
static LValue MakeAddr(Address address, QualType type, ASTContext &Context,
|
|
LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
|
|
Qualifiers qs = type.getQualifiers();
|
|
qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
|
|
|
|
LValue R;
|
|
R.LVType = Simple;
|
|
assert(address.getPointer()->getType()->isPointerTy());
|
|
R.V = address.getPointer();
|
|
R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo);
|
|
return R;
|
|
}
|
|
|
|
static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx,
|
|
QualType type, LValueBaseInfo BaseInfo,
|
|
TBAAAccessInfo TBAAInfo) {
|
|
LValue R;
|
|
R.LVType = VectorElt;
|
|
R.V = vecAddress.getPointer();
|
|
R.VectorIdx = Idx;
|
|
R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
|
|
BaseInfo, TBAAInfo);
|
|
return R;
|
|
}
|
|
|
|
static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts,
|
|
QualType type, LValueBaseInfo BaseInfo,
|
|
TBAAAccessInfo TBAAInfo) {
|
|
LValue R;
|
|
R.LVType = ExtVectorElt;
|
|
R.V = vecAddress.getPointer();
|
|
R.VectorElts = Elts;
|
|
R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
|
|
BaseInfo, TBAAInfo);
|
|
return R;
|
|
}
|
|
|
|
/// Create a new object to represent a bit-field access.
|
|
///
|
|
/// \param Addr - The base address of the bit-field sequence this
|
|
/// bit-field refers to.
|
|
/// \param Info - The information describing how to perform the bit-field
|
|
/// access.
|
|
static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info,
|
|
QualType type, LValueBaseInfo BaseInfo,
|
|
TBAAAccessInfo TBAAInfo) {
|
|
LValue R;
|
|
R.LVType = BitField;
|
|
R.V = Addr.getPointer();
|
|
R.BitFieldInfo = &Info;
|
|
R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo,
|
|
TBAAInfo);
|
|
return R;
|
|
}
|
|
|
|
static LValue MakeGlobalReg(Address Reg, QualType type) {
|
|
LValue R;
|
|
R.LVType = GlobalReg;
|
|
R.V = Reg.getPointer();
|
|
R.Initialize(type, type.getQualifiers(), Reg.getAlignment(),
|
|
LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo());
|
|
return R;
|
|
}
|
|
|
|
static LValue MakeMatrixElt(Address matAddress, llvm::Value *Idx,
|
|
QualType type, LValueBaseInfo BaseInfo,
|
|
TBAAAccessInfo TBAAInfo) {
|
|
LValue R;
|
|
R.LVType = MatrixElt;
|
|
R.V = matAddress.getPointer();
|
|
R.VectorIdx = Idx;
|
|
R.Initialize(type, type.getQualifiers(), matAddress.getAlignment(),
|
|
BaseInfo, TBAAInfo);
|
|
return R;
|
|
}
|
|
|
|
RValue asAggregateRValue(CodeGenFunction &CGF) const {
|
|
return RValue::getAggregate(getAddress(CGF), isVolatileQualified());
|
|
}
|
|
};
|
|
|
|
/// An aggregate value slot.
|
|
class AggValueSlot {
|
|
/// The address.
|
|
llvm::Value *Addr;
|
|
|
|
// Qualifiers
|
|
Qualifiers Quals;
|
|
|
|
unsigned Alignment;
|
|
|
|
/// DestructedFlag - This is set to true if some external code is
|
|
/// responsible for setting up a destructor for the slot. Otherwise
|
|
/// the code which constructs it should push the appropriate cleanup.
|
|
bool DestructedFlag : 1;
|
|
|
|
/// ObjCGCFlag - This is set to true if writing to the memory in the
|
|
/// slot might require calling an appropriate Objective-C GC
|
|
/// barrier. The exact interaction here is unnecessarily mysterious.
|
|
bool ObjCGCFlag : 1;
|
|
|
|
/// ZeroedFlag - This is set to true if the memory in the slot is
|
|
/// known to be zero before the assignment into it. This means that
|
|
/// zero fields don't need to be set.
|
|
bool ZeroedFlag : 1;
|
|
|
|
/// AliasedFlag - This is set to true if the slot might be aliased
|
|
/// and it's not undefined behavior to access it through such an
|
|
/// alias. Note that it's always undefined behavior to access a C++
|
|
/// object that's under construction through an alias derived from
|
|
/// outside the construction process.
|
|
///
|
|
/// This flag controls whether calls that produce the aggregate
|
|
/// value may be evaluated directly into the slot, or whether they
|
|
/// must be evaluated into an unaliased temporary and then memcpy'ed
|
|
/// over. Since it's invalid in general to memcpy a non-POD C++
|
|
/// object, it's important that this flag never be set when
|
|
/// evaluating an expression which constructs such an object.
|
|
bool AliasedFlag : 1;
|
|
|
|
/// This is set to true if the tail padding of this slot might overlap
|
|
/// another object that may have already been initialized (and whose
|
|
/// value must be preserved by this initialization). If so, we may only
|
|
/// store up to the dsize of the type. Otherwise we can widen stores to
|
|
/// the size of the type.
|
|
bool OverlapFlag : 1;
|
|
|
|
/// If is set to true, sanitizer checks are already generated for this address
|
|
/// or not required. For instance, if this address represents an object
|
|
/// created in 'new' expression, sanitizer checks for memory is made as a part
|
|
/// of 'operator new' emission and object constructor should not generate
|
|
/// them.
|
|
bool SanitizerCheckedFlag : 1;
|
|
|
|
public:
|
|
enum IsAliased_t { IsNotAliased, IsAliased };
|
|
enum IsDestructed_t { IsNotDestructed, IsDestructed };
|
|
enum IsZeroed_t { IsNotZeroed, IsZeroed };
|
|
enum Overlap_t { DoesNotOverlap, MayOverlap };
|
|
enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
|
|
enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked };
|
|
|
|
/// ignored - Returns an aggregate value slot indicating that the
|
|
/// aggregate value is being ignored.
|
|
static AggValueSlot ignored() {
|
|
return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed,
|
|
DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap);
|
|
}
|
|
|
|
/// forAddr - Make a slot for an aggregate value.
|
|
///
|
|
/// \param quals - The qualifiers that dictate how the slot should
|
|
/// be initialied. Only 'volatile' and the Objective-C lifetime
|
|
/// qualifiers matter.
|
|
///
|
|
/// \param isDestructed - true if something else is responsible
|
|
/// for calling destructors on this object
|
|
/// \param needsGC - true if the slot is potentially located
|
|
/// somewhere that ObjC GC calls should be emitted for
|
|
static AggValueSlot forAddr(Address addr,
|
|
Qualifiers quals,
|
|
IsDestructed_t isDestructed,
|
|
NeedsGCBarriers_t needsGC,
|
|
IsAliased_t isAliased,
|
|
Overlap_t mayOverlap,
|
|
IsZeroed_t isZeroed = IsNotZeroed,
|
|
IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
|
|
AggValueSlot AV;
|
|
if (addr.isValid()) {
|
|
AV.Addr = addr.getPointer();
|
|
AV.Alignment = addr.getAlignment().getQuantity();
|
|
} else {
|
|
AV.Addr = nullptr;
|
|
AV.Alignment = 0;
|
|
}
|
|
AV.Quals = quals;
|
|
AV.DestructedFlag = isDestructed;
|
|
AV.ObjCGCFlag = needsGC;
|
|
AV.ZeroedFlag = isZeroed;
|
|
AV.AliasedFlag = isAliased;
|
|
AV.OverlapFlag = mayOverlap;
|
|
AV.SanitizerCheckedFlag = isChecked;
|
|
return AV;
|
|
}
|
|
|
|
static AggValueSlot
|
|
forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed,
|
|
NeedsGCBarriers_t needsGC, IsAliased_t isAliased,
|
|
Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed,
|
|
IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
|
|
return forAddr(LV.getAddress(CGF), LV.getQuals(), isDestructed, needsGC,
|
|
isAliased, mayOverlap, isZeroed, isChecked);
|
|
}
|
|
|
|
IsDestructed_t isExternallyDestructed() const {
|
|
return IsDestructed_t(DestructedFlag);
|
|
}
|
|
void setExternallyDestructed(bool destructed = true) {
|
|
DestructedFlag = destructed;
|
|
}
|
|
|
|
Qualifiers getQualifiers() const { return Quals; }
|
|
|
|
bool isVolatile() const {
|
|
return Quals.hasVolatile();
|
|
}
|
|
|
|
void setVolatile(bool flag) {
|
|
if (flag)
|
|
Quals.addVolatile();
|
|
else
|
|
Quals.removeVolatile();
|
|
}
|
|
|
|
Qualifiers::ObjCLifetime getObjCLifetime() const {
|
|
return Quals.getObjCLifetime();
|
|
}
|
|
|
|
NeedsGCBarriers_t requiresGCollection() const {
|
|
return NeedsGCBarriers_t(ObjCGCFlag);
|
|
}
|
|
|
|
llvm::Value *getPointer() const {
|
|
return Addr;
|
|
}
|
|
|
|
Address getAddress() const {
|
|
return Address(Addr, getAlignment());
|
|
}
|
|
|
|
bool isIgnored() const {
|
|
return Addr == nullptr;
|
|
}
|
|
|
|
CharUnits getAlignment() const {
|
|
return CharUnits::fromQuantity(Alignment);
|
|
}
|
|
|
|
IsAliased_t isPotentiallyAliased() const {
|
|
return IsAliased_t(AliasedFlag);
|
|
}
|
|
|
|
Overlap_t mayOverlap() const {
|
|
return Overlap_t(OverlapFlag);
|
|
}
|
|
|
|
bool isSanitizerChecked() const {
|
|
return SanitizerCheckedFlag;
|
|
}
|
|
|
|
RValue asRValue() const {
|
|
if (isIgnored()) {
|
|
return RValue::getIgnored();
|
|
} else {
|
|
return RValue::getAggregate(getAddress(), isVolatile());
|
|
}
|
|
}
|
|
|
|
void setZeroed(bool V = true) { ZeroedFlag = V; }
|
|
IsZeroed_t isZeroed() const {
|
|
return IsZeroed_t(ZeroedFlag);
|
|
}
|
|
|
|
/// Get the preferred size to use when storing a value to this slot. This
|
|
/// is the type size unless that might overlap another object, in which
|
|
/// case it's the dsize.
|
|
CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const {
|
|
return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).Width
|
|
: Ctx.getTypeSizeInChars(Type);
|
|
}
|
|
};
|
|
|
|
} // end namespace CodeGen
|
|
} // end namespace clang
|
|
|
|
#endif
|