llvm-for-llvmta/tools/bugpoint/ToolRunner.cpp

866 lines
31 KiB
C++

//===-- ToolRunner.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces described in the ToolRunner.h file.
//
//===----------------------------------------------------------------------===//
#include "ToolRunner.h"
#include "llvm/Config/config.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/raw_ostream.h"
#include <fstream>
#include <sstream>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "toolrunner"
namespace llvm {
cl::opt<bool> SaveTemps("save-temps", cl::init(false),
cl::desc("Save temporary files"));
}
namespace {
cl::opt<std::string>
RemoteClient("remote-client",
cl::desc("Remote execution client (rsh/ssh)"));
cl::opt<std::string> RemoteHost("remote-host",
cl::desc("Remote execution (rsh/ssh) host"));
cl::opt<std::string> RemotePort("remote-port",
cl::desc("Remote execution (rsh/ssh) port"));
cl::opt<std::string> RemoteUser("remote-user",
cl::desc("Remote execution (rsh/ssh) user id"));
cl::opt<std::string>
RemoteExtra("remote-extra-options",
cl::desc("Remote execution (rsh/ssh) extra options"));
}
/// RunProgramWithTimeout - This function provides an alternate interface
/// to the sys::Program::ExecuteAndWait interface.
/// @see sys::Program::ExecuteAndWait
static int RunProgramWithTimeout(StringRef ProgramPath,
ArrayRef<StringRef> Args, StringRef StdInFile,
StringRef StdOutFile, StringRef StdErrFile,
unsigned NumSeconds = 0,
unsigned MemoryLimit = 0,
std::string *ErrMsg = nullptr) {
Optional<StringRef> Redirects[3] = {StdInFile, StdOutFile, StdErrFile};
return sys::ExecuteAndWait(ProgramPath, Args, None, Redirects, NumSeconds,
MemoryLimit, ErrMsg);
}
/// RunProgramRemotelyWithTimeout - This function runs the given program
/// remotely using the given remote client and the sys::Program::ExecuteAndWait.
/// Returns the remote program exit code or reports a remote client error if it
/// fails. Remote client is required to return 255 if it failed or program exit
/// code otherwise.
/// @see sys::Program::ExecuteAndWait
static int RunProgramRemotelyWithTimeout(
StringRef RemoteClientPath, ArrayRef<StringRef> Args, StringRef StdInFile,
StringRef StdOutFile, StringRef StdErrFile, unsigned NumSeconds = 0,
unsigned MemoryLimit = 0) {
Optional<StringRef> Redirects[3] = {StdInFile, StdOutFile, StdErrFile};
// Run the program remotely with the remote client
int ReturnCode = sys::ExecuteAndWait(RemoteClientPath, Args, None, Redirects,
NumSeconds, MemoryLimit);
// Has the remote client fail?
if (255 == ReturnCode) {
std::ostringstream OS;
OS << "\nError running remote client:\n ";
for (StringRef Arg : Args)
OS << " " << Arg.str();
OS << "\n";
// The error message is in the output file, let's print it out from there.
std::string StdOutFileName = StdOutFile.str();
std::ifstream ErrorFile(StdOutFileName.c_str());
if (ErrorFile) {
std::copy(std::istreambuf_iterator<char>(ErrorFile),
std::istreambuf_iterator<char>(),
std::ostreambuf_iterator<char>(OS));
ErrorFile.close();
}
errs() << OS.str();
}
return ReturnCode;
}
static Error ProcessFailure(StringRef ProgPath, ArrayRef<StringRef> Args,
unsigned Timeout = 0, unsigned MemoryLimit = 0) {
std::ostringstream OS;
OS << "\nError running tool:\n ";
for (StringRef Arg : Args)
OS << " " << Arg.str();
OS << "\n";
// Rerun the compiler, capturing any error messages to print them.
SmallString<128> ErrorFilename;
std::error_code EC = sys::fs::createTemporaryFile(
"bugpoint.program_error_messages", "", ErrorFilename);
if (EC) {
errs() << "Error making unique filename: " << EC.message() << "\n";
exit(1);
}
RunProgramWithTimeout(ProgPath, Args, "", ErrorFilename.str(),
ErrorFilename.str(), Timeout, MemoryLimit);
// FIXME: check return code ?
// Print out the error messages generated by CC if possible...
std::ifstream ErrorFile(ErrorFilename.c_str());
if (ErrorFile) {
std::copy(std::istreambuf_iterator<char>(ErrorFile),
std::istreambuf_iterator<char>(),
std::ostreambuf_iterator<char>(OS));
ErrorFile.close();
}
sys::fs::remove(ErrorFilename.c_str());
return make_error<StringError>(OS.str(), inconvertibleErrorCode());
}
//===---------------------------------------------------------------------===//
// LLI Implementation of AbstractIntepreter interface
//
namespace {
class LLI : public AbstractInterpreter {
std::string LLIPath; // The path to the LLI executable
std::vector<std::string> ToolArgs; // Args to pass to LLI
public:
LLI(const std::string &Path, const std::vector<std::string> *Args)
: LLIPath(Path) {
ToolArgs.clear();
if (Args) {
ToolArgs = *Args;
}
}
Expected<int> ExecuteProgram(
const std::string &Bitcode, const std::vector<std::string> &Args,
const std::string &InputFile, const std::string &OutputFile,
const std::vector<std::string> &CCArgs,
const std::vector<std::string> &SharedLibs = std::vector<std::string>(),
unsigned Timeout = 0, unsigned MemoryLimit = 0) override;
};
}
Expected<int> LLI::ExecuteProgram(const std::string &Bitcode,
const std::vector<std::string> &Args,
const std::string &InputFile,
const std::string &OutputFile,
const std::vector<std::string> &CCArgs,
const std::vector<std::string> &SharedLibs,
unsigned Timeout, unsigned MemoryLimit) {
std::vector<StringRef> LLIArgs;
LLIArgs.push_back(LLIPath);
LLIArgs.push_back("-force-interpreter=true");
for (std::vector<std::string>::const_iterator i = SharedLibs.begin(),
e = SharedLibs.end();
i != e; ++i) {
LLIArgs.push_back("-load");
LLIArgs.push_back(*i);
}
// Add any extra LLI args.
for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
LLIArgs.push_back(ToolArgs[i]);
LLIArgs.push_back(Bitcode);
// Add optional parameters to the running program from Argv
for (unsigned i = 0, e = Args.size(); i != e; ++i)
LLIArgs.push_back(Args[i]);
outs() << "<lli>";
outs().flush();
LLVM_DEBUG(errs() << "\nAbout to run:\t";
for (unsigned i = 0, e = LLIArgs.size() - 1; i != e; ++i) errs()
<< " " << LLIArgs[i];
errs() << "\n";);
return RunProgramWithTimeout(LLIPath, LLIArgs, InputFile, OutputFile,
OutputFile, Timeout, MemoryLimit);
}
void AbstractInterpreter::anchor() {}
ErrorOr<std::string> llvm::FindProgramByName(const std::string &ExeName,
const char *Argv0,
void *MainAddr) {
// Check the directory that the calling program is in. We can do
// this if ProgramPath contains at least one / character, indicating that it
// is a relative path to the executable itself.
std::string Main = sys::fs::getMainExecutable(Argv0, MainAddr);
StringRef Result = sys::path::parent_path(Main);
if (ErrorOr<std::string> Path = sys::findProgramByName(ExeName, Result))
return *Path;
// Check the user PATH.
return sys::findProgramByName(ExeName);
}
// LLI create method - Try to find the LLI executable
AbstractInterpreter *
AbstractInterpreter::createLLI(const char *Argv0, std::string &Message,
const std::vector<std::string> *ToolArgs) {
if (ErrorOr<std::string> LLIPath =
FindProgramByName("lli", Argv0, (void *)(intptr_t)&createLLI)) {
Message = "Found lli: " + *LLIPath + "\n";
return new LLI(*LLIPath, ToolArgs);
} else {
Message = LLIPath.getError().message() + "\n";
return nullptr;
}
}
//===---------------------------------------------------------------------===//
// Custom compiler command implementation of AbstractIntepreter interface
//
// Allows using a custom command for compiling the bitcode, thus allows, for
// example, to compile a bitcode fragment without linking or executing, then
// using a custom wrapper script to check for compiler errors.
namespace {
class CustomCompiler : public AbstractInterpreter {
std::string CompilerCommand;
std::vector<std::string> CompilerArgs;
public:
CustomCompiler(const std::string &CompilerCmd,
std::vector<std::string> CompArgs)
: CompilerCommand(CompilerCmd), CompilerArgs(std::move(CompArgs)) {}
Error compileProgram(const std::string &Bitcode, unsigned Timeout = 0,
unsigned MemoryLimit = 0) override;
Expected<int> ExecuteProgram(
const std::string &Bitcode, const std::vector<std::string> &Args,
const std::string &InputFile, const std::string &OutputFile,
const std::vector<std::string> &CCArgs = std::vector<std::string>(),
const std::vector<std::string> &SharedLibs = std::vector<std::string>(),
unsigned Timeout = 0, unsigned MemoryLimit = 0) override {
return make_error<StringError>(
"Execution not supported with -compile-custom",
inconvertibleErrorCode());
}
};
}
Error CustomCompiler::compileProgram(const std::string &Bitcode,
unsigned Timeout, unsigned MemoryLimit) {
std::vector<StringRef> ProgramArgs;
ProgramArgs.push_back(CompilerCommand);
for (const auto &Arg : CompilerArgs)
ProgramArgs.push_back(Arg);
ProgramArgs.push_back(Bitcode);
// Add optional parameters to the running program from Argv
for (const auto &Arg : CompilerArgs)
ProgramArgs.push_back(Arg);
if (RunProgramWithTimeout(CompilerCommand, ProgramArgs, "", "", "", Timeout,
MemoryLimit))
return ProcessFailure(CompilerCommand, ProgramArgs, Timeout, MemoryLimit);
return Error::success();
}
//===---------------------------------------------------------------------===//
// Custom execution command implementation of AbstractIntepreter interface
//
// Allows using a custom command for executing the bitcode, thus allows,
// for example, to invoke a cross compiler for code generation followed by
// a simulator that executes the generated binary.
namespace {
class CustomExecutor : public AbstractInterpreter {
std::string ExecutionCommand;
std::vector<std::string> ExecutorArgs;
public:
CustomExecutor(const std::string &ExecutionCmd,
std::vector<std::string> ExecArgs)
: ExecutionCommand(ExecutionCmd), ExecutorArgs(std::move(ExecArgs)) {}
Expected<int> ExecuteProgram(
const std::string &Bitcode, const std::vector<std::string> &Args,
const std::string &InputFile, const std::string &OutputFile,
const std::vector<std::string> &CCArgs,
const std::vector<std::string> &SharedLibs = std::vector<std::string>(),
unsigned Timeout = 0, unsigned MemoryLimit = 0) override;
};
}
Expected<int> CustomExecutor::ExecuteProgram(
const std::string &Bitcode, const std::vector<std::string> &Args,
const std::string &InputFile, const std::string &OutputFile,
const std::vector<std::string> &CCArgs,
const std::vector<std::string> &SharedLibs, unsigned Timeout,
unsigned MemoryLimit) {
std::vector<StringRef> ProgramArgs;
ProgramArgs.push_back(ExecutionCommand);
for (std::size_t i = 0; i < ExecutorArgs.size(); ++i)
ProgramArgs.push_back(ExecutorArgs[i]);
ProgramArgs.push_back(Bitcode);
// Add optional parameters to the running program from Argv
for (unsigned i = 0, e = Args.size(); i != e; ++i)
ProgramArgs.push_back(Args[i]);
return RunProgramWithTimeout(ExecutionCommand, ProgramArgs, InputFile,
OutputFile, OutputFile, Timeout, MemoryLimit);
}
// Tokenize the CommandLine to the command and the args to allow
// defining a full command line as the command instead of just the
// executed program. We cannot just pass the whole string after the command
// as a single argument because then the program sees only a single
// command line argument (with spaces in it: "foo bar" instead
// of "foo" and "bar").
//
// Spaces are used as a delimiter; however repeated, leading, and trailing
// whitespace are ignored. Simple escaping is allowed via the '\'
// character, as seen below:
//
// Two consecutive '\' evaluate to a single '\'.
// A space after a '\' evaluates to a space that is not interpreted as a
// delimiter.
// Any other instances of the '\' character are removed.
//
// Example:
// '\\' -> '\'
// '\ ' -> ' '
// 'exa\mple' -> 'example'
//
static void lexCommand(const char *Argv0, std::string &Message,
const std::string &CommandLine, std::string &CmdPath,
std::vector<std::string> &Args) {
std::string Token;
std::string Command;
bool FoundPath = false;
// first argument is the PATH.
// Skip repeated whitespace, leading whitespace and trailing whitespace.
for (std::size_t Pos = 0u; Pos <= CommandLine.size(); ++Pos) {
if ('\\' == CommandLine[Pos]) {
if (Pos + 1 < CommandLine.size())
Token.push_back(CommandLine[++Pos]);
continue;
}
if (' ' == CommandLine[Pos] || CommandLine.size() == Pos) {
if (Token.empty())
continue;
if (!FoundPath) {
Command = Token;
FoundPath = true;
Token.clear();
continue;
}
Args.push_back(Token);
Token.clear();
continue;
}
Token.push_back(CommandLine[Pos]);
}
auto Path = FindProgramByName(Command, Argv0, (void *)(intptr_t)&lexCommand);
if (!Path) {
Message = std::string("Cannot find '") + Command +
"' in PATH: " + Path.getError().message() + "\n";
return;
}
CmdPath = *Path;
Message = "Found command in: " + CmdPath + "\n";
}
// Custom execution environment create method, takes the execution command
// as arguments
AbstractInterpreter *AbstractInterpreter::createCustomCompiler(
const char *Argv0, std::string &Message,
const std::string &CompileCommandLine) {
std::string CmdPath;
std::vector<std::string> Args;
lexCommand(Argv0, Message, CompileCommandLine, CmdPath, Args);
if (CmdPath.empty())
return nullptr;
return new CustomCompiler(CmdPath, Args);
}
// Custom execution environment create method, takes the execution command
// as arguments
AbstractInterpreter *
AbstractInterpreter::createCustomExecutor(const char *Argv0,
std::string &Message,
const std::string &ExecCommandLine) {
std::string CmdPath;
std::vector<std::string> Args;
lexCommand(Argv0, Message, ExecCommandLine, CmdPath, Args);
if (CmdPath.empty())
return nullptr;
return new CustomExecutor(CmdPath, Args);
}
//===----------------------------------------------------------------------===//
// LLC Implementation of AbstractIntepreter interface
//
Expected<CC::FileType> LLC::OutputCode(const std::string &Bitcode,
std::string &OutputAsmFile,
unsigned Timeout, unsigned MemoryLimit) {
const char *Suffix = (UseIntegratedAssembler ? ".llc.o" : ".llc.s");
SmallString<128> UniqueFile;
std::error_code EC =
sys::fs::createUniqueFile(Bitcode + "-%%%%%%%" + Suffix, UniqueFile);
if (EC) {
errs() << "Error making unique filename: " << EC.message() << "\n";
exit(1);
}
OutputAsmFile = std::string(UniqueFile.str());
std::vector<StringRef> LLCArgs;
LLCArgs.push_back(LLCPath);
// Add any extra LLC args.
for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
LLCArgs.push_back(ToolArgs[i]);
LLCArgs.push_back("-o");
LLCArgs.push_back(OutputAsmFile); // Output to the Asm file
LLCArgs.push_back(Bitcode); // This is the input bitcode
if (UseIntegratedAssembler)
LLCArgs.push_back("-filetype=obj");
outs() << (UseIntegratedAssembler ? "<llc-ia>" : "<llc>");
outs().flush();
LLVM_DEBUG(errs() << "\nAbout to run:\t";
for (unsigned i = 0, e = LLCArgs.size() - 1; i != e; ++i) errs()
<< " " << LLCArgs[i];
errs() << "\n";);
if (RunProgramWithTimeout(LLCPath, LLCArgs, "", "", "", Timeout, MemoryLimit))
return ProcessFailure(LLCPath, LLCArgs, Timeout, MemoryLimit);
return UseIntegratedAssembler ? CC::ObjectFile : CC::AsmFile;
}
Error LLC::compileProgram(const std::string &Bitcode, unsigned Timeout,
unsigned MemoryLimit) {
std::string OutputAsmFile;
Expected<CC::FileType> Result =
OutputCode(Bitcode, OutputAsmFile, Timeout, MemoryLimit);
sys::fs::remove(OutputAsmFile);
if (Error E = Result.takeError())
return E;
return Error::success();
}
Expected<int> LLC::ExecuteProgram(const std::string &Bitcode,
const std::vector<std::string> &Args,
const std::string &InputFile,
const std::string &OutputFile,
const std::vector<std::string> &ArgsForCC,
const std::vector<std::string> &SharedLibs,
unsigned Timeout, unsigned MemoryLimit) {
std::string OutputAsmFile;
Expected<CC::FileType> FileKind =
OutputCode(Bitcode, OutputAsmFile, Timeout, MemoryLimit);
FileRemover OutFileRemover(OutputAsmFile, !SaveTemps);
if (Error E = FileKind.takeError())
return std::move(E);
std::vector<std::string> CCArgs(ArgsForCC);
llvm::append_range(CCArgs, SharedLibs);
// Assuming LLC worked, compile the result with CC and run it.
return cc->ExecuteProgram(OutputAsmFile, Args, *FileKind, InputFile,
OutputFile, CCArgs, Timeout, MemoryLimit);
}
/// createLLC - Try to find the LLC executable
///
LLC *AbstractInterpreter::createLLC(const char *Argv0, std::string &Message,
const std::string &CCBinary,
const std::vector<std::string> *Args,
const std::vector<std::string> *CCArgs,
bool UseIntegratedAssembler) {
ErrorOr<std::string> LLCPath =
FindProgramByName("llc", Argv0, (void *)(intptr_t)&createLLC);
if (!LLCPath) {
Message = LLCPath.getError().message() + "\n";
return nullptr;
}
CC *cc = CC::create(Argv0, Message, CCBinary, CCArgs);
if (!cc) {
errs() << Message << "\n";
exit(1);
}
Message = "Found llc: " + *LLCPath + "\n";
return new LLC(*LLCPath, cc, Args, UseIntegratedAssembler);
}
//===---------------------------------------------------------------------===//
// JIT Implementation of AbstractIntepreter interface
//
namespace {
class JIT : public AbstractInterpreter {
std::string LLIPath; // The path to the LLI executable
std::vector<std::string> ToolArgs; // Args to pass to LLI
public:
JIT(const std::string &Path, const std::vector<std::string> *Args)
: LLIPath(Path) {
ToolArgs.clear();
if (Args) {
ToolArgs = *Args;
}
}
Expected<int> ExecuteProgram(
const std::string &Bitcode, const std::vector<std::string> &Args,
const std::string &InputFile, const std::string &OutputFile,
const std::vector<std::string> &CCArgs = std::vector<std::string>(),
const std::vector<std::string> &SharedLibs = std::vector<std::string>(),
unsigned Timeout = 0, unsigned MemoryLimit = 0) override;
};
}
Expected<int> JIT::ExecuteProgram(const std::string &Bitcode,
const std::vector<std::string> &Args,
const std::string &InputFile,
const std::string &OutputFile,
const std::vector<std::string> &CCArgs,
const std::vector<std::string> &SharedLibs,
unsigned Timeout, unsigned MemoryLimit) {
// Construct a vector of parameters, incorporating those from the command-line
std::vector<StringRef> JITArgs;
JITArgs.push_back(LLIPath);
JITArgs.push_back("-force-interpreter=false");
// Add any extra LLI args.
for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
JITArgs.push_back(ToolArgs[i]);
for (unsigned i = 0, e = SharedLibs.size(); i != e; ++i) {
JITArgs.push_back("-load");
JITArgs.push_back(SharedLibs[i]);
}
JITArgs.push_back(Bitcode);
// Add optional parameters to the running program from Argv
for (unsigned i = 0, e = Args.size(); i != e; ++i)
JITArgs.push_back(Args[i]);
outs() << "<jit>";
outs().flush();
LLVM_DEBUG(errs() << "\nAbout to run:\t";
for (unsigned i = 0, e = JITArgs.size() - 1; i != e; ++i) errs()
<< " " << JITArgs[i];
errs() << "\n";);
LLVM_DEBUG(errs() << "\nSending output to " << OutputFile << "\n");
return RunProgramWithTimeout(LLIPath, JITArgs, InputFile, OutputFile,
OutputFile, Timeout, MemoryLimit);
}
/// createJIT - Try to find the LLI executable
///
AbstractInterpreter *
AbstractInterpreter::createJIT(const char *Argv0, std::string &Message,
const std::vector<std::string> *Args) {
if (ErrorOr<std::string> LLIPath =
FindProgramByName("lli", Argv0, (void *)(intptr_t)&createJIT)) {
Message = "Found lli: " + *LLIPath + "\n";
return new JIT(*LLIPath, Args);
} else {
Message = LLIPath.getError().message() + "\n";
return nullptr;
}
}
//===---------------------------------------------------------------------===//
// CC abstraction
//
static bool IsARMArchitecture(std::vector<StringRef> Args) {
for (size_t I = 0; I < Args.size(); ++I) {
if (!Args[I].equals_lower("-arch"))
continue;
++I;
if (I == Args.size())
break;
if (Args[I].startswith_lower("arm"))
return true;
}
return false;
}
Expected<int> CC::ExecuteProgram(const std::string &ProgramFile,
const std::vector<std::string> &Args,
FileType fileType,
const std::string &InputFile,
const std::string &OutputFile,
const std::vector<std::string> &ArgsForCC,
unsigned Timeout, unsigned MemoryLimit) {
std::vector<StringRef> CCArgs;
CCArgs.push_back(CCPath);
if (TargetTriple.getArch() == Triple::x86)
CCArgs.push_back("-m32");
for (std::vector<std::string>::const_iterator I = ccArgs.begin(),
E = ccArgs.end();
I != E; ++I)
CCArgs.push_back(*I);
// Specify -x explicitly in case the extension is wonky
if (fileType != ObjectFile) {
CCArgs.push_back("-x");
if (fileType == CFile) {
CCArgs.push_back("c");
CCArgs.push_back("-fno-strict-aliasing");
} else {
CCArgs.push_back("assembler");
// For ARM architectures we don't want this flag. bugpoint isn't
// explicitly told what architecture it is working on, so we get
// it from cc flags
if (TargetTriple.isOSDarwin() && !IsARMArchitecture(CCArgs))
CCArgs.push_back("-force_cpusubtype_ALL");
}
}
CCArgs.push_back(ProgramFile); // Specify the input filename.
CCArgs.push_back("-x");
CCArgs.push_back("none");
CCArgs.push_back("-o");
SmallString<128> OutputBinary;
std::error_code EC =
sys::fs::createUniqueFile(ProgramFile + "-%%%%%%%.cc.exe", OutputBinary);
if (EC) {
errs() << "Error making unique filename: " << EC.message() << "\n";
exit(1);
}
CCArgs.push_back(OutputBinary); // Output to the right file...
// Add any arguments intended for CC. We locate them here because this is
// most likely -L and -l options that need to come before other libraries but
// after the source. Other options won't be sensitive to placement on the
// command line, so this should be safe.
for (unsigned i = 0, e = ArgsForCC.size(); i != e; ++i)
CCArgs.push_back(ArgsForCC[i]);
CCArgs.push_back("-lm"); // Hard-code the math library...
CCArgs.push_back("-O2"); // Optimize the program a bit...
if (TargetTriple.getArch() == Triple::sparc)
CCArgs.push_back("-mcpu=v9");
outs() << "<CC>";
outs().flush();
LLVM_DEBUG(errs() << "\nAbout to run:\t";
for (unsigned i = 0, e = CCArgs.size() - 1; i != e; ++i) errs()
<< " " << CCArgs[i];
errs() << "\n";);
if (RunProgramWithTimeout(CCPath, CCArgs, "", "", ""))
return ProcessFailure(CCPath, CCArgs);
std::vector<StringRef> ProgramArgs;
// Declared here so that the destructor only runs after
// ProgramArgs is used.
std::string Exec;
if (RemoteClientPath.empty())
ProgramArgs.push_back(OutputBinary);
else {
ProgramArgs.push_back(RemoteClientPath);
ProgramArgs.push_back(RemoteHost);
if (!RemoteUser.empty()) {
ProgramArgs.push_back("-l");
ProgramArgs.push_back(RemoteUser);
}
if (!RemotePort.empty()) {
ProgramArgs.push_back("-p");
ProgramArgs.push_back(RemotePort);
}
if (!RemoteExtra.empty()) {
ProgramArgs.push_back(RemoteExtra);
}
// Full path to the binary. We need to cd to the exec directory because
// there is a dylib there that the exec expects to find in the CWD
char *env_pwd = getenv("PWD");
Exec = "cd ";
Exec += env_pwd;
Exec += "; ./";
Exec += OutputBinary.c_str();
ProgramArgs.push_back(Exec);
}
// Add optional parameters to the running program from Argv
for (unsigned i = 0, e = Args.size(); i != e; ++i)
ProgramArgs.push_back(Args[i]);
// Now that we have a binary, run it!
outs() << "<program>";
outs().flush();
LLVM_DEBUG(
errs() << "\nAbout to run:\t";
for (unsigned i = 0, e = ProgramArgs.size() - 1; i != e; ++i) errs()
<< " " << ProgramArgs[i];
errs() << "\n";);
FileRemover OutputBinaryRemover(OutputBinary.str(), !SaveTemps);
if (RemoteClientPath.empty()) {
LLVM_DEBUG(errs() << "<run locally>");
std::string Error;
int ExitCode = RunProgramWithTimeout(OutputBinary.str(), ProgramArgs,
InputFile, OutputFile, OutputFile,
Timeout, MemoryLimit, &Error);
// Treat a signal (usually SIGSEGV) or timeout as part of the program output
// so that crash-causing miscompilation is handled seamlessly.
if (ExitCode < -1) {
std::ofstream outFile(OutputFile.c_str(), std::ios_base::app);
outFile << Error << '\n';
outFile.close();
}
return ExitCode;
} else {
outs() << "<run remotely>";
outs().flush();
return RunProgramRemotelyWithTimeout(RemoteClientPath, ProgramArgs,
InputFile, OutputFile, OutputFile,
Timeout, MemoryLimit);
}
}
Error CC::MakeSharedObject(const std::string &InputFile, FileType fileType,
std::string &OutputFile,
const std::vector<std::string> &ArgsForCC) {
SmallString<128> UniqueFilename;
std::error_code EC = sys::fs::createUniqueFile(
InputFile + "-%%%%%%%" + LTDL_SHLIB_EXT, UniqueFilename);
if (EC) {
errs() << "Error making unique filename: " << EC.message() << "\n";
exit(1);
}
OutputFile = std::string(UniqueFilename.str());
std::vector<StringRef> CCArgs;
CCArgs.push_back(CCPath);
if (TargetTriple.getArch() == Triple::x86)
CCArgs.push_back("-m32");
for (std::vector<std::string>::const_iterator I = ccArgs.begin(),
E = ccArgs.end();
I != E; ++I)
CCArgs.push_back(*I);
// Compile the C/asm file into a shared object
if (fileType != ObjectFile) {
CCArgs.push_back("-x");
CCArgs.push_back(fileType == AsmFile ? "assembler" : "c");
}
CCArgs.push_back("-fno-strict-aliasing");
CCArgs.push_back(InputFile); // Specify the input filename.
CCArgs.push_back("-x");
CCArgs.push_back("none");
if (TargetTriple.getArch() == Triple::sparc)
CCArgs.push_back("-G"); // Compile a shared library, `-G' for Sparc
else if (TargetTriple.isOSDarwin()) {
// link all source files into a single module in data segment, rather than
// generating blocks. dynamic_lookup requires that you set
// MACOSX_DEPLOYMENT_TARGET=10.3 in your env. FIXME: it would be better for
// bugpoint to just pass that in the environment of CC.
CCArgs.push_back("-single_module");
CCArgs.push_back("-dynamiclib"); // `-dynamiclib' for MacOS X/PowerPC
CCArgs.push_back("-undefined");
CCArgs.push_back("dynamic_lookup");
} else
CCArgs.push_back("-shared"); // `-shared' for Linux/X86, maybe others
if (TargetTriple.getArch() == Triple::x86_64)
CCArgs.push_back("-fPIC"); // Requires shared objs to contain PIC
if (TargetTriple.getArch() == Triple::sparc)
CCArgs.push_back("-mcpu=v9");
CCArgs.push_back("-o");
CCArgs.push_back(OutputFile); // Output to the right filename.
CCArgs.push_back("-O2"); // Optimize the program a bit.
// Add any arguments intended for CC. We locate them here because this is
// most likely -L and -l options that need to come before other libraries but
// after the source. Other options won't be sensitive to placement on the
// command line, so this should be safe.
for (unsigned i = 0, e = ArgsForCC.size(); i != e; ++i)
CCArgs.push_back(ArgsForCC[i]);
outs() << "<CC>";
outs().flush();
LLVM_DEBUG(errs() << "\nAbout to run:\t";
for (unsigned i = 0, e = CCArgs.size() - 1; i != e; ++i) errs()
<< " " << CCArgs[i];
errs() << "\n";);
if (RunProgramWithTimeout(CCPath, CCArgs, "", "", ""))
return ProcessFailure(CCPath, CCArgs);
return Error::success();
}
/// create - Try to find the CC executable
///
CC *CC::create(const char *Argv0, std::string &Message,
const std::string &CCBinary,
const std::vector<std::string> *Args) {
auto CCPath = FindProgramByName(CCBinary, Argv0, (void *)(intptr_t)&create);
if (!CCPath) {
Message = "Cannot find `" + CCBinary + "' in PATH: " +
CCPath.getError().message() + "\n";
return nullptr;
}
std::string RemoteClientPath;
if (!RemoteClient.empty()) {
auto Path = sys::findProgramByName(RemoteClient);
if (!Path) {
Message = "Cannot find `" + RemoteClient + "' in PATH: " +
Path.getError().message() + "\n";
return nullptr;
}
RemoteClientPath = *Path;
}
Message = "Found CC: " + *CCPath + "\n";
return new CC(*CCPath, RemoteClientPath, Args);
}