253 lines
8.9 KiB
LLVM
253 lines
8.9 KiB
LLVM
; RUN: opt < %s -sroa -S | FileCheck %s
|
|
|
|
target datalayout = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"
|
|
|
|
define i8 @test1() {
|
|
; We fully promote these to the i24 load or store size, resulting in just masks
|
|
; and other operations that instcombine will fold, but no alloca. Note this is
|
|
; the same as test12 in basictest.ll, but here we assert big-endian byte
|
|
; ordering.
|
|
;
|
|
; CHECK-LABEL: @test1(
|
|
|
|
entry:
|
|
%a = alloca [3 x i8]
|
|
%b = alloca [3 x i8]
|
|
; CHECK-NOT: alloca
|
|
|
|
%a0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
|
|
store i8 0, i8* %a0ptr
|
|
%a1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
|
|
store i8 0, i8* %a1ptr
|
|
%a2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
|
|
store i8 0, i8* %a2ptr
|
|
%aiptr = bitcast [3 x i8]* %a to i24*
|
|
%ai = load i24, i24* %aiptr
|
|
; CHECK-NOT: store
|
|
; CHECK-NOT: load
|
|
; CHECK: %[[ext2:.*]] = zext i8 0 to i24
|
|
; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, -256
|
|
; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[ext2]]
|
|
; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24
|
|
; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8
|
|
; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281
|
|
; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]]
|
|
; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24
|
|
; CHECK-NEXT: %[[shift0:.*]] = shl i24 %[[ext0]], 16
|
|
; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], 65535
|
|
; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[shift0]]
|
|
|
|
%biptr = bitcast [3 x i8]* %b to i24*
|
|
store i24 %ai, i24* %biptr
|
|
%b0ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 0
|
|
%b0 = load i8, i8* %b0ptr
|
|
%b1ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 1
|
|
%b1 = load i8, i8* %b1ptr
|
|
%b2ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 2
|
|
%b2 = load i8, i8* %b2ptr
|
|
; CHECK-NOT: store
|
|
; CHECK-NOT: load
|
|
; CHECK: %[[shift0:.*]] = lshr i24 %[[insert0]], 16
|
|
; CHECK-NEXT: %[[trunc0:.*]] = trunc i24 %[[shift0]] to i8
|
|
; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8
|
|
; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8
|
|
; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[insert0]] to i8
|
|
|
|
%bsum0 = add i8 %b0, %b1
|
|
%bsum1 = add i8 %bsum0, %b2
|
|
ret i8 %bsum1
|
|
; CHECK: %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]]
|
|
; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]]
|
|
; CHECK-NEXT: ret i8 %[[sum1]]
|
|
}
|
|
|
|
define i64 @test2() {
|
|
; Test for various mixed sizes of integer loads and stores all getting
|
|
; promoted.
|
|
;
|
|
; CHECK-LABEL: @test2(
|
|
|
|
entry:
|
|
%a = alloca [7 x i8]
|
|
; CHECK-NOT: alloca
|
|
|
|
%a0ptr = getelementptr [7 x i8], [7 x i8]* %a, i64 0, i32 0
|
|
%a1ptr = getelementptr [7 x i8], [7 x i8]* %a, i64 0, i32 1
|
|
%a2ptr = getelementptr [7 x i8], [7 x i8]* %a, i64 0, i32 2
|
|
%a3ptr = getelementptr [7 x i8], [7 x i8]* %a, i64 0, i32 3
|
|
|
|
; CHECK-NOT: store
|
|
; CHECK-NOT: load
|
|
|
|
%a0i16ptr = bitcast i8* %a0ptr to i16*
|
|
store i16 1, i16* %a0i16ptr
|
|
|
|
store i8 1, i8* %a2ptr
|
|
|
|
%a3i24ptr = bitcast i8* %a3ptr to i24*
|
|
store i24 1, i24* %a3i24ptr
|
|
|
|
%a2i40ptr = bitcast i8* %a2ptr to i40*
|
|
store i40 1, i40* %a2i40ptr
|
|
|
|
; the alloca is splitted into multiple slices
|
|
; Here, i8 1 is for %a[6]
|
|
; CHECK: %[[ext1:.*]] = zext i8 1 to i40
|
|
; CHECK-NEXT: %[[mask1:.*]] = and i40 undef, -256
|
|
; CHECK-NEXT: %[[insert1:.*]] = or i40 %[[mask1]], %[[ext1]]
|
|
|
|
; Here, i24 0 is for %a[3] to %a[5]
|
|
; CHECK-NEXT: %[[ext2:.*]] = zext i24 0 to i40
|
|
; CHECK-NEXT: %[[shift2:.*]] = shl i40 %[[ext2]], 8
|
|
; CHECK-NEXT: %[[mask2:.*]] = and i40 %[[insert1]], -4294967041
|
|
; CHECK-NEXT: %[[insert2:.*]] = or i40 %[[mask2]], %[[shift2]]
|
|
|
|
; Here, i8 0 is for %a[2]
|
|
; CHECK-NEXT: %[[ext3:.*]] = zext i8 0 to i40
|
|
; CHECK-NEXT: %[[shift3:.*]] = shl i40 %[[ext3]], 32
|
|
; CHECK-NEXT: %[[mask3:.*]] = and i40 %[[insert2]], 4294967295
|
|
; CHECK-NEXT: %[[insert3:.*]] = or i40 %[[mask3]], %[[shift3]]
|
|
|
|
; CHECK-NEXT: %[[ext4:.*]] = zext i40 %[[insert3]] to i56
|
|
; CHECK-NEXT: %[[mask4:.*]] = and i56 undef, -1099511627776
|
|
; CHECK-NEXT: %[[insert4:.*]] = or i56 %[[mask4]], %[[ext4]]
|
|
|
|
; CHECK-NOT: store
|
|
; CHECK-NOT: load
|
|
|
|
%aiptr = bitcast [7 x i8]* %a to i56*
|
|
%ai = load i56, i56* %aiptr
|
|
%ret = zext i56 %ai to i64
|
|
ret i64 %ret
|
|
; Here, i16 1 is for %a[0] to %a[1]
|
|
; CHECK-NEXT: %[[ext5:.*]] = zext i16 1 to i56
|
|
; CHECK-NEXT: %[[shift5:.*]] = shl i56 %[[ext5]], 40
|
|
; CHECK-NEXT: %[[mask5:.*]] = and i56 %[[insert4]], 1099511627775
|
|
; CHECK-NEXT: %[[insert5:.*]] = or i56 %[[mask5]], %[[shift5]]
|
|
; CHECK-NEXT: %[[ret:.*]] = zext i56 %[[insert5]] to i64
|
|
; CHECK-NEXT: ret i64 %[[ret]]
|
|
}
|
|
|
|
define i64 @PR14132(i1 %flag) {
|
|
; CHECK-LABEL: @PR14132(
|
|
; Here we form a PHI-node by promoting the pointer alloca first, and then in
|
|
; order to promote the other two allocas, we speculate the load of the
|
|
; now-phi-node-pointer. In doing so we end up loading a 64-bit value from an i8
|
|
; alloca. While this is a bit dubious, we were asserting on trying to
|
|
; rewrite it. The trick is that the code using the value may carefully take
|
|
; steps to only use the not-undef bits, and so we need to at least loosely
|
|
; support this. This test is particularly interesting because how we handle
|
|
; a load of an i64 from an i8 alloca is dependent on endianness.
|
|
entry:
|
|
%a = alloca i64, align 8
|
|
%b = alloca i8, align 8
|
|
%ptr = alloca i64*, align 8
|
|
; CHECK-NOT: alloca
|
|
|
|
%ptr.cast = bitcast i64** %ptr to i8**
|
|
store i64 0, i64* %a
|
|
store i8 1, i8* %b
|
|
store i64* %a, i64** %ptr
|
|
br i1 %flag, label %if.then, label %if.end
|
|
|
|
if.then:
|
|
store i8* %b, i8** %ptr.cast
|
|
br label %if.end
|
|
; CHECK-NOT: store
|
|
; CHECK: %[[ext:.*]] = zext i8 1 to i64
|
|
; CHECK: %[[shift:.*]] = shl i64 %[[ext]], 56
|
|
|
|
if.end:
|
|
%tmp = load i64*, i64** %ptr
|
|
%result = load i64, i64* %tmp
|
|
; CHECK-NOT: load
|
|
; CHECK: %[[result:.*]] = phi i64 [ %[[shift]], %if.then ], [ 0, %entry ]
|
|
|
|
ret i64 %result
|
|
; CHECK-NEXT: ret i64 %[[result]]
|
|
}
|
|
|
|
declare void @f(i64 %x, i32 %y)
|
|
|
|
define void @test3() {
|
|
; CHECK-LABEL: @test3(
|
|
;
|
|
; This is a test that specifically exercises the big-endian lowering because it
|
|
; ends up splitting a 64-bit integer into two smaller integers and has a number
|
|
; of tricky aspects (the i24 type) that make that hard. Historically, SROA
|
|
; would miscompile this by either dropping a most significant byte or least
|
|
; significant byte due to shrinking the [4,8) slice to an i24, or by failing to
|
|
; move the bytes around correctly.
|
|
;
|
|
; The magical number 34494054408 is used because it has bits set in various
|
|
; bytes so that it is clear if those bytes fail to be propagated.
|
|
;
|
|
; If you're debugging this, rather than using the direct magical numbers, run
|
|
; the IR through '-sroa -instcombine'. With '-instcombine' these will be
|
|
; constant folded, and if the i64 doesn't round-trip correctly, you've found
|
|
; a bug!
|
|
;
|
|
entry:
|
|
%a = alloca { i32, i24 }, align 4
|
|
; CHECK-NOT: alloca
|
|
|
|
%tmp0 = bitcast { i32, i24 }* %a to i64*
|
|
store i64 34494054408, i64* %tmp0
|
|
%tmp1 = load i64, i64* %tmp0, align 4
|
|
%tmp2 = bitcast { i32, i24 }* %a to i32*
|
|
%tmp3 = load i32, i32* %tmp2, align 4
|
|
; CHECK: %[[HI_EXT:.*]] = zext i32 134316040 to i64
|
|
; CHECK: %[[HI_INPUT:.*]] = and i64 undef, -4294967296
|
|
; CHECK: %[[HI_MERGE:.*]] = or i64 %[[HI_INPUT]], %[[HI_EXT]]
|
|
; CHECK: %[[LO_EXT:.*]] = zext i32 8 to i64
|
|
; CHECK: %[[LO_SHL:.*]] = shl i64 %[[LO_EXT]], 32
|
|
; CHECK: %[[LO_INPUT:.*]] = and i64 %[[HI_MERGE]], 4294967295
|
|
; CHECK: %[[LO_MERGE:.*]] = or i64 %[[LO_INPUT]], %[[LO_SHL]]
|
|
|
|
call void @f(i64 %tmp1, i32 %tmp3)
|
|
; CHECK: call void @f(i64 %[[LO_MERGE]], i32 8)
|
|
ret void
|
|
; CHECK: ret void
|
|
}
|
|
|
|
define void @test4() {
|
|
; CHECK-LABEL: @test4
|
|
;
|
|
; Much like @test3, this is specifically testing big-endian management of data.
|
|
; Also similarly, it uses constants with particular bits set to help track
|
|
; whether values are corrupted, and can be easily evaluated by running through
|
|
; -instcombine to see that the i64 round-trips.
|
|
;
|
|
entry:
|
|
%a = alloca { i32, i24 }, align 4
|
|
%a2 = alloca i64, align 4
|
|
; CHECK-NOT: alloca
|
|
|
|
store i64 34494054408, i64* %a2
|
|
%tmp0 = bitcast { i32, i24 }* %a to i8*
|
|
%tmp1 = bitcast i64* %a2 to i8*
|
|
call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %tmp0, i8* align 4 %tmp1, i64 8, i1 false)
|
|
; CHECK: %[[LO_SHR:.*]] = lshr i64 34494054408, 32
|
|
; CHECK: %[[LO_START:.*]] = trunc i64 %[[LO_SHR]] to i32
|
|
; CHECK: %[[HI_START:.*]] = trunc i64 34494054408 to i32
|
|
|
|
%tmp2 = bitcast { i32, i24 }* %a to i64*
|
|
%tmp3 = load i64, i64* %tmp2, align 4
|
|
%tmp4 = bitcast { i32, i24 }* %a to i32*
|
|
%tmp5 = load i32, i32* %tmp4, align 4
|
|
; CHECK: %[[HI_EXT:.*]] = zext i32 %[[HI_START]] to i64
|
|
; CHECK: %[[HI_INPUT:.*]] = and i64 undef, -4294967296
|
|
; CHECK: %[[HI_MERGE:.*]] = or i64 %[[HI_INPUT]], %[[HI_EXT]]
|
|
; CHECK: %[[LO_EXT:.*]] = zext i32 %[[LO_START]] to i64
|
|
; CHECK: %[[LO_SHL:.*]] = shl i64 %[[LO_EXT]], 32
|
|
; CHECK: %[[LO_INPUT:.*]] = and i64 %[[HI_MERGE]], 4294967295
|
|
; CHECK: %[[LO_MERGE:.*]] = or i64 %[[LO_INPUT]], %[[LO_SHL]]
|
|
|
|
call void @f(i64 %tmp3, i32 %tmp5)
|
|
; CHECK: call void @f(i64 %[[LO_MERGE]], i32 %[[LO_START]])
|
|
ret void
|
|
; CHECK: ret void
|
|
}
|
|
|
|
declare void @llvm.memcpy.p0i8.p0i8.i64(i8*, i8*, i64, i1)
|