llvm-for-llvmta/test/CodeGen/NVPTX/intrinsics.ll

147 lines
3.9 KiB
LLVM

; RUN: llc < %s -march=nvptx -mcpu=sm_20 | FileCheck %s
; RUN: llc < %s -march=nvptx64 -mcpu=sm_20 | FileCheck %s
; CHECK-LABEL: test_fabsf(
define float @test_fabsf(float %f) {
; CHECK: abs.f32
%x = call float @llvm.fabs.f32(float %f)
ret float %x
}
; CHECK-LABEL: test_fabs(
define double @test_fabs(double %d) {
; CHECK: abs.f64
%x = call double @llvm.fabs.f64(double %d)
ret double %x
}
; CHECK-LABEL: test_nvvm_sqrt(
define float @test_nvvm_sqrt(float %a) {
; CHECK: sqrt.rn.f32
%val = call float @llvm.nvvm.sqrt.f(float %a)
ret float %val
}
; CHECK-LABEL: test_llvm_sqrt(
define float @test_llvm_sqrt(float %a) {
; CHECK: sqrt.rn.f32
%val = call float @llvm.sqrt.f32(float %a)
ret float %val
}
; CHECK-LABEL: test_bitreverse32(
define i32 @test_bitreverse32(i32 %a) {
; CHECK: brev.b32
%val = call i32 @llvm.bitreverse.i32(i32 %a)
ret i32 %val
}
; CHECK-LABEL: test_bitreverse64(
define i64 @test_bitreverse64(i64 %a) {
; CHECK: brev.b64
%val = call i64 @llvm.bitreverse.i64(i64 %a)
ret i64 %val
}
; CHECK-LABEL: test_popc32(
define i32 @test_popc32(i32 %a) {
; CHECK: popc.b32
%val = call i32 @llvm.ctpop.i32(i32 %a)
ret i32 %val
}
; CHECK-LABEL: test_popc64
define i64 @test_popc64(i64 %a) {
; CHECK: popc.b64
; CHECK: cvt.u64.u32
%val = call i64 @llvm.ctpop.i64(i64 %a)
ret i64 %val
}
; NVPTX popc.b64 returns an i32 even though @llvm.ctpop.i64 returns an i64, so
; if this function returns an i32, there's no need to do any type conversions
; in the ptx.
; CHECK-LABEL: test_popc64_trunc
define i32 @test_popc64_trunc(i64 %a) {
; CHECK: popc.b64
; CHECK-NOT: cvt.
%val = call i64 @llvm.ctpop.i64(i64 %a)
%trunc = trunc i64 %val to i32
ret i32 %trunc
}
; llvm.ctpop.i16 is implemenented by converting to i32, running popc.b32, and
; then converting back to i16.
; CHECK-LABEL: test_popc16
define void @test_popc16(i16 %a, i16* %b) {
; CHECK: cvt.u32.u16
; CHECK: popc.b32
; CHECK: cvt.u16.u32
%val = call i16 @llvm.ctpop.i16(i16 %a)
store i16 %val, i16* %b
ret void
}
; If we call llvm.ctpop.i16 and then zext the result to i32, we shouldn't need
; to do any conversions after calling popc.b32, because that returns an i32.
; CHECK-LABEL: test_popc16_to_32
define i32 @test_popc16_to_32(i16 %a) {
; CHECK: cvt.u32.u16
; CHECK: popc.b32
; CHECK-NOT: cvt.
%val = call i16 @llvm.ctpop.i16(i16 %a)
%zext = zext i16 %val to i32
ret i32 %zext
}
; Most of nvvm.read.ptx.sreg.* intrinsics always return the same value and may
; be CSE'd.
; CHECK-LABEL: test_tid
define i32 @test_tid() {
; CHECK: mov.u32 %r{{.*}}, %tid.x;
%a = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
; CHECK-NOT: mov.u32 %r{{.*}}, %tid.x;
%b = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
%ret = add i32 %a, %b
; CHECK: ret
ret i32 %ret
}
; reading clock() or clock64() should not be CSE'd as each read may return
; different value.
; CHECK-LABEL: test_clock
define i32 @test_clock() {
; CHECK: mov.u32 %r{{.*}}, %clock;
%a = tail call i32 @llvm.nvvm.read.ptx.sreg.clock()
; CHECK: mov.u32 %r{{.*}}, %clock;
%b = tail call i32 @llvm.nvvm.read.ptx.sreg.clock()
%ret = add i32 %a, %b
; CHECK: ret
ret i32 %ret
}
; CHECK-LABEL: test_clock64
define i64 @test_clock64() {
; CHECK: mov.u64 %r{{.*}}, %clock64;
%a = tail call i64 @llvm.nvvm.read.ptx.sreg.clock64()
; CHECK: mov.u64 %r{{.*}}, %clock64;
%b = tail call i64 @llvm.nvvm.read.ptx.sreg.clock64()
%ret = add i64 %a, %b
; CHECK: ret
ret i64 %ret
}
declare float @llvm.fabs.f32(float)
declare double @llvm.fabs.f64(double)
declare float @llvm.nvvm.sqrt.f(float)
declare float @llvm.sqrt.f32(float)
declare i32 @llvm.bitreverse.i32(i32)
declare i64 @llvm.bitreverse.i64(i64)
declare i16 @llvm.ctpop.i16(i16)
declare i32 @llvm.ctpop.i32(i32)
declare i64 @llvm.ctpop.i64(i64)
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.clock()
declare i64 @llvm.nvvm.read.ptx.sreg.clock64()