173 lines
8.0 KiB
LLVM
173 lines
8.0 KiB
LLVM
; RUN: llc -march=mips -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
|
|
; RUN: llc -march=mipsel -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
|
|
|
|
; RUN-TODO: llc -march=mips64 -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
|
|
; RUN-TODO: llc -march=mips64el -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
|
|
|
|
; RUN: llc -march=mips64 -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s
|
|
; RUN: llc -march=mips64el -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s
|
|
|
|
; RUN: llc -march=mips64 -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s
|
|
; RUN: llc -march=mips64el -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s
|
|
|
|
; Test the integer arguments for all ABI's and byte orders as specified by
|
|
; section 5 of MD00305 (MIPS ABIs Described).
|
|
;
|
|
; N32/N64 are identical in this area so their checks have been combined into
|
|
; the 'NEW' prefix (the N stands for New).
|
|
;
|
|
; Varargs are covered in arguments-hard-float-varargs.ll.
|
|
|
|
@bytes = global [11 x i8] zeroinitializer
|
|
@dwords = global [11 x i64] zeroinitializer
|
|
@floats = global [11 x float] zeroinitializer
|
|
@doubles = global [11 x double] zeroinitializer
|
|
|
|
define void @align_to_arg_slots(i8 signext %a, i8 signext %b, i8 signext %c,
|
|
i8 signext %d, i8 signext %e, i8 signext %f,
|
|
i8 signext %g, i8 signext %h, i8 signext %i,
|
|
i8 signext %j) nounwind {
|
|
entry:
|
|
%0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
|
|
store volatile i8 %a, i8* %0
|
|
%1 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 2
|
|
store volatile i8 %b, i8* %1
|
|
%2 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 3
|
|
store volatile i8 %c, i8* %2
|
|
%3 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 4
|
|
store volatile i8 %d, i8* %3
|
|
%4 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 5
|
|
store volatile i8 %e, i8* %4
|
|
%5 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 6
|
|
store volatile i8 %f, i8* %5
|
|
%6 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 7
|
|
store volatile i8 %g, i8* %6
|
|
%7 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 8
|
|
store volatile i8 %h, i8* %7
|
|
%8 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 9
|
|
store volatile i8 %i, i8* %8
|
|
%9 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 10
|
|
store volatile i8 %j, i8* %9
|
|
ret void
|
|
}
|
|
|
|
; ALL-LABEL: align_to_arg_slots:
|
|
; We won't test the way the global address is calculated in this test. This is
|
|
; just to get the register number for the other checks.
|
|
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
|
|
; SYM64-DAG: daddiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
|
|
|
|
; The first four arguments are the same in O32/N32/N64
|
|
; ALL-DAG: sb $4, 1([[R1]])
|
|
; ALL-DAG: sb $5, 2([[R1]])
|
|
; ALL-DAG: sb $6, 3([[R1]])
|
|
; ALL-DAG: sb $7, 4([[R1]])
|
|
|
|
; N32/N64 get an extra four arguments in registers
|
|
; O32 starts loading from the stack. The addresses start at 16 because space is
|
|
; always reserved for the first four arguments.
|
|
; O32-DAG: lw [[R3:\$[0-9]+]], 16($sp)
|
|
; O32-DAG: sb [[R3]], 5([[R1]])
|
|
; NEW-DAG: sb $8, 5([[R1]])
|
|
; O32-DAG: lw [[R3:\$[0-9]+]], 20($sp)
|
|
; O32-DAG: sb [[R3]], 6([[R1]])
|
|
; NEW-DAG: sb $9, 6([[R1]])
|
|
; O32-DAG: lw [[R3:\$[0-9]+]], 24($sp)
|
|
; O32-DAG: sb [[R3]], 7([[R1]])
|
|
; NEW-DAG: sb $10, 7([[R1]])
|
|
; O32-DAG: lw [[R3:\$[0-9]+]], 28($sp)
|
|
; O32-DAG: sb [[R3]], 8([[R1]])
|
|
; NEW-DAG: sb $11, 8([[R1]])
|
|
|
|
; O32/N32/N64 are accessing the stack at this point.
|
|
; Unlike O32, N32/N64 do not reserve space for the arguments.
|
|
; increase by 4 for O32 and 8 for N32/N64.
|
|
; O32-DAG: lw [[R3:\$[0-9]+]], 32($sp)
|
|
; O32-DAG: sb [[R3]], 9([[R1]])
|
|
; NEW-DAG: ld [[R3:\$[0-9]+]], 0($sp)
|
|
; NEW-DAG: sb [[R3]], 9([[R1]])
|
|
; O32-DAG: lw [[R3:\$[0-9]+]], 36($sp)
|
|
; O32-DAG: sb [[R3]], 10([[R1]])
|
|
; NEW-DAG: ld [[R3:\$[0-9]+]], 8($sp)
|
|
; NEW-DAG: sb [[R3]], 10([[R1]])
|
|
|
|
define void @slot_skipping(i8 signext %a, i64 signext %b, i8 signext %c,
|
|
i8 signext %d, i8 signext %e, i8 signext %f,
|
|
i8 signext %g, i64 signext %i, i8 signext %j) nounwind {
|
|
entry:
|
|
%0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
|
|
store volatile i8 %a, i8* %0
|
|
%1 = getelementptr [11 x i64], [11 x i64]* @dwords, i32 0, i32 1
|
|
store volatile i64 %b, i64* %1
|
|
%2 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 2
|
|
store volatile i8 %c, i8* %2
|
|
%3 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 3
|
|
store volatile i8 %d, i8* %3
|
|
%4 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 4
|
|
store volatile i8 %e, i8* %4
|
|
%5 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 5
|
|
store volatile i8 %f, i8* %5
|
|
%6 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 6
|
|
store volatile i8 %g, i8* %6
|
|
%7 = getelementptr [11 x i64], [11 x i64]* @dwords, i32 0, i32 2
|
|
store volatile i64 %i, i64* %7
|
|
%8 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 7
|
|
store volatile i8 %j, i8* %8
|
|
ret void
|
|
}
|
|
|
|
; ALL-LABEL: slot_skipping:
|
|
; We won't test the way the global address is calculated in this test. This is
|
|
; just to get the register number for the other checks.
|
|
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
|
|
; SYM64-DAG: daddiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
|
|
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(dwords)
|
|
; SYM64-DAG: daddiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(dwords)
|
|
|
|
; The first argument is the same in O32/N32/N64.
|
|
; ALL-DAG: sb $4, 1([[R1]])
|
|
|
|
; The second slot is insufficiently aligned for i64 on O32 so it is skipped.
|
|
; Also, i64 occupies two slots on O32 and only one for N32/N64.
|
|
; O32-DAG: sw $6, 8([[R2]])
|
|
; O32-DAG: sw $7, 12([[R2]])
|
|
; NEW-DAG: sd $5, 8([[R2]])
|
|
|
|
; N32/N64 get an extra four arguments in registers and still have two left from
|
|
; the first four.
|
|
; O32 starts loading from the stack. The addresses start at 16 because space is
|
|
; always reserved for the first four arguments.
|
|
; It's not clear why O32 uses lbu for this argument, but it's not wrong so we'll
|
|
; accept it for now. The only IR difference is that this argument has
|
|
; anyext from i8 and align 8 on it.
|
|
; O32-DAG: lw [[R3:\$[0-9]+]], 16($sp)
|
|
; O32-DAG: sb [[R3]], 2([[R1]])
|
|
; NEW-DAG: sb $6, 2([[R1]])
|
|
; O32-DAG: lw [[R3:\$[0-9]+]], 20($sp)
|
|
; O32-DAG: sb [[R3]], 3([[R1]])
|
|
; NEW-DAG: sb $7, 3([[R1]])
|
|
; O32-DAG: lw [[R3:\$[0-9]+]], 24($sp)
|
|
; O32-DAG: sb [[R3]], 4([[R1]])
|
|
; NEW-DAG: sb $8, 4([[R1]])
|
|
; O32-DAG: lw [[R3:\$[0-9]+]], 28($sp)
|
|
; O32-DAG: sb [[R3]], 5([[R1]])
|
|
; NEW-DAG: sb $9, 5([[R1]])
|
|
|
|
; O32-DAG: lw [[R3:\$[0-9]+]], 32($sp)
|
|
; O32-DAG: sb [[R3]], 6([[R1]])
|
|
; NEW-DAG: sb $10, 6([[R1]])
|
|
|
|
; O32-DAG: lw [[R3:\$[0-9]+]], 40($sp)
|
|
; O32-DAG: sw [[R3]], 16([[R2]])
|
|
; O32-DAG: lw [[R3:\$[0-9]+]], 44($sp)
|
|
; O32-DAG: sw [[R3]], 20([[R2]])
|
|
; NEW-DAG: sd $11, 16([[R2]])
|
|
|
|
; O32/N32/N64 are accessing the stack at this point.
|
|
; Unlike O32, N32/N64 do not reserve space for the arguments.
|
|
; increase by 4 for O32 and 8 for N32/N64.
|
|
; O32-DAG: lw [[R3:\$[0-9]+]], 48($sp)
|
|
; O32-DAG: sb [[R3]], 7([[R1]])
|
|
; NEW-DAG: ld [[R3:\$[0-9]+]], 0($sp)
|
|
; NEW-DAG: sb [[R3]], 7([[R1]])
|