llvm-for-llvmta/lib/Transforms/Scalar/DivRemPairs.cpp

400 lines
15 KiB
C++

//===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass hoists and/or decomposes/recomposes integer division and remainder
// instructions to enable CFG improvements and better codegen.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/DivRemPairs.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "div-rem-pairs"
STATISTIC(NumPairs, "Number of div/rem pairs");
STATISTIC(NumRecomposed, "Number of instructions recomposed");
STATISTIC(NumHoisted, "Number of instructions hoisted");
STATISTIC(NumDecomposed, "Number of instructions decomposed");
DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform",
"Controls transformations in div-rem-pairs pass");
namespace {
struct ExpandedMatch {
DivRemMapKey Key;
Instruction *Value;
};
} // namespace
/// See if we can match: (which is the form we expand into)
/// X - ((X ?/ Y) * Y)
/// which is equivalent to:
/// X ?% Y
static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) {
Value *Dividend, *XroundedDownToMultipleOfY;
if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY))))
return llvm::None;
Value *Divisor;
Instruction *Div;
// Look for ((X / Y) * Y)
if (!match(
XroundedDownToMultipleOfY,
m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)),
m_Instruction(Div)),
m_Deferred(Divisor))))
return llvm::None;
ExpandedMatch M;
M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv;
M.Key.Dividend = Dividend;
M.Key.Divisor = Divisor;
M.Value = &I;
return M;
}
namespace {
/// A thin wrapper to store two values that we matched as div-rem pair.
/// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
struct DivRemPairWorklistEntry {
/// The actual udiv/sdiv instruction. Source of truth.
AssertingVH<Instruction> DivInst;
/// The instruction that we have matched as a remainder instruction.
/// Should only be used as Value, don't introspect it.
AssertingVH<Instruction> RemInst;
DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_)
: DivInst(DivInst_), RemInst(RemInst_) {
assert((DivInst->getOpcode() == Instruction::UDiv ||
DivInst->getOpcode() == Instruction::SDiv) &&
"Not a division.");
assert(DivInst->getType() == RemInst->getType() && "Types should match.");
// We can't check anything else about remainder instruction,
// it's not strictly required to be a urem/srem.
}
/// The type for this pair, identical for both the div and rem.
Type *getType() const { return DivInst->getType(); }
/// Is this pair signed or unsigned?
bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; }
/// In this pair, what are the divident and divisor?
Value *getDividend() const { return DivInst->getOperand(0); }
Value *getDivisor() const { return DivInst->getOperand(1); }
bool isRemExpanded() const {
switch (RemInst->getOpcode()) {
case Instruction::SRem:
case Instruction::URem:
return false; // single 'rem' instruction - unexpanded form.
default:
return true; // anything else means we have remainder in expanded form.
}
}
};
} // namespace
using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>;
/// Find matching pairs of integer div/rem ops (they have the same numerator,
/// denominator, and signedness). Place those pairs into a worklist for further
/// processing. This indirection is needed because we have to use TrackingVH<>
/// because we will be doing RAUW, and if one of the rem instructions we change
/// happens to be an input to another div/rem in the maps, we'd have problems.
static DivRemWorklistTy getWorklist(Function &F) {
// Insert all divide and remainder instructions into maps keyed by their
// operands and opcode (signed or unsigned).
DenseMap<DivRemMapKey, Instruction *> DivMap;
// Use a MapVector for RemMap so that instructions are moved/inserted in a
// deterministic order.
MapVector<DivRemMapKey, Instruction *> RemMap;
for (auto &BB : F) {
for (auto &I : BB) {
if (I.getOpcode() == Instruction::SDiv)
DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
else if (I.getOpcode() == Instruction::UDiv)
DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
else if (I.getOpcode() == Instruction::SRem)
RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
else if (I.getOpcode() == Instruction::URem)
RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
else if (auto Match = matchExpandedRem(I))
RemMap[Match->Key] = Match->Value;
}
}
// We'll accumulate the matching pairs of div-rem instructions here.
DivRemWorklistTy Worklist;
// We can iterate over either map because we are only looking for matched
// pairs. Choose remainders for efficiency because they are usually even more
// rare than division.
for (auto &RemPair : RemMap) {
// Find the matching division instruction from the division map.
auto It = DivMap.find(RemPair.first);
if (It == DivMap.end())
continue;
// We have a matching pair of div/rem instructions.
NumPairs++;
Instruction *RemInst = RemPair.second;
// Place it in the worklist.
Worklist.emplace_back(It->second, RemInst);
}
return Worklist;
}
/// Find matching pairs of integer div/rem ops (they have the same numerator,
/// denominator, and signedness). If they exist in different basic blocks, bring
/// them together by hoisting or replace the common division operation that is
/// implicit in the remainder:
/// X % Y <--> X - ((X / Y) * Y).
///
/// We can largely ignore the normal safety and cost constraints on speculation
/// of these ops when we find a matching pair. This is because we are already
/// guaranteed that any exceptions and most cost are already incurred by the
/// first member of the pair.
///
/// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
/// SimplifyCFG, but it's split off on its own because it's different enough
/// that it doesn't quite match the stated objectives of those passes.
static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI,
const DominatorTree &DT) {
bool Changed = false;
// Get the matching pairs of div-rem instructions. We want this extra
// indirection to avoid dealing with having to RAUW the keys of the maps.
DivRemWorklistTy Worklist = getWorklist(F);
// Process each entry in the worklist.
for (DivRemPairWorklistEntry &E : Worklist) {
if (!DebugCounter::shouldExecute(DRPCounter))
continue;
bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned());
auto &DivInst = E.DivInst;
auto &RemInst = E.RemInst;
const bool RemOriginallyWasInExpandedForm = E.isRemExpanded();
(void)RemOriginallyWasInExpandedForm; // suppress unused variable warning
if (HasDivRemOp && E.isRemExpanded()) {
// The target supports div+rem but the rem is expanded.
// We should recompose it first.
Value *X = E.getDividend();
Value *Y = E.getDivisor();
Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y)
: BinaryOperator::CreateURem(X, Y);
// Note that we place it right next to the original expanded instruction,
// and letting further handling to move it if needed.
RealRem->setName(RemInst->getName() + ".recomposed");
RealRem->insertAfter(RemInst);
Instruction *OrigRemInst = RemInst;
// Update AssertingVH<> with new instruction so it doesn't assert.
RemInst = RealRem;
// And replace the original instruction with the new one.
OrigRemInst->replaceAllUsesWith(RealRem);
OrigRemInst->eraseFromParent();
NumRecomposed++;
// Note that we have left ((X / Y) * Y) around.
// If it had other uses we could rewrite it as X - X % Y
Changed = true;
}
assert((!E.isRemExpanded() || !HasDivRemOp) &&
"*If* the target supports div-rem, then by now the RemInst *is* "
"Instruction::[US]Rem.");
// If the target supports div+rem and the instructions are in the same block
// already, there's nothing to do. The backend should handle this. If the
// target does not support div+rem, then we will decompose the rem.
if (HasDivRemOp && RemInst->getParent() == DivInst->getParent())
continue;
bool DivDominates = DT.dominates(DivInst, RemInst);
if (!DivDominates && !DT.dominates(RemInst, DivInst)) {
// We have matching div-rem pair, but they are in two different blocks,
// neither of which dominates one another.
// FIXME: We could hoist both ops to the common predecessor block?
continue;
}
// The target does not have a single div/rem operation,
// and the rem is already in expanded form. Nothing to do.
if (!HasDivRemOp && E.isRemExpanded())
continue;
if (HasDivRemOp) {
// The target has a single div/rem operation. Hoist the lower instruction
// to make the matched pair visible to the backend.
if (DivDominates)
RemInst->moveAfter(DivInst);
else
DivInst->moveAfter(RemInst);
NumHoisted++;
} else {
// The target does not have a single div/rem operation,
// and the rem is *not* in a already-expanded form.
// Decompose the remainder calculation as:
// X % Y --> X - ((X / Y) * Y).
assert(!RemOriginallyWasInExpandedForm &&
"We should not be expanding if the rem was in expanded form to "
"begin with.");
Value *X = E.getDividend();
Value *Y = E.getDivisor();
Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y);
Instruction *Sub = BinaryOperator::CreateSub(X, Mul);
// If the remainder dominates, then hoist the division up to that block:
//
// bb1:
// %rem = srem %x, %y
// bb2:
// %div = sdiv %x, %y
// -->
// bb1:
// %div = sdiv %x, %y
// %mul = mul %div, %y
// %rem = sub %x, %mul
//
// If the division dominates, it's already in the right place. The mul+sub
// will be in a different block because we don't assume that they are
// cheap to speculatively execute:
//
// bb1:
// %div = sdiv %x, %y
// bb2:
// %rem = srem %x, %y
// -->
// bb1:
// %div = sdiv %x, %y
// bb2:
// %mul = mul %div, %y
// %rem = sub %x, %mul
//
// If the div and rem are in the same block, we do the same transform,
// but any code movement would be within the same block.
if (!DivDominates)
DivInst->moveBefore(RemInst);
Mul->insertAfter(RemInst);
Sub->insertAfter(Mul);
// If X can be undef, X should be frozen first.
// For example, let's assume that Y = 1 & X = undef:
// %div = sdiv undef, 1 // %div = undef
// %rem = srem undef, 1 // %rem = 0
// =>
// %div = sdiv undef, 1 // %div = undef
// %mul = mul %div, 1 // %mul = undef
// %rem = sub %x, %mul // %rem = undef - undef = undef
// If X is not frozen, %rem becomes undef after transformation.
// TODO: We need a undef-specific checking function in ValueTracking
if (!isGuaranteedNotToBeUndefOrPoison(X, nullptr, DivInst, &DT)) {
auto *FrX = new FreezeInst(X, X->getName() + ".frozen", DivInst);
DivInst->setOperand(0, FrX);
Sub->setOperand(0, FrX);
}
// Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0,
// but %rem in tgt can be one of many integer values.
if (!isGuaranteedNotToBeUndefOrPoison(Y, nullptr, DivInst, &DT)) {
auto *FrY = new FreezeInst(Y, Y->getName() + ".frozen", DivInst);
DivInst->setOperand(1, FrY);
Mul->setOperand(1, FrY);
}
// Now kill the explicit remainder. We have replaced it with:
// (sub X, (mul (div X, Y), Y)
Sub->setName(RemInst->getName() + ".decomposed");
Instruction *OrigRemInst = RemInst;
// Update AssertingVH<> with new instruction so it doesn't assert.
RemInst = Sub;
// And replace the original instruction with the new one.
OrigRemInst->replaceAllUsesWith(Sub);
OrigRemInst->eraseFromParent();
NumDecomposed++;
}
Changed = true;
}
return Changed;
}
// Pass manager boilerplate below here.
namespace {
struct DivRemPairsLegacyPass : public FunctionPass {
static char ID;
DivRemPairsLegacyPass() : FunctionPass(ID) {
initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.setPreservesCFG();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return optimizeDivRem(F, TTI, DT);
}
};
} // namespace
char DivRemPairsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs",
"Hoist/decompose integer division and remainder", false,
false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs",
"Hoist/decompose integer division and remainder", false,
false)
FunctionPass *llvm::createDivRemPairsPass() {
return new DivRemPairsLegacyPass();
}
PreservedAnalyses DivRemPairsPass::run(Function &F,
FunctionAnalysisManager &FAM) {
TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
if (!optimizeDivRem(F, TTI, DT))
return PreservedAnalyses::all();
// TODO: This pass just hoists/replaces math ops - all analyses are preserved?
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<GlobalsAA>();
return PA;
}