1049 lines
35 KiB
C++
1049 lines
35 KiB
C++
//===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Correlated Value Propagation pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LazyValueInfo.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <cassert>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "correlated-value-propagation"
|
|
|
|
STATISTIC(NumPhis, "Number of phis propagated");
|
|
STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value");
|
|
STATISTIC(NumSelects, "Number of selects propagated");
|
|
STATISTIC(NumMemAccess, "Number of memory access targets propagated");
|
|
STATISTIC(NumCmps, "Number of comparisons propagated");
|
|
STATISTIC(NumReturns, "Number of return values propagated");
|
|
STATISTIC(NumDeadCases, "Number of switch cases removed");
|
|
STATISTIC(NumSDivSRemsNarrowed,
|
|
"Number of sdivs/srems whose width was decreased");
|
|
STATISTIC(NumSDivs, "Number of sdiv converted to udiv");
|
|
STATISTIC(NumUDivURemsNarrowed,
|
|
"Number of udivs/urems whose width was decreased");
|
|
STATISTIC(NumAShrs, "Number of ashr converted to lshr");
|
|
STATISTIC(NumSRems, "Number of srem converted to urem");
|
|
STATISTIC(NumSExt, "Number of sext converted to zext");
|
|
STATISTIC(NumAnd, "Number of ands removed");
|
|
STATISTIC(NumNW, "Number of no-wrap deductions");
|
|
STATISTIC(NumNSW, "Number of no-signed-wrap deductions");
|
|
STATISTIC(NumNUW, "Number of no-unsigned-wrap deductions");
|
|
STATISTIC(NumAddNW, "Number of no-wrap deductions for add");
|
|
STATISTIC(NumAddNSW, "Number of no-signed-wrap deductions for add");
|
|
STATISTIC(NumAddNUW, "Number of no-unsigned-wrap deductions for add");
|
|
STATISTIC(NumSubNW, "Number of no-wrap deductions for sub");
|
|
STATISTIC(NumSubNSW, "Number of no-signed-wrap deductions for sub");
|
|
STATISTIC(NumSubNUW, "Number of no-unsigned-wrap deductions for sub");
|
|
STATISTIC(NumMulNW, "Number of no-wrap deductions for mul");
|
|
STATISTIC(NumMulNSW, "Number of no-signed-wrap deductions for mul");
|
|
STATISTIC(NumMulNUW, "Number of no-unsigned-wrap deductions for mul");
|
|
STATISTIC(NumShlNW, "Number of no-wrap deductions for shl");
|
|
STATISTIC(NumShlNSW, "Number of no-signed-wrap deductions for shl");
|
|
STATISTIC(NumShlNUW, "Number of no-unsigned-wrap deductions for shl");
|
|
STATISTIC(NumOverflows, "Number of overflow checks removed");
|
|
STATISTIC(NumSaturating,
|
|
"Number of saturating arithmetics converted to normal arithmetics");
|
|
|
|
static cl::opt<bool> DontAddNoWrapFlags("cvp-dont-add-nowrap-flags", cl::init(false));
|
|
|
|
namespace {
|
|
|
|
class CorrelatedValuePropagation : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
CorrelatedValuePropagation(): FunctionPass(ID) {
|
|
initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LazyValueInfoWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<LazyValueInfoWrapperPass>();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char CorrelatedValuePropagation::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation",
|
|
"Value Propagation", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
|
|
INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation",
|
|
"Value Propagation", false, false)
|
|
|
|
// Public interface to the Value Propagation pass
|
|
Pass *llvm::createCorrelatedValuePropagationPass() {
|
|
return new CorrelatedValuePropagation();
|
|
}
|
|
|
|
static bool processSelect(SelectInst *S, LazyValueInfo *LVI) {
|
|
if (S->getType()->isVectorTy()) return false;
|
|
if (isa<Constant>(S->getCondition())) return false;
|
|
|
|
Constant *C = LVI->getConstant(S->getCondition(), S);
|
|
if (!C) return false;
|
|
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(C);
|
|
if (!CI) return false;
|
|
|
|
Value *ReplaceWith = CI->isOne() ? S->getTrueValue() : S->getFalseValue();
|
|
S->replaceAllUsesWith(ReplaceWith);
|
|
S->eraseFromParent();
|
|
|
|
++NumSelects;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Try to simplify a phi with constant incoming values that match the edge
|
|
/// values of a non-constant value on all other edges:
|
|
/// bb0:
|
|
/// %isnull = icmp eq i8* %x, null
|
|
/// br i1 %isnull, label %bb2, label %bb1
|
|
/// bb1:
|
|
/// br label %bb2
|
|
/// bb2:
|
|
/// %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ]
|
|
/// -->
|
|
/// %r = %x
|
|
static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI,
|
|
DominatorTree *DT) {
|
|
// Collect incoming constants and initialize possible common value.
|
|
SmallVector<std::pair<Constant *, unsigned>, 4> IncomingConstants;
|
|
Value *CommonValue = nullptr;
|
|
for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
|
|
Value *Incoming = P->getIncomingValue(i);
|
|
if (auto *IncomingConstant = dyn_cast<Constant>(Incoming)) {
|
|
IncomingConstants.push_back(std::make_pair(IncomingConstant, i));
|
|
} else if (!CommonValue) {
|
|
// The potential common value is initialized to the first non-constant.
|
|
CommonValue = Incoming;
|
|
} else if (Incoming != CommonValue) {
|
|
// There can be only one non-constant common value.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!CommonValue || IncomingConstants.empty())
|
|
return false;
|
|
|
|
// The common value must be valid in all incoming blocks.
|
|
BasicBlock *ToBB = P->getParent();
|
|
if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
|
|
if (!DT->dominates(CommonInst, ToBB))
|
|
return false;
|
|
|
|
// We have a phi with exactly 1 variable incoming value and 1 or more constant
|
|
// incoming values. See if all constant incoming values can be mapped back to
|
|
// the same incoming variable value.
|
|
for (auto &IncomingConstant : IncomingConstants) {
|
|
Constant *C = IncomingConstant.first;
|
|
BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second);
|
|
if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P))
|
|
return false;
|
|
}
|
|
|
|
// All constant incoming values map to the same variable along the incoming
|
|
// edges of the phi. The phi is unnecessary. However, we must drop all
|
|
// poison-generating flags to ensure that no poison is propagated to the phi
|
|
// location by performing this substitution.
|
|
// Warning: If the underlying analysis changes, this may not be enough to
|
|
// guarantee that poison is not propagated.
|
|
// TODO: We may be able to re-infer flags by re-analyzing the instruction.
|
|
if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
|
|
CommonInst->dropPoisonGeneratingFlags();
|
|
P->replaceAllUsesWith(CommonValue);
|
|
P->eraseFromParent();
|
|
++NumPhiCommon;
|
|
return true;
|
|
}
|
|
|
|
static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT,
|
|
const SimplifyQuery &SQ) {
|
|
bool Changed = false;
|
|
|
|
BasicBlock *BB = P->getParent();
|
|
for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
|
|
Value *Incoming = P->getIncomingValue(i);
|
|
if (isa<Constant>(Incoming)) continue;
|
|
|
|
Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P);
|
|
|
|
// Look if the incoming value is a select with a scalar condition for which
|
|
// LVI can tells us the value. In that case replace the incoming value with
|
|
// the appropriate value of the select. This often allows us to remove the
|
|
// select later.
|
|
if (!V) {
|
|
SelectInst *SI = dyn_cast<SelectInst>(Incoming);
|
|
if (!SI) continue;
|
|
|
|
Value *Condition = SI->getCondition();
|
|
if (!Condition->getType()->isVectorTy()) {
|
|
if (Constant *C = LVI->getConstantOnEdge(
|
|
Condition, P->getIncomingBlock(i), BB, P)) {
|
|
if (C->isOneValue()) {
|
|
V = SI->getTrueValue();
|
|
} else if (C->isZeroValue()) {
|
|
V = SI->getFalseValue();
|
|
}
|
|
// Once LVI learns to handle vector types, we could also add support
|
|
// for vector type constants that are not all zeroes or all ones.
|
|
}
|
|
}
|
|
|
|
// Look if the select has a constant but LVI tells us that the incoming
|
|
// value can never be that constant. In that case replace the incoming
|
|
// value with the other value of the select. This often allows us to
|
|
// remove the select later.
|
|
if (!V) {
|
|
Constant *C = dyn_cast<Constant>(SI->getFalseValue());
|
|
if (!C) continue;
|
|
|
|
if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
|
|
P->getIncomingBlock(i), BB, P) !=
|
|
LazyValueInfo::False)
|
|
continue;
|
|
V = SI->getTrueValue();
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
|
|
}
|
|
|
|
P->setIncomingValue(i, V);
|
|
Changed = true;
|
|
}
|
|
|
|
if (Value *V = SimplifyInstruction(P, SQ)) {
|
|
P->replaceAllUsesWith(V);
|
|
P->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
|
|
if (!Changed)
|
|
Changed = simplifyCommonValuePhi(P, LVI, DT);
|
|
|
|
if (Changed)
|
|
++NumPhis;
|
|
|
|
return Changed;
|
|
}
|
|
|
|
static bool processMemAccess(Instruction *I, LazyValueInfo *LVI) {
|
|
Value *Pointer = nullptr;
|
|
if (LoadInst *L = dyn_cast<LoadInst>(I))
|
|
Pointer = L->getPointerOperand();
|
|
else
|
|
Pointer = cast<StoreInst>(I)->getPointerOperand();
|
|
|
|
if (isa<Constant>(Pointer)) return false;
|
|
|
|
Constant *C = LVI->getConstant(Pointer, I);
|
|
if (!C) return false;
|
|
|
|
++NumMemAccess;
|
|
I->replaceUsesOfWith(Pointer, C);
|
|
return true;
|
|
}
|
|
|
|
/// See if LazyValueInfo's ability to exploit edge conditions or range
|
|
/// information is sufficient to prove this comparison. Even for local
|
|
/// conditions, this can sometimes prove conditions instcombine can't by
|
|
/// exploiting range information.
|
|
static bool processCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
|
|
Value *Op0 = Cmp->getOperand(0);
|
|
auto *C = dyn_cast<Constant>(Cmp->getOperand(1));
|
|
if (!C)
|
|
return false;
|
|
|
|
LazyValueInfo::Tristate Result =
|
|
LVI->getPredicateAt(Cmp->getPredicate(), Op0, C, Cmp,
|
|
/*UseBlockValue=*/true);
|
|
if (Result == LazyValueInfo::Unknown)
|
|
return false;
|
|
|
|
++NumCmps;
|
|
Constant *TorF = ConstantInt::get(Type::getInt1Ty(Cmp->getContext()), Result);
|
|
Cmp->replaceAllUsesWith(TorF);
|
|
Cmp->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// Simplify a switch instruction by removing cases which can never fire. If the
|
|
/// uselessness of a case could be determined locally then constant propagation
|
|
/// would already have figured it out. Instead, walk the predecessors and
|
|
/// statically evaluate cases based on information available on that edge. Cases
|
|
/// that cannot fire no matter what the incoming edge can safely be removed. If
|
|
/// a case fires on every incoming edge then the entire switch can be removed
|
|
/// and replaced with a branch to the case destination.
|
|
static bool processSwitch(SwitchInst *I, LazyValueInfo *LVI,
|
|
DominatorTree *DT) {
|
|
DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
|
|
Value *Cond = I->getCondition();
|
|
BasicBlock *BB = I->getParent();
|
|
|
|
// Analyse each switch case in turn.
|
|
bool Changed = false;
|
|
DenseMap<BasicBlock*, int> SuccessorsCount;
|
|
for (auto *Succ : successors(BB))
|
|
SuccessorsCount[Succ]++;
|
|
|
|
{ // Scope for SwitchInstProfUpdateWrapper. It must not live during
|
|
// ConstantFoldTerminator() as the underlying SwitchInst can be changed.
|
|
SwitchInstProfUpdateWrapper SI(*I);
|
|
|
|
for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) {
|
|
ConstantInt *Case = CI->getCaseValue();
|
|
LazyValueInfo::Tristate State =
|
|
LVI->getPredicateAt(CmpInst::ICMP_EQ, Cond, Case, I,
|
|
/* UseBlockValue */ true);
|
|
|
|
if (State == LazyValueInfo::False) {
|
|
// This case never fires - remove it.
|
|
BasicBlock *Succ = CI->getCaseSuccessor();
|
|
Succ->removePredecessor(BB);
|
|
CI = SI.removeCase(CI);
|
|
CE = SI->case_end();
|
|
|
|
// The condition can be modified by removePredecessor's PHI simplification
|
|
// logic.
|
|
Cond = SI->getCondition();
|
|
|
|
++NumDeadCases;
|
|
Changed = true;
|
|
if (--SuccessorsCount[Succ] == 0)
|
|
DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, Succ}});
|
|
continue;
|
|
}
|
|
if (State == LazyValueInfo::True) {
|
|
// This case always fires. Arrange for the switch to be turned into an
|
|
// unconditional branch by replacing the switch condition with the case
|
|
// value.
|
|
SI->setCondition(Case);
|
|
NumDeadCases += SI->getNumCases();
|
|
Changed = true;
|
|
break;
|
|
}
|
|
|
|
// Increment the case iterator since we didn't delete it.
|
|
++CI;
|
|
}
|
|
}
|
|
|
|
if (Changed)
|
|
// If the switch has been simplified to the point where it can be replaced
|
|
// by a branch then do so now.
|
|
ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false,
|
|
/*TLI = */ nullptr, &DTU);
|
|
return Changed;
|
|
}
|
|
|
|
// See if we can prove that the given binary op intrinsic will not overflow.
|
|
static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI) {
|
|
ConstantRange LRange = LVI->getConstantRange(BO->getLHS(), BO);
|
|
ConstantRange RRange = LVI->getConstantRange(BO->getRHS(), BO);
|
|
ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
|
|
BO->getBinaryOp(), RRange, BO->getNoWrapKind());
|
|
return NWRegion.contains(LRange);
|
|
}
|
|
|
|
static void setDeducedOverflowingFlags(Value *V, Instruction::BinaryOps Opcode,
|
|
bool NewNSW, bool NewNUW) {
|
|
Statistic *OpcNW, *OpcNSW, *OpcNUW;
|
|
switch (Opcode) {
|
|
case Instruction::Add:
|
|
OpcNW = &NumAddNW;
|
|
OpcNSW = &NumAddNSW;
|
|
OpcNUW = &NumAddNUW;
|
|
break;
|
|
case Instruction::Sub:
|
|
OpcNW = &NumSubNW;
|
|
OpcNSW = &NumSubNSW;
|
|
OpcNUW = &NumSubNUW;
|
|
break;
|
|
case Instruction::Mul:
|
|
OpcNW = &NumMulNW;
|
|
OpcNSW = &NumMulNSW;
|
|
OpcNUW = &NumMulNUW;
|
|
break;
|
|
case Instruction::Shl:
|
|
OpcNW = &NumShlNW;
|
|
OpcNSW = &NumShlNSW;
|
|
OpcNUW = &NumShlNUW;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Will not be called with other binops");
|
|
}
|
|
|
|
auto *Inst = dyn_cast<Instruction>(V);
|
|
if (NewNSW) {
|
|
++NumNW;
|
|
++*OpcNW;
|
|
++NumNSW;
|
|
++*OpcNSW;
|
|
if (Inst)
|
|
Inst->setHasNoSignedWrap();
|
|
}
|
|
if (NewNUW) {
|
|
++NumNW;
|
|
++*OpcNW;
|
|
++NumNUW;
|
|
++*OpcNUW;
|
|
if (Inst)
|
|
Inst->setHasNoUnsignedWrap();
|
|
}
|
|
}
|
|
|
|
static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI);
|
|
|
|
// Rewrite this with.overflow intrinsic as non-overflowing.
|
|
static void processOverflowIntrinsic(WithOverflowInst *WO, LazyValueInfo *LVI) {
|
|
IRBuilder<> B(WO);
|
|
Instruction::BinaryOps Opcode = WO->getBinaryOp();
|
|
bool NSW = WO->isSigned();
|
|
bool NUW = !WO->isSigned();
|
|
|
|
Value *NewOp =
|
|
B.CreateBinOp(Opcode, WO->getLHS(), WO->getRHS(), WO->getName());
|
|
setDeducedOverflowingFlags(NewOp, Opcode, NSW, NUW);
|
|
|
|
StructType *ST = cast<StructType>(WO->getType());
|
|
Constant *Struct = ConstantStruct::get(ST,
|
|
{ UndefValue::get(ST->getElementType(0)),
|
|
ConstantInt::getFalse(ST->getElementType(1)) });
|
|
Value *NewI = B.CreateInsertValue(Struct, NewOp, 0);
|
|
WO->replaceAllUsesWith(NewI);
|
|
WO->eraseFromParent();
|
|
++NumOverflows;
|
|
|
|
// See if we can infer the other no-wrap too.
|
|
if (auto *BO = dyn_cast<BinaryOperator>(NewOp))
|
|
processBinOp(BO, LVI);
|
|
}
|
|
|
|
static void processSaturatingInst(SaturatingInst *SI, LazyValueInfo *LVI) {
|
|
Instruction::BinaryOps Opcode = SI->getBinaryOp();
|
|
bool NSW = SI->isSigned();
|
|
bool NUW = !SI->isSigned();
|
|
BinaryOperator *BinOp = BinaryOperator::Create(
|
|
Opcode, SI->getLHS(), SI->getRHS(), SI->getName(), SI);
|
|
BinOp->setDebugLoc(SI->getDebugLoc());
|
|
setDeducedOverflowingFlags(BinOp, Opcode, NSW, NUW);
|
|
|
|
SI->replaceAllUsesWith(BinOp);
|
|
SI->eraseFromParent();
|
|
++NumSaturating;
|
|
|
|
// See if we can infer the other no-wrap too.
|
|
if (auto *BO = dyn_cast<BinaryOperator>(BinOp))
|
|
processBinOp(BO, LVI);
|
|
}
|
|
|
|
/// Infer nonnull attributes for the arguments at the specified callsite.
|
|
static bool processCallSite(CallBase &CB, LazyValueInfo *LVI) {
|
|
|
|
if (auto *WO = dyn_cast<WithOverflowInst>(&CB)) {
|
|
if (WO->getLHS()->getType()->isIntegerTy() && willNotOverflow(WO, LVI)) {
|
|
processOverflowIntrinsic(WO, LVI);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (auto *SI = dyn_cast<SaturatingInst>(&CB)) {
|
|
if (SI->getType()->isIntegerTy() && willNotOverflow(SI, LVI)) {
|
|
processSaturatingInst(SI, LVI);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool Changed = false;
|
|
|
|
// Deopt bundle operands are intended to capture state with minimal
|
|
// perturbance of the code otherwise. If we can find a constant value for
|
|
// any such operand and remove a use of the original value, that's
|
|
// desireable since it may allow further optimization of that value (e.g. via
|
|
// single use rules in instcombine). Since deopt uses tend to,
|
|
// idiomatically, appear along rare conditional paths, it's reasonable likely
|
|
// we may have a conditional fact with which LVI can fold.
|
|
if (auto DeoptBundle = CB.getOperandBundle(LLVMContext::OB_deopt)) {
|
|
for (const Use &ConstU : DeoptBundle->Inputs) {
|
|
Use &U = const_cast<Use&>(ConstU);
|
|
Value *V = U.get();
|
|
if (V->getType()->isVectorTy()) continue;
|
|
if (isa<Constant>(V)) continue;
|
|
|
|
Constant *C = LVI->getConstant(V, &CB);
|
|
if (!C) continue;
|
|
U.set(C);
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
SmallVector<unsigned, 4> ArgNos;
|
|
unsigned ArgNo = 0;
|
|
|
|
for (Value *V : CB.args()) {
|
|
PointerType *Type = dyn_cast<PointerType>(V->getType());
|
|
// Try to mark pointer typed parameters as non-null. We skip the
|
|
// relatively expensive analysis for constants which are obviously either
|
|
// null or non-null to start with.
|
|
if (Type && !CB.paramHasAttr(ArgNo, Attribute::NonNull) &&
|
|
!isa<Constant>(V) &&
|
|
LVI->getPredicateAt(ICmpInst::ICMP_EQ, V,
|
|
ConstantPointerNull::get(Type),
|
|
&CB) == LazyValueInfo::False)
|
|
ArgNos.push_back(ArgNo);
|
|
ArgNo++;
|
|
}
|
|
|
|
assert(ArgNo == CB.arg_size() && "sanity check");
|
|
|
|
if (ArgNos.empty())
|
|
return Changed;
|
|
|
|
AttributeList AS = CB.getAttributes();
|
|
LLVMContext &Ctx = CB.getContext();
|
|
AS = AS.addParamAttribute(Ctx, ArgNos,
|
|
Attribute::get(Ctx, Attribute::NonNull));
|
|
CB.setAttributes(AS);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isNonNegative(Value *V, LazyValueInfo *LVI, Instruction *CxtI) {
|
|
Constant *Zero = ConstantInt::get(V->getType(), 0);
|
|
auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SGE, V, Zero, CxtI);
|
|
return Result == LazyValueInfo::True;
|
|
}
|
|
|
|
static bool isNonPositive(Value *V, LazyValueInfo *LVI, Instruction *CxtI) {
|
|
Constant *Zero = ConstantInt::get(V->getType(), 0);
|
|
auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SLE, V, Zero, CxtI);
|
|
return Result == LazyValueInfo::True;
|
|
}
|
|
|
|
enum class Domain { NonNegative, NonPositive, Unknown };
|
|
|
|
Domain getDomain(Value *V, LazyValueInfo *LVI, Instruction *CxtI) {
|
|
if (isNonNegative(V, LVI, CxtI))
|
|
return Domain::NonNegative;
|
|
if (isNonPositive(V, LVI, CxtI))
|
|
return Domain::NonPositive;
|
|
return Domain::Unknown;
|
|
}
|
|
|
|
/// Try to shrink a sdiv/srem's width down to the smallest power of two that's
|
|
/// sufficient to contain its operands.
|
|
static bool narrowSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) {
|
|
assert(Instr->getOpcode() == Instruction::SDiv ||
|
|
Instr->getOpcode() == Instruction::SRem);
|
|
if (Instr->getType()->isVectorTy())
|
|
return false;
|
|
|
|
// Find the smallest power of two bitwidth that's sufficient to hold Instr's
|
|
// operands.
|
|
unsigned OrigWidth = Instr->getType()->getIntegerBitWidth();
|
|
|
|
// What is the smallest bit width that can accomodate the entire value ranges
|
|
// of both of the operands?
|
|
std::array<Optional<ConstantRange>, 2> CRs;
|
|
unsigned MinSignedBits = 0;
|
|
for (auto I : zip(Instr->operands(), CRs)) {
|
|
std::get<1>(I) = LVI->getConstantRange(std::get<0>(I), Instr);
|
|
MinSignedBits = std::max(std::get<1>(I)->getMinSignedBits(), MinSignedBits);
|
|
}
|
|
|
|
// sdiv/srem is UB if divisor is -1 and divident is INT_MIN, so unless we can
|
|
// prove that such a combination is impossible, we need to bump the bitwidth.
|
|
if (CRs[1]->contains(APInt::getAllOnesValue(OrigWidth)) &&
|
|
CRs[0]->contains(
|
|
APInt::getSignedMinValue(MinSignedBits).sextOrSelf(OrigWidth)))
|
|
++MinSignedBits;
|
|
|
|
// Don't shrink below 8 bits wide.
|
|
unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MinSignedBits), 8);
|
|
|
|
// NewWidth might be greater than OrigWidth if OrigWidth is not a power of
|
|
// two.
|
|
if (NewWidth >= OrigWidth)
|
|
return false;
|
|
|
|
++NumSDivSRemsNarrowed;
|
|
IRBuilder<> B{Instr};
|
|
auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
|
|
auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
|
|
Instr->getName() + ".lhs.trunc");
|
|
auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
|
|
Instr->getName() + ".rhs.trunc");
|
|
auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
|
|
auto *Sext = B.CreateSExt(BO, Instr->getType(), Instr->getName() + ".sext");
|
|
if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
|
|
if (BinOp->getOpcode() == Instruction::SDiv)
|
|
BinOp->setIsExact(Instr->isExact());
|
|
|
|
Instr->replaceAllUsesWith(Sext);
|
|
Instr->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// Try to shrink a udiv/urem's width down to the smallest power of two that's
|
|
/// sufficient to contain its operands.
|
|
static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) {
|
|
assert(Instr->getOpcode() == Instruction::UDiv ||
|
|
Instr->getOpcode() == Instruction::URem);
|
|
if (Instr->getType()->isVectorTy())
|
|
return false;
|
|
|
|
// Find the smallest power of two bitwidth that's sufficient to hold Instr's
|
|
// operands.
|
|
|
|
// What is the smallest bit width that can accomodate the entire value ranges
|
|
// of both of the operands?
|
|
unsigned MaxActiveBits = 0;
|
|
for (Value *Operand : Instr->operands()) {
|
|
ConstantRange CR = LVI->getConstantRange(Operand, Instr);
|
|
MaxActiveBits = std::max(CR.getActiveBits(), MaxActiveBits);
|
|
}
|
|
// Don't shrink below 8 bits wide.
|
|
unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MaxActiveBits), 8);
|
|
|
|
// NewWidth might be greater than OrigWidth if OrigWidth is not a power of
|
|
// two.
|
|
if (NewWidth >= Instr->getType()->getIntegerBitWidth())
|
|
return false;
|
|
|
|
++NumUDivURemsNarrowed;
|
|
IRBuilder<> B{Instr};
|
|
auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
|
|
auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
|
|
Instr->getName() + ".lhs.trunc");
|
|
auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
|
|
Instr->getName() + ".rhs.trunc");
|
|
auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
|
|
auto *Zext = B.CreateZExt(BO, Instr->getType(), Instr->getName() + ".zext");
|
|
if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
|
|
if (BinOp->getOpcode() == Instruction::UDiv)
|
|
BinOp->setIsExact(Instr->isExact());
|
|
|
|
Instr->replaceAllUsesWith(Zext);
|
|
Instr->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
static bool processSRem(BinaryOperator *SDI, LazyValueInfo *LVI) {
|
|
assert(SDI->getOpcode() == Instruction::SRem);
|
|
if (SDI->getType()->isVectorTy())
|
|
return false;
|
|
|
|
struct Operand {
|
|
Value *V;
|
|
Domain D;
|
|
};
|
|
std::array<Operand, 2> Ops;
|
|
|
|
for (const auto I : zip(Ops, SDI->operands())) {
|
|
Operand &Op = std::get<0>(I);
|
|
Op.V = std::get<1>(I);
|
|
Op.D = getDomain(Op.V, LVI, SDI);
|
|
if (Op.D == Domain::Unknown)
|
|
return false;
|
|
}
|
|
|
|
// We know domains of both of the operands!
|
|
++NumSRems;
|
|
|
|
// We need operands to be non-negative, so negate each one that isn't.
|
|
for (Operand &Op : Ops) {
|
|
if (Op.D == Domain::NonNegative)
|
|
continue;
|
|
auto *BO =
|
|
BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg", SDI);
|
|
BO->setDebugLoc(SDI->getDebugLoc());
|
|
Op.V = BO;
|
|
}
|
|
|
|
auto *URem =
|
|
BinaryOperator::CreateURem(Ops[0].V, Ops[1].V, SDI->getName(), SDI);
|
|
URem->setDebugLoc(SDI->getDebugLoc());
|
|
|
|
Value *Res = URem;
|
|
|
|
// If the divident was non-positive, we need to negate the result.
|
|
if (Ops[0].D == Domain::NonPositive)
|
|
Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg", SDI);
|
|
|
|
SDI->replaceAllUsesWith(Res);
|
|
SDI->eraseFromParent();
|
|
|
|
// Try to simplify our new urem.
|
|
processUDivOrURem(URem, LVI);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// See if LazyValueInfo's ability to exploit edge conditions or range
|
|
/// information is sufficient to prove the signs of both operands of this SDiv.
|
|
/// If this is the case, replace the SDiv with a UDiv. Even for local
|
|
/// conditions, this can sometimes prove conditions instcombine can't by
|
|
/// exploiting range information.
|
|
static bool processSDiv(BinaryOperator *SDI, LazyValueInfo *LVI) {
|
|
assert(SDI->getOpcode() == Instruction::SDiv);
|
|
if (SDI->getType()->isVectorTy())
|
|
return false;
|
|
|
|
struct Operand {
|
|
Value *V;
|
|
Domain D;
|
|
};
|
|
std::array<Operand, 2> Ops;
|
|
|
|
for (const auto I : zip(Ops, SDI->operands())) {
|
|
Operand &Op = std::get<0>(I);
|
|
Op.V = std::get<1>(I);
|
|
Op.D = getDomain(Op.V, LVI, SDI);
|
|
if (Op.D == Domain::Unknown)
|
|
return false;
|
|
}
|
|
|
|
// We know domains of both of the operands!
|
|
++NumSDivs;
|
|
|
|
// We need operands to be non-negative, so negate each one that isn't.
|
|
for (Operand &Op : Ops) {
|
|
if (Op.D == Domain::NonNegative)
|
|
continue;
|
|
auto *BO =
|
|
BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg", SDI);
|
|
BO->setDebugLoc(SDI->getDebugLoc());
|
|
Op.V = BO;
|
|
}
|
|
|
|
auto *UDiv =
|
|
BinaryOperator::CreateUDiv(Ops[0].V, Ops[1].V, SDI->getName(), SDI);
|
|
UDiv->setDebugLoc(SDI->getDebugLoc());
|
|
UDiv->setIsExact(SDI->isExact());
|
|
|
|
Value *Res = UDiv;
|
|
|
|
// If the operands had two different domains, we need to negate the result.
|
|
if (Ops[0].D != Ops[1].D)
|
|
Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg", SDI);
|
|
|
|
SDI->replaceAllUsesWith(Res);
|
|
SDI->eraseFromParent();
|
|
|
|
// Try to simplify our new udiv.
|
|
processUDivOrURem(UDiv, LVI);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool processSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) {
|
|
assert(Instr->getOpcode() == Instruction::SDiv ||
|
|
Instr->getOpcode() == Instruction::SRem);
|
|
if (Instr->getType()->isVectorTy())
|
|
return false;
|
|
|
|
if (Instr->getOpcode() == Instruction::SDiv)
|
|
if (processSDiv(Instr, LVI))
|
|
return true;
|
|
|
|
if (Instr->getOpcode() == Instruction::SRem)
|
|
if (processSRem(Instr, LVI))
|
|
return true;
|
|
|
|
return narrowSDivOrSRem(Instr, LVI);
|
|
}
|
|
|
|
static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) {
|
|
if (SDI->getType()->isVectorTy())
|
|
return false;
|
|
|
|
if (!isNonNegative(SDI->getOperand(0), LVI, SDI))
|
|
return false;
|
|
|
|
++NumAShrs;
|
|
auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1),
|
|
SDI->getName(), SDI);
|
|
BO->setDebugLoc(SDI->getDebugLoc());
|
|
BO->setIsExact(SDI->isExact());
|
|
SDI->replaceAllUsesWith(BO);
|
|
SDI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool processSExt(SExtInst *SDI, LazyValueInfo *LVI) {
|
|
if (SDI->getType()->isVectorTy())
|
|
return false;
|
|
|
|
Value *Base = SDI->getOperand(0);
|
|
|
|
if (!isNonNegative(Base, LVI, SDI))
|
|
return false;
|
|
|
|
++NumSExt;
|
|
auto *ZExt =
|
|
CastInst::CreateZExtOrBitCast(Base, SDI->getType(), SDI->getName(), SDI);
|
|
ZExt->setDebugLoc(SDI->getDebugLoc());
|
|
SDI->replaceAllUsesWith(ZExt);
|
|
SDI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI) {
|
|
using OBO = OverflowingBinaryOperator;
|
|
|
|
if (DontAddNoWrapFlags)
|
|
return false;
|
|
|
|
if (BinOp->getType()->isVectorTy())
|
|
return false;
|
|
|
|
bool NSW = BinOp->hasNoSignedWrap();
|
|
bool NUW = BinOp->hasNoUnsignedWrap();
|
|
if (NSW && NUW)
|
|
return false;
|
|
|
|
Instruction::BinaryOps Opcode = BinOp->getOpcode();
|
|
Value *LHS = BinOp->getOperand(0);
|
|
Value *RHS = BinOp->getOperand(1);
|
|
|
|
ConstantRange LRange = LVI->getConstantRange(LHS, BinOp);
|
|
ConstantRange RRange = LVI->getConstantRange(RHS, BinOp);
|
|
|
|
bool Changed = false;
|
|
bool NewNUW = false, NewNSW = false;
|
|
if (!NUW) {
|
|
ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion(
|
|
Opcode, RRange, OBO::NoUnsignedWrap);
|
|
NewNUW = NUWRange.contains(LRange);
|
|
Changed |= NewNUW;
|
|
}
|
|
if (!NSW) {
|
|
ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(
|
|
Opcode, RRange, OBO::NoSignedWrap);
|
|
NewNSW = NSWRange.contains(LRange);
|
|
Changed |= NewNSW;
|
|
}
|
|
|
|
setDeducedOverflowingFlags(BinOp, Opcode, NewNSW, NewNUW);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
static bool processAnd(BinaryOperator *BinOp, LazyValueInfo *LVI) {
|
|
if (BinOp->getType()->isVectorTy())
|
|
return false;
|
|
|
|
// Pattern match (and lhs, C) where C includes a superset of bits which might
|
|
// be set in lhs. This is a common truncation idiom created by instcombine.
|
|
Value *LHS = BinOp->getOperand(0);
|
|
ConstantInt *RHS = dyn_cast<ConstantInt>(BinOp->getOperand(1));
|
|
if (!RHS || !RHS->getValue().isMask())
|
|
return false;
|
|
|
|
// We can only replace the AND with LHS based on range info if the range does
|
|
// not include undef.
|
|
ConstantRange LRange =
|
|
LVI->getConstantRange(LHS, BinOp, /*UndefAllowed=*/false);
|
|
if (!LRange.getUnsignedMax().ule(RHS->getValue()))
|
|
return false;
|
|
|
|
BinOp->replaceAllUsesWith(LHS);
|
|
BinOp->eraseFromParent();
|
|
NumAnd++;
|
|
return true;
|
|
}
|
|
|
|
|
|
static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) {
|
|
if (Constant *C = LVI->getConstant(V, At))
|
|
return C;
|
|
|
|
// TODO: The following really should be sunk inside LVI's core algorithm, or
|
|
// at least the outer shims around such.
|
|
auto *C = dyn_cast<CmpInst>(V);
|
|
if (!C) return nullptr;
|
|
|
|
Value *Op0 = C->getOperand(0);
|
|
Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
|
|
if (!Op1) return nullptr;
|
|
|
|
LazyValueInfo::Tristate Result =
|
|
LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At);
|
|
if (Result == LazyValueInfo::Unknown)
|
|
return nullptr;
|
|
|
|
return (Result == LazyValueInfo::True) ?
|
|
ConstantInt::getTrue(C->getContext()) :
|
|
ConstantInt::getFalse(C->getContext());
|
|
}
|
|
|
|
static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT,
|
|
const SimplifyQuery &SQ) {
|
|
bool FnChanged = false;
|
|
// Visiting in a pre-order depth-first traversal causes us to simplify early
|
|
// blocks before querying later blocks (which require us to analyze early
|
|
// blocks). Eagerly simplifying shallow blocks means there is strictly less
|
|
// work to do for deep blocks. This also means we don't visit unreachable
|
|
// blocks.
|
|
for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
|
|
bool BBChanged = false;
|
|
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
|
|
Instruction *II = &*BI++;
|
|
switch (II->getOpcode()) {
|
|
case Instruction::Select:
|
|
BBChanged |= processSelect(cast<SelectInst>(II), LVI);
|
|
break;
|
|
case Instruction::PHI:
|
|
BBChanged |= processPHI(cast<PHINode>(II), LVI, DT, SQ);
|
|
break;
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
BBChanged |= processCmp(cast<CmpInst>(II), LVI);
|
|
break;
|
|
case Instruction::Load:
|
|
case Instruction::Store:
|
|
BBChanged |= processMemAccess(II, LVI);
|
|
break;
|
|
case Instruction::Call:
|
|
case Instruction::Invoke:
|
|
BBChanged |= processCallSite(cast<CallBase>(*II), LVI);
|
|
break;
|
|
case Instruction::SRem:
|
|
case Instruction::SDiv:
|
|
BBChanged |= processSDivOrSRem(cast<BinaryOperator>(II), LVI);
|
|
break;
|
|
case Instruction::UDiv:
|
|
case Instruction::URem:
|
|
BBChanged |= processUDivOrURem(cast<BinaryOperator>(II), LVI);
|
|
break;
|
|
case Instruction::AShr:
|
|
BBChanged |= processAShr(cast<BinaryOperator>(II), LVI);
|
|
break;
|
|
case Instruction::SExt:
|
|
BBChanged |= processSExt(cast<SExtInst>(II), LVI);
|
|
break;
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::Shl:
|
|
BBChanged |= processBinOp(cast<BinaryOperator>(II), LVI);
|
|
break;
|
|
case Instruction::And:
|
|
BBChanged |= processAnd(cast<BinaryOperator>(II), LVI);
|
|
break;
|
|
}
|
|
}
|
|
|
|
Instruction *Term = BB->getTerminator();
|
|
switch (Term->getOpcode()) {
|
|
case Instruction::Switch:
|
|
BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI, DT);
|
|
break;
|
|
case Instruction::Ret: {
|
|
auto *RI = cast<ReturnInst>(Term);
|
|
// Try to determine the return value if we can. This is mainly here to
|
|
// simplify the writing of unit tests, but also helps to enable IPO by
|
|
// constant folding the return values of callees.
|
|
auto *RetVal = RI->getReturnValue();
|
|
if (!RetVal) break; // handle "ret void"
|
|
if (isa<Constant>(RetVal)) break; // nothing to do
|
|
if (auto *C = getConstantAt(RetVal, RI, LVI)) {
|
|
++NumReturns;
|
|
RI->replaceUsesOfWith(RetVal, C);
|
|
BBChanged = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
FnChanged |= BBChanged;
|
|
}
|
|
|
|
return FnChanged;
|
|
}
|
|
|
|
bool CorrelatedValuePropagation::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
|
|
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
|
|
return runImpl(F, LVI, DT, getBestSimplifyQuery(*this, F));
|
|
}
|
|
|
|
PreservedAnalyses
|
|
CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
|
|
DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
|
|
|
|
bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F));
|
|
|
|
PreservedAnalyses PA;
|
|
if (!Changed) {
|
|
PA = PreservedAnalyses::all();
|
|
} else {
|
|
PA.preserve<GlobalsAA>();
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
PA.preserve<LazyValueAnalysis>();
|
|
}
|
|
|
|
// Keeping LVI alive is expensive, both because it uses a lot of memory, and
|
|
// because invalidating values in LVI is expensive. While CVP does preserve
|
|
// LVI, we know that passes after JumpThreading+CVP will not need the result
|
|
// of this analysis, so we forcefully discard it early.
|
|
PA.abandon<LazyValueAnalysis>();
|
|
return PA;
|
|
}
|