llvm-for-llvmta/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp

1571 lines
58 KiB
C++

//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for load, store and alloca.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "instcombine"
STATISTIC(NumDeadStore, "Number of dead stores eliminated");
STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
/// pointer to an alloca. Ignore any reads of the pointer, return false if we
/// see any stores or other unknown uses. If we see pointer arithmetic, keep
/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
/// the alloca, and if the source pointer is a pointer to a constant global, we
/// can optimize this.
static bool
isOnlyCopiedFromConstantMemory(AAResults *AA,
Value *V, MemTransferInst *&TheCopy,
SmallVectorImpl<Instruction *> &ToDelete) {
// We track lifetime intrinsics as we encounter them. If we decide to go
// ahead and replace the value with the global, this lets the caller quickly
// eliminate the markers.
SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
ValuesToInspect.emplace_back(V, false);
while (!ValuesToInspect.empty()) {
auto ValuePair = ValuesToInspect.pop_back_val();
const bool IsOffset = ValuePair.second;
for (auto &U : ValuePair.first->uses()) {
auto *I = cast<Instruction>(U.getUser());
if (auto *LI = dyn_cast<LoadInst>(I)) {
// Ignore non-volatile loads, they are always ok.
if (!LI->isSimple()) return false;
continue;
}
if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
// If uses of the bitcast are ok, we are ok.
ValuesToInspect.emplace_back(I, IsOffset);
continue;
}
if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
// If the GEP has all zero indices, it doesn't offset the pointer. If it
// doesn't, it does.
ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
continue;
}
if (auto *Call = dyn_cast<CallBase>(I)) {
// If this is the function being called then we treat it like a load and
// ignore it.
if (Call->isCallee(&U))
continue;
unsigned DataOpNo = Call->getDataOperandNo(&U);
bool IsArgOperand = Call->isArgOperand(&U);
// Inalloca arguments are clobbered by the call.
if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
return false;
// If this is a readonly/readnone call site, then we know it is just a
// load (but one that potentially returns the value itself), so we can
// ignore it if we know that the value isn't captured.
if (Call->onlyReadsMemory() &&
(Call->use_empty() || Call->doesNotCapture(DataOpNo)))
continue;
// If this is being passed as a byval argument, the caller is making a
// copy, so it is only a read of the alloca.
if (IsArgOperand && Call->isByValArgument(DataOpNo))
continue;
}
// Lifetime intrinsics can be handled by the caller.
if (I->isLifetimeStartOrEnd()) {
assert(I->use_empty() && "Lifetime markers have no result to use!");
ToDelete.push_back(I);
continue;
}
// If this is isn't our memcpy/memmove, reject it as something we can't
// handle.
MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
if (!MI)
return false;
// If the transfer is using the alloca as a source of the transfer, then
// ignore it since it is a load (unless the transfer is volatile).
if (U.getOperandNo() == 1) {
if (MI->isVolatile()) return false;
continue;
}
// If we already have seen a copy, reject the second one.
if (TheCopy) return false;
// If the pointer has been offset from the start of the alloca, we can't
// safely handle this.
if (IsOffset) return false;
// If the memintrinsic isn't using the alloca as the dest, reject it.
if (U.getOperandNo() != 0) return false;
// If the source of the memcpy/move is not a constant global, reject it.
if (!AA->pointsToConstantMemory(MI->getSource()))
return false;
// Otherwise, the transform is safe. Remember the copy instruction.
TheCopy = MI;
}
}
return true;
}
/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
/// modified by a copy from a constant global. If we can prove this, we can
/// replace any uses of the alloca with uses of the global directly.
static MemTransferInst *
isOnlyCopiedFromConstantMemory(AAResults *AA,
AllocaInst *AI,
SmallVectorImpl<Instruction *> &ToDelete) {
MemTransferInst *TheCopy = nullptr;
if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
return TheCopy;
return nullptr;
}
/// Returns true if V is dereferenceable for size of alloca.
static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
const DataLayout &DL) {
if (AI->isArrayAllocation())
return false;
uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
if (!AllocaSize)
return false;
return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
APInt(64, AllocaSize), DL);
}
static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC,
AllocaInst &AI) {
// Check for array size of 1 (scalar allocation).
if (!AI.isArrayAllocation()) {
// i32 1 is the canonical array size for scalar allocations.
if (AI.getArraySize()->getType()->isIntegerTy(32))
return nullptr;
// Canonicalize it.
return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
}
// Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
if (C->getValue().getActiveBits() <= 64) {
Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
New->setAlignment(AI.getAlign());
// Scan to the end of the allocation instructions, to skip over a block of
// allocas if possible...also skip interleaved debug info
//
BasicBlock::iterator It(New);
while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
++It;
// Now that I is pointing to the first non-allocation-inst in the block,
// insert our getelementptr instruction...
//
Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
Value *NullIdx = Constant::getNullValue(IdxTy);
Value *Idx[2] = {NullIdx, NullIdx};
Instruction *GEP = GetElementPtrInst::CreateInBounds(
NewTy, New, Idx, New->getName() + ".sub");
IC.InsertNewInstBefore(GEP, *It);
// Now make everything use the getelementptr instead of the original
// allocation.
return IC.replaceInstUsesWith(AI, GEP);
}
}
if (isa<UndefValue>(AI.getArraySize()))
return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
// Ensure that the alloca array size argument has type intptr_t, so that
// any casting is exposed early.
Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
if (AI.getArraySize()->getType() != IntPtrTy) {
Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
return IC.replaceOperand(AI, 0, V);
}
return nullptr;
}
namespace {
// If I and V are pointers in different address space, it is not allowed to
// use replaceAllUsesWith since I and V have different types. A
// non-target-specific transformation should not use addrspacecast on V since
// the two address space may be disjoint depending on target.
//
// This class chases down uses of the old pointer until reaching the load
// instructions, then replaces the old pointer in the load instructions with
// the new pointer. If during the chasing it sees bitcast or GEP, it will
// create new bitcast or GEP with the new pointer and use them in the load
// instruction.
class PointerReplacer {
public:
PointerReplacer(InstCombinerImpl &IC) : IC(IC) {}
bool collectUsers(Instruction &I);
void replacePointer(Instruction &I, Value *V);
private:
void replace(Instruction *I);
Value *getReplacement(Value *I);
SmallSetVector<Instruction *, 4> Worklist;
MapVector<Value *, Value *> WorkMap;
InstCombinerImpl &IC;
};
} // end anonymous namespace
bool PointerReplacer::collectUsers(Instruction &I) {
for (auto U : I.users()) {
Instruction *Inst = cast<Instruction>(&*U);
if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
if (Load->isVolatile())
return false;
Worklist.insert(Load);
} else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
Worklist.insert(Inst);
if (!collectUsers(*Inst))
return false;
} else if (isa<MemTransferInst>(Inst)) {
Worklist.insert(Inst);
} else {
LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n');
return false;
}
}
return true;
}
Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); }
void PointerReplacer::replace(Instruction *I) {
if (getReplacement(I))
return;
if (auto *LT = dyn_cast<LoadInst>(I)) {
auto *V = getReplacement(LT->getPointerOperand());
assert(V && "Operand not replaced");
auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(),
LT->getAlign(), LT->getOrdering(),
LT->getSyncScopeID());
NewI->takeName(LT);
copyMetadataForLoad(*NewI, *LT);
IC.InsertNewInstWith(NewI, *LT);
IC.replaceInstUsesWith(*LT, NewI);
WorkMap[LT] = NewI;
} else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
auto *V = getReplacement(GEP->getPointerOperand());
assert(V && "Operand not replaced");
SmallVector<Value *, 8> Indices;
Indices.append(GEP->idx_begin(), GEP->idx_end());
auto *NewI = GetElementPtrInst::Create(
V->getType()->getPointerElementType(), V, Indices);
IC.InsertNewInstWith(NewI, *GEP);
NewI->takeName(GEP);
WorkMap[GEP] = NewI;
} else if (auto *BC = dyn_cast<BitCastInst>(I)) {
auto *V = getReplacement(BC->getOperand(0));
assert(V && "Operand not replaced");
auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
V->getType()->getPointerAddressSpace());
auto *NewI = new BitCastInst(V, NewT);
IC.InsertNewInstWith(NewI, *BC);
NewI->takeName(BC);
WorkMap[BC] = NewI;
} else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) {
auto *SrcV = getReplacement(MemCpy->getRawSource());
// The pointer may appear in the destination of a copy, but we don't want to
// replace it.
if (!SrcV) {
assert(getReplacement(MemCpy->getRawDest()) &&
"destination not in replace list");
return;
}
IC.Builder.SetInsertPoint(MemCpy);
auto *NewI = IC.Builder.CreateMemTransferInst(
MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(),
SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(),
MemCpy->isVolatile());
AAMDNodes AAMD;
MemCpy->getAAMetadata(AAMD);
if (AAMD)
NewI->setAAMetadata(AAMD);
IC.eraseInstFromFunction(*MemCpy);
WorkMap[MemCpy] = NewI;
} else {
llvm_unreachable("should never reach here");
}
}
void PointerReplacer::replacePointer(Instruction &I, Value *V) {
#ifndef NDEBUG
auto *PT = cast<PointerType>(I.getType());
auto *NT = cast<PointerType>(V->getType());
assert(PT != NT && PT->getElementType() == NT->getElementType() &&
"Invalid usage");
#endif
WorkMap[&I] = V;
for (Instruction *Workitem : Worklist)
replace(Workitem);
}
Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) {
if (auto *I = simplifyAllocaArraySize(*this, AI))
return I;
if (AI.getAllocatedType()->isSized()) {
// Move all alloca's of zero byte objects to the entry block and merge them
// together. Note that we only do this for alloca's, because malloc should
// allocate and return a unique pointer, even for a zero byte allocation.
if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) {
// For a zero sized alloca there is no point in doing an array allocation.
// This is helpful if the array size is a complicated expression not used
// elsewhere.
if (AI.isArrayAllocation())
return replaceOperand(AI, 0,
ConstantInt::get(AI.getArraySize()->getType(), 1));
// Get the first instruction in the entry block.
BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
if (FirstInst != &AI) {
// If the entry block doesn't start with a zero-size alloca then move
// this one to the start of the entry block. There is no problem with
// dominance as the array size was forced to a constant earlier already.
AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
DL.getTypeAllocSize(EntryAI->getAllocatedType())
.getKnownMinSize() != 0) {
AI.moveBefore(FirstInst);
return &AI;
}
// Replace this zero-sized alloca with the one at the start of the entry
// block after ensuring that the address will be aligned enough for both
// types.
const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
EntryAI->setAlignment(MaxAlign);
if (AI.getType() != EntryAI->getType())
return new BitCastInst(EntryAI, AI.getType());
return replaceInstUsesWith(AI, EntryAI);
}
}
}
// Check to see if this allocation is only modified by a memcpy/memmove from
// a constant whose alignment is equal to or exceeds that of the allocation.
// If this is the case, we can change all users to use the constant global
// instead. This is commonly produced by the CFE by constructs like "void
// foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently
// read.
SmallVector<Instruction *, 4> ToDelete;
if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
Value *TheSrc = Copy->getSource();
Align AllocaAlign = AI.getAlign();
Align SourceAlign = getOrEnforceKnownAlignment(
TheSrc, AllocaAlign, DL, &AI, &AC, &DT);
if (AllocaAlign <= SourceAlign &&
isDereferenceableForAllocaSize(TheSrc, &AI, DL)) {
LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace();
auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace);
if (AI.getType()->getAddressSpace() == SrcAddrSpace) {
for (Instruction *Delete : ToDelete)
eraseInstFromFunction(*Delete);
Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
Instruction *NewI = replaceInstUsesWith(AI, Cast);
eraseInstFromFunction(*Copy);
++NumGlobalCopies;
return NewI;
}
PointerReplacer PtrReplacer(*this);
if (PtrReplacer.collectUsers(AI)) {
for (Instruction *Delete : ToDelete)
eraseInstFromFunction(*Delete);
Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
PtrReplacer.replacePointer(AI, Cast);
++NumGlobalCopies;
}
}
}
// At last, use the generic allocation site handler to aggressively remove
// unused allocas.
return visitAllocSite(AI);
}
// Are we allowed to form a atomic load or store of this type?
static bool isSupportedAtomicType(Type *Ty) {
return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
}
/// Helper to combine a load to a new type.
///
/// This just does the work of combining a load to a new type. It handles
/// metadata, etc., and returns the new instruction. The \c NewTy should be the
/// loaded *value* type. This will convert it to a pointer, cast the operand to
/// that pointer type, load it, etc.
///
/// Note that this will create all of the instructions with whatever insert
/// point the \c InstCombinerImpl currently is using.
LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy,
const Twine &Suffix) {
assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
"can't fold an atomic load to requested type");
Value *Ptr = LI.getPointerOperand();
unsigned AS = LI.getPointerAddressSpace();
Value *NewPtr = nullptr;
if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
NewPtr->getType()->getPointerElementType() == NewTy &&
NewPtr->getType()->getPointerAddressSpace() == AS))
NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
LoadInst *NewLoad = Builder.CreateAlignedLoad(
NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix);
NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
copyMetadataForLoad(*NewLoad, LI);
return NewLoad;
}
/// Combine a store to a new type.
///
/// Returns the newly created store instruction.
static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI,
Value *V) {
assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
"can't fold an atomic store of requested type");
Value *Ptr = SI.getPointerOperand();
unsigned AS = SI.getPointerAddressSpace();
SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
SI.getAllMetadata(MD);
StoreInst *NewStore = IC.Builder.CreateAlignedStore(
V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
SI.getAlign(), SI.isVolatile());
NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
for (const auto &MDPair : MD) {
unsigned ID = MDPair.first;
MDNode *N = MDPair.second;
// Note, essentially every kind of metadata should be preserved here! This
// routine is supposed to clone a store instruction changing *only its
// type*. The only metadata it makes sense to drop is metadata which is
// invalidated when the pointer type changes. This should essentially
// never be the case in LLVM, but we explicitly switch over only known
// metadata to be conservatively correct. If you are adding metadata to
// LLVM which pertains to stores, you almost certainly want to add it
// here.
switch (ID) {
case LLVMContext::MD_dbg:
case LLVMContext::MD_tbaa:
case LLVMContext::MD_prof:
case LLVMContext::MD_fpmath:
case LLVMContext::MD_tbaa_struct:
case LLVMContext::MD_alias_scope:
case LLVMContext::MD_noalias:
case LLVMContext::MD_nontemporal:
case LLVMContext::MD_mem_parallel_loop_access:
case LLVMContext::MD_access_group:
// All of these directly apply.
NewStore->setMetadata(ID, N);
break;
case LLVMContext::MD_invariant_load:
case LLVMContext::MD_nonnull:
case LLVMContext::MD_noundef:
case LLVMContext::MD_range:
case LLVMContext::MD_align:
case LLVMContext::MD_dereferenceable:
case LLVMContext::MD_dereferenceable_or_null:
// These don't apply for stores.
break;
}
}
return NewStore;
}
/// Returns true if instruction represent minmax pattern like:
/// select ((cmp load V1, load V2), V1, V2).
static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
assert(V->getType()->isPointerTy() && "Expected pointer type.");
// Ignore possible ty* to ixx* bitcast.
V = InstCombiner::peekThroughBitcast(V);
// Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
// pattern.
CmpInst::Predicate Pred;
Instruction *L1;
Instruction *L2;
Value *LHS;
Value *RHS;
if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
m_Value(LHS), m_Value(RHS))))
return false;
LoadTy = L1->getType();
return (match(L1, m_Load(m_Specific(LHS))) &&
match(L2, m_Load(m_Specific(RHS)))) ||
(match(L1, m_Load(m_Specific(RHS))) &&
match(L2, m_Load(m_Specific(LHS))));
}
/// Combine loads to match the type of their uses' value after looking
/// through intervening bitcasts.
///
/// The core idea here is that if the result of a load is used in an operation,
/// we should load the type most conducive to that operation. For example, when
/// loading an integer and converting that immediately to a pointer, we should
/// instead directly load a pointer.
///
/// However, this routine must never change the width of a load or the number of
/// loads as that would introduce a semantic change. This combine is expected to
/// be a semantic no-op which just allows loads to more closely model the types
/// of their consuming operations.
///
/// Currently, we also refuse to change the precise type used for an atomic load
/// or a volatile load. This is debatable, and might be reasonable to change
/// later. However, it is risky in case some backend or other part of LLVM is
/// relying on the exact type loaded to select appropriate atomic operations.
static Instruction *combineLoadToOperationType(InstCombinerImpl &IC,
LoadInst &LI) {
// FIXME: We could probably with some care handle both volatile and ordered
// atomic loads here but it isn't clear that this is important.
if (!LI.isUnordered())
return nullptr;
if (LI.use_empty())
return nullptr;
// swifterror values can't be bitcasted.
if (LI.getPointerOperand()->isSwiftError())
return nullptr;
const DataLayout &DL = IC.getDataLayout();
// Fold away bit casts of the loaded value by loading the desired type.
// Note that we should not do this for pointer<->integer casts,
// because that would result in type punning.
if (LI.hasOneUse()) {
// Don't transform when the type is x86_amx, it makes the pass that lower
// x86_amx type happy.
if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
assert(!LI.getType()->isX86_AMXTy() &&
"load from x86_amx* should not happen!");
if (BC->getType()->isX86_AMXTy())
return nullptr;
}
if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() ==
CI->getDestTy()->isPtrOrPtrVectorTy())
if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
CI->replaceAllUsesWith(NewLoad);
IC.eraseInstFromFunction(*CI);
return &LI;
}
}
// FIXME: We should also canonicalize loads of vectors when their elements are
// cast to other types.
return nullptr;
}
static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) {
// FIXME: We could probably with some care handle both volatile and atomic
// stores here but it isn't clear that this is important.
if (!LI.isSimple())
return nullptr;
Type *T = LI.getType();
if (!T->isAggregateType())
return nullptr;
StringRef Name = LI.getName();
assert(LI.getAlignment() && "Alignment must be set at this point");
if (auto *ST = dyn_cast<StructType>(T)) {
// If the struct only have one element, we unpack.
auto NumElements = ST->getNumElements();
if (NumElements == 1) {
LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
".unpack");
AAMDNodes AAMD;
LI.getAAMetadata(AAMD);
NewLoad->setAAMetadata(AAMD);
return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
UndefValue::get(T), NewLoad, 0, Name));
}
// We don't want to break loads with padding here as we'd loose
// the knowledge that padding exists for the rest of the pipeline.
const DataLayout &DL = IC.getDataLayout();
auto *SL = DL.getStructLayout(ST);
if (SL->hasPadding())
return nullptr;
const auto Align = LI.getAlign();
auto *Addr = LI.getPointerOperand();
auto *IdxType = Type::getInt32Ty(T->getContext());
auto *Zero = ConstantInt::get(IdxType, 0);
Value *V = UndefValue::get(T);
for (unsigned i = 0; i < NumElements; i++) {
Value *Indices[2] = {
Zero,
ConstantInt::get(IdxType, i),
};
auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
Name + ".elt");
auto *L = IC.Builder.CreateAlignedLoad(
ST->getElementType(i), Ptr,
commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
// Propagate AA metadata. It'll still be valid on the narrowed load.
AAMDNodes AAMD;
LI.getAAMetadata(AAMD);
L->setAAMetadata(AAMD);
V = IC.Builder.CreateInsertValue(V, L, i);
}
V->setName(Name);
return IC.replaceInstUsesWith(LI, V);
}
if (auto *AT = dyn_cast<ArrayType>(T)) {
auto *ET = AT->getElementType();
auto NumElements = AT->getNumElements();
if (NumElements == 1) {
LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
AAMDNodes AAMD;
LI.getAAMetadata(AAMD);
NewLoad->setAAMetadata(AAMD);
return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
UndefValue::get(T), NewLoad, 0, Name));
}
// Bail out if the array is too large. Ideally we would like to optimize
// arrays of arbitrary size but this has a terrible impact on compile time.
// The threshold here is chosen arbitrarily, maybe needs a little bit of
// tuning.
if (NumElements > IC.MaxArraySizeForCombine)
return nullptr;
const DataLayout &DL = IC.getDataLayout();
auto EltSize = DL.getTypeAllocSize(ET);
const auto Align = LI.getAlign();
auto *Addr = LI.getPointerOperand();
auto *IdxType = Type::getInt64Ty(T->getContext());
auto *Zero = ConstantInt::get(IdxType, 0);
Value *V = UndefValue::get(T);
uint64_t Offset = 0;
for (uint64_t i = 0; i < NumElements; i++) {
Value *Indices[2] = {
Zero,
ConstantInt::get(IdxType, i),
};
auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
Name + ".elt");
auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
commonAlignment(Align, Offset),
Name + ".unpack");
AAMDNodes AAMD;
LI.getAAMetadata(AAMD);
L->setAAMetadata(AAMD);
V = IC.Builder.CreateInsertValue(V, L, i);
Offset += EltSize;
}
V->setName(Name);
return IC.replaceInstUsesWith(LI, V);
}
return nullptr;
}
// If we can determine that all possible objects pointed to by the provided
// pointer value are, not only dereferenceable, but also definitively less than
// or equal to the provided maximum size, then return true. Otherwise, return
// false (constant global values and allocas fall into this category).
//
// FIXME: This should probably live in ValueTracking (or similar).
static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
const DataLayout &DL) {
SmallPtrSet<Value *, 4> Visited;
SmallVector<Value *, 4> Worklist(1, V);
do {
Value *P = Worklist.pop_back_val();
P = P->stripPointerCasts();
if (!Visited.insert(P).second)
continue;
if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
if (PHINode *PN = dyn_cast<PHINode>(P)) {
append_range(Worklist, PN->incoming_values());
continue;
}
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
if (GA->isInterposable())
return false;
Worklist.push_back(GA->getAliasee());
continue;
}
// If we know how big this object is, and it is less than MaxSize, continue
// searching. Otherwise, return false.
if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
if (!AI->getAllocatedType()->isSized())
return false;
ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
if (!CS)
return false;
uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
// Make sure that, even if the multiplication below would wrap as an
// uint64_t, we still do the right thing.
if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
return false;
continue;
}
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
return false;
uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
if (InitSize > MaxSize)
return false;
continue;
}
return false;
} while (!Worklist.empty());
return true;
}
// If we're indexing into an object of a known size, and the outer index is
// not a constant, but having any value but zero would lead to undefined
// behavior, replace it with zero.
//
// For example, if we have:
// @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
// ...
// %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
// ... = load i32* %arrayidx, align 4
// Then we know that we can replace %x in the GEP with i64 0.
//
// FIXME: We could fold any GEP index to zero that would cause UB if it were
// not zero. Currently, we only handle the first such index. Also, we could
// also search through non-zero constant indices if we kept track of the
// offsets those indices implied.
static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC,
GetElementPtrInst *GEPI, Instruction *MemI,
unsigned &Idx) {
if (GEPI->getNumOperands() < 2)
return false;
// Find the first non-zero index of a GEP. If all indices are zero, return
// one past the last index.
auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
unsigned I = 1;
for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
Value *V = GEPI->getOperand(I);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
if (CI->isZero())
continue;
break;
}
return I;
};
// Skip through initial 'zero' indices, and find the corresponding pointer
// type. See if the next index is not a constant.
Idx = FirstNZIdx(GEPI);
if (Idx == GEPI->getNumOperands())
return false;
if (isa<Constant>(GEPI->getOperand(Idx)))
return false;
SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
Type *SourceElementType = GEPI->getSourceElementType();
// Size information about scalable vectors is not available, so we cannot
// deduce whether indexing at n is undefined behaviour or not. Bail out.
if (isa<ScalableVectorType>(SourceElementType))
return false;
Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops);
if (!AllocTy || !AllocTy->isSized())
return false;
const DataLayout &DL = IC.getDataLayout();
uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize();
// If there are more indices after the one we might replace with a zero, make
// sure they're all non-negative. If any of them are negative, the overall
// address being computed might be before the base address determined by the
// first non-zero index.
auto IsAllNonNegative = [&]() {
for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
if (Known.isNonNegative())
continue;
return false;
}
return true;
};
// FIXME: If the GEP is not inbounds, and there are extra indices after the
// one we'll replace, those could cause the address computation to wrap
// (rendering the IsAllNonNegative() check below insufficient). We can do
// better, ignoring zero indices (and other indices we can prove small
// enough not to wrap).
if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
return false;
// Note that isObjectSizeLessThanOrEq will return true only if the pointer is
// also known to be dereferenceable.
return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
IsAllNonNegative();
}
// If we're indexing into an object with a variable index for the memory
// access, but the object has only one element, we can assume that the index
// will always be zero. If we replace the GEP, return it.
template <typename T>
static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr,
T &MemI) {
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
unsigned Idx;
if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
Instruction *NewGEPI = GEPI->clone();
NewGEPI->setOperand(Idx,
ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
NewGEPI->insertBefore(GEPI);
MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
return NewGEPI;
}
}
return nullptr;
}
static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
return false;
auto *Ptr = SI.getPointerOperand();
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
Ptr = GEPI->getOperand(0);
return (isa<ConstantPointerNull>(Ptr) &&
!NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
}
static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
const Value *GEPI0 = GEPI->getOperand(0);
if (isa<ConstantPointerNull>(GEPI0) &&
!NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
return true;
}
if (isa<UndefValue>(Op) ||
(isa<ConstantPointerNull>(Op) &&
!NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
return true;
return false;
}
Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) {
Value *Op = LI.getOperand(0);
// Try to canonicalize the loaded type.
if (Instruction *Res = combineLoadToOperationType(*this, LI))
return Res;
// Attempt to improve the alignment.
Align KnownAlign = getOrEnforceKnownAlignment(
Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
if (KnownAlign > LI.getAlign())
LI.setAlignment(KnownAlign);
// Replace GEP indices if possible.
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
Worklist.push(NewGEPI);
return &LI;
}
if (Instruction *Res = unpackLoadToAggregate(*this, LI))
return Res;
// Do really simple store-to-load forwarding and load CSE, to catch cases
// where there are several consecutive memory accesses to the same location,
// separated by a few arithmetic operations.
BasicBlock::iterator BBI(LI);
bool IsLoadCSE = false;
if (Value *AvailableVal = FindAvailableLoadedValue(
&LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
if (IsLoadCSE)
combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
return replaceInstUsesWith(
LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
LI.getName() + ".cast"));
}
// None of the following transforms are legal for volatile/ordered atomic
// loads. Most of them do apply for unordered atomics.
if (!LI.isUnordered()) return nullptr;
// load(gep null, ...) -> unreachable
// load null/undef -> unreachable
// TODO: Consider a target hook for valid address spaces for this xforms.
if (canSimplifyNullLoadOrGEP(LI, Op)) {
// Insert a new store to null instruction before the load to indicate
// that this code is not reachable. We do this instead of inserting
// an unreachable instruction directly because we cannot modify the
// CFG.
StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
Constant::getNullValue(Op->getType()), &LI);
SI->setDebugLoc(LI.getDebugLoc());
return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
if (Op->hasOneUse()) {
// Change select and PHI nodes to select values instead of addresses: this
// helps alias analysis out a lot, allows many others simplifications, and
// exposes redundancy in the code.
//
// Note that we cannot do the transformation unless we know that the
// introduced loads cannot trap! Something like this is valid as long as
// the condition is always false: load (select bool %C, int* null, int* %G),
// but it would not be valid if we transformed it to load from null
// unconditionally.
//
if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
// load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
Align Alignment = LI.getAlign();
if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
Alignment, DL, SI) &&
isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
Alignment, DL, SI)) {
LoadInst *V1 =
Builder.CreateLoad(LI.getType(), SI->getOperand(1),
SI->getOperand(1)->getName() + ".val");
LoadInst *V2 =
Builder.CreateLoad(LI.getType(), SI->getOperand(2),
SI->getOperand(2)->getName() + ".val");
assert(LI.isUnordered() && "implied by above");
V1->setAlignment(Alignment);
V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
V2->setAlignment(Alignment);
V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
return SelectInst::Create(SI->getCondition(), V1, V2);
}
// load (select (cond, null, P)) -> load P
if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
!NullPointerIsDefined(SI->getFunction(),
LI.getPointerAddressSpace()))
return replaceOperand(LI, 0, SI->getOperand(2));
// load (select (cond, P, null)) -> load P
if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
!NullPointerIsDefined(SI->getFunction(),
LI.getPointerAddressSpace()))
return replaceOperand(LI, 0, SI->getOperand(1));
}
}
return nullptr;
}
/// Look for extractelement/insertvalue sequence that acts like a bitcast.
///
/// \returns underlying value that was "cast", or nullptr otherwise.
///
/// For example, if we have:
///
/// %E0 = extractelement <2 x double> %U, i32 0
/// %V0 = insertvalue [2 x double] undef, double %E0, 0
/// %E1 = extractelement <2 x double> %U, i32 1
/// %V1 = insertvalue [2 x double] %V0, double %E1, 1
///
/// and the layout of a <2 x double> is isomorphic to a [2 x double],
/// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
/// Note that %U may contain non-undef values where %V1 has undef.
static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) {
Value *U = nullptr;
while (auto *IV = dyn_cast<InsertValueInst>(V)) {
auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
if (!E)
return nullptr;
auto *W = E->getVectorOperand();
if (!U)
U = W;
else if (U != W)
return nullptr;
auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
return nullptr;
V = IV->getAggregateOperand();
}
if (!isa<UndefValue>(V) ||!U)
return nullptr;
auto *UT = cast<VectorType>(U->getType());
auto *VT = V->getType();
// Check that types UT and VT are bitwise isomorphic.
const auto &DL = IC.getDataLayout();
if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
return nullptr;
}
if (auto *AT = dyn_cast<ArrayType>(VT)) {
if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
return nullptr;
} else {
auto *ST = cast<StructType>(VT);
if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
return nullptr;
for (const auto *EltT : ST->elements()) {
if (EltT != UT->getElementType())
return nullptr;
}
}
return U;
}
/// Combine stores to match the type of value being stored.
///
/// The core idea here is that the memory does not have any intrinsic type and
/// where we can we should match the type of a store to the type of value being
/// stored.
///
/// However, this routine must never change the width of a store or the number of
/// stores as that would introduce a semantic change. This combine is expected to
/// be a semantic no-op which just allows stores to more closely model the types
/// of their incoming values.
///
/// Currently, we also refuse to change the precise type used for an atomic or
/// volatile store. This is debatable, and might be reasonable to change later.
/// However, it is risky in case some backend or other part of LLVM is relying
/// on the exact type stored to select appropriate atomic operations.
///
/// \returns true if the store was successfully combined away. This indicates
/// the caller must erase the store instruction. We have to let the caller erase
/// the store instruction as otherwise there is no way to signal whether it was
/// combined or not: IC.EraseInstFromFunction returns a null pointer.
static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) {
// FIXME: We could probably with some care handle both volatile and ordered
// atomic stores here but it isn't clear that this is important.
if (!SI.isUnordered())
return false;
// swifterror values can't be bitcasted.
if (SI.getPointerOperand()->isSwiftError())
return false;
Value *V = SI.getValueOperand();
// Fold away bit casts of the stored value by storing the original type.
if (auto *BC = dyn_cast<BitCastInst>(V)) {
assert(!BC->getType()->isX86_AMXTy() &&
"store to x86_amx* should not happen!");
V = BC->getOperand(0);
// Don't transform when the type is x86_amx, it makes the pass that lower
// x86_amx type happy.
if (V->getType()->isX86_AMXTy())
return false;
if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
combineStoreToNewValue(IC, SI, V);
return true;
}
}
if (Value *U = likeBitCastFromVector(IC, V))
if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
combineStoreToNewValue(IC, SI, U);
return true;
}
// FIXME: We should also canonicalize stores of vectors when their elements
// are cast to other types.
return false;
}
static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) {
// FIXME: We could probably with some care handle both volatile and atomic
// stores here but it isn't clear that this is important.
if (!SI.isSimple())
return false;
Value *V = SI.getValueOperand();
Type *T = V->getType();
if (!T->isAggregateType())
return false;
if (auto *ST = dyn_cast<StructType>(T)) {
// If the struct only have one element, we unpack.
unsigned Count = ST->getNumElements();
if (Count == 1) {
V = IC.Builder.CreateExtractValue(V, 0);
combineStoreToNewValue(IC, SI, V);
return true;
}
// We don't want to break loads with padding here as we'd loose
// the knowledge that padding exists for the rest of the pipeline.
const DataLayout &DL = IC.getDataLayout();
auto *SL = DL.getStructLayout(ST);
if (SL->hasPadding())
return false;
const auto Align = SI.getAlign();
SmallString<16> EltName = V->getName();
EltName += ".elt";
auto *Addr = SI.getPointerOperand();
SmallString<16> AddrName = Addr->getName();
AddrName += ".repack";
auto *IdxType = Type::getInt32Ty(ST->getContext());
auto *Zero = ConstantInt::get(IdxType, 0);
for (unsigned i = 0; i < Count; i++) {
Value *Indices[2] = {
Zero,
ConstantInt::get(IdxType, i),
};
auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
AddrName);
auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
AAMDNodes AAMD;
SI.getAAMetadata(AAMD);
NS->setAAMetadata(AAMD);
}
return true;
}
if (auto *AT = dyn_cast<ArrayType>(T)) {
// If the array only have one element, we unpack.
auto NumElements = AT->getNumElements();
if (NumElements == 1) {
V = IC.Builder.CreateExtractValue(V, 0);
combineStoreToNewValue(IC, SI, V);
return true;
}
// Bail out if the array is too large. Ideally we would like to optimize
// arrays of arbitrary size but this has a terrible impact on compile time.
// The threshold here is chosen arbitrarily, maybe needs a little bit of
// tuning.
if (NumElements > IC.MaxArraySizeForCombine)
return false;
const DataLayout &DL = IC.getDataLayout();
auto EltSize = DL.getTypeAllocSize(AT->getElementType());
const auto Align = SI.getAlign();
SmallString<16> EltName = V->getName();
EltName += ".elt";
auto *Addr = SI.getPointerOperand();
SmallString<16> AddrName = Addr->getName();
AddrName += ".repack";
auto *IdxType = Type::getInt64Ty(T->getContext());
auto *Zero = ConstantInt::get(IdxType, 0);
uint64_t Offset = 0;
for (uint64_t i = 0; i < NumElements; i++) {
Value *Indices[2] = {
Zero,
ConstantInt::get(IdxType, i),
};
auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
AddrName);
auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
auto EltAlign = commonAlignment(Align, Offset);
Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
AAMDNodes AAMD;
SI.getAAMetadata(AAMD);
NS->setAAMetadata(AAMD);
Offset += EltSize;
}
return true;
}
return false;
}
/// equivalentAddressValues - Test if A and B will obviously have the same
/// value. This includes recognizing that %t0 and %t1 will have the same
/// value in code like this:
/// %t0 = getelementptr \@a, 0, 3
/// store i32 0, i32* %t0
/// %t1 = getelementptr \@a, 0, 3
/// %t2 = load i32* %t1
///
static bool equivalentAddressValues(Value *A, Value *B) {
// Test if the values are trivially equivalent.
if (A == B) return true;
// Test if the values come form identical arithmetic instructions.
// This uses isIdenticalToWhenDefined instead of isIdenticalTo because
// its only used to compare two uses within the same basic block, which
// means that they'll always either have the same value or one of them
// will have an undefined value.
if (isa<BinaryOperator>(A) ||
isa<CastInst>(A) ||
isa<PHINode>(A) ||
isa<GetElementPtrInst>(A))
if (Instruction *BI = dyn_cast<Instruction>(B))
if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
return true;
// Otherwise they may not be equivalent.
return false;
}
/// Converts store (bitcast (load (bitcast (select ...)))) to
/// store (load (select ...)), where select is minmax:
/// select ((cmp load V1, load V2), V1, V2).
static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC,
StoreInst &SI) {
// bitcast?
if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
return false;
// load? integer?
Value *LoadAddr;
if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
return false;
auto *LI = cast<LoadInst>(SI.getValueOperand());
if (!LI->getType()->isIntegerTy())
return false;
Type *CmpLoadTy;
if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
return false;
// Make sure the type would actually change.
// This condition can be hit with chains of bitcasts.
if (LI->getType() == CmpLoadTy)
return false;
// Make sure we're not changing the size of the load/store.
const auto &DL = IC.getDataLayout();
if (DL.getTypeStoreSizeInBits(LI->getType()) !=
DL.getTypeStoreSizeInBits(CmpLoadTy))
return false;
if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
auto *SI = dyn_cast<StoreInst>(U);
return SI && SI->getPointerOperand() != LI &&
InstCombiner::peekThroughBitcast(SI->getPointerOperand()) !=
LoadAddr &&
!SI->getPointerOperand()->isSwiftError();
}))
return false;
IC.Builder.SetInsertPoint(LI);
LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
// Replace all the stores with stores of the newly loaded value.
for (auto *UI : LI->users()) {
auto *USI = cast<StoreInst>(UI);
IC.Builder.SetInsertPoint(USI);
combineStoreToNewValue(IC, *USI, NewLI);
}
IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
IC.eraseInstFromFunction(*LI);
return true;
}
Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) {
Value *Val = SI.getOperand(0);
Value *Ptr = SI.getOperand(1);
// Try to canonicalize the stored type.
if (combineStoreToValueType(*this, SI))
return eraseInstFromFunction(SI);
// Attempt to improve the alignment.
const Align KnownAlign = getOrEnforceKnownAlignment(
Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
if (KnownAlign > SI.getAlign())
SI.setAlignment(KnownAlign);
// Try to canonicalize the stored type.
if (unpackStoreToAggregate(*this, SI))
return eraseInstFromFunction(SI);
if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
return eraseInstFromFunction(SI);
// Replace GEP indices if possible.
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
Worklist.push(NewGEPI);
return &SI;
}
// Don't hack volatile/ordered stores.
// FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
if (!SI.isUnordered()) return nullptr;
// If the RHS is an alloca with a single use, zapify the store, making the
// alloca dead.
if (Ptr->hasOneUse()) {
if (isa<AllocaInst>(Ptr))
return eraseInstFromFunction(SI);
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
if (isa<AllocaInst>(GEP->getOperand(0))) {
if (GEP->getOperand(0)->hasOneUse())
return eraseInstFromFunction(SI);
}
}
}
// If we have a store to a location which is known constant, we can conclude
// that the store must be storing the constant value (else the memory
// wouldn't be constant), and this must be a noop.
if (AA->pointsToConstantMemory(Ptr))
return eraseInstFromFunction(SI);
// Do really simple DSE, to catch cases where there are several consecutive
// stores to the same location, separated by a few arithmetic operations. This
// situation often occurs with bitfield accesses.
BasicBlock::iterator BBI(SI);
for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
--ScanInsts) {
--BBI;
// Don't count debug info directives, lest they affect codegen,
// and we skip pointer-to-pointer bitcasts, which are NOPs.
if (isa<DbgInfoIntrinsic>(BBI) ||
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
ScanInsts++;
continue;
}
if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
// Prev store isn't volatile, and stores to the same location?
if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
SI.getOperand(1))) {
++NumDeadStore;
// Manually add back the original store to the worklist now, so it will
// be processed after the operands of the removed store, as this may
// expose additional DSE opportunities.
Worklist.push(&SI);
eraseInstFromFunction(*PrevSI);
return nullptr;
}
break;
}
// If this is a load, we have to stop. However, if the loaded value is from
// the pointer we're loading and is producing the pointer we're storing,
// then *this* store is dead (X = load P; store X -> P).
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
assert(SI.isUnordered() && "can't eliminate ordering operation");
return eraseInstFromFunction(SI);
}
// Otherwise, this is a load from some other location. Stores before it
// may not be dead.
break;
}
// Don't skip over loads, throws or things that can modify memory.
if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
break;
}
// store X, null -> turns into 'unreachable' in SimplifyCFG
// store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
if (canSimplifyNullStoreOrGEP(SI)) {
if (!isa<UndefValue>(Val))
return replaceOperand(SI, 0, UndefValue::get(Val->getType()));
return nullptr; // Do not modify these!
}
// store undef, Ptr -> noop
if (isa<UndefValue>(Val))
return eraseInstFromFunction(SI);
return nullptr;
}
/// Try to transform:
/// if () { *P = v1; } else { *P = v2 }
/// or:
/// *P = v1; if () { *P = v2; }
/// into a phi node with a store in the successor.
bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) {
if (!SI.isUnordered())
return false; // This code has not been audited for volatile/ordered case.
// Check if the successor block has exactly 2 incoming edges.
BasicBlock *StoreBB = SI.getParent();
BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
if (!DestBB->hasNPredecessors(2))
return false;
// Capture the other block (the block that doesn't contain our store).
pred_iterator PredIter = pred_begin(DestBB);
if (*PredIter == StoreBB)
++PredIter;
BasicBlock *OtherBB = *PredIter;
// Bail out if all of the relevant blocks aren't distinct. This can happen,
// for example, if SI is in an infinite loop.
if (StoreBB == DestBB || OtherBB == DestBB)
return false;
// Verify that the other block ends in a branch and is not otherwise empty.
BasicBlock::iterator BBI(OtherBB->getTerminator());
BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
if (!OtherBr || BBI == OtherBB->begin())
return false;
// If the other block ends in an unconditional branch, check for the 'if then
// else' case. There is an instruction before the branch.
StoreInst *OtherStore = nullptr;
if (OtherBr->isUnconditional()) {
--BBI;
// Skip over debugging info.
while (isa<DbgInfoIntrinsic>(BBI) ||
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
if (BBI==OtherBB->begin())
return false;
--BBI;
}
// If this isn't a store, isn't a store to the same location, or is not the
// right kind of store, bail out.
OtherStore = dyn_cast<StoreInst>(BBI);
if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
!SI.isSameOperationAs(OtherStore))
return false;
} else {
// Otherwise, the other block ended with a conditional branch. If one of the
// destinations is StoreBB, then we have the if/then case.
if (OtherBr->getSuccessor(0) != StoreBB &&
OtherBr->getSuccessor(1) != StoreBB)
return false;
// Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
// if/then triangle. See if there is a store to the same ptr as SI that
// lives in OtherBB.
for (;; --BBI) {
// Check to see if we find the matching store.
if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
if (OtherStore->getOperand(1) != SI.getOperand(1) ||
!SI.isSameOperationAs(OtherStore))
return false;
break;
}
// If we find something that may be using or overwriting the stored
// value, or if we run out of instructions, we can't do the transform.
if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
BBI->mayWriteToMemory() || BBI == OtherBB->begin())
return false;
}
// In order to eliminate the store in OtherBr, we have to make sure nothing
// reads or overwrites the stored value in StoreBB.
for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
// FIXME: This should really be AA driven.
if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
return false;
}
}
// Insert a PHI node now if we need it.
Value *MergedVal = OtherStore->getOperand(0);
// The debug locations of the original instructions might differ. Merge them.
DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
OtherStore->getDebugLoc());
if (MergedVal != SI.getOperand(0)) {
PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
PN->addIncoming(SI.getOperand(0), SI.getParent());
PN->addIncoming(OtherStore->getOperand(0), OtherBB);
MergedVal = InsertNewInstBefore(PN, DestBB->front());
PN->setDebugLoc(MergedLoc);
}
// Advance to a place where it is safe to insert the new store and insert it.
BBI = DestBB->getFirstInsertionPt();
StoreInst *NewSI =
new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
SI.getOrdering(), SI.getSyncScopeID());
InsertNewInstBefore(NewSI, *BBI);
NewSI->setDebugLoc(MergedLoc);
// If the two stores had AA tags, merge them.
AAMDNodes AATags;
SI.getAAMetadata(AATags);
if (AATags) {
OtherStore->getAAMetadata(AATags, /* Merge = */ true);
NewSI->setAAMetadata(AATags);
}
// Nuke the old stores.
eraseInstFromFunction(SI);
eraseInstFromFunction(*OtherStore);
return true;
}