2319 lines
80 KiB
C++
2319 lines
80 KiB
C++
//===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the visit functions for add, fadd, sub, and fsub.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/AlignOf.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
|
|
#include <cassert>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
namespace {
|
|
|
|
/// Class representing coefficient of floating-point addend.
|
|
/// This class needs to be highly efficient, which is especially true for
|
|
/// the constructor. As of I write this comment, the cost of the default
|
|
/// constructor is merely 4-byte-store-zero (Assuming compiler is able to
|
|
/// perform write-merging).
|
|
///
|
|
class FAddendCoef {
|
|
public:
|
|
// The constructor has to initialize a APFloat, which is unnecessary for
|
|
// most addends which have coefficient either 1 or -1. So, the constructor
|
|
// is expensive. In order to avoid the cost of the constructor, we should
|
|
// reuse some instances whenever possible. The pre-created instances
|
|
// FAddCombine::Add[0-5] embodies this idea.
|
|
FAddendCoef() = default;
|
|
~FAddendCoef();
|
|
|
|
// If possible, don't define operator+/operator- etc because these
|
|
// operators inevitably call FAddendCoef's constructor which is not cheap.
|
|
void operator=(const FAddendCoef &A);
|
|
void operator+=(const FAddendCoef &A);
|
|
void operator*=(const FAddendCoef &S);
|
|
|
|
void set(short C) {
|
|
assert(!insaneIntVal(C) && "Insane coefficient");
|
|
IsFp = false; IntVal = C;
|
|
}
|
|
|
|
void set(const APFloat& C);
|
|
|
|
void negate();
|
|
|
|
bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
|
|
Value *getValue(Type *) const;
|
|
|
|
bool isOne() const { return isInt() && IntVal == 1; }
|
|
bool isTwo() const { return isInt() && IntVal == 2; }
|
|
bool isMinusOne() const { return isInt() && IntVal == -1; }
|
|
bool isMinusTwo() const { return isInt() && IntVal == -2; }
|
|
|
|
private:
|
|
bool insaneIntVal(int V) { return V > 4 || V < -4; }
|
|
|
|
APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
|
|
|
|
const APFloat *getFpValPtr() const {
|
|
return reinterpret_cast<const APFloat *>(&FpValBuf);
|
|
}
|
|
|
|
const APFloat &getFpVal() const {
|
|
assert(IsFp && BufHasFpVal && "Incorret state");
|
|
return *getFpValPtr();
|
|
}
|
|
|
|
APFloat &getFpVal() {
|
|
assert(IsFp && BufHasFpVal && "Incorret state");
|
|
return *getFpValPtr();
|
|
}
|
|
|
|
bool isInt() const { return !IsFp; }
|
|
|
|
// If the coefficient is represented by an integer, promote it to a
|
|
// floating point.
|
|
void convertToFpType(const fltSemantics &Sem);
|
|
|
|
// Construct an APFloat from a signed integer.
|
|
// TODO: We should get rid of this function when APFloat can be constructed
|
|
// from an *SIGNED* integer.
|
|
APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
|
|
|
|
bool IsFp = false;
|
|
|
|
// True iff FpValBuf contains an instance of APFloat.
|
|
bool BufHasFpVal = false;
|
|
|
|
// The integer coefficient of an individual addend is either 1 or -1,
|
|
// and we try to simplify at most 4 addends from neighboring at most
|
|
// two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
|
|
// is overkill of this end.
|
|
short IntVal = 0;
|
|
|
|
AlignedCharArrayUnion<APFloat> FpValBuf;
|
|
};
|
|
|
|
/// FAddend is used to represent floating-point addend. An addend is
|
|
/// represented as <C, V>, where the V is a symbolic value, and C is a
|
|
/// constant coefficient. A constant addend is represented as <C, 0>.
|
|
class FAddend {
|
|
public:
|
|
FAddend() = default;
|
|
|
|
void operator+=(const FAddend &T) {
|
|
assert((Val == T.Val) && "Symbolic-values disagree");
|
|
Coeff += T.Coeff;
|
|
}
|
|
|
|
Value *getSymVal() const { return Val; }
|
|
const FAddendCoef &getCoef() const { return Coeff; }
|
|
|
|
bool isConstant() const { return Val == nullptr; }
|
|
bool isZero() const { return Coeff.isZero(); }
|
|
|
|
void set(short Coefficient, Value *V) {
|
|
Coeff.set(Coefficient);
|
|
Val = V;
|
|
}
|
|
void set(const APFloat &Coefficient, Value *V) {
|
|
Coeff.set(Coefficient);
|
|
Val = V;
|
|
}
|
|
void set(const ConstantFP *Coefficient, Value *V) {
|
|
Coeff.set(Coefficient->getValueAPF());
|
|
Val = V;
|
|
}
|
|
|
|
void negate() { Coeff.negate(); }
|
|
|
|
/// Drill down the U-D chain one step to find the definition of V, and
|
|
/// try to break the definition into one or two addends.
|
|
static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
|
|
|
|
/// Similar to FAddend::drillDownOneStep() except that the value being
|
|
/// splitted is the addend itself.
|
|
unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
|
|
|
|
private:
|
|
void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
|
|
|
|
// This addend has the value of "Coeff * Val".
|
|
Value *Val = nullptr;
|
|
FAddendCoef Coeff;
|
|
};
|
|
|
|
/// FAddCombine is the class for optimizing an unsafe fadd/fsub along
|
|
/// with its neighboring at most two instructions.
|
|
///
|
|
class FAddCombine {
|
|
public:
|
|
FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
|
|
|
|
Value *simplify(Instruction *FAdd);
|
|
|
|
private:
|
|
using AddendVect = SmallVector<const FAddend *, 4>;
|
|
|
|
Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
|
|
|
|
/// Convert given addend to a Value
|
|
Value *createAddendVal(const FAddend &A, bool& NeedNeg);
|
|
|
|
/// Return the number of instructions needed to emit the N-ary addition.
|
|
unsigned calcInstrNumber(const AddendVect& Vect);
|
|
|
|
Value *createFSub(Value *Opnd0, Value *Opnd1);
|
|
Value *createFAdd(Value *Opnd0, Value *Opnd1);
|
|
Value *createFMul(Value *Opnd0, Value *Opnd1);
|
|
Value *createFNeg(Value *V);
|
|
Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
|
|
void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
|
|
|
|
// Debugging stuff are clustered here.
|
|
#ifndef NDEBUG
|
|
unsigned CreateInstrNum;
|
|
void initCreateInstNum() { CreateInstrNum = 0; }
|
|
void incCreateInstNum() { CreateInstrNum++; }
|
|
#else
|
|
void initCreateInstNum() {}
|
|
void incCreateInstNum() {}
|
|
#endif
|
|
|
|
InstCombiner::BuilderTy &Builder;
|
|
Instruction *Instr = nullptr;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of
|
|
// {FAddendCoef, FAddend, FAddition, FAddCombine}.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
FAddendCoef::~FAddendCoef() {
|
|
if (BufHasFpVal)
|
|
getFpValPtr()->~APFloat();
|
|
}
|
|
|
|
void FAddendCoef::set(const APFloat& C) {
|
|
APFloat *P = getFpValPtr();
|
|
|
|
if (isInt()) {
|
|
// As the buffer is meanless byte stream, we cannot call
|
|
// APFloat::operator=().
|
|
new(P) APFloat(C);
|
|
} else
|
|
*P = C;
|
|
|
|
IsFp = BufHasFpVal = true;
|
|
}
|
|
|
|
void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
|
|
if (!isInt())
|
|
return;
|
|
|
|
APFloat *P = getFpValPtr();
|
|
if (IntVal > 0)
|
|
new(P) APFloat(Sem, IntVal);
|
|
else {
|
|
new(P) APFloat(Sem, 0 - IntVal);
|
|
P->changeSign();
|
|
}
|
|
IsFp = BufHasFpVal = true;
|
|
}
|
|
|
|
APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
|
|
if (Val >= 0)
|
|
return APFloat(Sem, Val);
|
|
|
|
APFloat T(Sem, 0 - Val);
|
|
T.changeSign();
|
|
|
|
return T;
|
|
}
|
|
|
|
void FAddendCoef::operator=(const FAddendCoef &That) {
|
|
if (That.isInt())
|
|
set(That.IntVal);
|
|
else
|
|
set(That.getFpVal());
|
|
}
|
|
|
|
void FAddendCoef::operator+=(const FAddendCoef &That) {
|
|
RoundingMode RndMode = RoundingMode::NearestTiesToEven;
|
|
if (isInt() == That.isInt()) {
|
|
if (isInt())
|
|
IntVal += That.IntVal;
|
|
else
|
|
getFpVal().add(That.getFpVal(), RndMode);
|
|
return;
|
|
}
|
|
|
|
if (isInt()) {
|
|
const APFloat &T = That.getFpVal();
|
|
convertToFpType(T.getSemantics());
|
|
getFpVal().add(T, RndMode);
|
|
return;
|
|
}
|
|
|
|
APFloat &T = getFpVal();
|
|
T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
|
|
}
|
|
|
|
void FAddendCoef::operator*=(const FAddendCoef &That) {
|
|
if (That.isOne())
|
|
return;
|
|
|
|
if (That.isMinusOne()) {
|
|
negate();
|
|
return;
|
|
}
|
|
|
|
if (isInt() && That.isInt()) {
|
|
int Res = IntVal * (int)That.IntVal;
|
|
assert(!insaneIntVal(Res) && "Insane int value");
|
|
IntVal = Res;
|
|
return;
|
|
}
|
|
|
|
const fltSemantics &Semantic =
|
|
isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
|
|
|
|
if (isInt())
|
|
convertToFpType(Semantic);
|
|
APFloat &F0 = getFpVal();
|
|
|
|
if (That.isInt())
|
|
F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
|
|
APFloat::rmNearestTiesToEven);
|
|
else
|
|
F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
|
|
}
|
|
|
|
void FAddendCoef::negate() {
|
|
if (isInt())
|
|
IntVal = 0 - IntVal;
|
|
else
|
|
getFpVal().changeSign();
|
|
}
|
|
|
|
Value *FAddendCoef::getValue(Type *Ty) const {
|
|
return isInt() ?
|
|
ConstantFP::get(Ty, float(IntVal)) :
|
|
ConstantFP::get(Ty->getContext(), getFpVal());
|
|
}
|
|
|
|
// The definition of <Val> Addends
|
|
// =========================================
|
|
// A + B <1, A>, <1,B>
|
|
// A - B <1, A>, <1,B>
|
|
// 0 - B <-1, B>
|
|
// C * A, <C, A>
|
|
// A + C <1, A> <C, NULL>
|
|
// 0 +/- 0 <0, NULL> (corner case)
|
|
//
|
|
// Legend: A and B are not constant, C is constant
|
|
unsigned FAddend::drillValueDownOneStep
|
|
(Value *Val, FAddend &Addend0, FAddend &Addend1) {
|
|
Instruction *I = nullptr;
|
|
if (!Val || !(I = dyn_cast<Instruction>(Val)))
|
|
return 0;
|
|
|
|
unsigned Opcode = I->getOpcode();
|
|
|
|
if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
|
|
ConstantFP *C0, *C1;
|
|
Value *Opnd0 = I->getOperand(0);
|
|
Value *Opnd1 = I->getOperand(1);
|
|
if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
|
|
Opnd0 = nullptr;
|
|
|
|
if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
|
|
Opnd1 = nullptr;
|
|
|
|
if (Opnd0) {
|
|
if (!C0)
|
|
Addend0.set(1, Opnd0);
|
|
else
|
|
Addend0.set(C0, nullptr);
|
|
}
|
|
|
|
if (Opnd1) {
|
|
FAddend &Addend = Opnd0 ? Addend1 : Addend0;
|
|
if (!C1)
|
|
Addend.set(1, Opnd1);
|
|
else
|
|
Addend.set(C1, nullptr);
|
|
if (Opcode == Instruction::FSub)
|
|
Addend.negate();
|
|
}
|
|
|
|
if (Opnd0 || Opnd1)
|
|
return Opnd0 && Opnd1 ? 2 : 1;
|
|
|
|
// Both operands are zero. Weird!
|
|
Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
|
|
return 1;
|
|
}
|
|
|
|
if (I->getOpcode() == Instruction::FMul) {
|
|
Value *V0 = I->getOperand(0);
|
|
Value *V1 = I->getOperand(1);
|
|
if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
|
|
Addend0.set(C, V1);
|
|
return 1;
|
|
}
|
|
|
|
if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
|
|
Addend0.set(C, V0);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Try to break *this* addend into two addends. e.g. Suppose this addend is
|
|
// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
|
|
// i.e. <2.3, X> and <2.3, Y>.
|
|
unsigned FAddend::drillAddendDownOneStep
|
|
(FAddend &Addend0, FAddend &Addend1) const {
|
|
if (isConstant())
|
|
return 0;
|
|
|
|
unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
|
|
if (!BreakNum || Coeff.isOne())
|
|
return BreakNum;
|
|
|
|
Addend0.Scale(Coeff);
|
|
|
|
if (BreakNum == 2)
|
|
Addend1.Scale(Coeff);
|
|
|
|
return BreakNum;
|
|
}
|
|
|
|
Value *FAddCombine::simplify(Instruction *I) {
|
|
assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
|
|
"Expected 'reassoc'+'nsz' instruction");
|
|
|
|
// Currently we are not able to handle vector type.
|
|
if (I->getType()->isVectorTy())
|
|
return nullptr;
|
|
|
|
assert((I->getOpcode() == Instruction::FAdd ||
|
|
I->getOpcode() == Instruction::FSub) && "Expect add/sub");
|
|
|
|
// Save the instruction before calling other member-functions.
|
|
Instr = I;
|
|
|
|
FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
|
|
|
|
unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
|
|
|
|
// Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
|
|
unsigned Opnd0_ExpNum = 0;
|
|
unsigned Opnd1_ExpNum = 0;
|
|
|
|
if (!Opnd0.isConstant())
|
|
Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
|
|
|
|
// Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
|
|
if (OpndNum == 2 && !Opnd1.isConstant())
|
|
Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
|
|
|
|
// Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
|
|
if (Opnd0_ExpNum && Opnd1_ExpNum) {
|
|
AddendVect AllOpnds;
|
|
AllOpnds.push_back(&Opnd0_0);
|
|
AllOpnds.push_back(&Opnd1_0);
|
|
if (Opnd0_ExpNum == 2)
|
|
AllOpnds.push_back(&Opnd0_1);
|
|
if (Opnd1_ExpNum == 2)
|
|
AllOpnds.push_back(&Opnd1_1);
|
|
|
|
// Compute instruction quota. We should save at least one instruction.
|
|
unsigned InstQuota = 0;
|
|
|
|
Value *V0 = I->getOperand(0);
|
|
Value *V1 = I->getOperand(1);
|
|
InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
|
|
(!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
|
|
|
|
if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
|
|
return R;
|
|
}
|
|
|
|
if (OpndNum != 2) {
|
|
// The input instruction is : "I=0.0 +/- V". If the "V" were able to be
|
|
// splitted into two addends, say "V = X - Y", the instruction would have
|
|
// been optimized into "I = Y - X" in the previous steps.
|
|
//
|
|
const FAddendCoef &CE = Opnd0.getCoef();
|
|
return CE.isOne() ? Opnd0.getSymVal() : nullptr;
|
|
}
|
|
|
|
// step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
|
|
if (Opnd1_ExpNum) {
|
|
AddendVect AllOpnds;
|
|
AllOpnds.push_back(&Opnd0);
|
|
AllOpnds.push_back(&Opnd1_0);
|
|
if (Opnd1_ExpNum == 2)
|
|
AllOpnds.push_back(&Opnd1_1);
|
|
|
|
if (Value *R = simplifyFAdd(AllOpnds, 1))
|
|
return R;
|
|
}
|
|
|
|
// step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
|
|
if (Opnd0_ExpNum) {
|
|
AddendVect AllOpnds;
|
|
AllOpnds.push_back(&Opnd1);
|
|
AllOpnds.push_back(&Opnd0_0);
|
|
if (Opnd0_ExpNum == 2)
|
|
AllOpnds.push_back(&Opnd0_1);
|
|
|
|
if (Value *R = simplifyFAdd(AllOpnds, 1))
|
|
return R;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
|
|
unsigned AddendNum = Addends.size();
|
|
assert(AddendNum <= 4 && "Too many addends");
|
|
|
|
// For saving intermediate results;
|
|
unsigned NextTmpIdx = 0;
|
|
FAddend TmpResult[3];
|
|
|
|
// Points to the constant addend of the resulting simplified expression.
|
|
// If the resulting expr has constant-addend, this constant-addend is
|
|
// desirable to reside at the top of the resulting expression tree. Placing
|
|
// constant close to supper-expr(s) will potentially reveal some optimization
|
|
// opportunities in super-expr(s).
|
|
const FAddend *ConstAdd = nullptr;
|
|
|
|
// Simplified addends are placed <SimpVect>.
|
|
AddendVect SimpVect;
|
|
|
|
// The outer loop works on one symbolic-value at a time. Suppose the input
|
|
// addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
|
|
// The symbolic-values will be processed in this order: x, y, z.
|
|
for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
|
|
|
|
const FAddend *ThisAddend = Addends[SymIdx];
|
|
if (!ThisAddend) {
|
|
// This addend was processed before.
|
|
continue;
|
|
}
|
|
|
|
Value *Val = ThisAddend->getSymVal();
|
|
unsigned StartIdx = SimpVect.size();
|
|
SimpVect.push_back(ThisAddend);
|
|
|
|
// The inner loop collects addends sharing same symbolic-value, and these
|
|
// addends will be later on folded into a single addend. Following above
|
|
// example, if the symbolic value "y" is being processed, the inner loop
|
|
// will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
|
|
// be later on folded into "<b1+b2, y>".
|
|
for (unsigned SameSymIdx = SymIdx + 1;
|
|
SameSymIdx < AddendNum; SameSymIdx++) {
|
|
const FAddend *T = Addends[SameSymIdx];
|
|
if (T && T->getSymVal() == Val) {
|
|
// Set null such that next iteration of the outer loop will not process
|
|
// this addend again.
|
|
Addends[SameSymIdx] = nullptr;
|
|
SimpVect.push_back(T);
|
|
}
|
|
}
|
|
|
|
// If multiple addends share same symbolic value, fold them together.
|
|
if (StartIdx + 1 != SimpVect.size()) {
|
|
FAddend &R = TmpResult[NextTmpIdx ++];
|
|
R = *SimpVect[StartIdx];
|
|
for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
|
|
R += *SimpVect[Idx];
|
|
|
|
// Pop all addends being folded and push the resulting folded addend.
|
|
SimpVect.resize(StartIdx);
|
|
if (Val) {
|
|
if (!R.isZero()) {
|
|
SimpVect.push_back(&R);
|
|
}
|
|
} else {
|
|
// Don't push constant addend at this time. It will be the last element
|
|
// of <SimpVect>.
|
|
ConstAdd = &R;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
|
|
"out-of-bound access");
|
|
|
|
if (ConstAdd)
|
|
SimpVect.push_back(ConstAdd);
|
|
|
|
Value *Result;
|
|
if (!SimpVect.empty())
|
|
Result = createNaryFAdd(SimpVect, InstrQuota);
|
|
else {
|
|
// The addition is folded to 0.0.
|
|
Result = ConstantFP::get(Instr->getType(), 0.0);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
Value *FAddCombine::createNaryFAdd
|
|
(const AddendVect &Opnds, unsigned InstrQuota) {
|
|
assert(!Opnds.empty() && "Expect at least one addend");
|
|
|
|
// Step 1: Check if the # of instructions needed exceeds the quota.
|
|
|
|
unsigned InstrNeeded = calcInstrNumber(Opnds);
|
|
if (InstrNeeded > InstrQuota)
|
|
return nullptr;
|
|
|
|
initCreateInstNum();
|
|
|
|
// step 2: Emit the N-ary addition.
|
|
// Note that at most three instructions are involved in Fadd-InstCombine: the
|
|
// addition in question, and at most two neighboring instructions.
|
|
// The resulting optimized addition should have at least one less instruction
|
|
// than the original addition expression tree. This implies that the resulting
|
|
// N-ary addition has at most two instructions, and we don't need to worry
|
|
// about tree-height when constructing the N-ary addition.
|
|
|
|
Value *LastVal = nullptr;
|
|
bool LastValNeedNeg = false;
|
|
|
|
// Iterate the addends, creating fadd/fsub using adjacent two addends.
|
|
for (const FAddend *Opnd : Opnds) {
|
|
bool NeedNeg;
|
|
Value *V = createAddendVal(*Opnd, NeedNeg);
|
|
if (!LastVal) {
|
|
LastVal = V;
|
|
LastValNeedNeg = NeedNeg;
|
|
continue;
|
|
}
|
|
|
|
if (LastValNeedNeg == NeedNeg) {
|
|
LastVal = createFAdd(LastVal, V);
|
|
continue;
|
|
}
|
|
|
|
if (LastValNeedNeg)
|
|
LastVal = createFSub(V, LastVal);
|
|
else
|
|
LastVal = createFSub(LastVal, V);
|
|
|
|
LastValNeedNeg = false;
|
|
}
|
|
|
|
if (LastValNeedNeg) {
|
|
LastVal = createFNeg(LastVal);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
assert(CreateInstrNum == InstrNeeded &&
|
|
"Inconsistent in instruction numbers");
|
|
#endif
|
|
|
|
return LastVal;
|
|
}
|
|
|
|
Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
|
|
Value *V = Builder.CreateFSub(Opnd0, Opnd1);
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
createInstPostProc(I);
|
|
return V;
|
|
}
|
|
|
|
Value *FAddCombine::createFNeg(Value *V) {
|
|
Value *NewV = Builder.CreateFNeg(V);
|
|
if (Instruction *I = dyn_cast<Instruction>(NewV))
|
|
createInstPostProc(I, true); // fneg's don't receive instruction numbers.
|
|
return NewV;
|
|
}
|
|
|
|
Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
|
|
Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
createInstPostProc(I);
|
|
return V;
|
|
}
|
|
|
|
Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
|
|
Value *V = Builder.CreateFMul(Opnd0, Opnd1);
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
createInstPostProc(I);
|
|
return V;
|
|
}
|
|
|
|
void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
|
|
NewInstr->setDebugLoc(Instr->getDebugLoc());
|
|
|
|
// Keep track of the number of instruction created.
|
|
if (!NoNumber)
|
|
incCreateInstNum();
|
|
|
|
// Propagate fast-math flags
|
|
NewInstr->setFastMathFlags(Instr->getFastMathFlags());
|
|
}
|
|
|
|
// Return the number of instruction needed to emit the N-ary addition.
|
|
// NOTE: Keep this function in sync with createAddendVal().
|
|
unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
|
|
unsigned OpndNum = Opnds.size();
|
|
unsigned InstrNeeded = OpndNum - 1;
|
|
|
|
// The number of addends in the form of "(-1)*x".
|
|
unsigned NegOpndNum = 0;
|
|
|
|
// Adjust the number of instructions needed to emit the N-ary add.
|
|
for (const FAddend *Opnd : Opnds) {
|
|
if (Opnd->isConstant())
|
|
continue;
|
|
|
|
// The constant check above is really for a few special constant
|
|
// coefficients.
|
|
if (isa<UndefValue>(Opnd->getSymVal()))
|
|
continue;
|
|
|
|
const FAddendCoef &CE = Opnd->getCoef();
|
|
if (CE.isMinusOne() || CE.isMinusTwo())
|
|
NegOpndNum++;
|
|
|
|
// Let the addend be "c * x". If "c == +/-1", the value of the addend
|
|
// is immediately available; otherwise, it needs exactly one instruction
|
|
// to evaluate the value.
|
|
if (!CE.isMinusOne() && !CE.isOne())
|
|
InstrNeeded++;
|
|
}
|
|
return InstrNeeded;
|
|
}
|
|
|
|
// Input Addend Value NeedNeg(output)
|
|
// ================================================================
|
|
// Constant C C false
|
|
// <+/-1, V> V coefficient is -1
|
|
// <2/-2, V> "fadd V, V" coefficient is -2
|
|
// <C, V> "fmul V, C" false
|
|
//
|
|
// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
|
|
Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
|
|
const FAddendCoef &Coeff = Opnd.getCoef();
|
|
|
|
if (Opnd.isConstant()) {
|
|
NeedNeg = false;
|
|
return Coeff.getValue(Instr->getType());
|
|
}
|
|
|
|
Value *OpndVal = Opnd.getSymVal();
|
|
|
|
if (Coeff.isMinusOne() || Coeff.isOne()) {
|
|
NeedNeg = Coeff.isMinusOne();
|
|
return OpndVal;
|
|
}
|
|
|
|
if (Coeff.isTwo() || Coeff.isMinusTwo()) {
|
|
NeedNeg = Coeff.isMinusTwo();
|
|
return createFAdd(OpndVal, OpndVal);
|
|
}
|
|
|
|
NeedNeg = false;
|
|
return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
|
|
}
|
|
|
|
// Checks if any operand is negative and we can convert add to sub.
|
|
// This function checks for following negative patterns
|
|
// ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
|
|
// ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
|
|
// XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
|
|
static Value *checkForNegativeOperand(BinaryOperator &I,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
|
|
// This function creates 2 instructions to replace ADD, we need at least one
|
|
// of LHS or RHS to have one use to ensure benefit in transform.
|
|
if (!LHS->hasOneUse() && !RHS->hasOneUse())
|
|
return nullptr;
|
|
|
|
Value *X = nullptr, *Y = nullptr, *Z = nullptr;
|
|
const APInt *C1 = nullptr, *C2 = nullptr;
|
|
|
|
// if ONE is on other side, swap
|
|
if (match(RHS, m_Add(m_Value(X), m_One())))
|
|
std::swap(LHS, RHS);
|
|
|
|
if (match(LHS, m_Add(m_Value(X), m_One()))) {
|
|
// if XOR on other side, swap
|
|
if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
|
|
std::swap(X, RHS);
|
|
|
|
if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
|
|
// X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
|
|
// ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
|
|
if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
|
|
Value *NewAnd = Builder.CreateAnd(Z, *C1);
|
|
return Builder.CreateSub(RHS, NewAnd, "sub");
|
|
} else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
|
|
// X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
|
|
// ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
|
|
Value *NewOr = Builder.CreateOr(Z, ~(*C1));
|
|
return Builder.CreateSub(RHS, NewOr, "sub");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Restore LHS and RHS
|
|
LHS = I.getOperand(0);
|
|
RHS = I.getOperand(1);
|
|
|
|
// if XOR is on other side, swap
|
|
if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
|
|
std::swap(LHS, RHS);
|
|
|
|
// C2 is ODD
|
|
// LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
|
|
// ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
|
|
if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
|
|
if (C1->countTrailingZeros() == 0)
|
|
if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
|
|
Value *NewOr = Builder.CreateOr(Z, ~(*C2));
|
|
return Builder.CreateSub(RHS, NewOr, "sub");
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Wrapping flags may allow combining constants separated by an extend.
|
|
static Instruction *foldNoWrapAdd(BinaryOperator &Add,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
|
|
Type *Ty = Add.getType();
|
|
Constant *Op1C;
|
|
if (!match(Op1, m_Constant(Op1C)))
|
|
return nullptr;
|
|
|
|
// Try this match first because it results in an add in the narrow type.
|
|
// (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
|
|
Value *X;
|
|
const APInt *C1, *C2;
|
|
if (match(Op1, m_APInt(C1)) &&
|
|
match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
|
|
C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
|
|
Constant *NewC =
|
|
ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
|
|
return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
|
|
}
|
|
|
|
// More general combining of constants in the wide type.
|
|
// (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
|
|
Constant *NarrowC;
|
|
if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
|
|
Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
|
|
Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
|
|
Value *WideX = Builder.CreateSExt(X, Ty);
|
|
return BinaryOperator::CreateAdd(WideX, NewC);
|
|
}
|
|
// (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
|
|
if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
|
|
Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
|
|
Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
|
|
Value *WideX = Builder.CreateZExt(X, Ty);
|
|
return BinaryOperator::CreateAdd(WideX, NewC);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
|
|
Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
|
|
Constant *Op1C;
|
|
if (!match(Op1, m_Constant(Op1C)))
|
|
return nullptr;
|
|
|
|
if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
|
|
return NV;
|
|
|
|
Value *X;
|
|
Constant *Op00C;
|
|
|
|
// add (sub C1, X), C2 --> sub (add C1, C2), X
|
|
if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
|
|
return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
|
|
|
|
Value *Y;
|
|
|
|
// add (sub X, Y), -1 --> add (not Y), X
|
|
if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
|
|
match(Op1, m_AllOnes()))
|
|
return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
|
|
|
|
// zext(bool) + C -> bool ? C + 1 : C
|
|
if (match(Op0, m_ZExt(m_Value(X))) &&
|
|
X->getType()->getScalarSizeInBits() == 1)
|
|
return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
|
|
// sext(bool) + C -> bool ? C - 1 : C
|
|
if (match(Op0, m_SExt(m_Value(X))) &&
|
|
X->getType()->getScalarSizeInBits() == 1)
|
|
return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
|
|
|
|
// ~X + C --> (C-1) - X
|
|
if (match(Op0, m_Not(m_Value(X))))
|
|
return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X);
|
|
|
|
const APInt *C;
|
|
if (!match(Op1, m_APInt(C)))
|
|
return nullptr;
|
|
|
|
// (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
|
|
const APInt *C2;
|
|
if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
|
|
return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
|
|
|
|
if (C->isSignMask()) {
|
|
// If wrapping is not allowed, then the addition must set the sign bit:
|
|
// X + (signmask) --> X | signmask
|
|
if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
|
|
return BinaryOperator::CreateOr(Op0, Op1);
|
|
|
|
// If wrapping is allowed, then the addition flips the sign bit of LHS:
|
|
// X + (signmask) --> X ^ signmask
|
|
return BinaryOperator::CreateXor(Op0, Op1);
|
|
}
|
|
|
|
// Is this add the last step in a convoluted sext?
|
|
// add(zext(xor i16 X, -32768), -32768) --> sext X
|
|
Type *Ty = Add.getType();
|
|
if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
|
|
C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
|
|
return CastInst::Create(Instruction::SExt, X, Ty);
|
|
|
|
if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
|
|
// (X ^ signmask) + C --> (X + (signmask ^ C))
|
|
if (C2->isSignMask())
|
|
return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
|
|
|
|
// If X has no high-bits set above an xor mask:
|
|
// add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
|
|
if (C2->isMask()) {
|
|
KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
|
|
if ((*C2 | LHSKnown.Zero).isAllOnesValue())
|
|
return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
|
|
}
|
|
|
|
// Look for a math+logic pattern that corresponds to sext-in-register of a
|
|
// value with cleared high bits. Convert that into a pair of shifts:
|
|
// add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
|
|
// add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
|
|
if (Op0->hasOneUse() && *C2 == -(*C)) {
|
|
unsigned BitWidth = Ty->getScalarSizeInBits();
|
|
unsigned ShAmt = 0;
|
|
if (C->isPowerOf2())
|
|
ShAmt = BitWidth - C->logBase2() - 1;
|
|
else if (C2->isPowerOf2())
|
|
ShAmt = BitWidth - C2->logBase2() - 1;
|
|
if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
|
|
0, &Add)) {
|
|
Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
|
|
Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
|
|
return BinaryOperator::CreateAShr(NewShl, ShAmtC);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (C->isOneValue() && Op0->hasOneUse()) {
|
|
// add (sext i1 X), 1 --> zext (not X)
|
|
// TODO: The smallest IR representation is (select X, 0, 1), and that would
|
|
// not require the one-use check. But we need to remove a transform in
|
|
// visitSelect and make sure that IR value tracking for select is equal or
|
|
// better than for these ops.
|
|
if (match(Op0, m_SExt(m_Value(X))) &&
|
|
X->getType()->getScalarSizeInBits() == 1)
|
|
return new ZExtInst(Builder.CreateNot(X), Ty);
|
|
|
|
// Shifts and add used to flip and mask off the low bit:
|
|
// add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
|
|
const APInt *C3;
|
|
if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
|
|
C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
|
|
Value *NotX = Builder.CreateNot(X);
|
|
return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
|
|
}
|
|
}
|
|
|
|
// If all bits affected by the add are included in a high-bit-mask, do the
|
|
// add before the mask op:
|
|
// (X & 0xFF00) + xx00 --> (X + xx00) & 0xFF00
|
|
if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C2)))) &&
|
|
C2->isNegative() && C2->isShiftedMask() && *C == (*C & *C2)) {
|
|
Value *NewAdd = Builder.CreateAdd(X, ConstantInt::get(Ty, *C));
|
|
return BinaryOperator::CreateAnd(NewAdd, ConstantInt::get(Ty, *C2));
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Matches multiplication expression Op * C where C is a constant. Returns the
|
|
// constant value in C and the other operand in Op. Returns true if such a
|
|
// match is found.
|
|
static bool MatchMul(Value *E, Value *&Op, APInt &C) {
|
|
const APInt *AI;
|
|
if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
|
|
C = *AI;
|
|
return true;
|
|
}
|
|
if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
|
|
C = APInt(AI->getBitWidth(), 1);
|
|
C <<= *AI;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Matches remainder expression Op % C where C is a constant. Returns the
|
|
// constant value in C and the other operand in Op. Returns the signedness of
|
|
// the remainder operation in IsSigned. Returns true if such a match is
|
|
// found.
|
|
static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
|
|
const APInt *AI;
|
|
IsSigned = false;
|
|
if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
|
|
IsSigned = true;
|
|
C = *AI;
|
|
return true;
|
|
}
|
|
if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
|
|
C = *AI;
|
|
return true;
|
|
}
|
|
if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
|
|
C = *AI + 1;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Matches division expression Op / C with the given signedness as indicated
|
|
// by IsSigned, where C is a constant. Returns the constant value in C and the
|
|
// other operand in Op. Returns true if such a match is found.
|
|
static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
|
|
const APInt *AI;
|
|
if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
|
|
C = *AI;
|
|
return true;
|
|
}
|
|
if (!IsSigned) {
|
|
if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
|
|
C = *AI;
|
|
return true;
|
|
}
|
|
if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
|
|
C = APInt(AI->getBitWidth(), 1);
|
|
C <<= *AI;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns whether C0 * C1 with the given signedness overflows.
|
|
static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
|
|
bool overflow;
|
|
if (IsSigned)
|
|
(void)C0.smul_ov(C1, overflow);
|
|
else
|
|
(void)C0.umul_ov(C1, overflow);
|
|
return overflow;
|
|
}
|
|
|
|
// Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
|
|
// does not overflow.
|
|
Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
Value *X, *MulOpV;
|
|
APInt C0, MulOpC;
|
|
bool IsSigned;
|
|
// Match I = X % C0 + MulOpV * C0
|
|
if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
|
|
(MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
|
|
C0 == MulOpC) {
|
|
Value *RemOpV;
|
|
APInt C1;
|
|
bool Rem2IsSigned;
|
|
// Match MulOpC = RemOpV % C1
|
|
if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
|
|
IsSigned == Rem2IsSigned) {
|
|
Value *DivOpV;
|
|
APInt DivOpC;
|
|
// Match RemOpV = X / C0
|
|
if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
|
|
C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
|
|
Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
|
|
return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
|
|
: Builder.CreateURem(X, NewDivisor, "urem");
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Fold
|
|
/// (1 << NBits) - 1
|
|
/// Into:
|
|
/// ~(-(1 << NBits))
|
|
/// Because a 'not' is better for bit-tracking analysis and other transforms
|
|
/// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
|
|
static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *NBits;
|
|
if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
|
|
return nullptr;
|
|
|
|
Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
|
|
Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
|
|
// Be wary of constant folding.
|
|
if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
|
|
// Always NSW. But NUW propagates from `add`.
|
|
BOp->setHasNoSignedWrap();
|
|
BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
|
|
}
|
|
|
|
return BinaryOperator::CreateNot(NotMask, I.getName());
|
|
}
|
|
|
|
static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
|
|
assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
|
|
Type *Ty = I.getType();
|
|
auto getUAddSat = [&]() {
|
|
return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
|
|
};
|
|
|
|
// add (umin X, ~Y), Y --> uaddsat X, Y
|
|
Value *X, *Y;
|
|
if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
|
|
m_Deferred(Y))))
|
|
return CallInst::Create(getUAddSat(), { X, Y });
|
|
|
|
// add (umin X, ~C), C --> uaddsat X, C
|
|
const APInt *C, *NotC;
|
|
if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
|
|
*C == ~*NotC)
|
|
return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::
|
|
canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
|
|
BinaryOperator &I) {
|
|
assert((I.getOpcode() == Instruction::Add ||
|
|
I.getOpcode() == Instruction::Or ||
|
|
I.getOpcode() == Instruction::Sub) &&
|
|
"Expecting add/or/sub instruction");
|
|
|
|
// We have a subtraction/addition between a (potentially truncated) *logical*
|
|
// right-shift of X and a "select".
|
|
Value *X, *Select;
|
|
Instruction *LowBitsToSkip, *Extract;
|
|
if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
|
|
m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
|
|
m_Instruction(Extract))),
|
|
m_Value(Select))))
|
|
return nullptr;
|
|
|
|
// `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
|
|
if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
|
|
return nullptr;
|
|
|
|
Type *XTy = X->getType();
|
|
bool HadTrunc = I.getType() != XTy;
|
|
|
|
// If there was a truncation of extracted value, then we'll need to produce
|
|
// one extra instruction, so we need to ensure one instruction will go away.
|
|
if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
|
|
return nullptr;
|
|
|
|
// Extraction should extract high NBits bits, with shift amount calculated as:
|
|
// low bits to skip = shift bitwidth - high bits to extract
|
|
// The shift amount itself may be extended, and we need to look past zero-ext
|
|
// when matching NBits, that will matter for matching later.
|
|
Constant *C;
|
|
Value *NBits;
|
|
if (!match(
|
|
LowBitsToSkip,
|
|
m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
|
|
!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
|
|
APInt(C->getType()->getScalarSizeInBits(),
|
|
X->getType()->getScalarSizeInBits()))))
|
|
return nullptr;
|
|
|
|
// Sign-extending value can be zero-extended if we `sub`tract it,
|
|
// or sign-extended otherwise.
|
|
auto SkipExtInMagic = [&I](Value *&V) {
|
|
if (I.getOpcode() == Instruction::Sub)
|
|
match(V, m_ZExtOrSelf(m_Value(V)));
|
|
else
|
|
match(V, m_SExtOrSelf(m_Value(V)));
|
|
};
|
|
|
|
// Now, finally validate the sign-extending magic.
|
|
// `select` itself may be appropriately extended, look past that.
|
|
SkipExtInMagic(Select);
|
|
|
|
ICmpInst::Predicate Pred;
|
|
const APInt *Thr;
|
|
Value *SignExtendingValue, *Zero;
|
|
bool ShouldSignext;
|
|
// It must be a select between two values we will later establish to be a
|
|
// sign-extending value and a zero constant. The condition guarding the
|
|
// sign-extension must be based on a sign bit of the same X we had in `lshr`.
|
|
if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
|
|
m_Value(SignExtendingValue), m_Value(Zero))) ||
|
|
!isSignBitCheck(Pred, *Thr, ShouldSignext))
|
|
return nullptr;
|
|
|
|
// icmp-select pair is commutative.
|
|
if (!ShouldSignext)
|
|
std::swap(SignExtendingValue, Zero);
|
|
|
|
// If we should not perform sign-extension then we must add/or/subtract zero.
|
|
if (!match(Zero, m_Zero()))
|
|
return nullptr;
|
|
// Otherwise, it should be some constant, left-shifted by the same NBits we
|
|
// had in `lshr`. Said left-shift can also be appropriately extended.
|
|
// Again, we must look past zero-ext when looking for NBits.
|
|
SkipExtInMagic(SignExtendingValue);
|
|
Constant *SignExtendingValueBaseConstant;
|
|
if (!match(SignExtendingValue,
|
|
m_Shl(m_Constant(SignExtendingValueBaseConstant),
|
|
m_ZExtOrSelf(m_Specific(NBits)))))
|
|
return nullptr;
|
|
// If we `sub`, then the constant should be one, else it should be all-ones.
|
|
if (I.getOpcode() == Instruction::Sub
|
|
? !match(SignExtendingValueBaseConstant, m_One())
|
|
: !match(SignExtendingValueBaseConstant, m_AllOnes()))
|
|
return nullptr;
|
|
|
|
auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
|
|
Extract->getName() + ".sext");
|
|
NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
|
|
if (!HadTrunc)
|
|
return NewAShr;
|
|
|
|
Builder.Insert(NewAShr);
|
|
return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
|
|
}
|
|
|
|
/// This is a specialization of a more general transform from
|
|
/// SimplifyUsingDistributiveLaws. If that code can be made to work optimally
|
|
/// for multi-use cases or propagating nsw/nuw, then we would not need this.
|
|
static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
// TODO: Also handle mul by doubling the shift amount?
|
|
assert((I.getOpcode() == Instruction::Add ||
|
|
I.getOpcode() == Instruction::Sub) &&
|
|
"Expected add/sub");
|
|
auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
|
|
auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
|
|
if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
|
|
return nullptr;
|
|
|
|
Value *X, *Y, *ShAmt;
|
|
if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
|
|
!match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
|
|
return nullptr;
|
|
|
|
// No-wrap propagates only when all ops have no-wrap.
|
|
bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
|
|
Op1->hasNoSignedWrap();
|
|
bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
|
|
Op1->hasNoUnsignedWrap();
|
|
|
|
// add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
|
|
Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
|
|
if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
|
|
NewI->setHasNoSignedWrap(HasNSW);
|
|
NewI->setHasNoUnsignedWrap(HasNUW);
|
|
}
|
|
auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
|
|
NewShl->setHasNoSignedWrap(HasNSW);
|
|
NewShl->setHasNoUnsignedWrap(HasNUW);
|
|
return NewShl;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
|
|
if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
|
|
I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
|
|
SQ.getWithInstruction(&I)))
|
|
return replaceInstUsesWith(I, V);
|
|
|
|
if (SimplifyAssociativeOrCommutative(I))
|
|
return &I;
|
|
|
|
if (Instruction *X = foldVectorBinop(I))
|
|
return X;
|
|
|
|
// (A*B)+(A*C) -> A*(B+C) etc
|
|
if (Value *V = SimplifyUsingDistributiveLaws(I))
|
|
return replaceInstUsesWith(I, V);
|
|
|
|
if (Instruction *R = factorizeMathWithShlOps(I, Builder))
|
|
return R;
|
|
|
|
if (Instruction *X = foldAddWithConstant(I))
|
|
return X;
|
|
|
|
if (Instruction *X = foldNoWrapAdd(I, Builder))
|
|
return X;
|
|
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
Type *Ty = I.getType();
|
|
if (Ty->isIntOrIntVectorTy(1))
|
|
return BinaryOperator::CreateXor(LHS, RHS);
|
|
|
|
// X + X --> X << 1
|
|
if (LHS == RHS) {
|
|
auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
|
|
Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
|
|
Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
|
|
return Shl;
|
|
}
|
|
|
|
Value *A, *B;
|
|
if (match(LHS, m_Neg(m_Value(A)))) {
|
|
// -A + -B --> -(A + B)
|
|
if (match(RHS, m_Neg(m_Value(B))))
|
|
return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
|
|
|
|
// -A + B --> B - A
|
|
return BinaryOperator::CreateSub(RHS, A);
|
|
}
|
|
|
|
// A + -B --> A - B
|
|
if (match(RHS, m_Neg(m_Value(B))))
|
|
return BinaryOperator::CreateSub(LHS, B);
|
|
|
|
if (Value *V = checkForNegativeOperand(I, Builder))
|
|
return replaceInstUsesWith(I, V);
|
|
|
|
// (A + 1) + ~B --> A - B
|
|
// ~B + (A + 1) --> A - B
|
|
// (~B + A) + 1 --> A - B
|
|
// (A + ~B) + 1 --> A - B
|
|
if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
|
|
match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
|
|
return BinaryOperator::CreateSub(A, B);
|
|
|
|
// (A + RHS) + RHS --> A + (RHS << 1)
|
|
if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
|
|
return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
|
|
|
|
// LHS + (A + LHS) --> A + (LHS << 1)
|
|
if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
|
|
return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
|
|
|
|
// X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
|
|
if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
|
|
|
|
// ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
|
|
const APInt *C1, *C2;
|
|
if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
|
|
APInt one(C2->getBitWidth(), 1);
|
|
APInt minusC1 = -(*C1);
|
|
if (minusC1 == (one << *C2)) {
|
|
Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
|
|
return BinaryOperator::CreateSRem(RHS, NewRHS);
|
|
}
|
|
}
|
|
|
|
// A+B --> A|B iff A and B have no bits set in common.
|
|
if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
|
|
return BinaryOperator::CreateOr(LHS, RHS);
|
|
|
|
// add (select X 0 (sub n A)) A --> select X A n
|
|
{
|
|
SelectInst *SI = dyn_cast<SelectInst>(LHS);
|
|
Value *A = RHS;
|
|
if (!SI) {
|
|
SI = dyn_cast<SelectInst>(RHS);
|
|
A = LHS;
|
|
}
|
|
if (SI && SI->hasOneUse()) {
|
|
Value *TV = SI->getTrueValue();
|
|
Value *FV = SI->getFalseValue();
|
|
Value *N;
|
|
|
|
// Can we fold the add into the argument of the select?
|
|
// We check both true and false select arguments for a matching subtract.
|
|
if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
|
|
// Fold the add into the true select value.
|
|
return SelectInst::Create(SI->getCondition(), N, A);
|
|
|
|
if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
|
|
// Fold the add into the false select value.
|
|
return SelectInst::Create(SI->getCondition(), A, N);
|
|
}
|
|
}
|
|
|
|
if (Instruction *Ext = narrowMathIfNoOverflow(I))
|
|
return Ext;
|
|
|
|
// (add (xor A, B) (and A, B)) --> (or A, B)
|
|
// (add (and A, B) (xor A, B)) --> (or A, B)
|
|
if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
|
|
m_c_And(m_Deferred(A), m_Deferred(B)))))
|
|
return BinaryOperator::CreateOr(A, B);
|
|
|
|
// (add (or A, B) (and A, B)) --> (add A, B)
|
|
// (add (and A, B) (or A, B)) --> (add A, B)
|
|
if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
|
|
m_c_And(m_Deferred(A), m_Deferred(B))))) {
|
|
// Replacing operands in-place to preserve nuw/nsw flags.
|
|
replaceOperand(I, 0, A);
|
|
replaceOperand(I, 1, B);
|
|
return &I;
|
|
}
|
|
|
|
// TODO(jingyue): Consider willNotOverflowSignedAdd and
|
|
// willNotOverflowUnsignedAdd to reduce the number of invocations of
|
|
// computeKnownBits.
|
|
bool Changed = false;
|
|
if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
|
|
Changed = true;
|
|
I.setHasNoSignedWrap(true);
|
|
}
|
|
if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
|
|
Changed = true;
|
|
I.setHasNoUnsignedWrap(true);
|
|
}
|
|
|
|
if (Instruction *V = canonicalizeLowbitMask(I, Builder))
|
|
return V;
|
|
|
|
if (Instruction *V =
|
|
canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
|
|
return V;
|
|
|
|
if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
|
|
return SatAdd;
|
|
|
|
// usub.sat(A, B) + B => umax(A, B)
|
|
if (match(&I, m_c_BinOp(
|
|
m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
|
|
m_Deferred(B)))) {
|
|
return replaceInstUsesWith(I,
|
|
Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
|
|
}
|
|
|
|
return Changed ? &I : nullptr;
|
|
}
|
|
|
|
/// Eliminate an op from a linear interpolation (lerp) pattern.
|
|
static Instruction *factorizeLerp(BinaryOperator &I,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *X, *Y, *Z;
|
|
if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
|
|
m_OneUse(m_FSub(m_FPOne(),
|
|
m_Value(Z))))),
|
|
m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
|
|
return nullptr;
|
|
|
|
// (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
|
|
Value *XY = Builder.CreateFSubFMF(X, Y, &I);
|
|
Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
|
|
return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
|
|
}
|
|
|
|
/// Factor a common operand out of fadd/fsub of fmul/fdiv.
|
|
static Instruction *factorizeFAddFSub(BinaryOperator &I,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
assert((I.getOpcode() == Instruction::FAdd ||
|
|
I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
|
|
assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
|
|
"FP factorization requires FMF");
|
|
|
|
if (Instruction *Lerp = factorizeLerp(I, Builder))
|
|
return Lerp;
|
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
Value *X, *Y, *Z;
|
|
bool IsFMul;
|
|
if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
|
|
match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
|
|
(match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
|
|
match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
|
|
IsFMul = true;
|
|
else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
|
|
match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
|
|
IsFMul = false;
|
|
else
|
|
return nullptr;
|
|
|
|
// (X * Z) + (Y * Z) --> (X + Y) * Z
|
|
// (X * Z) - (Y * Z) --> (X - Y) * Z
|
|
// (X / Z) + (Y / Z) --> (X + Y) / Z
|
|
// (X / Z) - (Y / Z) --> (X - Y) / Z
|
|
bool IsFAdd = I.getOpcode() == Instruction::FAdd;
|
|
Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
|
|
: Builder.CreateFSubFMF(X, Y, &I);
|
|
|
|
// Bail out if we just created a denormal constant.
|
|
// TODO: This is copied from a previous implementation. Is it necessary?
|
|
const APFloat *C;
|
|
if (match(XY, m_APFloat(C)) && !C->isNormal())
|
|
return nullptr;
|
|
|
|
return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
|
|
: BinaryOperator::CreateFDivFMF(XY, Z, &I);
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
|
|
if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
|
|
I.getFastMathFlags(),
|
|
SQ.getWithInstruction(&I)))
|
|
return replaceInstUsesWith(I, V);
|
|
|
|
if (SimplifyAssociativeOrCommutative(I))
|
|
return &I;
|
|
|
|
if (Instruction *X = foldVectorBinop(I))
|
|
return X;
|
|
|
|
if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
|
|
return FoldedFAdd;
|
|
|
|
// (-X) + Y --> Y - X
|
|
Value *X, *Y;
|
|
if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
|
|
return BinaryOperator::CreateFSubFMF(Y, X, &I);
|
|
|
|
// Similar to above, but look through fmul/fdiv for the negated term.
|
|
// (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
|
|
Value *Z;
|
|
if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
|
|
m_Value(Z)))) {
|
|
Value *XY = Builder.CreateFMulFMF(X, Y, &I);
|
|
return BinaryOperator::CreateFSubFMF(Z, XY, &I);
|
|
}
|
|
// (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
|
|
// (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
|
|
if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
|
|
m_Value(Z))) ||
|
|
match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
|
|
m_Value(Z)))) {
|
|
Value *XY = Builder.CreateFDivFMF(X, Y, &I);
|
|
return BinaryOperator::CreateFSubFMF(Z, XY, &I);
|
|
}
|
|
|
|
// Check for (fadd double (sitofp x), y), see if we can merge this into an
|
|
// integer add followed by a promotion.
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
|
|
Value *LHSIntVal = LHSConv->getOperand(0);
|
|
Type *FPType = LHSConv->getType();
|
|
|
|
// TODO: This check is overly conservative. In many cases known bits
|
|
// analysis can tell us that the result of the addition has less significant
|
|
// bits than the integer type can hold.
|
|
auto IsValidPromotion = [](Type *FTy, Type *ITy) {
|
|
Type *FScalarTy = FTy->getScalarType();
|
|
Type *IScalarTy = ITy->getScalarType();
|
|
|
|
// Do we have enough bits in the significand to represent the result of
|
|
// the integer addition?
|
|
unsigned MaxRepresentableBits =
|
|
APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
|
|
return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
|
|
};
|
|
|
|
// (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
|
|
// ... if the constant fits in the integer value. This is useful for things
|
|
// like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
|
|
// requires a constant pool load, and generally allows the add to be better
|
|
// instcombined.
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
|
|
if (IsValidPromotion(FPType, LHSIntVal->getType())) {
|
|
Constant *CI =
|
|
ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
|
|
if (LHSConv->hasOneUse() &&
|
|
ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
|
|
willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
|
|
// Insert the new integer add.
|
|
Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
|
|
return new SIToFPInst(NewAdd, I.getType());
|
|
}
|
|
}
|
|
|
|
// (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
|
|
if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
|
|
Value *RHSIntVal = RHSConv->getOperand(0);
|
|
// It's enough to check LHS types only because we require int types to
|
|
// be the same for this transform.
|
|
if (IsValidPromotion(FPType, LHSIntVal->getType())) {
|
|
// Only do this if x/y have the same type, if at least one of them has a
|
|
// single use (so we don't increase the number of int->fp conversions),
|
|
// and if the integer add will not overflow.
|
|
if (LHSIntVal->getType() == RHSIntVal->getType() &&
|
|
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
|
|
willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
|
|
// Insert the new integer add.
|
|
Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
|
|
return new SIToFPInst(NewAdd, I.getType());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle specials cases for FAdd with selects feeding the operation
|
|
if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
|
|
return replaceInstUsesWith(I, V);
|
|
|
|
if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
|
|
if (Instruction *F = factorizeFAddFSub(I, Builder))
|
|
return F;
|
|
if (Value *V = FAddCombine(Builder).simplify(&I))
|
|
return replaceInstUsesWith(I, V);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Optimize pointer differences into the same array into a size. Consider:
|
|
/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
|
|
/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
|
|
Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
|
|
Type *Ty, bool IsNUW) {
|
|
// If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
|
|
// this.
|
|
bool Swapped = false;
|
|
GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
|
|
if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
|
|
std::swap(LHS, RHS);
|
|
Swapped = true;
|
|
}
|
|
|
|
// Require at least one GEP with a common base pointer on both sides.
|
|
if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
|
|
// (gep X, ...) - X
|
|
if (LHSGEP->getOperand(0) == RHS) {
|
|
GEP1 = LHSGEP;
|
|
} else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
|
|
// (gep X, ...) - (gep X, ...)
|
|
if (LHSGEP->getOperand(0)->stripPointerCasts() ==
|
|
RHSGEP->getOperand(0)->stripPointerCasts()) {
|
|
GEP1 = LHSGEP;
|
|
GEP2 = RHSGEP;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!GEP1)
|
|
return nullptr;
|
|
|
|
if (GEP2) {
|
|
// (gep X, ...) - (gep X, ...)
|
|
//
|
|
// Avoid duplicating the arithmetic if there are more than one non-constant
|
|
// indices between the two GEPs and either GEP has a non-constant index and
|
|
// multiple users. If zero non-constant index, the result is a constant and
|
|
// there is no duplication. If one non-constant index, the result is an add
|
|
// or sub with a constant, which is no larger than the original code, and
|
|
// there's no duplicated arithmetic, even if either GEP has multiple
|
|
// users. If more than one non-constant indices combined, as long as the GEP
|
|
// with at least one non-constant index doesn't have multiple users, there
|
|
// is no duplication.
|
|
unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
|
|
unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
|
|
if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
|
|
((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
|
|
(NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Emit the offset of the GEP and an intptr_t.
|
|
Value *Result = EmitGEPOffset(GEP1);
|
|
|
|
// If this is a single inbounds GEP and the original sub was nuw,
|
|
// then the final multiplication is also nuw.
|
|
if (auto *I = dyn_cast<Instruction>(Result))
|
|
if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
|
|
I->getOpcode() == Instruction::Mul)
|
|
I->setHasNoUnsignedWrap();
|
|
|
|
// If we have a 2nd GEP of the same base pointer, subtract the offsets.
|
|
// If both GEPs are inbounds, then the subtract does not have signed overflow.
|
|
if (GEP2) {
|
|
Value *Offset = EmitGEPOffset(GEP2);
|
|
Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false,
|
|
GEP1->isInBounds() && GEP2->isInBounds());
|
|
}
|
|
|
|
// If we have p - gep(p, ...) then we have to negate the result.
|
|
if (Swapped)
|
|
Result = Builder.CreateNeg(Result, "diff.neg");
|
|
|
|
return Builder.CreateIntCast(Result, Ty, true);
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
|
|
if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
|
|
I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
|
|
SQ.getWithInstruction(&I)))
|
|
return replaceInstUsesWith(I, V);
|
|
|
|
if (Instruction *X = foldVectorBinop(I))
|
|
return X;
|
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
|
|
// If this is a 'B = x-(-A)', change to B = x+A.
|
|
// We deal with this without involving Negator to preserve NSW flag.
|
|
if (Value *V = dyn_castNegVal(Op1)) {
|
|
BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
|
|
|
|
if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
|
|
assert(BO->getOpcode() == Instruction::Sub &&
|
|
"Expected a subtraction operator!");
|
|
if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
|
|
Res->setHasNoSignedWrap(true);
|
|
} else {
|
|
if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
|
|
Res->setHasNoSignedWrap(true);
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
// Try this before Negator to preserve NSW flag.
|
|
if (Instruction *R = factorizeMathWithShlOps(I, Builder))
|
|
return R;
|
|
|
|
if (Constant *C = dyn_cast<Constant>(Op0)) {
|
|
Value *X;
|
|
Constant *C2;
|
|
|
|
// C-(X+C2) --> (C-C2)-X
|
|
if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
|
|
return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
|
|
}
|
|
|
|
auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
|
|
if (Instruction *Ext = narrowMathIfNoOverflow(I))
|
|
return Ext;
|
|
|
|
bool Changed = false;
|
|
if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
|
|
Changed = true;
|
|
I.setHasNoSignedWrap(true);
|
|
}
|
|
if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
|
|
Changed = true;
|
|
I.setHasNoUnsignedWrap(true);
|
|
}
|
|
|
|
return Changed ? &I : nullptr;
|
|
};
|
|
|
|
// First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
|
|
// and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
|
|
// a pure negation used by a select that looks like abs/nabs.
|
|
bool IsNegation = match(Op0, m_ZeroInt());
|
|
if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
|
|
const Instruction *UI = dyn_cast<Instruction>(U);
|
|
if (!UI)
|
|
return false;
|
|
return match(UI,
|
|
m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
|
|
match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
|
|
})) {
|
|
if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this))
|
|
return BinaryOperator::CreateAdd(NegOp1, Op0);
|
|
}
|
|
if (IsNegation)
|
|
return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
|
|
|
|
// (A*B)-(A*C) -> A*(B-C) etc
|
|
if (Value *V = SimplifyUsingDistributiveLaws(I))
|
|
return replaceInstUsesWith(I, V);
|
|
|
|
if (I.getType()->isIntOrIntVectorTy(1))
|
|
return BinaryOperator::CreateXor(Op0, Op1);
|
|
|
|
// Replace (-1 - A) with (~A).
|
|
if (match(Op0, m_AllOnes()))
|
|
return BinaryOperator::CreateNot(Op1);
|
|
|
|
// (~X) - (~Y) --> Y - X
|
|
Value *X, *Y;
|
|
if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
|
|
return BinaryOperator::CreateSub(Y, X);
|
|
|
|
// (X + -1) - Y --> ~Y + X
|
|
if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
|
|
return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
|
|
|
|
// Reassociate sub/add sequences to create more add instructions and
|
|
// reduce dependency chains:
|
|
// ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
|
|
Value *Z;
|
|
if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
|
|
m_Value(Z))))) {
|
|
Value *XZ = Builder.CreateAdd(X, Z);
|
|
Value *YW = Builder.CreateAdd(Y, Op1);
|
|
return BinaryOperator::CreateSub(XZ, YW);
|
|
}
|
|
|
|
auto m_AddRdx = [](Value *&Vec) {
|
|
return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
|
|
};
|
|
Value *V0, *V1;
|
|
if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
|
|
V0->getType() == V1->getType()) {
|
|
// Difference of sums is sum of differences:
|
|
// add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
|
|
Value *Sub = Builder.CreateSub(V0, V1);
|
|
Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
|
|
{Sub->getType()}, {Sub});
|
|
return replaceInstUsesWith(I, Rdx);
|
|
}
|
|
|
|
if (Constant *C = dyn_cast<Constant>(Op0)) {
|
|
Value *X;
|
|
if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
|
|
// C - (zext bool) --> bool ? C - 1 : C
|
|
return SelectInst::Create(X, InstCombiner::SubOne(C), C);
|
|
if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
|
|
// C - (sext bool) --> bool ? C + 1 : C
|
|
return SelectInst::Create(X, InstCombiner::AddOne(C), C);
|
|
|
|
// C - ~X == X + (1+C)
|
|
if (match(Op1, m_Not(m_Value(X))))
|
|
return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
|
|
|
|
// Try to fold constant sub into select arguments.
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
|
|
if (Instruction *R = FoldOpIntoSelect(I, SI))
|
|
return R;
|
|
|
|
// Try to fold constant sub into PHI values.
|
|
if (PHINode *PN = dyn_cast<PHINode>(Op1))
|
|
if (Instruction *R = foldOpIntoPhi(I, PN))
|
|
return R;
|
|
|
|
Constant *C2;
|
|
|
|
// C-(C2-X) --> X+(C-C2)
|
|
if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
|
|
return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
|
|
}
|
|
|
|
const APInt *Op0C;
|
|
if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) {
|
|
// Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
|
|
// zero.
|
|
KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
|
|
if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
|
|
return BinaryOperator::CreateXor(Op1, Op0);
|
|
}
|
|
|
|
{
|
|
Value *Y;
|
|
// X-(X+Y) == -Y X-(Y+X) == -Y
|
|
if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
|
|
return BinaryOperator::CreateNeg(Y);
|
|
|
|
// (X-Y)-X == -Y
|
|
if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
|
|
return BinaryOperator::CreateNeg(Y);
|
|
}
|
|
|
|
// (sub (or A, B) (and A, B)) --> (xor A, B)
|
|
{
|
|
Value *A, *B;
|
|
if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
|
|
match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
|
|
return BinaryOperator::CreateXor(A, B);
|
|
}
|
|
|
|
// (sub (add A, B) (or A, B)) --> (and A, B)
|
|
{
|
|
Value *A, *B;
|
|
if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
|
|
match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
|
|
return BinaryOperator::CreateAnd(A, B);
|
|
}
|
|
|
|
// (sub (add A, B) (and A, B)) --> (or A, B)
|
|
{
|
|
Value *A, *B;
|
|
if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
|
|
match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
|
|
return BinaryOperator::CreateOr(A, B);
|
|
}
|
|
|
|
// (sub (and A, B) (or A, B)) --> neg (xor A, B)
|
|
{
|
|
Value *A, *B;
|
|
if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
|
|
match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
|
|
(Op0->hasOneUse() || Op1->hasOneUse()))
|
|
return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
|
|
}
|
|
|
|
// (sub (or A, B), (xor A, B)) --> (and A, B)
|
|
{
|
|
Value *A, *B;
|
|
if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
|
|
match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
|
|
return BinaryOperator::CreateAnd(A, B);
|
|
}
|
|
|
|
// (sub (xor A, B) (or A, B)) --> neg (and A, B)
|
|
{
|
|
Value *A, *B;
|
|
if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
|
|
match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
|
|
(Op0->hasOneUse() || Op1->hasOneUse()))
|
|
return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
|
|
}
|
|
|
|
{
|
|
Value *Y;
|
|
// ((X | Y) - X) --> (~X & Y)
|
|
if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
|
|
return BinaryOperator::CreateAnd(
|
|
Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
|
|
}
|
|
|
|
{
|
|
// (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
|
|
Value *X;
|
|
if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
|
|
m_OneUse(m_Neg(m_Value(X))))))) {
|
|
return BinaryOperator::CreateNeg(Builder.CreateAnd(
|
|
Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
|
|
}
|
|
}
|
|
|
|
{
|
|
// (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
|
|
Constant *C;
|
|
if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
|
|
return BinaryOperator::CreateNeg(
|
|
Builder.CreateAnd(Op1, Builder.CreateNot(C)));
|
|
}
|
|
}
|
|
|
|
{
|
|
// If we have a subtraction between some value and a select between
|
|
// said value and something else, sink subtraction into select hands, i.e.:
|
|
// sub (select %Cond, %TrueVal, %FalseVal), %Op1
|
|
// ->
|
|
// select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
|
|
// or
|
|
// sub %Op0, (select %Cond, %TrueVal, %FalseVal)
|
|
// ->
|
|
// select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
|
|
// This will result in select between new subtraction and 0.
|
|
auto SinkSubIntoSelect =
|
|
[Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
|
|
auto SubBuilder) -> Instruction * {
|
|
Value *Cond, *TrueVal, *FalseVal;
|
|
if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
|
|
m_Value(FalseVal)))))
|
|
return nullptr;
|
|
if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
|
|
return nullptr;
|
|
// While it is really tempting to just create two subtractions and let
|
|
// InstCombine fold one of those to 0, it isn't possible to do so
|
|
// because of worklist visitation order. So ugly it is.
|
|
bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
|
|
Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
|
|
Constant *Zero = Constant::getNullValue(Ty);
|
|
SelectInst *NewSel =
|
|
SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
|
|
OtherHandOfSubIsTrueVal ? NewSub : Zero);
|
|
// Preserve prof metadata if any.
|
|
NewSel->copyMetadata(cast<Instruction>(*Select));
|
|
return NewSel;
|
|
};
|
|
if (Instruction *NewSel = SinkSubIntoSelect(
|
|
/*Select=*/Op0, /*OtherHandOfSub=*/Op1,
|
|
[Builder = &Builder, Op1](Value *OtherHandOfSelect) {
|
|
return Builder->CreateSub(OtherHandOfSelect,
|
|
/*OtherHandOfSub=*/Op1);
|
|
}))
|
|
return NewSel;
|
|
if (Instruction *NewSel = SinkSubIntoSelect(
|
|
/*Select=*/Op1, /*OtherHandOfSub=*/Op0,
|
|
[Builder = &Builder, Op0](Value *OtherHandOfSelect) {
|
|
return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
|
|
OtherHandOfSelect);
|
|
}))
|
|
return NewSel;
|
|
}
|
|
|
|
// (X - (X & Y)) --> (X & ~Y)
|
|
if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
|
|
(Op1->hasOneUse() || isa<Constant>(Y)))
|
|
return BinaryOperator::CreateAnd(
|
|
Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
|
|
|
|
{
|
|
// ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
|
|
// ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
|
|
// Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
|
|
// Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
|
|
// So long as O here is freely invertible, this will be neutral or a win.
|
|
Value *LHS, *RHS, *A;
|
|
Value *NotA = Op0, *MinMax = Op1;
|
|
SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
|
|
if (!SelectPatternResult::isMinOrMax(SPF)) {
|
|
NotA = Op1;
|
|
MinMax = Op0;
|
|
SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
|
|
}
|
|
if (SelectPatternResult::isMinOrMax(SPF) &&
|
|
match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
|
|
if (NotA == LHS)
|
|
std::swap(LHS, RHS);
|
|
// LHS is now O above and expected to have at least 2 uses (the min/max)
|
|
// NotA is epected to have 2 uses from the min/max and 1 from the sub.
|
|
if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
|
|
!NotA->hasNUsesOrMore(4)) {
|
|
// Note: We don't generate the inverse max/min, just create the not of
|
|
// it and let other folds do the rest.
|
|
Value *Not = Builder.CreateNot(MinMax);
|
|
if (NotA == Op0)
|
|
return BinaryOperator::CreateSub(Not, A);
|
|
else
|
|
return BinaryOperator::CreateSub(A, Not);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Optimize pointer differences into the same array into a size. Consider:
|
|
// &A[10] - &A[0]: we should compile this to "10".
|
|
Value *LHSOp, *RHSOp;
|
|
if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
|
|
match(Op1, m_PtrToInt(m_Value(RHSOp))))
|
|
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
|
|
I.hasNoUnsignedWrap()))
|
|
return replaceInstUsesWith(I, Res);
|
|
|
|
// trunc(p)-trunc(q) -> trunc(p-q)
|
|
if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
|
|
match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
|
|
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
|
|
/* IsNUW */ false))
|
|
return replaceInstUsesWith(I, Res);
|
|
|
|
// Canonicalize a shifty way to code absolute value to the common pattern.
|
|
// There are 2 potential commuted variants.
|
|
// We're relying on the fact that we only do this transform when the shift has
|
|
// exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
|
|
// instructions).
|
|
Value *A;
|
|
const APInt *ShAmt;
|
|
Type *Ty = I.getType();
|
|
if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
|
|
Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
|
|
match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
|
|
// B = ashr i32 A, 31 ; smear the sign bit
|
|
// sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1)
|
|
// --> (A < 0) ? -A : A
|
|
Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
|
|
// Copy the nuw/nsw flags from the sub to the negate.
|
|
Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
|
|
I.hasNoSignedWrap());
|
|
return SelectInst::Create(Cmp, Neg, A);
|
|
}
|
|
|
|
// If we are subtracting a low-bit masked subset of some value from an add
|
|
// of that same value with no low bits changed, that is clearing some low bits
|
|
// of the sum:
|
|
// sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
|
|
const APInt *AddC, *AndC;
|
|
if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
|
|
match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
|
|
unsigned BitWidth = Ty->getScalarSizeInBits();
|
|
unsigned Cttz = AddC->countTrailingZeros();
|
|
APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
|
|
if ((HighMask & *AndC).isNullValue())
|
|
return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
|
|
}
|
|
|
|
if (Instruction *V =
|
|
canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
|
|
return V;
|
|
|
|
return TryToNarrowDeduceFlags();
|
|
}
|
|
|
|
/// This eliminates floating-point negation in either 'fneg(X)' or
|
|
/// 'fsub(-0.0, X)' form by combining into a constant operand.
|
|
static Instruction *foldFNegIntoConstant(Instruction &I) {
|
|
Value *X;
|
|
Constant *C;
|
|
|
|
// Fold negation into constant operand. This is limited with one-use because
|
|
// fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv.
|
|
// -(X * C) --> X * (-C)
|
|
// FIXME: It's arguable whether these should be m_OneUse or not. The current
|
|
// belief is that the FNeg allows for better reassociation opportunities.
|
|
if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C))))))
|
|
return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
|
|
// -(X / C) --> X / (-C)
|
|
if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C))))))
|
|
return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
|
|
// -(C / X) --> (-C) / X
|
|
if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X))))))
|
|
return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
|
|
|
|
// With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
|
|
// -(X + C) --> -X + -C --> -C - X
|
|
if (I.hasNoSignedZeros() &&
|
|
match(&I, m_FNeg(m_OneUse(m_FAdd(m_Value(X), m_Constant(C))))))
|
|
return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *FNeg;
|
|
if (!match(&I, m_FNeg(m_Value(FNeg))))
|
|
return nullptr;
|
|
|
|
Value *X, *Y;
|
|
if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
|
|
return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
|
|
|
|
if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
|
|
return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
|
|
Value *Op = I.getOperand(0);
|
|
|
|
if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
|
|
getSimplifyQuery().getWithInstruction(&I)))
|
|
return replaceInstUsesWith(I, V);
|
|
|
|
if (Instruction *X = foldFNegIntoConstant(I))
|
|
return X;
|
|
|
|
Value *X, *Y;
|
|
|
|
// If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
|
|
if (I.hasNoSignedZeros() &&
|
|
match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
|
|
return BinaryOperator::CreateFSubFMF(Y, X, &I);
|
|
|
|
if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
|
|
return R;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
|
|
if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
|
|
I.getFastMathFlags(),
|
|
getSimplifyQuery().getWithInstruction(&I)))
|
|
return replaceInstUsesWith(I, V);
|
|
|
|
if (Instruction *X = foldVectorBinop(I))
|
|
return X;
|
|
|
|
// Subtraction from -0.0 is the canonical form of fneg.
|
|
// fsub -0.0, X ==> fneg X
|
|
// fsub nsz 0.0, X ==> fneg nsz X
|
|
//
|
|
// FIXME This matcher does not respect FTZ or DAZ yet:
|
|
// fsub -0.0, Denorm ==> +-0
|
|
// fneg Denorm ==> -Denorm
|
|
Value *Op;
|
|
if (match(&I, m_FNeg(m_Value(Op))))
|
|
return UnaryOperator::CreateFNegFMF(Op, &I);
|
|
|
|
if (Instruction *X = foldFNegIntoConstant(I))
|
|
return X;
|
|
|
|
if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
|
|
return R;
|
|
|
|
Value *X, *Y;
|
|
Constant *C;
|
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
// If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
|
|
// Canonicalize to fadd to make analysis easier.
|
|
// This can also help codegen because fadd is commutative.
|
|
// Note that if this fsub was really an fneg, the fadd with -0.0 will get
|
|
// killed later. We still limit that particular transform with 'hasOneUse'
|
|
// because an fneg is assumed better/cheaper than a generic fsub.
|
|
if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
|
|
if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
|
|
Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
|
|
return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
|
|
}
|
|
}
|
|
|
|
// (-X) - Op1 --> -(X + Op1)
|
|
if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
|
|
match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
|
|
Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
|
|
return UnaryOperator::CreateFNegFMF(FAdd, &I);
|
|
}
|
|
|
|
if (isa<Constant>(Op0))
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
|
|
if (Instruction *NV = FoldOpIntoSelect(I, SI))
|
|
return NV;
|
|
|
|
// X - C --> X + (-C)
|
|
// But don't transform constant expressions because there's an inverse fold
|
|
// for X + (-Y) --> X - Y.
|
|
if (match(Op1, m_ImmConstant(C)))
|
|
return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
|
|
|
|
// X - (-Y) --> X + Y
|
|
if (match(Op1, m_FNeg(m_Value(Y))))
|
|
return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
|
|
|
|
// Similar to above, but look through a cast of the negated value:
|
|
// X - (fptrunc(-Y)) --> X + fptrunc(Y)
|
|
Type *Ty = I.getType();
|
|
if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
|
|
return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
|
|
|
|
// X - (fpext(-Y)) --> X + fpext(Y)
|
|
if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
|
|
return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
|
|
|
|
// Similar to above, but look through fmul/fdiv of the negated value:
|
|
// Op0 - (-X * Y) --> Op0 + (X * Y)
|
|
// Op0 - (Y * -X) --> Op0 + (X * Y)
|
|
if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
|
|
Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
|
|
return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
|
|
}
|
|
// Op0 - (-X / Y) --> Op0 + (X / Y)
|
|
// Op0 - (X / -Y) --> Op0 + (X / Y)
|
|
if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
|
|
match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
|
|
Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
|
|
return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
|
|
}
|
|
|
|
// Handle special cases for FSub with selects feeding the operation
|
|
if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
|
|
return replaceInstUsesWith(I, V);
|
|
|
|
if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
|
|
// (Y - X) - Y --> -X
|
|
if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
|
|
return UnaryOperator::CreateFNegFMF(X, &I);
|
|
|
|
// Y - (X + Y) --> -X
|
|
// Y - (Y + X) --> -X
|
|
if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
|
|
return UnaryOperator::CreateFNegFMF(X, &I);
|
|
|
|
// (X * C) - X --> X * (C - 1.0)
|
|
if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
|
|
Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
|
|
return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
|
|
}
|
|
// X - (X * C) --> X * (1.0 - C)
|
|
if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
|
|
Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
|
|
return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
|
|
}
|
|
|
|
// Reassociate fsub/fadd sequences to create more fadd instructions and
|
|
// reduce dependency chains:
|
|
// ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
|
|
Value *Z;
|
|
if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
|
|
m_Value(Z))))) {
|
|
Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
|
|
Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
|
|
return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
|
|
}
|
|
|
|
auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
|
|
return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
|
|
m_Value(Vec)));
|
|
};
|
|
Value *A0, *A1, *V0, *V1;
|
|
if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
|
|
V0->getType() == V1->getType()) {
|
|
// Difference of sums is sum of differences:
|
|
// add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
|
|
Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
|
|
Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
|
|
{Sub->getType()}, {A0, Sub}, &I);
|
|
return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
|
|
}
|
|
|
|
if (Instruction *F = factorizeFAddFSub(I, Builder))
|
|
return F;
|
|
|
|
// TODO: This performs reassociative folds for FP ops. Some fraction of the
|
|
// functionality has been subsumed by simple pattern matching here and in
|
|
// InstSimplify. We should let a dedicated reassociation pass handle more
|
|
// complex pattern matching and remove this from InstCombine.
|
|
if (Value *V = FAddCombine(Builder).simplify(&I))
|
|
return replaceInstUsesWith(I, V);
|
|
|
|
// (X - Y) - Op1 --> X - (Y + Op1)
|
|
if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
|
|
Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
|
|
return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|