345 lines
14 KiB
C++
345 lines
14 KiB
C++
//=== X86CallingConv.cpp - X86 Custom Calling Convention Impl -*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the implementation of custom routines for the X86
|
|
// Calling Convention that aren't done by tablegen.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86CallingConv.h"
|
|
#include "X86Subtarget.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
|
|
using namespace llvm;
|
|
|
|
/// When regcall calling convention compiled to 32 bit arch, special treatment
|
|
/// is required for 64 bit masks.
|
|
/// The value should be assigned to two GPRs.
|
|
/// \return true if registers were allocated and false otherwise.
|
|
static bool CC_X86_32_RegCall_Assign2Regs(unsigned &ValNo, MVT &ValVT,
|
|
MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State) {
|
|
// List of GPR registers that are available to store values in regcall
|
|
// calling convention.
|
|
static const MCPhysReg RegList[] = {X86::EAX, X86::ECX, X86::EDX, X86::EDI,
|
|
X86::ESI};
|
|
|
|
// The vector will save all the available registers for allocation.
|
|
SmallVector<unsigned, 5> AvailableRegs;
|
|
|
|
// searching for the available registers.
|
|
for (auto Reg : RegList) {
|
|
if (!State.isAllocated(Reg))
|
|
AvailableRegs.push_back(Reg);
|
|
}
|
|
|
|
const size_t RequiredGprsUponSplit = 2;
|
|
if (AvailableRegs.size() < RequiredGprsUponSplit)
|
|
return false; // Not enough free registers - continue the search.
|
|
|
|
// Allocating the available registers.
|
|
for (unsigned I = 0; I < RequiredGprsUponSplit; I++) {
|
|
|
|
// Marking the register as located.
|
|
unsigned Reg = State.AllocateReg(AvailableRegs[I]);
|
|
|
|
// Since we previously made sure that 2 registers are available
|
|
// we expect that a real register number will be returned.
|
|
assert(Reg && "Expecting a register will be available");
|
|
|
|
// Assign the value to the allocated register
|
|
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
}
|
|
|
|
// Successful in allocating registers - stop scanning next rules.
|
|
return true;
|
|
}
|
|
|
|
static ArrayRef<MCPhysReg> CC_X86_VectorCallGetSSEs(const MVT &ValVT) {
|
|
if (ValVT.is512BitVector()) {
|
|
static const MCPhysReg RegListZMM[] = {X86::ZMM0, X86::ZMM1, X86::ZMM2,
|
|
X86::ZMM3, X86::ZMM4, X86::ZMM5};
|
|
return makeArrayRef(std::begin(RegListZMM), std::end(RegListZMM));
|
|
}
|
|
|
|
if (ValVT.is256BitVector()) {
|
|
static const MCPhysReg RegListYMM[] = {X86::YMM0, X86::YMM1, X86::YMM2,
|
|
X86::YMM3, X86::YMM4, X86::YMM5};
|
|
return makeArrayRef(std::begin(RegListYMM), std::end(RegListYMM));
|
|
}
|
|
|
|
static const MCPhysReg RegListXMM[] = {X86::XMM0, X86::XMM1, X86::XMM2,
|
|
X86::XMM3, X86::XMM4, X86::XMM5};
|
|
return makeArrayRef(std::begin(RegListXMM), std::end(RegListXMM));
|
|
}
|
|
|
|
static ArrayRef<MCPhysReg> CC_X86_64_VectorCallGetGPRs() {
|
|
static const MCPhysReg RegListGPR[] = {X86::RCX, X86::RDX, X86::R8, X86::R9};
|
|
return makeArrayRef(std::begin(RegListGPR), std::end(RegListGPR));
|
|
}
|
|
|
|
static bool CC_X86_VectorCallAssignRegister(unsigned &ValNo, MVT &ValVT,
|
|
MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State) {
|
|
|
|
ArrayRef<MCPhysReg> RegList = CC_X86_VectorCallGetSSEs(ValVT);
|
|
bool Is64bit = static_cast<const X86Subtarget &>(
|
|
State.getMachineFunction().getSubtarget())
|
|
.is64Bit();
|
|
|
|
for (auto Reg : RegList) {
|
|
// If the register is not marked as allocated - assign to it.
|
|
if (!State.isAllocated(Reg)) {
|
|
unsigned AssigedReg = State.AllocateReg(Reg);
|
|
assert(AssigedReg == Reg && "Expecting a valid register allocation");
|
|
State.addLoc(
|
|
CCValAssign::getReg(ValNo, ValVT, AssigedReg, LocVT, LocInfo));
|
|
return true;
|
|
}
|
|
// If the register is marked as shadow allocated - assign to it.
|
|
if (Is64bit && State.IsShadowAllocatedReg(Reg)) {
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Clang should ensure that hva marked vectors will have "
|
|
"an available register.");
|
|
return false;
|
|
}
|
|
|
|
/// Vectorcall calling convention has special handling for vector types or
|
|
/// HVA for 64 bit arch.
|
|
/// For HVAs shadow registers might be allocated on the first pass
|
|
/// and actual XMM registers are allocated on the second pass.
|
|
/// For vector types, actual XMM registers are allocated on the first pass.
|
|
/// \return true if registers were allocated and false otherwise.
|
|
static bool CC_X86_64_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
|
|
// On the second pass, go through the HVAs only.
|
|
if (ArgFlags.isSecArgPass()) {
|
|
if (ArgFlags.isHva())
|
|
return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo,
|
|
ArgFlags, State);
|
|
return true;
|
|
}
|
|
|
|
// Process only vector types as defined by vectorcall spec:
|
|
// "A vector type is either a floating-point type, for example,
|
|
// a float or double, or an SIMD vector type, for example, __m128 or __m256".
|
|
if (!(ValVT.isFloatingPoint() ||
|
|
(ValVT.isVector() && ValVT.getSizeInBits() >= 128))) {
|
|
// If R9 was already assigned it means that we are after the fourth element
|
|
// and because this is not an HVA / Vector type, we need to allocate
|
|
// shadow XMM register.
|
|
if (State.isAllocated(X86::R9)) {
|
|
// Assign shadow XMM register.
|
|
(void)State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
if (!ArgFlags.isHva() || ArgFlags.isHvaStart()) {
|
|
// Assign shadow GPR register.
|
|
(void)State.AllocateReg(CC_X86_64_VectorCallGetGPRs());
|
|
|
|
// Assign XMM register - (shadow for HVA and non-shadow for non HVA).
|
|
if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) {
|
|
// In Vectorcall Calling convention, additional shadow stack can be
|
|
// created on top of the basic 32 bytes of win64.
|
|
// It can happen if the fifth or sixth argument is vector type or HVA.
|
|
// At that case for each argument a shadow stack of 8 bytes is allocated.
|
|
const TargetRegisterInfo *TRI =
|
|
State.getMachineFunction().getSubtarget().getRegisterInfo();
|
|
if (TRI->regsOverlap(Reg, X86::XMM4) ||
|
|
TRI->regsOverlap(Reg, X86::XMM5))
|
|
State.AllocateStack(8, Align(8));
|
|
|
|
if (!ArgFlags.isHva()) {
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
return true; // Allocated a register - Stop the search.
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is an HVA - Stop the search,
|
|
// otherwise continue the search.
|
|
return ArgFlags.isHva();
|
|
}
|
|
|
|
/// Vectorcall calling convention has special handling for vector types or
|
|
/// HVA for 32 bit arch.
|
|
/// For HVAs actual XMM registers are allocated on the second pass.
|
|
/// For vector types, actual XMM registers are allocated on the first pass.
|
|
/// \return true if registers were allocated and false otherwise.
|
|
static bool CC_X86_32_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
|
|
// On the second pass, go through the HVAs only.
|
|
if (ArgFlags.isSecArgPass()) {
|
|
if (ArgFlags.isHva())
|
|
return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo,
|
|
ArgFlags, State);
|
|
return true;
|
|
}
|
|
|
|
// Process only vector types as defined by vectorcall spec:
|
|
// "A vector type is either a floating point type, for example,
|
|
// a float or double, or an SIMD vector type, for example, __m128 or __m256".
|
|
if (!(ValVT.isFloatingPoint() ||
|
|
(ValVT.isVector() && ValVT.getSizeInBits() >= 128))) {
|
|
return false;
|
|
}
|
|
|
|
if (ArgFlags.isHva())
|
|
return true; // If this is an HVA - Stop the search.
|
|
|
|
// Assign XMM register.
|
|
if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) {
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
return true;
|
|
}
|
|
|
|
// In case we did not find an available XMM register for a vector -
|
|
// pass it indirectly.
|
|
// It is similar to CCPassIndirect, with the addition of inreg.
|
|
if (!ValVT.isFloatingPoint()) {
|
|
LocVT = MVT::i32;
|
|
LocInfo = CCValAssign::Indirect;
|
|
ArgFlags.setInReg();
|
|
}
|
|
|
|
return false; // No register was assigned - Continue the search.
|
|
}
|
|
|
|
static bool CC_X86_AnyReg_Error(unsigned &, MVT &, MVT &,
|
|
CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
|
|
CCState &) {
|
|
llvm_unreachable("The AnyReg calling convention is only supported by the "
|
|
"stackmap and patchpoint intrinsics.");
|
|
// gracefully fallback to X86 C calling convention on Release builds.
|
|
return false;
|
|
}
|
|
|
|
static bool CC_X86_32_MCUInReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
|
|
// This is similar to CCAssignToReg<[EAX, EDX, ECX]>, but makes sure
|
|
// not to split i64 and double between a register and stack
|
|
static const MCPhysReg RegList[] = {X86::EAX, X86::EDX, X86::ECX};
|
|
static const unsigned NumRegs = sizeof(RegList) / sizeof(RegList[0]);
|
|
|
|
SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
|
|
|
|
// If this is the first part of an double/i64/i128, or if we're already
|
|
// in the middle of a split, add to the pending list. If this is not
|
|
// the end of the split, return, otherwise go on to process the pending
|
|
// list
|
|
if (ArgFlags.isSplit() || !PendingMembers.empty()) {
|
|
PendingMembers.push_back(
|
|
CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
|
|
if (!ArgFlags.isSplitEnd())
|
|
return true;
|
|
}
|
|
|
|
// If there are no pending members, we are not in the middle of a split,
|
|
// so do the usual inreg stuff.
|
|
if (PendingMembers.empty()) {
|
|
if (unsigned Reg = State.AllocateReg(RegList)) {
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
assert(ArgFlags.isSplitEnd());
|
|
|
|
// We now have the entire original argument in PendingMembers, so decide
|
|
// whether to use registers or the stack.
|
|
// Per the MCU ABI:
|
|
// a) To use registers, we need to have enough of them free to contain
|
|
// the entire argument.
|
|
// b) We never want to use more than 2 registers for a single argument.
|
|
|
|
unsigned FirstFree = State.getFirstUnallocated(RegList);
|
|
bool UseRegs = PendingMembers.size() <= std::min(2U, NumRegs - FirstFree);
|
|
|
|
for (auto &It : PendingMembers) {
|
|
if (UseRegs)
|
|
It.convertToReg(State.AllocateReg(RegList[FirstFree++]));
|
|
else
|
|
It.convertToMem(State.AllocateStack(4, Align(4)));
|
|
State.addLoc(It);
|
|
}
|
|
|
|
PendingMembers.clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// X86 interrupt handlers can only take one or two stack arguments, but if
|
|
/// there are two arguments, they are in the opposite order from the standard
|
|
/// convention. Therefore, we have to look at the argument count up front before
|
|
/// allocating stack for each argument.
|
|
static bool CC_X86_Intr(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
|
|
const MachineFunction &MF = State.getMachineFunction();
|
|
size_t ArgCount = State.getMachineFunction().getFunction().arg_size();
|
|
bool Is64Bit = static_cast<const X86Subtarget &>(MF.getSubtarget()).is64Bit();
|
|
unsigned SlotSize = Is64Bit ? 8 : 4;
|
|
unsigned Offset;
|
|
if (ArgCount == 1 && ValNo == 0) {
|
|
// If we have one argument, the argument is five stack slots big, at fixed
|
|
// offset zero.
|
|
Offset = State.AllocateStack(5 * SlotSize, Align(4));
|
|
} else if (ArgCount == 2 && ValNo == 0) {
|
|
// If we have two arguments, the stack slot is *after* the error code
|
|
// argument. Pretend it doesn't consume stack space, and account for it when
|
|
// we assign the second argument.
|
|
Offset = SlotSize;
|
|
} else if (ArgCount == 2 && ValNo == 1) {
|
|
// If this is the second of two arguments, it must be the error code. It
|
|
// appears first on the stack, and is then followed by the five slot
|
|
// interrupt struct.
|
|
Offset = 0;
|
|
(void)State.AllocateStack(6 * SlotSize, Align(4));
|
|
} else {
|
|
report_fatal_error("unsupported x86 interrupt prototype");
|
|
}
|
|
|
|
// FIXME: This should be accounted for in
|
|
// X86FrameLowering::getFrameIndexReference, not here.
|
|
if (Is64Bit && ArgCount == 2)
|
|
Offset += SlotSize;
|
|
|
|
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
|
|
return true;
|
|
}
|
|
|
|
static bool CC_X86_64_Pointer(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
|
|
if (LocVT != MVT::i64) {
|
|
LocVT = MVT::i64;
|
|
LocInfo = CCValAssign::ZExt;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Provides entry points of CC_X86 and RetCC_X86.
|
|
#include "X86GenCallingConv.inc"
|