572 lines
19 KiB
C++
572 lines
19 KiB
C++
//===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Define several functions to decode x86 specific shuffle semantics into a
|
|
// generic vector mask.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86ShuffleDecode.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Vector Mask Decoding
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace llvm {
|
|
|
|
void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
|
|
// Defaults the copying the dest value.
|
|
ShuffleMask.push_back(0);
|
|
ShuffleMask.push_back(1);
|
|
ShuffleMask.push_back(2);
|
|
ShuffleMask.push_back(3);
|
|
|
|
// Decode the immediate.
|
|
unsigned ZMask = Imm & 15;
|
|
unsigned CountD = (Imm >> 4) & 3;
|
|
unsigned CountS = (Imm >> 6) & 3;
|
|
|
|
// CountS selects which input element to use.
|
|
unsigned InVal = 4 + CountS;
|
|
// CountD specifies which element of destination to update.
|
|
ShuffleMask[CountD] = InVal;
|
|
// ZMask zaps values, potentially overriding the CountD elt.
|
|
if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero;
|
|
if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero;
|
|
if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero;
|
|
if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero;
|
|
}
|
|
|
|
void DecodeInsertElementMask(unsigned NumElts, unsigned Idx, unsigned Len,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
assert((Idx + Len) <= NumElts && "Insertion out of range");
|
|
|
|
for (unsigned i = 0; i != NumElts; ++i)
|
|
ShuffleMask.push_back(i);
|
|
for (unsigned i = 0; i != Len; ++i)
|
|
ShuffleMask[Idx + i] = NumElts + i;
|
|
}
|
|
|
|
// <3,1> or <6,7,2,3>
|
|
void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
|
|
for (unsigned i = NElts / 2; i != NElts; ++i)
|
|
ShuffleMask.push_back(NElts + i);
|
|
|
|
for (unsigned i = NElts / 2; i != NElts; ++i)
|
|
ShuffleMask.push_back(i);
|
|
}
|
|
|
|
// <0,2> or <0,1,4,5>
|
|
void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
|
|
for (unsigned i = 0; i != NElts / 2; ++i)
|
|
ShuffleMask.push_back(i);
|
|
|
|
for (unsigned i = 0; i != NElts / 2; ++i)
|
|
ShuffleMask.push_back(NElts + i);
|
|
}
|
|
|
|
void DecodeMOVSLDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
|
|
for (int i = 0, e = NumElts / 2; i < e; ++i) {
|
|
ShuffleMask.push_back(2 * i);
|
|
ShuffleMask.push_back(2 * i);
|
|
}
|
|
}
|
|
|
|
void DecodeMOVSHDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
|
|
for (int i = 0, e = NumElts / 2; i < e; ++i) {
|
|
ShuffleMask.push_back(2 * i + 1);
|
|
ShuffleMask.push_back(2 * i + 1);
|
|
}
|
|
}
|
|
|
|
void DecodeMOVDDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
|
|
const unsigned NumLaneElts = 2;
|
|
|
|
for (unsigned l = 0; l < NumElts; l += NumLaneElts)
|
|
for (unsigned i = 0; i < NumLaneElts; ++i)
|
|
ShuffleMask.push_back(l);
|
|
}
|
|
|
|
void DecodePSLLDQMask(unsigned NumElts, unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
const unsigned NumLaneElts = 16;
|
|
|
|
for (unsigned l = 0; l < NumElts; l += NumLaneElts)
|
|
for (unsigned i = 0; i < NumLaneElts; ++i) {
|
|
int M = SM_SentinelZero;
|
|
if (i >= Imm) M = i - Imm + l;
|
|
ShuffleMask.push_back(M);
|
|
}
|
|
}
|
|
|
|
void DecodePSRLDQMask(unsigned NumElts, unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
const unsigned NumLaneElts = 16;
|
|
|
|
for (unsigned l = 0; l < NumElts; l += NumLaneElts)
|
|
for (unsigned i = 0; i < NumLaneElts; ++i) {
|
|
unsigned Base = i + Imm;
|
|
int M = Base + l;
|
|
if (Base >= NumLaneElts) M = SM_SentinelZero;
|
|
ShuffleMask.push_back(M);
|
|
}
|
|
}
|
|
|
|
void DecodePALIGNRMask(unsigned NumElts, unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
const unsigned NumLaneElts = 16;
|
|
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
for (unsigned i = 0; i != NumLaneElts; ++i) {
|
|
unsigned Base = i + Imm;
|
|
// if i+imm is out of this lane then we actually need the other source
|
|
if (Base >= NumLaneElts) Base += NumElts - NumLaneElts;
|
|
ShuffleMask.push_back(Base + l);
|
|
}
|
|
}
|
|
}
|
|
|
|
void DecodeVALIGNMask(unsigned NumElts, unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
// Not all bits of the immediate are used so mask it.
|
|
assert(isPowerOf2_32(NumElts) && "NumElts should be power of 2");
|
|
Imm = Imm & (NumElts - 1);
|
|
for (unsigned i = 0; i != NumElts; ++i)
|
|
ShuffleMask.push_back(i + Imm);
|
|
}
|
|
|
|
void DecodePSHUFMask(unsigned NumElts, unsigned ScalarBits, unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned Size = NumElts * ScalarBits;
|
|
unsigned NumLanes = Size / 128;
|
|
if (NumLanes == 0) NumLanes = 1; // Handle MMX
|
|
unsigned NumLaneElts = NumElts / NumLanes;
|
|
|
|
uint32_t SplatImm = (Imm & 0xff) * 0x01010101;
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
for (unsigned i = 0; i != NumLaneElts; ++i) {
|
|
ShuffleMask.push_back(SplatImm % NumLaneElts + l);
|
|
SplatImm /= NumLaneElts;
|
|
}
|
|
}
|
|
}
|
|
|
|
void DecodePSHUFHWMask(unsigned NumElts, unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
for (unsigned l = 0; l != NumElts; l += 8) {
|
|
unsigned NewImm = Imm;
|
|
for (unsigned i = 0, e = 4; i != e; ++i) {
|
|
ShuffleMask.push_back(l + i);
|
|
}
|
|
for (unsigned i = 4, e = 8; i != e; ++i) {
|
|
ShuffleMask.push_back(l + 4 + (NewImm & 3));
|
|
NewImm >>= 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
void DecodePSHUFLWMask(unsigned NumElts, unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
for (unsigned l = 0; l != NumElts; l += 8) {
|
|
unsigned NewImm = Imm;
|
|
for (unsigned i = 0, e = 4; i != e; ++i) {
|
|
ShuffleMask.push_back(l + (NewImm & 3));
|
|
NewImm >>= 2;
|
|
}
|
|
for (unsigned i = 4, e = 8; i != e; ++i) {
|
|
ShuffleMask.push_back(l + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
void DecodePSWAPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned NumHalfElts = NumElts / 2;
|
|
|
|
for (unsigned l = 0; l != NumHalfElts; ++l)
|
|
ShuffleMask.push_back(l + NumHalfElts);
|
|
for (unsigned h = 0; h != NumHalfElts; ++h)
|
|
ShuffleMask.push_back(h);
|
|
}
|
|
|
|
void DecodeSHUFPMask(unsigned NumElts, unsigned ScalarBits,
|
|
unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned NumLaneElts = 128 / ScalarBits;
|
|
|
|
unsigned NewImm = Imm;
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
// each half of a lane comes from different source
|
|
for (unsigned s = 0; s != NumElts * 2; s += NumElts) {
|
|
for (unsigned i = 0; i != NumLaneElts / 2; ++i) {
|
|
ShuffleMask.push_back(NewImm % NumLaneElts + s + l);
|
|
NewImm /= NumLaneElts;
|
|
}
|
|
}
|
|
if (NumLaneElts == 4) NewImm = Imm; // reload imm
|
|
}
|
|
}
|
|
|
|
void DecodeUNPCKHMask(unsigned NumElts, unsigned ScalarBits,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
|
|
// independently on 128-bit lanes.
|
|
unsigned NumLanes = (NumElts * ScalarBits) / 128;
|
|
if (NumLanes == 0) NumLanes = 1; // Handle MMX
|
|
unsigned NumLaneElts = NumElts / NumLanes;
|
|
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) {
|
|
ShuffleMask.push_back(i); // Reads from dest/src1
|
|
ShuffleMask.push_back(i + NumElts); // Reads from src/src2
|
|
}
|
|
}
|
|
}
|
|
|
|
void DecodeUNPCKLMask(unsigned NumElts, unsigned ScalarBits,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
|
|
// independently on 128-bit lanes.
|
|
unsigned NumLanes = (NumElts * ScalarBits) / 128;
|
|
if (NumLanes == 0 ) NumLanes = 1; // Handle MMX
|
|
unsigned NumLaneElts = NumElts / NumLanes;
|
|
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) {
|
|
ShuffleMask.push_back(i); // Reads from dest/src1
|
|
ShuffleMask.push_back(i + NumElts); // Reads from src/src2
|
|
}
|
|
}
|
|
}
|
|
|
|
void DecodeVectorBroadcast(unsigned NumElts,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
ShuffleMask.append(NumElts, 0);
|
|
}
|
|
|
|
void DecodeSubVectorBroadcast(unsigned DstNumElts, unsigned SrcNumElts,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned Scale = DstNumElts / SrcNumElts;
|
|
|
|
for (unsigned i = 0; i != Scale; ++i)
|
|
for (unsigned j = 0; j != SrcNumElts; ++j)
|
|
ShuffleMask.push_back(j);
|
|
}
|
|
|
|
void decodeVSHUF64x2FamilyMask(unsigned NumElts, unsigned ScalarSize,
|
|
unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned NumElementsInLane = 128 / ScalarSize;
|
|
unsigned NumLanes = NumElts / NumElementsInLane;
|
|
|
|
for (unsigned l = 0; l != NumElts; l += NumElementsInLane) {
|
|
unsigned Index = (Imm % NumLanes) * NumElementsInLane;
|
|
Imm /= NumLanes; // Discard the bits we just used.
|
|
// We actually need the other source.
|
|
if (l >= (NumElts / 2))
|
|
Index += NumElts;
|
|
for (unsigned i = 0; i != NumElementsInLane; ++i)
|
|
ShuffleMask.push_back(Index + i);
|
|
}
|
|
}
|
|
|
|
void DecodeVPERM2X128Mask(unsigned NumElts, unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned HalfSize = NumElts / 2;
|
|
|
|
for (unsigned l = 0; l != 2; ++l) {
|
|
unsigned HalfMask = Imm >> (l * 4);
|
|
unsigned HalfBegin = (HalfMask & 0x3) * HalfSize;
|
|
for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i)
|
|
ShuffleMask.push_back((HalfMask & 8) ? SM_SentinelZero : (int)i);
|
|
}
|
|
}
|
|
|
|
void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
for (int i = 0, e = RawMask.size(); i < e; ++i) {
|
|
uint64_t M = RawMask[i];
|
|
if (UndefElts[i]) {
|
|
ShuffleMask.push_back(SM_SentinelUndef);
|
|
continue;
|
|
}
|
|
// For 256/512-bit vectors the base of the shuffle is the 128-bit
|
|
// subvector we're inside.
|
|
int Base = (i / 16) * 16;
|
|
// If the high bit (7) of the byte is set, the element is zeroed.
|
|
if (M & (1 << 7))
|
|
ShuffleMask.push_back(SM_SentinelZero);
|
|
else {
|
|
// Only the least significant 4 bits of the byte are used.
|
|
int Index = Base + (M & 0xf);
|
|
ShuffleMask.push_back(Index);
|
|
}
|
|
}
|
|
}
|
|
|
|
void DecodeBLENDMask(unsigned NumElts, unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
// If there are more than 8 elements in the vector, then any immediate blend
|
|
// mask wraps around.
|
|
unsigned Bit = i % 8;
|
|
ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElts + i : i);
|
|
}
|
|
}
|
|
|
|
void DecodeVPPERMMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
assert(RawMask.size() == 16 && "Illegal VPPERM shuffle mask size");
|
|
|
|
// VPPERM Operation
|
|
// Bits[4:0] - Byte Index (0 - 31)
|
|
// Bits[7:5] - Permute Operation
|
|
//
|
|
// Permute Operation:
|
|
// 0 - Source byte (no logical operation).
|
|
// 1 - Invert source byte.
|
|
// 2 - Bit reverse of source byte.
|
|
// 3 - Bit reverse of inverted source byte.
|
|
// 4 - 00h (zero - fill).
|
|
// 5 - FFh (ones - fill).
|
|
// 6 - Most significant bit of source byte replicated in all bit positions.
|
|
// 7 - Invert most significant bit of source byte and replicate in all bit positions.
|
|
for (int i = 0, e = RawMask.size(); i < e; ++i) {
|
|
if (UndefElts[i]) {
|
|
ShuffleMask.push_back(SM_SentinelUndef);
|
|
continue;
|
|
}
|
|
|
|
uint64_t M = RawMask[i];
|
|
uint64_t PermuteOp = (M >> 5) & 0x7;
|
|
if (PermuteOp == 4) {
|
|
ShuffleMask.push_back(SM_SentinelZero);
|
|
continue;
|
|
}
|
|
if (PermuteOp != 0) {
|
|
ShuffleMask.clear();
|
|
return;
|
|
}
|
|
|
|
uint64_t Index = M & 0x1F;
|
|
ShuffleMask.push_back((int)Index);
|
|
}
|
|
}
|
|
|
|
void DecodeVPERMMask(unsigned NumElts, unsigned Imm,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
for (unsigned l = 0; l != NumElts; l += 4)
|
|
for (unsigned i = 0; i != 4; ++i)
|
|
ShuffleMask.push_back(l + ((Imm >> (2 * i)) & 3));
|
|
}
|
|
|
|
void DecodeZeroExtendMask(unsigned SrcScalarBits, unsigned DstScalarBits,
|
|
unsigned NumDstElts, bool IsAnyExtend,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned Scale = DstScalarBits / SrcScalarBits;
|
|
assert(SrcScalarBits < DstScalarBits &&
|
|
"Expected zero extension mask to increase scalar size");
|
|
|
|
int Sentinel = IsAnyExtend ? SM_SentinelUndef : SM_SentinelZero;
|
|
for (unsigned i = 0; i != NumDstElts; i++) {
|
|
ShuffleMask.push_back(i);
|
|
ShuffleMask.append(Scale - 1, Sentinel);
|
|
}
|
|
}
|
|
|
|
void DecodeZeroMoveLowMask(unsigned NumElts,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
ShuffleMask.push_back(0);
|
|
ShuffleMask.append(NumElts - 1, SM_SentinelZero);
|
|
}
|
|
|
|
void DecodeScalarMoveMask(unsigned NumElts, bool IsLoad,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
// First element comes from the first element of second source.
|
|
// Remaining elements: Load zero extends / Move copies from first source.
|
|
ShuffleMask.push_back(NumElts);
|
|
for (unsigned i = 1; i < NumElts; i++)
|
|
ShuffleMask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i);
|
|
}
|
|
|
|
void DecodeEXTRQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned HalfElts = NumElts / 2;
|
|
|
|
// Only the bottom 6 bits are valid for each immediate.
|
|
Len &= 0x3F;
|
|
Idx &= 0x3F;
|
|
|
|
// We can only decode this bit extraction instruction as a shuffle if both the
|
|
// length and index work with whole elements.
|
|
if (0 != (Len % EltSize) || 0 != (Idx % EltSize))
|
|
return;
|
|
|
|
// A length of zero is equivalent to a bit length of 64.
|
|
if (Len == 0)
|
|
Len = 64;
|
|
|
|
// If the length + index exceeds the bottom 64 bits the result is undefined.
|
|
if ((Len + Idx) > 64) {
|
|
ShuffleMask.append(NumElts, SM_SentinelUndef);
|
|
return;
|
|
}
|
|
|
|
// Convert index and index to work with elements.
|
|
Len /= EltSize;
|
|
Idx /= EltSize;
|
|
|
|
// EXTRQ: Extract Len elements starting from Idx. Zero pad the remaining
|
|
// elements of the lower 64-bits. The upper 64-bits are undefined.
|
|
for (int i = 0; i != Len; ++i)
|
|
ShuffleMask.push_back(i + Idx);
|
|
for (int i = Len; i != (int)HalfElts; ++i)
|
|
ShuffleMask.push_back(SM_SentinelZero);
|
|
for (int i = HalfElts; i != (int)NumElts; ++i)
|
|
ShuffleMask.push_back(SM_SentinelUndef);
|
|
}
|
|
|
|
void DecodeINSERTQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned HalfElts = NumElts / 2;
|
|
|
|
// Only the bottom 6 bits are valid for each immediate.
|
|
Len &= 0x3F;
|
|
Idx &= 0x3F;
|
|
|
|
// We can only decode this bit insertion instruction as a shuffle if both the
|
|
// length and index work with whole elements.
|
|
if (0 != (Len % EltSize) || 0 != (Idx % EltSize))
|
|
return;
|
|
|
|
// A length of zero is equivalent to a bit length of 64.
|
|
if (Len == 0)
|
|
Len = 64;
|
|
|
|
// If the length + index exceeds the bottom 64 bits the result is undefined.
|
|
if ((Len + Idx) > 64) {
|
|
ShuffleMask.append(NumElts, SM_SentinelUndef);
|
|
return;
|
|
}
|
|
|
|
// Convert index and index to work with elements.
|
|
Len /= EltSize;
|
|
Idx /= EltSize;
|
|
|
|
// INSERTQ: Extract lowest Len elements from lower half of second source and
|
|
// insert over first source starting at Idx element. The upper 64-bits are
|
|
// undefined.
|
|
for (int i = 0; i != Idx; ++i)
|
|
ShuffleMask.push_back(i);
|
|
for (int i = 0; i != Len; ++i)
|
|
ShuffleMask.push_back(i + NumElts);
|
|
for (int i = Idx + Len; i != (int)HalfElts; ++i)
|
|
ShuffleMask.push_back(i);
|
|
for (int i = HalfElts; i != (int)NumElts; ++i)
|
|
ShuffleMask.push_back(SM_SentinelUndef);
|
|
}
|
|
|
|
void DecodeVPERMILPMask(unsigned NumElts, unsigned ScalarBits,
|
|
ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned VecSize = NumElts * ScalarBits;
|
|
unsigned NumLanes = VecSize / 128;
|
|
unsigned NumEltsPerLane = NumElts / NumLanes;
|
|
assert((VecSize == 128 || VecSize == 256 || VecSize == 512) &&
|
|
"Unexpected vector size");
|
|
assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size");
|
|
|
|
for (unsigned i = 0, e = RawMask.size(); i < e; ++i) {
|
|
if (UndefElts[i]) {
|
|
ShuffleMask.push_back(SM_SentinelUndef);
|
|
continue;
|
|
}
|
|
uint64_t M = RawMask[i];
|
|
M = (ScalarBits == 64 ? ((M >> 1) & 0x1) : (M & 0x3));
|
|
unsigned LaneOffset = i & ~(NumEltsPerLane - 1);
|
|
ShuffleMask.push_back((int)(LaneOffset + M));
|
|
}
|
|
}
|
|
|
|
void DecodeVPERMIL2PMask(unsigned NumElts, unsigned ScalarBits, unsigned M2Z,
|
|
ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
unsigned VecSize = NumElts * ScalarBits;
|
|
unsigned NumLanes = VecSize / 128;
|
|
unsigned NumEltsPerLane = NumElts / NumLanes;
|
|
assert((VecSize == 128 || VecSize == 256) && "Unexpected vector size");
|
|
assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size");
|
|
assert((NumElts == RawMask.size()) && "Unexpected mask size");
|
|
|
|
for (unsigned i = 0, e = RawMask.size(); i < e; ++i) {
|
|
if (UndefElts[i]) {
|
|
ShuffleMask.push_back(SM_SentinelUndef);
|
|
continue;
|
|
}
|
|
|
|
// VPERMIL2 Operation.
|
|
// Bits[3] - Match Bit.
|
|
// Bits[2:1] - (Per Lane) PD Shuffle Mask.
|
|
// Bits[2:0] - (Per Lane) PS Shuffle Mask.
|
|
uint64_t Selector = RawMask[i];
|
|
unsigned MatchBit = (Selector >> 3) & 0x1;
|
|
|
|
// M2Z[0:1] MatchBit
|
|
// 0Xb X Source selected by Selector index.
|
|
// 10b 0 Source selected by Selector index.
|
|
// 10b 1 Zero.
|
|
// 11b 0 Zero.
|
|
// 11b 1 Source selected by Selector index.
|
|
if ((M2Z & 0x2) != 0 && MatchBit != (M2Z & 0x1)) {
|
|
ShuffleMask.push_back(SM_SentinelZero);
|
|
continue;
|
|
}
|
|
|
|
int Index = i & ~(NumEltsPerLane - 1);
|
|
if (ScalarBits == 64)
|
|
Index += (Selector >> 1) & 0x1;
|
|
else
|
|
Index += Selector & 0x3;
|
|
|
|
int Src = (Selector >> 2) & 0x1;
|
|
Index += Src * NumElts;
|
|
ShuffleMask.push_back(Index);
|
|
}
|
|
}
|
|
|
|
void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
uint64_t EltMaskSize = RawMask.size() - 1;
|
|
for (int i = 0, e = RawMask.size(); i != e; ++i) {
|
|
if (UndefElts[i]) {
|
|
ShuffleMask.push_back(SM_SentinelUndef);
|
|
continue;
|
|
}
|
|
uint64_t M = RawMask[i];
|
|
M &= EltMaskSize;
|
|
ShuffleMask.push_back((int)M);
|
|
}
|
|
}
|
|
|
|
void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
|
|
SmallVectorImpl<int> &ShuffleMask) {
|
|
uint64_t EltMaskSize = (RawMask.size() * 2) - 1;
|
|
for (int i = 0, e = RawMask.size(); i != e; ++i) {
|
|
if (UndefElts[i]) {
|
|
ShuffleMask.push_back(SM_SentinelUndef);
|
|
continue;
|
|
}
|
|
uint64_t M = RawMask[i];
|
|
M &= EltMaskSize;
|
|
ShuffleMask.push_back((int)M);
|
|
}
|
|
}
|
|
|
|
} // namespace llvm
|