llvm-for-llvmta/lib/Target/X86/AsmParser/X86Operand.h

719 lines
22 KiB
C++

//===- X86Operand.h - Parsed X86 machine instruction ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_X86_ASMPARSER_X86OPERAND_H
#define LLVM_LIB_TARGET_X86_ASMPARSER_X86OPERAND_H
#include "MCTargetDesc/X86IntelInstPrinter.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "X86AsmParserCommon.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/SMLoc.h"
#include <cassert>
#include <memory>
namespace llvm {
/// X86Operand - Instances of this class represent a parsed X86 machine
/// instruction.
struct X86Operand final : public MCParsedAsmOperand {
enum KindTy { Token, Register, Immediate, Memory, Prefix, DXRegister } Kind;
SMLoc StartLoc, EndLoc;
SMLoc OffsetOfLoc;
StringRef SymName;
void *OpDecl;
bool AddressOf;
bool CallOperand;
struct TokOp {
const char *Data;
unsigned Length;
};
struct RegOp {
unsigned RegNo;
};
struct PrefOp {
unsigned Prefixes;
};
struct ImmOp {
const MCExpr *Val;
bool LocalRef;
};
struct MemOp {
unsigned SegReg;
const MCExpr *Disp;
unsigned BaseReg;
unsigned DefaultBaseReg;
unsigned IndexReg;
unsigned Scale;
unsigned Size;
unsigned ModeSize;
/// If the memory operand is unsized and there are multiple instruction
/// matches, prefer the one with this size.
unsigned FrontendSize;
};
union {
struct TokOp Tok;
struct RegOp Reg;
struct ImmOp Imm;
struct MemOp Mem;
struct PrefOp Pref;
};
X86Operand(KindTy K, SMLoc Start, SMLoc End)
: Kind(K), StartLoc(Start), EndLoc(End), CallOperand(false) {}
StringRef getSymName() override { return SymName; }
void *getOpDecl() override { return OpDecl; }
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const override { return EndLoc; }
/// getLocRange - Get the range between the first and last token of this
/// operand.
SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
/// getOffsetOfLoc - Get the location of the offset operator.
SMLoc getOffsetOfLoc() const override { return OffsetOfLoc; }
void print(raw_ostream &OS) const override {
auto PrintImmValue = [&](const MCExpr *Val, const char *VName) {
if (Val->getKind() == MCExpr::Constant) {
if (auto Imm = cast<MCConstantExpr>(Val)->getValue())
OS << VName << Imm;
} else if (Val->getKind() == MCExpr::SymbolRef) {
if (auto *SRE = dyn_cast<MCSymbolRefExpr>(Val)) {
const MCSymbol &Sym = SRE->getSymbol();
if (const char *SymNameStr = Sym.getName().data())
OS << VName << SymNameStr;
}
}
};
switch (Kind) {
case Token:
OS << Tok.Data;
break;
case Register:
OS << "Reg:" << X86IntelInstPrinter::getRegisterName(Reg.RegNo);
break;
case DXRegister:
OS << "DXReg";
break;
case Immediate:
PrintImmValue(Imm.Val, "Imm:");
break;
case Prefix:
OS << "Prefix:" << Pref.Prefixes;
break;
case Memory:
OS << "Memory: ModeSize=" << Mem.ModeSize;
if (Mem.Size)
OS << ",Size=" << Mem.Size;
if (Mem.BaseReg)
OS << ",BaseReg=" << X86IntelInstPrinter::getRegisterName(Mem.BaseReg);
if (Mem.IndexReg)
OS << ",IndexReg="
<< X86IntelInstPrinter::getRegisterName(Mem.IndexReg);
if (Mem.Scale)
OS << ",Scale=" << Mem.Scale;
if (Mem.Disp)
PrintImmValue(Mem.Disp, ",Disp=");
if (Mem.SegReg)
OS << ",SegReg=" << X86IntelInstPrinter::getRegisterName(Mem.SegReg);
break;
}
}
StringRef getToken() const {
assert(Kind == Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
void setTokenValue(StringRef Value) {
assert(Kind == Token && "Invalid access!");
Tok.Data = Value.data();
Tok.Length = Value.size();
}
unsigned getReg() const override {
assert(Kind == Register && "Invalid access!");
return Reg.RegNo;
}
unsigned getPrefix() const {
assert(Kind == Prefix && "Invalid access!");
return Pref.Prefixes;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid access!");
return Imm.Val;
}
const MCExpr *getMemDisp() const {
assert(Kind == Memory && "Invalid access!");
return Mem.Disp;
}
unsigned getMemSegReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.SegReg;
}
unsigned getMemBaseReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.BaseReg;
}
unsigned getMemDefaultBaseReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.DefaultBaseReg;
}
unsigned getMemIndexReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.IndexReg;
}
unsigned getMemScale() const {
assert(Kind == Memory && "Invalid access!");
return Mem.Scale;
}
unsigned getMemModeSize() const {
assert(Kind == Memory && "Invalid access!");
return Mem.ModeSize;
}
unsigned getMemFrontendSize() const {
assert(Kind == Memory && "Invalid access!");
return Mem.FrontendSize;
}
bool isToken() const override {return Kind == Token; }
bool isImm() const override { return Kind == Immediate; }
bool isImmSExti16i8() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
return isImmSExti16i8Value(CE->getValue());
}
bool isImmSExti32i8() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
return isImmSExti32i8Value(CE->getValue());
}
bool isImmSExti64i8() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
return isImmSExti64i8Value(CE->getValue());
}
bool isImmSExti64i32() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
return isImmSExti64i32Value(CE->getValue());
}
bool isImmUnsignedi4() const {
if (!isImm()) return false;
// If this isn't a constant expr, reject it. The immediate byte is shared
// with a register encoding. We can't have it affected by a relocation.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
return isImmUnsignedi4Value(CE->getValue());
}
bool isImmUnsignedi8() const {
if (!isImm()) return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return true;
return isImmUnsignedi8Value(CE->getValue());
}
bool isOffsetOfLocal() const override { return isImm() && Imm.LocalRef; }
bool needAddressOf() const override { return AddressOf; }
bool isMem() const override { return Kind == Memory; }
bool isMemUnsized() const {
return Kind == Memory && Mem.Size == 0;
}
bool isMem8() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 8);
}
bool isMem16() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 16);
}
bool isMem32() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 32);
}
bool isMem64() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 64);
}
bool isMem80() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 80);
}
bool isMem128() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 128);
}
bool isMem256() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 256);
}
bool isMem512() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 512);
}
bool isSibMem() const {
return isMem() && Mem.BaseReg != X86::RIP && Mem.BaseReg != X86::EIP;
}
bool isMemIndexReg(unsigned LowR, unsigned HighR) const {
assert(Kind == Memory && "Invalid access!");
return Mem.IndexReg >= LowR && Mem.IndexReg <= HighR;
}
bool isMem64_RC128() const {
return isMem64() && isMemIndexReg(X86::XMM0, X86::XMM15);
}
bool isMem128_RC128() const {
return isMem128() && isMemIndexReg(X86::XMM0, X86::XMM15);
}
bool isMem128_RC256() const {
return isMem128() && isMemIndexReg(X86::YMM0, X86::YMM15);
}
bool isMem256_RC128() const {
return isMem256() && isMemIndexReg(X86::XMM0, X86::XMM15);
}
bool isMem256_RC256() const {
return isMem256() && isMemIndexReg(X86::YMM0, X86::YMM15);
}
bool isMem64_RC128X() const {
return isMem64() && isMemIndexReg(X86::XMM0, X86::XMM31);
}
bool isMem128_RC128X() const {
return isMem128() && isMemIndexReg(X86::XMM0, X86::XMM31);
}
bool isMem128_RC256X() const {
return isMem128() && isMemIndexReg(X86::YMM0, X86::YMM31);
}
bool isMem256_RC128X() const {
return isMem256() && isMemIndexReg(X86::XMM0, X86::XMM31);
}
bool isMem256_RC256X() const {
return isMem256() && isMemIndexReg(X86::YMM0, X86::YMM31);
}
bool isMem256_RC512() const {
return isMem256() && isMemIndexReg(X86::ZMM0, X86::ZMM31);
}
bool isMem512_RC256X() const {
return isMem512() && isMemIndexReg(X86::YMM0, X86::YMM31);
}
bool isMem512_RC512() const {
return isMem512() && isMemIndexReg(X86::ZMM0, X86::ZMM31);
}
bool isAbsMem() const {
return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
!getMemIndexReg() && getMemScale() == 1;
}
bool isAVX512RC() const{
return isImm();
}
bool isAbsMem16() const {
return isAbsMem() && Mem.ModeSize == 16;
}
bool isSrcIdx() const {
return !getMemIndexReg() && getMemScale() == 1 &&
(getMemBaseReg() == X86::RSI || getMemBaseReg() == X86::ESI ||
getMemBaseReg() == X86::SI) && isa<MCConstantExpr>(getMemDisp()) &&
cast<MCConstantExpr>(getMemDisp())->getValue() == 0;
}
bool isSrcIdx8() const {
return isMem8() && isSrcIdx();
}
bool isSrcIdx16() const {
return isMem16() && isSrcIdx();
}
bool isSrcIdx32() const {
return isMem32() && isSrcIdx();
}
bool isSrcIdx64() const {
return isMem64() && isSrcIdx();
}
bool isDstIdx() const {
return !getMemIndexReg() && getMemScale() == 1 &&
(getMemSegReg() == 0 || getMemSegReg() == X86::ES) &&
(getMemBaseReg() == X86::RDI || getMemBaseReg() == X86::EDI ||
getMemBaseReg() == X86::DI) && isa<MCConstantExpr>(getMemDisp()) &&
cast<MCConstantExpr>(getMemDisp())->getValue() == 0;
}
bool isDstIdx8() const {
return isMem8() && isDstIdx();
}
bool isDstIdx16() const {
return isMem16() && isDstIdx();
}
bool isDstIdx32() const {
return isMem32() && isDstIdx();
}
bool isDstIdx64() const {
return isMem64() && isDstIdx();
}
bool isMemOffs() const {
return Kind == Memory && !getMemBaseReg() && !getMemIndexReg() &&
getMemScale() == 1;
}
bool isMemOffs16_8() const {
return isMemOffs() && Mem.ModeSize == 16 && (!Mem.Size || Mem.Size == 8);
}
bool isMemOffs16_16() const {
return isMemOffs() && Mem.ModeSize == 16 && (!Mem.Size || Mem.Size == 16);
}
bool isMemOffs16_32() const {
return isMemOffs() && Mem.ModeSize == 16 && (!Mem.Size || Mem.Size == 32);
}
bool isMemOffs32_8() const {
return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 8);
}
bool isMemOffs32_16() const {
return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 16);
}
bool isMemOffs32_32() const {
return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 32);
}
bool isMemOffs32_64() const {
return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 64);
}
bool isMemOffs64_8() const {
return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 8);
}
bool isMemOffs64_16() const {
return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 16);
}
bool isMemOffs64_32() const {
return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 32);
}
bool isMemOffs64_64() const {
return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 64);
}
bool isPrefix() const { return Kind == Prefix; }
bool isReg() const override { return Kind == Register; }
bool isDXReg() const { return Kind == DXRegister; }
bool isGR32orGR64() const {
return Kind == Register &&
(X86MCRegisterClasses[X86::GR32RegClassID].contains(getReg()) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(getReg()));
}
bool isGR16orGR32orGR64() const {
return Kind == Register &&
(X86MCRegisterClasses[X86::GR16RegClassID].contains(getReg()) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(getReg()) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(getReg()));
}
bool isVectorReg() const {
return Kind == Register &&
(X86MCRegisterClasses[X86::VR64RegClassID].contains(getReg()) ||
X86MCRegisterClasses[X86::VR128XRegClassID].contains(getReg()) ||
X86MCRegisterClasses[X86::VR256XRegClassID].contains(getReg()) ||
X86MCRegisterClasses[X86::VR512RegClassID].contains(getReg()));
}
bool isVK1Pair() const {
return Kind == Register &&
X86MCRegisterClasses[X86::VK1RegClassID].contains(getReg());
}
bool isVK2Pair() const {
return Kind == Register &&
X86MCRegisterClasses[X86::VK2RegClassID].contains(getReg());
}
bool isVK4Pair() const {
return Kind == Register &&
X86MCRegisterClasses[X86::VK4RegClassID].contains(getReg());
}
bool isVK8Pair() const {
return Kind == Register &&
X86MCRegisterClasses[X86::VK8RegClassID].contains(getReg());
}
bool isVK16Pair() const {
return Kind == Register &&
X86MCRegisterClasses[X86::VK16RegClassID].contains(getReg());
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addGR32orGR64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
MCRegister RegNo = getReg();
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo))
RegNo = getX86SubSuperRegister(RegNo, 32);
Inst.addOperand(MCOperand::createReg(RegNo));
}
void addGR16orGR32orGR64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
MCRegister RegNo = getReg();
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(RegNo) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo))
RegNo = getX86SubSuperRegister(RegNo, 16);
Inst.addOperand(MCOperand::createReg(RegNo));
}
void addAVX512RCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addMaskPairOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
unsigned Reg = getReg();
switch (Reg) {
case X86::K0:
case X86::K1:
Reg = X86::K0_K1;
break;
case X86::K2:
case X86::K3:
Reg = X86::K2_K3;
break;
case X86::K4:
case X86::K5:
Reg = X86::K4_K5;
break;
case X86::K6:
case X86::K7:
Reg = X86::K6_K7;
break;
}
Inst.addOperand(MCOperand::createReg(Reg));
}
void addMemOperands(MCInst &Inst, unsigned N) const {
assert((N == 5) && "Invalid number of operands!");
if (getMemBaseReg())
Inst.addOperand(MCOperand::createReg(getMemBaseReg()));
else
Inst.addOperand(MCOperand::createReg(getMemDefaultBaseReg()));
Inst.addOperand(MCOperand::createImm(getMemScale()));
Inst.addOperand(MCOperand::createReg(getMemIndexReg()));
addExpr(Inst, getMemDisp());
Inst.addOperand(MCOperand::createReg(getMemSegReg()));
}
void addAbsMemOperands(MCInst &Inst, unsigned N) const {
assert((N == 1) && "Invalid number of operands!");
// Add as immediates when possible.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(getMemDisp()));
}
void addSrcIdxOperands(MCInst &Inst, unsigned N) const {
assert((N == 2) && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMemBaseReg()));
Inst.addOperand(MCOperand::createReg(getMemSegReg()));
}
void addDstIdxOperands(MCInst &Inst, unsigned N) const {
assert((N == 1) && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMemBaseReg()));
}
void addMemOffsOperands(MCInst &Inst, unsigned N) const {
assert((N == 2) && "Invalid number of operands!");
// Add as immediates when possible.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(getMemDisp()));
Inst.addOperand(MCOperand::createReg(getMemSegReg()));
}
static std::unique_ptr<X86Operand> CreateToken(StringRef Str, SMLoc Loc) {
SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size());
auto Res = std::make_unique<X86Operand>(Token, Loc, EndLoc);
Res->Tok.Data = Str.data();
Res->Tok.Length = Str.size();
return Res;
}
static std::unique_ptr<X86Operand>
CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc,
bool AddressOf = false, SMLoc OffsetOfLoc = SMLoc(),
StringRef SymName = StringRef(), void *OpDecl = nullptr) {
auto Res = std::make_unique<X86Operand>(Register, StartLoc, EndLoc);
Res->Reg.RegNo = RegNo;
Res->AddressOf = AddressOf;
Res->OffsetOfLoc = OffsetOfLoc;
Res->SymName = SymName;
Res->OpDecl = OpDecl;
return Res;
}
static std::unique_ptr<X86Operand>
CreateDXReg(SMLoc StartLoc, SMLoc EndLoc) {
return std::make_unique<X86Operand>(DXRegister, StartLoc, EndLoc);
}
static std::unique_ptr<X86Operand>
CreatePrefix(unsigned Prefixes, SMLoc StartLoc, SMLoc EndLoc) {
auto Res = std::make_unique<X86Operand>(Prefix, StartLoc, EndLoc);
Res->Pref.Prefixes = Prefixes;
return Res;
}
static std::unique_ptr<X86Operand> CreateImm(const MCExpr *Val,
SMLoc StartLoc, SMLoc EndLoc,
StringRef SymName = StringRef(),
void *OpDecl = nullptr,
bool GlobalRef = true) {
auto Res = std::make_unique<X86Operand>(Immediate, StartLoc, EndLoc);
Res->Imm.Val = Val;
Res->Imm.LocalRef = !GlobalRef;
Res->SymName = SymName;
Res->OpDecl = OpDecl;
Res->AddressOf = true;
return Res;
}
/// Create an absolute memory operand.
static std::unique_ptr<X86Operand>
CreateMem(unsigned ModeSize, const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc,
unsigned Size = 0, StringRef SymName = StringRef(),
void *OpDecl = nullptr, unsigned FrontendSize = 0) {
auto Res = std::make_unique<X86Operand>(Memory, StartLoc, EndLoc);
Res->Mem.SegReg = 0;
Res->Mem.Disp = Disp;
Res->Mem.BaseReg = 0;
Res->Mem.DefaultBaseReg = 0;
Res->Mem.IndexReg = 0;
Res->Mem.Scale = 1;
Res->Mem.Size = Size;
Res->Mem.ModeSize = ModeSize;
Res->Mem.FrontendSize = FrontendSize;
Res->SymName = SymName;
Res->OpDecl = OpDecl;
Res->AddressOf = false;
return Res;
}
/// Create a generalized memory operand.
static std::unique_ptr<X86Operand>
CreateMem(unsigned ModeSize, unsigned SegReg, const MCExpr *Disp,
unsigned BaseReg, unsigned IndexReg, unsigned Scale, SMLoc StartLoc,
SMLoc EndLoc, unsigned Size = 0,
unsigned DefaultBaseReg = X86::NoRegister,
StringRef SymName = StringRef(), void *OpDecl = nullptr,
unsigned FrontendSize = 0) {
// We should never just have a displacement, that should be parsed as an
// absolute memory operand.
assert((SegReg || BaseReg || IndexReg || DefaultBaseReg) &&
"Invalid memory operand!");
// The scale should always be one of {1,2,4,8}.
assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
"Invalid scale!");
auto Res = std::make_unique<X86Operand>(Memory, StartLoc, EndLoc);
Res->Mem.SegReg = SegReg;
Res->Mem.Disp = Disp;
Res->Mem.BaseReg = BaseReg;
Res->Mem.DefaultBaseReg = DefaultBaseReg;
Res->Mem.IndexReg = IndexReg;
Res->Mem.Scale = Scale;
Res->Mem.Size = Size;
Res->Mem.ModeSize = ModeSize;
Res->Mem.FrontendSize = FrontendSize;
Res->SymName = SymName;
Res->OpDecl = OpDecl;
Res->AddressOf = false;
return Res;
}
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_X86_ASMPARSER_X86OPERAND_H